Sample records for information smart grid

  1. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect (OSTI)

    Rahman, Saifur

    2014-08-31T23:59:59.000Z

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.

  2. Smart Grid Information Security (IS) Functional Requirement

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

  3. Green Energy Workshop Student Posters Semantic Complex Event Processing for Smart Grid Information

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    for Smart Grid Information Integration and Demand Management Qunzhi Zhou, Yogesh of the power grid to a Smart Grid. The benefits of Smart Grid include demand Grid Demonstration Project. We define an ontology model for Smart Grid

  4. Department of Energy Seeks Information on Smart Grid Challenges...

    Broader source: Energy.gov (indexed) [DOE]

    Seeks Information on Smart Grid Challenges Department of Energy Seeks Information on Smart Grid Challenges September 23, 2010 - 3:01pm Addthis The Department of Energy's Office of...

  5. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan, prasanna}@usc.edu I. INTRODUCTION Smart Power Grids exemplify an emerging class of Cyber Physical-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor

  6. SmartGrid Information | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid SmartSmartGrid

  7. SmartGrid: Quarterly Data Summaries from the Data Hub and SmartGrid Project Information (from OpenEI and SmartGrid.gov)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Both OpenEI and SmartGrid.gov are DOE portals to a wealth of information about the federal initiatives that support the development of the technologies, policies and projects transforming the electric power industry. Projects funded through the U.S. Recovery Act are organized by type and pinned to an interactive map at http://en.openei.org/wiki/Gateway:Smart_Grid. Each project title links to more detailed information. The Quarterly Data Summaries from the Data Hub at SmartGrid.gov are also available on OpenEI at http://en.openei.org/datasets/node/928. In addition, the SmartGrid Information Center contains documents and reports that can be searched or browsed. Smart Grid Resources introduces international SmartGrid programs and sites, while OpenEI encourages users to add SmartGrid information to the repository.

  8. SMART GRID Request for Information And Public Comments

    Broader source: Energy.gov [DOE]

    As part of its ongoing effort regarding the formation of smart grid policy, the Department of Energy issued a Request for Information in September of 2010 on the topic of “Addressing Policy and Logistical Challenges to Smart Grid Implementation.” The purpose was to solicit comments from interested stakeholders on policy and logistical challenges that confront smart grid implementation, and recommendations on how to best overcome those challenges.

  9. Grid Information Security Functional Requirement - Fulfilling Information Security of a Smart Grid System

    E-Print Network [OSTI]

    Ling, Amy Poh Ai; 10.5121/ijgca.2011.2201

    2011-01-01T23:59:59.000Z

    This paper describes the background of smart information infrastructure and the needs for smart grid information security. It introduces the conceptual analysis to the methodology with the application of hermeneutic circle and information security functional requirement identification. Information security for the grid market cover matters includes automation and communications industry that affects the operation of electric power systems and the functioning of the utilities that manage them and its awareness of this information infrastructure has become critical to the reliability of the power system. Community benefits from of cost savings, flexibility and deployment along with the establishment of wireless communications. However, concern revolves around the security protections for easily accessible devices such as the smart meter and the related communications hardware. On the other hand, the changing points between traditional versus smart grid networking trend and the information security importance on...

  10. Almacena (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne, Pennsylvania Product:Almacena (Smart Grid Project)

  11. GAD (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm Inc JumpGAD (Smart Grid

  12. EVCOM (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformation Ireland) Jump to:EVCOM (Smart

  13. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:EauEcoFactor Inc Jump(Smart Grid

  14. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  15. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,EnergySerranopolisEnviroMission LtdEnvisolarEpping,Eprice (Smart

  16. Smart Grid Request for Information and Public Comments | Department...

    Office of Environmental Management (EM)

    Association CURRENT Group Dairyland Power Cooperative RICE Ruling Water Heater Ruling Demand Response and Smart Grid Coalition (DRSG) District of Columbia Office of the...

  17. Selection of Model in Developing Information Security Criteria for Smart Grid Security System

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    At present, the "Smart Grid" has emerged as one of the best advanced energy supply chains. This paper looks into the security system of smart grid via the smart planet system. The scope focused on information security criteria that impact on consumer trust and satisfaction. The importance of information security criteria is perceived as the main aspect to impact on customer trust throughout the entire smart grid system. On one hand, this paper also focuses on the selection of the model for developing information security criteria on a smart grid.

  18. Etelligence (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergyEnvisoryInformation (Cuxhaven,

  19. ESB Smart Meter Projects (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek42EOPEPODESB Smart Meter

  20. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  1. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  2. Smart Grid

    E-Print Network [OSTI]

    Haskell,

    2011-01-01T23:59:59.000Z

    -Conditioner, 15min ESL-KT-11-11-22 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 What is Pecan Street Inc. ? A research-oriented smart home demonstration ? that places added interest to residential consumer experiences. ESL-KT-11-11-22 CATEE 2011, Dallas... to 1000 homes ? many with consumer feedback, load controls ? Lab completion ? 100+ electric vehicles ? Smart appliances ? Residential Storage ? LEED Hospital and multi-home systems ? home health, home security ESL-KT-11-11-22 CATEE 2011, Dallas...

  3. Green Energy Workshop Student Posters Smart Communication of Energy Use and Prediction in a Smart Grid

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    and Prediction in a Smart Grid Software Architecture * Saima Aman, Yogesh Simmhan The increasing deployment of smart meters and other sensor technologies in the Smart Grid. This information-rich Smart Grid environment has opened up research opportunities

  4. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  5. Cleco Power LLC Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityClean EconomyLLC Smart Grid Project Jump to:

  6. Category:Smart Grid Projects | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo BackLocationSmart Grid Projects Jump

  7. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  8. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  9. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  10. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  11. Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSite Map Main Menu Aboutsmr SmallSmart

  12. False Data Injection Attacks with Incomplete Information Against Smart Power Grids

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    that if an adversary has complete knowledge on the power grid topology and transmission-line admittance values, he can Injection Attack, Smart Grid Security, Incomplete Information, Transmission Line Admittance Uncer- tainty- abilities in power infrastructures if they are not accompanied with appropriate security enforcements

  13. Progress Energy draft regarding Smart Grid RFI: Addressing Policy...

    Office of Environmental Management (EM)

    Policy and Logistical Challenges in Implementing Smart Grid Solutions COMMENTS OF THE MICHIGAN PUBLIC SERVICE COMMISSION STAFF TO REQUEST FOR INFORMATION REGARDING SMART GRID...

  14. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  15. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  16. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  17. Category:Smart Grid References | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation DemonstrationsSmart

  18. Clyde Gateway (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformation ClimateClioGateway (Smart

  19. Charge stands (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: ChinaInformation Changzhou Jiangnanstands (Smart

  20. DA (Distribution Automation) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DA (Distribution Automation) (Smart

  1. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  2. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergy InformationDEFRADEIF ADG

  3. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  4. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  5. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  6. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  7. Building to Grid (B2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G) (Smart Grid Project) Jump to:

  8. A Multi-layer, Hierarchical Information Management System for the Smart Grid

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-10-10T23:59:59.000Z

    This paper presents the modeling approach, methodologies, and initial results of setting up a multi-layer, hierarchical information management system (IMS) for the smart grid. The IMS allows its users to analyze the data collected by multiple control and communication networks to characterize the states of the smart grid. Abnormal, corrupted, or erroneous measurement data and outliers are detected and analyzed to identify whether they are caused by random equipment failures, unintentional human errors, or deliberate tempering attempts. Data collected from different information networks are crosschecked for data integrity based on redundancy, dependency, correlation, or cross-correlations, which reveal the interdependency between data sets. A hierarchically structured reasoning mechanism is used to rank possible causes of an event to aid the system operators to proactively respond or provide mitigation recommendations to remove or neutralize the threats. The model provides satisfactory performance on identifying the cause of an event and significantly reduces the need of processing myriads of data collected.

  9. Entergy New Orleans, Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to:EmminolEntergy Arkansas Inc (Arkansas)Orleans, Inc. Smart

  10. Easy Street (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine: Energy ResourcesStreet (Smart

  11. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  12. Semantic Information Modeling for Emerging Applications in Smart Grid

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    IT applications to be developed to protect and optimize power grid operations. Demand response (DR) is one efficient and reliable management of electrical power systems and optimizing the operations of its such emerging application to optimize electricity demand by curtailing/shifting power load when peak load oc

  13. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  14. Smart Grid Request for Information and Public Comments | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNewEnergy Services

  15. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  16. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  17. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  18. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Smart Grid by providing them with information, control and options. AMI includes smart meters for advanced measurement, an integrated two- way communications...

  19. Category:Smart Grid Projects - Customer Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal RegulatoryInformationProjects -

  20. Category:Smart Grid Projects in Europe | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermalInformation Demonstrations

  1. Seeo, Inc Smart Grid Demonstration Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, NewSeeger Engineering AG Jump

  2. Harz.EEMobility (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville, New York: EnergyHarwoodHaryana

  3. Consumer web (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergy Information Hallein, Austria) Jumpweb

  4. DCN4TSO (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergy Information

  5. DERIREC 22@Microgrid (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosaPageEnergy InformationDEFRADEIF A

  6. Guam Power Authority Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004)PevafersaPlant Biomass

  7. EUDEEP (Smart Grid Project) (Austria) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformation ETransEUDEEP

  8. EUDEEP (Smart Grid Project) (Belgium) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformation

  9. EUDEEP (Smart Grid Project) (Cyprus) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformationCyprus) Jump to:

  10. EUDEEP (Smart Grid Project) (Finland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformationCyprus) Jump

  11. EUDEEP (Smart Grid Project) (Germany) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformationCyprus)

  12. EUDEEP (Smart Grid Project) (Greece) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformationCyprus)EUDEEP

  13. EUDEEP (Smart Grid Project) (Hungary) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, NewDyerTier2 SubmitInformationCyprus)EUDEEP

  14. Emobility (Smart Grid Project) (Milan, Italy) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy InformationEmily, Minnesota:Emmons Lake Geothermal

  15. DG Demonetz Validierung (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DADEVELOPMENT Solutions

  16. The Smart Grid: An Introduction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ Book Jump

  17. Vineyard Energy Project Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmweltVillage ofInformationVineyard Energy Project Country

  18. City of Quincy, FL Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCity of Pender,Primghar, IowaQuincy,

  19. City of Ruston, Louisiana Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCityRuston, Louisiana (UtilityRuston,

  20. City of Tallahassee Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach,Stuart, Iowa (Utility Company)City

  1. City of Wadsworth, OH Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach,Stuart, Iowa (UtilityCity ofCity ofWadsworth,

  2. Hawaii Electric Co. Inc. Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | Open Energy Information HanergyHarney ElectricHaryanaHavana Inc.

  3. Dissecting the Cost of the Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open Energy Information At1986) |DisaDissecting

  4. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  5. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  6. DLC+VIT4IP (Smart Grid Project) (United Kingdom) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DADEVELOPMENTItalyIP (Smart Grid

  7. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  8. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  9. EcoGrid Denmark, ForskEL (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrictInformationEau ClaireEcoEcoEcoDogEcoGrid

  10. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

  11. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial number of pollutants. This paper focuses on the particulate and gaseous emission pollutants that are byproducts of electricity generation, and on how the Smart Grid...

  12. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  13. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29T23:59:59.000Z

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  14. An Approach for Reduction of the Security Overhead in Smart Grid Communication Infrastructure Employing Dedicated Encryption

    E-Print Network [OSTI]

    Kavcic, Aleksandar

    An Approach for Reduction of the Security Overhead in Smart Grid Communication Infrastructure for data secu- rity within the Smart Grid communications infrastructure. A significant part communication channels. Keywords--Smart Grid; information-communication infras- tructure; overheads; data

  15. Artificial Intelligence for the Smart Grid

    E-Print Network [OSTI]

    Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future · Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

  16. IEEE TRANSACTIONS ON SMART GRID CALL FOR PAPERS

    E-Print Network [OSTI]

    Guan, Yongpei

    IEEE TRANSACTIONS ON SMART GRID CALL FOR PAPERS Special Issue on "Optimization Methods and Algorithms Applied to Smart Grid" With recent developments in advanced monitoring, information, and communication technologies applied to smart grid, electric power systems will be able to respond more

  17. Smart Grid Legislative and Regulatory Policies and Case Studies

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    In recent years, a number of U.S. states have adopted or are considering smart grid related laws, regulations, and voluntary or mandatory requirements. At the same time, the number of smart grid pilot projects has been increasing rapidly. The Energy Information Administration (EIA) commissioned SAIC to research the development of smart grid in the United States and abroad. The research produced several documents that will help guide EIA as it considers how best to track smart grid developments.

  18. Sandia National Laboratories: energy resilient smart grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resilient smart grid Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems,...

  19. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  20. The Development of a Smart Distribution Grid Testbed for Integrated Information Management Systems

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-07-28T23:59:59.000Z

    This paper presents a smart distribution grid testbed to test or compare designs of integrated information management systems (I2MSs). An I2MS extracts and synthesizes information from a wide range of data sources to detect abnormal system behaviors, identify possible causes, assess the system status, and provide grid operators with response suggestions. The objective of the testbed is to provide a modeling environment with sufficient data sources for the I2MS design. The testbed includes five information layers and a physical layer; it generates multi-layer chronological data based on actual measurement playbacks or simulated data sets produced by the physical layer. The testbed models random hardware failures, human errors, extreme weather events, and deliberate tampering attempts to allow users to evaluate the performance of different I2MS designs. Initial results of I2MS performance tests showed that the testbed created a close-to-real-world environment that allowed key performance metrics of the I2MS to be evaluated.

  1. Networks, smart grids: new model for synchronization

    E-Print Network [OSTI]

    - 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

  2. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  3. Smart Grid | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart Grid Smart

  4. Smart Grid Interoperability Maturity Model

    SciTech Connect (OSTI)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28T23:59:59.000Z

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  5. DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity

    E-Print Network [OSTI]

    DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

  6. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and answers related to the reporting of meter installations in the SmartGrid Integrated Project Reporting Information System (SIPRIS), both for the intial report...

  7. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Retained in SIPRIS Questions and answers related to the reporting of jobs in the SmartGrid Integrated Project Reporting Information System (SIPRIS), both for the intial report...

  8. Smart Grid RFI: Addressing Policy and Logistical Challenges,...

    Broader source: Energy.gov (indexed) [DOE]

    ("DOE" or "Department") for information on a wide range of issues dealing with Smart Grid technology, applications, consumer interaction, policy initiatives and economic...

  9. Smart Grid Investment Grant Recipient FAQs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    These Questions and Answers have been provided by DOE to Smart Grid Investment Grant selectees. The information discussed within these documents applies specifically and only to...

  10. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  11. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  12. The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond

    E-Print Network [OSTI]

    Hayden, Nancy J.

    The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

  13. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

  14. Consumer to Grid (C2G) (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| OpenCongress,Consolidated EdisonMinorEnergyConsumer to

  15. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  16. Deploying Systems Interoperability and Customer Choice within Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    twiki- sggrid/bin/view/SmartGrid/PriorityActionPlanssggrid/bin/view/SmartGrid/TTMeetingOnPriceCommunications The

  17. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  18. Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand

    E-Print Network [OSTI]

    Hickman, Mark

    May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

  19. EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems

    E-Print Network [OSTI]

    EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

  20. Sandia National Laboratories: smart-grid technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling & Analysis,...

  1. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

  2. 0.4 kV remote control (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Projectsource HistorykV remote control (Smart Grid

  3. Cyber Security in Smart Grid Substations

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Cyber Security in Smart Grid Substations Thijs Baars Lucas van den Bemd Michail Theuns Robin van.089 3508 TB Utrecht The Netherlands #12;CYBER SECURITY IN SMART GRID SUBSTATIONS Thijs Baars T.Brinkkemper@uu.nl Abstract. This report describes the state of smart grid security in Europe, specifically the Netherlands

  4. Demand Side Management in the Smart Grid: Information Processing for the Power Switch

    SciTech Connect (OSTI)

    Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

    2012-09-01T23:59:59.000Z

    In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

  5. Minimizing Private Data Disclosures in the Smart Grid Weining Yang

    E-Print Network [OSTI]

    McDaniel, Patrick Drew

    Minimizing Private Data Disclosures in the Smart Grid Weining Yang Purdue University yang469@cs@cse.psu.edu Patrick McDaniel Penn State University mcdaniel@cse.psu.edu ABSTRACT Smart electric meters pose monitors, smart meter data can reveal precise home appliance usage information. An emerging solution

  6. From the Grid to the Smart Grid, Topologically

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2013-01-01T23:59:59.000Z

    The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

  7. Assessing the Usefulness of Distributed Measurements in the Smart Grid

    E-Print Network [OSTI]

    Framhein, Theodore Anthony

    2012-01-01T23:59:59.000Z

    Kezunovic, M. ; , "Smart Fault Location for Smart Grids,"Smart Grid, IEEE Transactions on , vol.2, no.1, pp.11-22,Measurements in the Smart Grid A thesis submitted in partial

  8. Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission Grid: Vision and Framework

    E-Print Network [OSTI]

    Tennessee, University of

    Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission.2080328 3. A Reliability Perspective of the Smart Grid Moslehi, K. Kumar, R. Page(s): 57 - 64 Digital Object Consumption Scheduling for the Future Smart Grid Mohsenian-Rad, A. Wong, V.W.S. Jatskevich, J. Schober, R

  9. Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

    E-Print Network [OSTI]

    customers to choose to control their energy usage ­ Smart meters ­ Home/building/industrial energy controls and displays · Automated home energy use 4 #12;The End-user is the Centerpiece of the Smart Grid 5Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

  10. Integration of Smart Home Data with Simulated Smart Grid

    E-Print Network [OSTI]

    Collins, Gary S.

    Integration of Smart Home Data with Simulated Smart Grid Introduction Data was generated using The Energy Detective (TED 5000) Data was exported to then to the RTDS Data from the smart home lab from smart home to simulate real-life scenario Real Time Digital Simulator (RTDS) RTDS is a real time

  11. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...

  12. ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission

    E-Print Network [OSTI]

    . · Smart generation. Energy storage. Microgrids. · Substation intelligence. · Transmission systems. PhasorECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

  13. IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 643 Guest Editorial

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 643 Guest Editorial Cyber, Physical, and System Security for Smart Grid The vision of a smart grid relies heavily on the information, facilitating the integration of renewable energy sources into the grid, and empowering the consumer with tools

  14. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  15. Smart Grid System Report

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart

  16. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  17. Wireless Communications and Networking Technologies for Smart Grid: Paradigms and Challenges

    E-Print Network [OSTI]

    Fang, Xi; Xue, Guoliang

    2011-01-01T23:59:59.000Z

    Smart grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this work we present our vision on smart grid from the perspective of wireless communications and networking technologies. We present wireless communication and networking paradigms for four typical scenarios in the future smart grid and also point out the research challenges of the wireless communication and networking technologies used in smart grid

  18. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  19. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    S. S. Oren, “Smart flexible just-in-time transmission andFlexible Transmission in the Smart Grid By Kory WalterAll rights reserved. A BSTRACT Flexible Transmission in the

  20. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  1. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  2. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status: Tracking No. Comments Due: Submission Type: Page 1 of 2 1182010 file:P:Smart GridSmart Grid RFI Policy and Logistical CommentsDraft Comments for DOE-H... I...

  3. IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    smart meter wireless transmissions in the presence of strong wideband interference. The performanceIEEE Proof W eb Version IEEE TRANSACTIONS ON SMART GRID 1 Cognitive Radio Network for the Smart of applying the next generation wireless technology, cognitive radio network, for the smart grid

  4. What is the Smart Grid Anyway

    Broader source: Energy.gov [DOE]

    Presentation covers what is the smart grid at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  5. Value of a Smart Grid System

    Broader source: Energy.gov (indexed) [DOE]

    2 - Section 1: Smart Grid Opportunities Remarkable things happen when economic forces and new technology converge. Consider how the the Internet -- combined with new, affordable...

  6. Microsoft Word - Smart Grid Economic Impact Report

    Office of Environmental Management (EM)

    benefits include real estate, wholesale trade, financial services, restaurants, and health care. Smart Grid ARRA investments also supported employment in personal service...

  7. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  8. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and education they need to effectively utilize the new options provided by the Smart Grid. CE includes solutions such as Advanced Metering Infrastructure (AMI), home...

  9. Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project, now complete FOR MORE INFORMATION: Rick Knori (307) 739-6038 www.lvenergy.com Cold-climate co-op heats up with smart grid Lower Valley Energy provides electricity to...

  10. Competitive Privacy in the Smart Grid: An Information-theoretic Approach

    E-Print Network [OSTI]

    Sankar, Lalitha; Tandon, Ravi; Poor, H Vincent

    2011-01-01T23:59:59.000Z

    Advances in sensing and communication capabilities as well as power industry deregulation are driving the need for distributed state estimation in the smart grid at the level of the regional transmission organizations (RTOs). This leads to a new competitive privacy problem amongst the RTOs since there is a tension between sharing data to ensure network reliability (utility/benefit to all RTOs) and withholding data for profitability and privacy reasons. The resulting tradeoff between utility, quantified via fidelity of its state estimate at each RTO, and privacy, quantified via the leakage of the state of one RTO at other RTOs, is captured precisely using a lossy source coding problem formulation for a two RTO network. For a two-RTO model, it is shown that the set of all feasible utility-privacy pairs can be achieved via a single round of communication when each RTO communicates taking into account the correlation between the measured data at both RTOs. The lossy source coding problem and solution developed he...

  11. Secure Compressed Reading in Smart Grids

    E-Print Network [OSTI]

    Cai, Sheng; Chen, Minghua; Yan, Jianxin; Jaggi, Sidharth

    2012-01-01T23:59:59.000Z

    Smart Grids measure energy usage in real-time and tailor supply and delivery accordingly, in order to improve power transmission and distribution. For the grids to operate effectively, it is critical to collect readings from massively-installed smart meters to control centers in an efficient and secure manner. In this paper, we propose a secure compressed reading scheme to address this critical issue. We observe that our collected real-world meter data express strong temporal correlations, indicating they are sparse in certain domains. We adopt Compressed Sensing technique to exploit this sparsity and design an efficient meter data transmission scheme. Our scheme achieves substantial efficiency offered by compressed sensing, without the need to know beforehand in which domain the meter data are sparse. This is in contrast to traditional compressed-sensing based scheme where such sparse-domain information is required a priori. We then design specific dependable scheme to work with our compressed sensing based ...

  12. Home Area Networks and the Smart Grid

    SciTech Connect (OSTI)

    Clements, Samuel L.; Carroll, Thomas E.; Hadley, Mark D.

    2011-04-01T23:59:59.000Z

    With the wide array of home area network (HAN) options being presented as solutions to smart grid challenges for the home, it is time to compare and contrast their strengths and weaknesses. This white paper examines leading and emerging HAN technologies. The emergence of the smart grid is bringing more networking players into the field. The need for low consistent bandwidth usage differs enough from the traditional information technology world to open the door to new technologies. The predominant players currently consist of a blend of the old and new. Within the wired world Ethernet and HomePlug Green PHY are leading the way with an advantage to HomePlug because it doesn't require installing new wires. In the wireless the realm there are many more competitors but WiFi and ZigBee seem to have the most momentum.

  13. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Challenges More Documents & Publications QER - Comment of GridWise Alliance 1 SmartGrid Consortium: Smart Grid Roadmap for the State of New York Smart Grid: Enabler of the...

  14. Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    1 Communication Capacity Requirement for Reliable and Secure State Estimation in Smart Grid Husheng, Cookeville, TN Abstract-- Secure system state estimation is an important issue in smart grid to assure the information the- oretic perspective. The smart grid is modeled as a linear dynamic system. Then, the channel

  15. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier MitigationSmart

  16. Smart Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125EnergyIdaho | Department of Energy SmallSmart Grid

  17. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    State - Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011 List of selections for the Smart Grid Investment...

  18. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Category Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 List of selections for the Smart Grid Investment...

  19. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of...

  20. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Applicability of Buy American Provision of Section 1605 of the Recovery Act to Projects Under the Smart Grid...

  1. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

  2. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register...

  3. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...

    Broader source: Energy.gov (indexed) [DOE]

    Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

  4. Davis Bacon Act Applicability to Smart Grid Investment Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Letter to...

  5. Presentation to the EAC - Smart Grid Subcommittee Work Plan Status...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity Advisory Committee Smart Grid Subcommittee Work Plan Status Joe Paladino - DOE Wanda Reder - EAC Smart Grid Sub- Committee Chair June 12, 2012 * Considerations: - Build...

  6. Now Available: Pacific Northwest Smart Grid Demonstration Project...

    Energy Savers [EERE]

    Now Available: Pacific Northwest Smart Grid Demonstration Project - Technology Performance Report Volume 1 Now Available: Pacific Northwest Smart Grid Demonstration Project -...

  7. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Buy American Questions and Answers for the Smart Grid Investment Grant Program: Buy American Additional questions...

  8. City Utilities of Springfield Missouri Comments on Smart Grid...

    Energy Savers [EERE]

    Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges City Utilities of Springfield Missouri Comments on Smart Grid RFI:...

  9. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities Presentation given by...

  10. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE Action, approved at the October 15-16, 2012 EAC Meeting. Smart Grid Outreach and...

  11. New York Independent System Operator, Smart Grid RFI: Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical Challenges. New York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical...

  12. Addressing Policy and Logistical Challenges to smart grid Implementati...

    Energy Savers [EERE]

    Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid...

  13. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Office of Environmental Management (EM)

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  14. Smart Grid Investment Grant Program (SGIG) Recipient Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Investment Grant (SGIG) Kickoff Welcome and Overview: Familiarize SGIG selectees with Grant Award Process. Smart Grid Investment Grant Program (SGIG) Recipient Workshop:...

  15. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation...

  16. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked Questions Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked...

  17. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Broader source: Energy.gov (indexed) [DOE]

    of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Association of Home Appliance Manufacturers Comments on Smart Grid RFI Addressing Policy and Logistical...

  18. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28T23:59:59.000Z

    Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  19. SMART WATER GRID PLAN B TECHNICAL REPORT

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL of water resources is currently under stress due to climatic changes, and continuous increase in water demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network

  20. Algorithmic Decision Theory and the Smart Grid

    E-Print Network [OSTI]

    1 Algorithmic Decision Theory and the Smart Grid Fred Roberts Rutgers University #12;2 Algorithmic Conference on ADT ­ probably Belgium in Fall 2013. #12;9 ADT and Smart Grid ·Many of the following ideas and planning dating at least to World War II. ·But: algorithms to speed up and improve real-time decision

  1. High-Performance Computing for Advanced Smart Grid Applications

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu

    2012-07-06T23:59:59.000Z

    The power grid is becoming far more complex as a result of the grid evolution meeting an information revolution. Due to the penetration of smart grid technologies, the grid is evolving as an unprecedented speed and the information infrastructure is fundamentally improved with a large number of smart meters and sensors that produce several orders of magnitude larger amounts of data. How to pull data in, perform analysis, and put information out in a real-time manner is a fundamental challenge in smart grid operation and planning. The future power grid requires high performance computing to be one of the foundational technologies in developing the algorithms and tools for the significantly increased complexity. New techniques and computational capabilities are required to meet the demands for higher reliability and better asset utilization, including advanced algorithms and computing hardware for large-scale modeling, simulation, and analysis. This chapter summarizes the computational challenges in smart grid and the need for high performance computing, and present examples of how high performance computing might be used for future smart grid operation and planning.

  2. Smart Grid Interoperability Maturity Model Beta Version

    SciTech Connect (OSTI)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02T23:59:59.000Z

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  3. 738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring System to Improve

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring, Senior Member, IEEE Abstract--The implementation of smart grids will fundamen- tally change the approach that relies upon customer complaints. The monitoring capabilities of a smart grid will allow utilities

  4. IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 1, JUNE 2010 99 Security Technology for Smart Grid Networks

    E-Print Network [OSTI]

    Hu, Fei

    IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 1, JUNE 2010 99 Security Technology for Smart Grid for a smart grid system, including public key infrastructures and trusted computing. Index Terms--Attestation, public key infrastructure (PKI), Su- pervisory Control And Data Acquisition (SCADA), security, smart grid

  5. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-09-01T23:59:59.000Z

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  6. Feedback" An Article for Smart Grid News The Smart Grid Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by sharing the progress of the Smart Grid transition through the communication of key performance indicators, stakeholders can see what progress is being made. When progress is...

  7. EV-Smart Grid Research & Interoperability Activities 2014 DOE...

    Broader source: Energy.gov (indexed) [DOE]

    - Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

  8. BPA Study of Smart Grid Economics ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with low and high values ranging from 0.6B to 7.1B. The NPV is expected to surpass zero (i.e., producing a net benefit) with 96 percent confidence. Figure 2. Smart Grid...

  9. Sandia National Laboratories: smart grid integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The Vermont RTC...

  10. Florida Power and Light Comments on Smart Grid Request For Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    it continues to be developed and deployed, can be an enabler for better and more reliable control of the electric power system, enhanced management and monitoring of the grid, and...

  11. Are You a Smart Grid Champion? | Department of Energy

    Energy Savers [EERE]

    just of the grid, but of our entire energy economy. Watch this video from Con Edison of New York (recipient of two DOE Smart Grid Recovery grants) on the Smart Grid (it's about 2...

  12. Modelling Chinese Smart Grid: A Stochastic Model Checking Case Study

    E-Print Network [OSTI]

    Yüksel, Ender; Nielson, Flemming; Zhu, Huibiao; Huang, Heqing

    2012-01-01T23:59:59.000Z

    Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this technical report, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker.

  13. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  14. Comments of DRSG to DOE Smart Grid RFI: Addressing Policy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to smart grid Implementation: eMeter Response to Department of Energy RFI Association of Home Appliance Manufacturers Comments on Smart Grid RFI ASHRAE draft regarding Smart Grid...

  15. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Signals. ” SGIP NIST Smart Grid Collaboration Site. http://emix/. Last accessed: Open Smart Grid Users Group. “OpenADROpenADR technologies and Smart Grid standards activities.

  16. Smart Grid as a Driver for Energy-Intensive Industries: A Data Center Case Study

    E-Print Network [OSTI]

    Ganti, Venkata

    2014-01-01T23:59:59.000Z

    NIST Framework and Roadmap for Smart Grid InteroperabilityNIST Framework and Roadmap for Smart Grid Interoperability2012. [12] NIST Smart Grid Testing and Certification

  17. Student Research Abstract: Trustworthy Remote Entities in the Smart Grid

    E-Print Network [OSTI]

    Oxford, University of

    Student Research Abstract: Trustworthy Remote Entities in the Smart Grid Andrew J. Paverd to enhance user privacy by introducing a novel element into the smart grid architecture. The Trustworthy a group of smart meters and the external smart grid entities. The TRE enhances user privacy by providing

  18. Game Theoretic Methods for the Smart Grid

    E-Print Network [OSTI]

    Saad, Walid; Poor, H Vincent; Ba?ar, Tamer

    2012-01-01T23:59:59.000Z

    The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, communications, control, and computing technologies. In order to accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the...

  19. Scheduling for Electricity Cost in Smart Grid Mihai Burcea1,

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    Scheduling for Electricity Cost in Smart Grid Mihai Burcea1, , Wing-Kai Hon2 , Hsiang-Hsuan Liu2 arising in "demand response manage- ment" in smart grid [7, 9, 18]. The electrical smart grid is one of electricity. Peak demand hours happen only for a short duration, yet makes existing electrical grid less

  20. Study of Security Attributes of Smart Grid Systems- Current Cyber Security Issues

    SciTech Connect (OSTI)

    Wayne F. Boyer; Scott A. McBride

    2009-04-01T23:59:59.000Z

    This document provides information for a report to congress on Smart Grid security as required by Section 1309 of Title XIII of the Energy Independence and Security Act of 2007. The security of any future Smart Grid is dependent on successfully addressing the cyber security issues associated with the nation’s current power grid. Smart Grid will utilize numerous legacy systems and technologies that are currently installed. Therefore, known vulnerabilities in these legacy systems must be remediated and associated risks mitigated in order to increase the security and success of the Smart Grid. The implementation of Smart Grid will include the deployment of many new technologies and multiple communication infrastructures. This report describes the main technologies that support Smart Grid and summarizes the status of implementation into the existing U.S. electrical infrastructure.

  1. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  2. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  3. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  4. QoS Routing in Smart Grid

    E-Print Network [OSTI]

    Li, Husheng

    2010-01-01T23:59:59.000Z

    Smart grid is an emerging technology which is able to control the power load via price signaling. The communication between the power supplier and power customers is a key issue in smart grid. Performance degradation like delay or outage may cause significant impact on the stability of the pricing based control and thus the reward of smart grid. Therefore, a QoS mechanism is proposed for the communication system in smart grid, which incorporates the derivation of QoS requirement and applies QoS routing in the communication network. For deriving the QoS requirement, the dynamics of power load and the load-price mapping are studied. The corresponding impacts of different QoS metrics like delay are analyzed. Then, the QoS is derived via an optimization problem that maximizes the total revenue. Based on the derived QoS requirement, a simple greedy QoS routing algorithm is proposed for the requirement of high speed routing in smart grid. It is also proven that the proposed greedy algorithm is a $K$-approximation. ...

  5. Time Stamp Attack on Wide Area Monitoring System in Smart Grid

    E-Print Network [OSTI]

    Zhang, Zhenghao; Li, Husheng; Pei, Changxing

    2011-01-01T23:59:59.000Z

    Security becomes an extremely important issue in smart grid. To maintain the steady operation for smart power grid, massive measurement devices must be allocated widely among the power grid. Previous studies are focused on false data injection attack to the smart grid system. In practice, false data injection attack is not easy to implement, since it is not easy to hack the power grid data communication system. In this paper, we demonstrate that a novel time stamp attack is a practical and dangerous attack scheme for smart grid. Since most of measurement devices are equipped with global positioning system (GPS) to provide the time information of measurements, it is highly probable to attack the measurement system by spoofing the GPS. By employing the real measurement data in North American Power Grid, simulation results demonstrate the effectiveness of the time stamp attack on smart grid.

  6. Integrated Learning Environment for Smart Grid Security Kewen Wang, Yi Pan, Wen-Zhan Song

    E-Print Network [OSTI]

    Wang, Weichao

    . This smart grid emulator is named Smart-Grid Common Open Research Emulator (SCORE). It provides a platform

  7. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Optimal Planning and Operation of Smart Grids with ElectricOptimal Planning and Operation of Smart Grids with Electric

  8. IEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION 1 Stochastic Information Management in Smart Grid

    E-Print Network [OSTI]

    Shen, Xuemin "Sherman"

    of energy sup- ply for residential, commercial, and industrial sectors in the foreseeable future. However, to reduce the greenhouse gas (GHG) emissions in energy consumption, electricity customers have beenIEEE COMMUNICATIONS SURVEYS & TUTORIALS, ACCEPTED FOR PUBLICATION 1 Stochastic Information

  9. Scalable Real Time Data Management for Smart Grid

    SciTech Connect (OSTI)

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16T23:59:59.000Z

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  10. Microsoft Word - Smart Grid Benefits Outway Costs_open.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been a lot of claims about the value of smart grid," said Lee Hall, BPA Smart Grid and Demand Response manager. "When we looked under the hood, there often wasn't enough...

  11. Value of a Smart Grid System | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Value of a Smart Grid System Value of a Smart Grid System A broad range of industries have embraced technology in their quest to improve productivity, reduce costs and improve...

  12. Achieving Differential Privacy of Data Disclosure in the Smart Grid

    E-Print Network [OSTI]

    Wang, Yu

    -grained usage data collection. For example, smart metering data could reveal highly accurate real-time home. Index Terms--Smart Grid, Smart Meter, Privacy, Differential Privacy, Data Disclosure I. INTRODUCTION With the rapid development of the advanced meter infras- tructure (AMI) [1] as part of a move to smart grids

  13. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Broader source: Energy.gov (indexed) [DOE]

    grid techniques and technologies to quickly find the results and benefits of smart grid case studies that are comparable to their situation. Data needs to be classified and...

  14. Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain...

    Energy Savers [EERE]

    Documents & Publications Report to NIST on the Smart Grid Interoperability Standards Roadmap SG Network System Requirements Specification- Interim Release 3 Buildings-to-Grid...

  15. Recovery Act: Smart Grid Interoperability Standards and Framework...

    Energy Savers [EERE]

    The development of the grid will create jobs and spur the development of innovative products that can be exported. Once implemented, the Smart Grid is expected to save...

  16. Smart Grid EV Communication (SpEC) Module | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid EV Communication (SpEC) Module Technology available for licensing: Argonne's direct current charging digital communication controller, the Smart Grid EV Communication (SpEC)...

  17. Microsoft Word - Understanding Smart Grid Benefits_final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    done with today's grid. These new smart grid capabilities will generate significant emission reductions over BAU. Electricity Supplier Benefits New opportunities for...

  18. The Smart Grid Experience: Applying Results, Reaching Beyond...

    Energy Savers [EERE]

    Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of...

  19. Smart Grid Technology Interactive Model | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

  20. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Office of Environmental Management (EM)

    620 Million for Smart Grid Demonstration and Energy Storage Projects: Recovery Act Funding Will Upgrade the Electrical Grid, Save Energy, and Create Jobs Secretary Chu Announces...

  1. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy as one of nine white papers in the project "The Future Grid to Enable Sustainable Energy Systems

  2. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy Acknowledgements This white paper was developed as one of nine white papers in the project "The Future Grid

  3. DLC+VIT4IP (Smart Grid Project) (Israel) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DADEVELOPMENT

  4. DLC+VIT4IP (Smart Grid Project) (Italy) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DADEVELOPMENTItaly Coordinates

  5. DLC+VIT4IP (Smart Grid Project) (Netherlands) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing,DADEVELOPMENTItaly

  6. SMART GRID WORKSHOP Texas A&M University

    E-Print Network [OSTI]

    SMART GRID WORKSHOP Texas A&M University April 17, 2013 Program 8:00-8:05 am Opening remarks: Workshop Goals and Objectives (Mladen Kezunovic, Director, Smart Grid Center) 8:05-8:10 am Welcome: Terry W. Fossum, Interim Vice President for Research, TAMU 8:10-8:30 am Overview: TEES Smart Grid Center (Mladen

  7. Draft NIST Framework and Roadmap4 Smart Grid Interoperability6

    E-Print Network [OSTI]

    Magee, Joseph W.

    1 2 3 Draft NIST Framework and Roadmap4 for5 Smart Grid Interoperability6 Standards,7 Release 2 and Roadmap28 for29 Smart Grid Interoperability30 Standards,31 Release 2.032 33 October 17, 2011 REVISION34 35....................................................................................... 2446 2. Smart Grid Visions

  8. Measurement Denoising Using Kernel Adaptive Filters in the Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Measurement Denoising Using Kernel Adaptive Filters in the Smart Grid Zhe Chen and Robert C. Qiu@ieee.org, rqiu@tntech.edu Abstract--State estimation plays an important role in the smart grid. Conventionally, noisy measurements are directly used for state estimation. Today, in the context of the smart grid

  9. The Smart Grid's Data Generating Potentials Marco Aiello

    E-Print Network [OSTI]

    Aiello, Marco

    The Smart Grid's Data Generating Potentials Marco Aiello Johann Bernoulli Institute for Mathematics, The Netherlands Email: g.a.pagani@rug.nl Abstract--The Smart Grid is the vision underlying the evo- lution of such data put the smart grid in the category of Big Data applications, followed by the natural question

  10. Adaptive Rate Stream Processing for Smart Grid Applications on Clouds

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    Adaptive Rate Stream Processing for Smart Grid Applications on Clouds Yogesh Simmhan University within a smart (power) grid are providing utilities and power systems researchers with unprecedentedEngineering applications in the smart grid domain. One unique aspect of our work is the use of adaptive rate control

  11. ECE 5332 Communications and Control in Smart Grid

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    ECE 5332 Communications and Control in Smart Grid A.H. MohsenianRad (U of T) 1Networking;Course Overview Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control in Smart Grid 2 · Graduate Course on Introduction to Smart Grid. · No Official Prerequisites: Background in the following

  12. IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 645 Malicious Data Attacks on the Smart Grid

    E-Print Network [OSTI]

    Tong, Lang

    between users and suppliers. While such integration is essential for a future "smart" grid, it also makesIEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 645 Malicious Data Attacks on the Smart Grid Oliver Kosut, Member, IEEE, Liyan Jia, Robert J. Thomas, Life Fellow, IEEE, and Lang Tong

  13. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  14. Smart Grid Application of Optimal Transmission Switching

    E-Print Network [OSTI]

    Ferris, Michael C.

    ;6 Introduction continued Electric Transmission Network Flow Problem Optimal Power Flow (OPF) AlternatingSmart Grid Application of Optimal Transmission Switching By, Kory W. Hedman, et al.* University (Professor, UC Berkeley) #12;2 Motivation Co-optimize transmission topology and generation dispatch

  15. Smart Grid Cybersecurity: Job Performance Model Report

    SciTech Connect (OSTI)

    O'Neil, Lori Ross; Assante, Michael; Tobey, David

    2012-08-01T23:59:59.000Z

    This is the project report to DOE OE-30 for the completion of Phase 1 of a 3 phase report. This report outlines the work done to develop a smart grid cybersecurity certification. This work is being done with the subcontractor NBISE.

  16. SMART GRID: IL RUOLO DELLA REGOLAZIONE

    E-Print Network [OSTI]

    SMART GRID: IL RUOLO DELLA REGOLAZIONE Luca Lo Schiavo Autorità per l'energia elettrica e il gas; storage, idrogeno, etc. ­ Nuove applicazioni elettriche (es. veicoli elettrici) ­ Fiscalità · Quadro & system management a livello micro · Diffusione veicoli elettrici · Scenario plausibile con prezzi CO2

  17. Modeling Smart Grid using Generalized Stochastic Petri Net

    E-Print Network [OSTI]

    Dey, Amrita; Sanyal, Sugata

    2011-01-01T23:59:59.000Z

    Building smart grid for power system is a major challenge for safe, automated and energy efficient usage of electricity. The full implementation of the smart grid will evolve over time. However, before a new set of infrastructures are invested to build the smart grid, proper modeling and analysis is needed to avoid wastage of resources. Modeling also helps to identify and prioritize appropriate systems parameters. In this paper, an all comprehensive model of smart grid have been proposed using Generalized Stochastic Petri Nets (GSPN). The model is used to analyze the constraints and deliverables of the smart power grid of future.

  18. Smart (In-home) Power Scheduling for Demand Response on the Smart Grid

    E-Print Network [OSTI]

    Yener, Aylin

    1 Smart (In-home) Power Scheduling for Demand Response on the Smart Grid Gang Xiong, Chen Chen for the home and produces a demand that is more level over time. Index Terms--Smart grid, power management to control power usage across the home. The EMC may be standalone or embedded either in the smart meter

  19. Time Stamp Attack in Smart Grid: Physical Mechanism and Damage Analysis

    E-Print Network [OSTI]

    Gong, Shuping; Li, Husheng; Dimitrovski, Aleksandar D

    2012-01-01T23:59:59.000Z

    Many operations in power grids, such as fault detection and event location estimation, depend on precise timing information. In this paper, a novel time stamp attack (TSA) is proposed to attack the timing information in smart grid. Since many applications in smart grid utilize synchronous measurements and most of the measurement devices are equipped with global positioning system (GPS) for precise timing, it is highly probable to attack the measurement system by spoofing the GPS. The effectiveness of TSA is demonstrated for three applications of phasor measurement unit (PMU) in smart grid, namely transmission line fault detection, voltage stability monitoring and event locationing.

  20. Time Synchronization Attack in Smart Grid-Part I: Impact and Analysis

    E-Print Network [OSTI]

    Zhang, Zhenghao; Dimitrovski, Aleksandar D; Li, Husheng

    2012-01-01T23:59:59.000Z

    Many operations in power grids, such as fault detection and event location estimation, depend on precise timing information. In this paper, a novel Time Synchronization Attack (TSA) is proposed to attack the timing information in smart grid. Since many applications in smart grid utilize synchronous measurements and most of the measurement devices are equipped with global positioning system (GPS) for precise timing, it is highly probable to attack the measurement system by spoofing the GPS. The effectiveness of TSA is demonstrated for three applications of phasor measurement unit (PMU) in smart grid, namely transmission line fault detection, voltage stability monitoring and event locationing. The validity of TSA is demonstrated by numerical simulations.

  1. Survivable Smart Grid Communication: Smart-Meters Meshes to the Rescue

    E-Print Network [OSTI]

    Tague, Patrick

    Survivable Smart Grid Communication: Smart-Meters Meshes to the Rescue Arjun P. Athreya and Patrick flattening process. This process involves smart-meters and other disaster surviving elements of higher system as a function of outage area, smart-meter density and smart-meter's neighborhood size. The results from

  2. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid...

  3. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON...

    Energy Savers [EERE]

    TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF...

  4. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew

  5. Technology Readiness and the Smart Grid

    SciTech Connect (OSTI)

    Kirkham, Harold; Marinovici, Maria C.

    2013-02-27T23:59:59.000Z

    Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

  6. Smart Grid Impact on Intelligent Buildings

    E-Print Network [OSTI]

    Zimmer, R. J.

    2013-01-01T23:59:59.000Z

    ?segmentation?proportions?similar?to?USA) 4,479,963 503,816 16,221 5,000,000 Total?North?America 11,044,912 1,242,110 39,991 12,327,013 89.6% 10.1% 0.3% 100.0% Source:?CABA?s?Smart?Grid?Impact?on? Intelligent?Buildings Definition Demand Response 1 (DR1) ? Existed?for?the?last?15?years...?are?not?necessarily?linked?to? energy?efficiency ? Some?end?users?provide?emergency?DR? e.g.?shorter?notice?and?shorter? intervals,?mostly?automated Source:?CABA?s?Smart?Grid?Impact?on? Intelligent?Buildings Definition Demand Response 2 (DR2) ? DR2?is?more?interactive ? Client...

  7. Networks, smart grids: new model for synchronization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3, Issue 30 NewNetworks, smart grids:

  8. Sandia Energy » SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThird AnnualSandia

  9. IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014 303 Opportunistic Routing for Smart Grid With Power

    E-Print Network [OSTI]

    Bahk, Saewoong

    IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014 303 Opportunistic Routing for Smart communications (PLCs) have recently absorbed interest in the smart grid since they offer communi- cation a bit-meter per second maximization problem and solves it in a distributed manner. Through simulations

  10. Software Technology Readiness for the Smart Grid

    SciTech Connect (OSTI)

    Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

    2011-06-13T23:59:59.000Z

    Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

  11. Resilient Smart Grid Customers April 3 4, 2014

    E-Print Network [OSTI]

    Ohta, Shigemi

    Resilient Smart Grid Customers April 3 ­ 4, 2014 Berkner Hall, Room B ­ Building 488 Agenda, Department Manager-Smart Grid Orange and Rockland Utilities, Inc. Robert Broadwater, Chief Technology Officer President, Legal, Regulatory And Energy Policy General MicroGrids 9:45 ­10:00 a.m. Break 10:00 ­ 11:30 a

  12. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  13. Scnarios pour un Micro Smart Grid Autonomique Sylvain Frey

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Scénarios pour un Micro Smart Grid Autonomique Sylvain Frey Ada Diaconescu François Huguet gestion de la complexité. Nous pensons que le cas des micro smart grids - réseaux électriques intelligents autonomiques, inédit dans le cadre smart grid, révèle les verrous - mais aussi les perspectives nouvelles

  14. August 2012 CIP Report Focuses on Smart Grid Security

    Broader source: Energy.gov [DOE]

    The August 2012 issue of The CIP Report from George Mason University's Center for Infrastructure Protection and Homeland Security highlights the significance and challenges to securing the smart grid. The report includes an overview of smart grid security by Deputy Assistant Secretary Hank Kenchington and the findings for reducing cyber risks from the Workshop on Securing the Smart Grid: Best Practices in Supply Chain Security, Integrity, and Resilience.

  15. OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid

    SciTech Connect (OSTI)

    Sadi, Mohammad A. H. [University of Memphis; Dasgupta, Dipankar [ORNL; Ali, Mohammad Hassan [University of Memphis; Abercrombie, Robert K [ORNL

    2015-01-01T23:59:59.000Z

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.

  16. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Broader source: Energy.gov (indexed) [DOE]

    the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

  17. Public Meeting: Physical Characterization of Smart and Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and...

  18. Secretary Chu Presents Smart Grid Vision and Announces $144 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy, carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. View a full list of...

  19. Economic Impact of Recovery Act Investments in the Smart Grid...

    Office of Environmental Management (EM)

    in Smart Grid Technologies Improves Services and Lowers Costs SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015)...

  20. 2012 Smart Grid Peer Review Presentations - Day 2 First Afternoon...

    Broader source: Energy.gov (indexed) [DOE]

    First Afternoon Session 2012 Smart Grid Peer Review Presentations - Day 2 First Afternoon Session The Office of Electricity Delivery and Energy Reliability held its bi-annual peer...

  1. Smart Grid Status and Metrics Report Appendices | OSTI, US Dept...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Appendices Re-direct Destination: A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of...

  2. Sandia National Laboratories: validation test bed for smart-grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies Solar Regional Test Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National...

  3. South Mississippi Electric Power Association Smart Grid Project (Mississippi)

    Broader source: Energy.gov [DOE]

    South Mississippi Electric Power Association’s (SMEPA) smart grid project involves the deployment of advanced metering infrastructure (AMI) and covers the Generation and Transmission (G&T)...

  4. 2012 SG Peer Review - Recovery Act: Irvine Smart Grid Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    RD&D Needs Technical Challenges g Energy Smart Customer Devices * Impact of multiple Zero Net Energy technologies (grid and residential load) * PEV load management using...

  5. Prospects of Smart Grid Technologies for a Sustainable and Secure...

    Open Energy Info (EERE)

    for a Sustainable and Secure Power Supply Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Prospects of Smart Grid Technologies for a Sustainable and Secure Power Supply...

  6. New York State Electric & Gas Corporation Smart Grid Demonstration...

    Open Energy Info (EERE)

    Electric & Gas Corporation Smart Grid Demonstration Project Jump to: navigation, search Project Lead New York State Electric & Gas Corporation Country United States Headquarters...

  7. Vids4Grids: Smart Meters and Super Cables

    Broader source: Energy.gov [DOE]

    Find out more about the power engineers behind the exciting new technologies that are essential to constructing a national Smart Grid.

  8. Smart Grid Cybersecurity: Job Performance Model Report and Phase...

    Broader source: Energy.gov (indexed) [DOE]

    Security Examiners to develop a set of guidelines to enhance development of the smart grid cybersecurity workforce and provide a foundation for future certifications. The project...

  9. Smart Grid: Creating Jobs while Delivering Reliable,Environmentally...

    Open Energy Info (EERE)

    Smart Grid: Creating Jobs while Delivering Reliable, Environmentally-friendly Energy Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2017)...

  10. Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical...

    Broader source: Energy.gov (indexed) [DOE]

    Pepco Holdings, Inc. Smart Grid RFI: Addressing Policy and Logistical Challenges. Pepco Holdings, Inc. (PHI) is pleased to respond to the US Department of Energy (DOE) request for...

  11. Microsoft Word - SMART GRID INVESTMENT GRANT DESCRIPTIONS.doc

    Broader source: Energy.gov (indexed) [DOE]

    equipment; consumer products and appliances; or distributed generation, demand response, or energy storage devices to enable the smart grid functions. ii. Customer Systems...

  12. Customer Value Proposition Smart Grid (KEL) (Smart Grid Project) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWingCushing, Maine: EnergySouth Dakota:Energy

  13. Distributed Smart-home Decision-making in a Hierarchical Interactive Smart Grid

    E-Print Network [OSTI]

    Jayaweera, Sudharman K.

    1 Distributed Smart-home Decision-making in a Hierarchical Interactive Smart Grid Architecture Ding of the individual smart-homes to actually achieve the optimal solution derived by the controller under realistic for all smart-homes in the auctioning game, collusive equilibria do exist and can jeopardize

  14. Flexibility of Commercial Building HVAC Fan as Ancillary Service for Smart Grid

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2013-01-01T23:59:59.000Z

    Efficient Building Control Systems, Smart Grid and AircraftCommercial Building HVAC Fan as Ancillary Service for Smart

  15. NIST Smart Grid Framework Status Report This summary report provides a status update on the NIST smart grid interoperability framework. The

    E-Print Network [OSTI]

    NIST Smart Grid Framework Status Report This summary report provides a status update on the NIST smart grid interoperability framework. The NIST smart grid framework is a NIST special publication document (NIST SP1108, NIST Framework and Roadmap for Smart Grid Interoperability Standards, Releases 1, 2

  16. Application of smart grid in photovoltaic power systems, ForskEL...

    Open Energy Info (EERE)

    of smart grid in photovoltaic power systems, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Application of smart grid in photovoltaic power systems, ForskEL...

  17. Transmission Power Allocation for Cooperative Relay-BasedNeighborhood Area Networks for Smart Grid

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    Architecture for the Smart Grid, IEEE Network, vol. 25, no.Communications in Smart Grid. IEEE Communication Magazine,Infrastructure for Smart Grid. IEEE Network, vol. 25, no.5,

  18. OpenADR Open Source Toolkit: Developing Open Source Software for the Smart Grid

    E-Print Network [OSTI]

    McParland, Charles

    2012-01-01T23:59:59.000Z

    Status of NIST’s EISA Smart Grid Efforts,” Mar. 26, 2009,Software for the Smart Grid Charles McParland LawrenceSoftware for the Smart Grid Charles McParland, Computational

  19. NIST Priority Action Plan 2 Guidelines for Assessing Wireless Standards for Smart Grid

    E-Print Network [OSTI]

    Magee, Joseph W.

    NIST Priority Action Plan 2 Guidelines for Assessing Wireless Standards for Smart Grid Applications ..................................................................................................................................... 8 3 SMART GRID CONCEPTUAL MODEL AND BUSINESS FUNCTIONAL REQUIREMENTS .................. 13 3.1 SMART GRID CONCEPTUAL REFERENCE DIAGRAMS

  20. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01T23:59:59.000Z

    Planning and Operation of Smart Grids with Electric VehiclePlanning and Operation of Smart Grids with Electric Vehicleenergy costs at the smart grid or commercial building due to

  1. OpenADR Open Source Toolkit: Developing Open Source Software for the Smart Grid

    E-Print Network [OSTI]

    McParland, Charles

    2012-01-01T23:59:59.000Z

    Status of NIST’s EISA Smart Grid Efforts,” Mar. 26, 2009,Open Source Software for the Smart Grid Charles McParlandOpen Source Software for the Smart Grid Charles McParland,

  2. Transmission Power Allocation for Cooperative Relay-BasedNeighborhood Area Networks for Smart Grid

    E-Print Network [OSTI]

    Spanos, Costas; Kai, Ma; Guo-Qiang, HU

    2013-01-01T23:59:59.000Z

    Architecture for the Smart Grid, IEEE Network, vol. 25, no.to-Machine Communications in Smart Grid. IEEE CommunicationInfrastructure for Smart Grid. IEEE Network, vol. 25, no.5,

  3. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    Meetings on Demand Response and Smart Grid, pp. 1-21, 2011.Consumption Scheduling for the Future Smart Grid,” IEEETransactions on Smart Grid, vol. 1, pp. 320–331, 2010. N.

  4. Microsoft Word - Whitepaper_Building A Smart Grid Business Case...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Strategy BUILDING A SMART GRID BUSINESS CASE Developed for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability by the National Energy...

  5. An automated energy management system in a smart grid context

    E-Print Network [OSTI]

    Lopes, M.

    The ongoing transformation of electric grids into smart grids provides the technological basis to implement demand-sensitive pricing strategies aimed at using the electric power infrastructure more efficiently. These ...

  6. This Thursday: Google+ Hangout on Securing the Smart Grid

    Broader source: Energy.gov [DOE]

    Have questions about how the Department is helping ensure the nation's electric grid stays safe and secure? Ask members of the smart grid cybersecurity workforce your questions this Thursday.

  7. Transmission Power Allocation for Cooperative Relay-BasedNeighborhood Area Networks for Smart Grid

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    cost of consumers in smart buildings, and also balance thecost of consumers in smart buildings. without relay Totalarea networks in smart grid, where the building gateway with

  8. Smart Grid Animation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology| National NuclearWind ElectricSmart Grid

  9. The transformation of modern electricity grids at the local and global scale into smart grids is at the core of sustainable economic, environmental and societal growth worldwide. This migration to more intelligent, user-friendly and responsive grids aroun

    E-Print Network [OSTI]

    Fang, Yuguang "Michael"

    , Control and Operation for Smart Grids, Microgrids and Distributed Resources 4. Data Management and Grid with C3 technologies - Communication, Control and Computing - playing key roles. Smart Grid Communications support such applications as control and information processing systems to support two-way energy

  10. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI PublicDepartmentDepartment

  11. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart Grid

  12. 2010 U.S. Smart Grid Vendor Ecosystem Report on the companies...

    Energy Savers [EERE]

    smart grid landscape The Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters,...

  13. Comments of the Demand Response and Smart Grid Coalition on DOE...

    Broader source: Energy.gov (indexed) [DOE]

    The Demand Response and Smart Grid Coalition (DRSG), the trade association for companies that provide products and services in the areas of demand response and smart grid...

  14. New DOE Reports on Smart Grid Technologies Seek to Promote Innovation...

    Office of Environmental Management (EM)

    Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access New DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access October...

  15. A Successful Implementation with the Smart Grid: Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    1 A Successful Implementation with the Smart Grid: Demand Response Resources Contribution of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid events as a result of voluntary load curtailments. Index Terms--Electricity Markets, Demand Response re

  16. INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State),

    E-Print Network [OSTI]

    Wang, Weichao

    INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State), Wenzhan Song (Georgia State) and Le Xie (Texas A&M) NSF SFS Project Team on "Integrated Learning Environment for Smart Grid Security" #12; Objective of National Power Grid Modernization Architecture of Smart Grid What is Smart Grid

  17. Protecting the Smart Grid: A Risk Based Approach

    SciTech Connect (OSTI)

    Clements, Samuel L.; Kirkham, Harold; Elizondo, Marcelo A.; Lu, Shuai

    2011-10-10T23:59:59.000Z

    This paper describes a risk-based approach to security that has been used for years in protecting physical assets, and shows how it could be modified to help secure the digital aspects of the smart grid and control systems in general. One way the smart grid has been said to be vulnerable is that mass load fluctuations could be created by quickly turning off and on large quantities of smart meters. We investigate the plausibility.

  18. IEEE Network September/October 20112 0890-8044/11/$25.00 2011 IEEE he smart power grid uses information and communica-

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    and operator premises over the Internet through an RF, wireline or power- line communication infrastructure devices (e.g., uninterrupted power supply, UPS), and plug-in hybrid electric vehicles (PHEVsIEEE Network · September/October 20112 0890-8044/11/$25.00 © 2011 IEEE he smart power grid uses

  19. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 2139 Dynamic Energy Management for the Smart Grid

    E-Print Network [OSTI]

    Fu, Yong

    IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 2139 Dynamic Energy Management for the Smart Grid With Distributed Energy Resources Sergio Salinas, Student Member, IEEE, Ming Li, Student- lenges for energy management in the system. In this paper, we in- vestigate optimal energy management

  20. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    AND SMART GRID The GridWise® interoperability framework [6] was developed to facilitate systems integration and

  1. Secure Interoperable Open Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Magee, Thoman

    2014-12-31T23:59:59.000Z

    The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

  2. SmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation

    E-Print Network [OSTI]

    Tronci, Enrico

    solar panels)], for each time slot (say each hour) the DNO price policy defines an interval of energySmartHG: Energy Demand Aware Open Services for Smart Grid Intelligent Automation Enrico Tronci.prodanovic,jorn.gruber, barry.hayes}@imdea.org I. INTRODUCTION The SmartHG project [1], [2] has the goal of developing

  3. Smart Grid Research At TTU Robert C. Qiu and David Gao

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Grid #12;Smart Grid Research at TTU Renewable and clean energy integration into smart grid Wind PowerSmart Grid Research At TTU Robert C. Qiu and David Gao Department of Electrical and Computer Technologies Integrated communications Fast and reliable communications for the grid Allowing the grid

  4. Topic 2: Introduction to Smart Grid A.H. MohsenianRad (U of T) 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Consumption Power Infrastructure Communications Infrastructure Twoway Flow of Electricity and Information #12 Department of Electrical & Computer Engineering Texas Tech University Spring 2012 #12;Agenda Dr. Hamed · Smart Grid: Applications / Benefits · Smart Grid in the United States · Government and Industries

  5. Self-Organization of a Mesh Hierarchy for Smart Grid Monitoring in Outage Scenarios

    E-Print Network [OSTI]

    Tague, Patrick

    communication infrastructure in the smart grid is not robust for data collection from smart meters during/generating elements in the smart environment to a gateway. We envision this gateway to be a smart meter. The collection of smart-meters and collectors form the smart grid Advanced Metering Infrastructure (AMI) [1

  6. Distributed Demand Response and User Adaptation in Smart Grids

    E-Print Network [OSTI]

    Fan, Zhong

    2010-01-01T23:59:59.000Z

    This paper proposes a distributed framework for demand response and user adaptation in smart grid networks. In particular, we borrow the concept of congestion pricing in Internet traffic control and show that pricing information is very useful to regulate user demand and hence balance network load. User preference is modeled as a willingness to pay parameter which can be seen as an indicator of differential quality of service. Both analysis and simulation results are presented to demonstrate the dynamics and convergence behavior of the algorithm.

  7. Cooperative Demand Response Using Repeated Game for Price-Anticipating Buildings in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    Price-Anticipating Buildings in Smart Grid Kai Ma Guoqiangprice-anticipating buildings in smart grid. The cooperativebuilding electricity use, with application to demand response,” IEEE Transactions on Smart

  8. Tarifications dynamiques et efficacit nergtique : l'apport des Smart Grids Claire Bergaentzl1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Tarifications dynamiques et efficacité énergétique : l'apport des Smart Grids Claire Bergaentzlé1 : Smart Grids, Effacement, Tarification Dynamique. Key-words: Smart Grids, Load Shedding, Dynamic Pricing [Joskow (2006)]. La technologie smart grids devrait réduire cette barrière en leur donnant les moyens

  9. U.S DEPARTMENT OF COMMERCE NIST SMART GRID ADVISORY COMMITTEE

    E-Print Network [OSTI]

    Magee, Joseph W.

    U.S DEPARTMENT OF COMMERCE NIST SMART GRID ADVISORY COMMITTEE 1. Committee's Official Designation (Title). NIST Smart Grid Advisory Committee. 2. Authority. The NIST Smart Grid Advisory Committee.S.c., App. 3. Objectives and Scope of Activities. a. Provide input to NIST on the Smart Grid Standards

  10. Communications and Networking for Smart Grid: Technology and Practice , HossamS. Hassanein2

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Editorial Communications and Networking for Smart Grid: Technology and Practice Chi Zhou1 , Hossam for Smart Grid research and development, so the communications networks in Smart Grid must facilitate communications protocols, and provide secure and reliable communications for the smart grid. Many open issues

  11. A Cost-Benefit Analysis of Data Processing Architectures for the Smart Grid

    E-Print Network [OSTI]

    Langendoen, Koen

    A Cost-Benefit Analysis of Data Processing Architectures for the Smart Grid Akshay Uttama Nambi S the full poten- tial of Smart Grid applications. Smart grids utilize ICT entities to enhance efficiency certain infor- mation management requirements has hindered large scale smart grid deployments

  12. Smart Grid Voltage Sag Detection using Instantaneous Features Extraction

    E-Print Network [OSTI]

    Boyer, Edmond

    encountered power quality disturbances. Index Terms--Smart grid, voltage sag detection, power quality (PQ as the generation system is moved nearby the distribution level and this is achieved by using a set of micro grids grids are their availability, reliability, and profitability; in order to fulfill power demand according

  13. Grid Cryptographic Simulation: A Simulator to Evaluate the Scalability of the X.509 Standard in the Smart Grid

    E-Print Network [OSTI]

    -granularity management of the power grid. The basic unit of the consumer-side smart grid is the electric meter. A meter from many meters to make intelligent service decisions. Visions of the smart grid range from at minimum in the Smart Grid Tucker L. Ward Senior Honors Thesis Dartmouth College, Hanover, NH, USA Dartmouth Computer

  14. The key to fully tapping the promise of the smart grid in the electric utility industry is highly secure and reliable communications--without that the data is, essentially, meaning-

    E-Print Network [OSTI]

    Fisher, Kathleen

    of solely in terms of meter solutions. However, the smart grid encompasses the entire grid--it must be used's environmental footprint.While the smart grid is starting with meter reads and outage information, it will soonThe key to fully tapping the promise of the smart grid in the electric utility industry is highly

  15. Maturity Model for Advancing Smart Grid Interoperability

    SciTech Connect (OSTI)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28T23:59:59.000Z

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  16. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis [Technical Contact

    2013-06-29T23:59:59.000Z

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  17. 2012 Smart Grid Peer Review Presentations - Day 1 Morning Session...

    Broader source: Energy.gov (indexed) [DOE]

    Morning Session 2012 Smart Grid Peer Review Presentations - Day 1 Morning Session The Office of Electricity Delivery and Energy Reliability held its bi-annual peer review of the...

  18. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Energy Savers [EERE]

    "This funding will be used to show how Smart Grid technologies can be applied to whole systems to promote energy savings for consumers, increase energy efficiency, and foster the...

  19. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power...

  20. Microsoft Word - EU-US Smart Grid assessment - final report ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as the President's targets of 80% of America's electricity from clean sources by 2035 and 1 million electric vehicles on U.S. roads by 2015. 1.2 Overview of the Smart Grid...

  1. Faces of the Recovery Act: The Impact of Smart Grid

    Broader source: Energy.gov [DOE]

    On October 27th, 2009, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with...

  2. VOLTTRON - An Intelligent Agent Platform for the Smart Grid

    SciTech Connect (OSTI)

    None

    2013-10-23T23:59:59.000Z

    The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.

  3. Advanced Security Acceleration Project for Smart Grid (ASAP-SG...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Acceleration Project for Smart Grid (ASAP-SG) June 12, 2013 Problem Statement: The goal of this project is to develop a set of computer and network security requirements...

  4. VOLTTRON - An Intelligent Agent Platform for the Smart Grid

    ScienceCinema (OSTI)

    None

    2014-06-12T23:59:59.000Z

    The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.

  5. Advancing Smart Grid Interoperability and Implementing NIST's Interoperability Roadmap

    SciTech Connect (OSTI)

    Basso,T.; DeBlasio, R.

    2010-04-01T23:59:59.000Z

    The IEEE American National Standards project P2030TM addressing smart grid interoperability and the IEEE 1547 series of standards addressing distributed resources interconnection with the grid have been identified in priority action plans in the Report to NIST on the Smart Grid Interoperability Standards Roadmap. This paper presents the status of the IEEE P2030 development, the IEEE 1547 series of standards publications and drafts, and provides insight on systems integration and grid infrastructure. The P2030 and 1547 series of standards are sponsored by IEEE Standards Coordinating Committee 21.

  6. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Signals. ” SGIP NIST Smart Grid Collaboration Site. http://Presented at the Grid Interop Forum, Albuquerque, NM.Last accessed: Open Smart Grid Users Group. “OpenADR Task

  7. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01T23:59:59.000Z

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  8. White paper of NIST and SG-CG on standardization of Smart Grids White paper on standardization of Smart Grids

    E-Print Network [OSTI]

    task for standardization organizations worldwide. For reference or details see NIST interoperability with international and other relevant national Smart Grids standardization activities. · Do not reinvent the wheel this approach in close collaboration and cooperation with the existing international standardization

  9. SmartGrid Consortium: Smart Grid Roadmap for the State of New York |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFIGrid:Department of Energy

  10. Cyber-Security Considerations for the Smart Grid

    SciTech Connect (OSTI)

    Clements, Samuel L.; Kirkham, Harold

    2010-07-26T23:59:59.000Z

    The electrical power grid is evolving into the “smart grid”. The goal of the smart grid is to improve efficiency and availability of power by adding more monitoring and control capabilities. These new technologies and mechanisms are certain to introduce vulnerabilities into the power grid. In this paper we provide an overview of the cyber security state of the electrical power grid. We highlight some of the vulnerabilities that already exist in the power grid including limited capacity systems, implicit trust and the lack of authentication. We also address challenges of complexity, scale, added capabilities and the move to multipurpose hardware and software as the power grid is upgraded. These changes create vulnerabilities that did not exist before and bring increased risks. We conclude the paper by showing that there are a number mitigation strategies that can help keep the risk at an acceptable level.

  11. SCENARIOS FOR AN AUTONOMIC MICRO SMART GRID Sylvain Frey1,2

    E-Print Network [OSTI]

    Diaconescu, Ada

    SCENARIOS FOR AN AUTONOMIC MICRO SMART GRID Sylvain Frey1,2 , François Huguet1 , Cédric Mivielle1 Systems, Micro Smart Grids. Abstract: Autonomic computing is a bio-inspired vision elaborated to manage presents a series of scenarios relative to micro smart grids ­ district-size "smart" electricity networks

  12. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    of a Smart Grid Smart Meters Intelligent Grid Expanded Energy Sources 3 Digital Meters Meter Data Management System Common Portal / Data Repository Home Area Network CNP?s smart grid journey A history of stakeholder commitment 1990s... Existing Consumer Education & Engagement ? Maximize consumer awareness of CNP?s smart grid program ? Develop consumer understanding of the new technology ? Facilitate active consumer engagement in smart energy management ? In Home Display Pilot...

  13. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03T23:59:59.000Z

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  14. Model Predictive Control of Regulation Services from Commercial Buildings to the Smart Grid

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01T23:59:59.000Z

    Services from Commercial Buildings to the Smart Grid Mehdicommercial building hvac fan as ancillary service for smartbuildings flexibility can be utilized for frequency regulation provision in the smart

  15. Argonne National Laboratory Smart Grid Technology Interactive Model

    ScienceCinema (OSTI)

    Ted Bohn

    2010-01-08T23:59:59.000Z

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  16. Argonne National Laboratory Smart Grid Technology Interactive Model

    SciTech Connect (OSTI)

    Ted Bohn

    2009-10-13T23:59:59.000Z

    As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

  17. Faces of the Recovery Act: The Impact of Smart Grid

    ScienceCinema (OSTI)

    President Obama

    2010-09-01T23:59:59.000Z

    On October 27th, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with President Obama, explain how building a smarter grid will help consumers cut their utility bills, battle climate change and create jobs.

  18. Faces of the Recovery Act: The Impact of Smart Grid

    SciTech Connect (OSTI)

    President Obama

    2009-11-24T23:59:59.000Z

    On October 27th, Baltimore Gas & Electric was selected to receive $200 million for Smart Grid innovation projects under the Recovery Act. Watch as members of their team, along with President Obama, explain how building a smarter grid will help consumers cut their utility bills, battle climate change and create jobs.

  19. ECE 5332 Communications and Control in Smart Grid Syllabus Instructor

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Microgrid Architecture o Tackling Intermittency o Stochastic Models and Forecasting o Distributed Storage, distributed storage, vehicle-to-grid systems, wide area measurement, smart grid cyber security, etc. Course Topics: · Basics of Power Systems: o Load and Generation o Power Flow Analysis o Economic Dispatch

  20. SMART FUEL CELL OPERATED RESIDENTIAL MICRO-GRID COMMUNITY

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam (PI/PD)

    2005-04-13T23:59:59.000Z

    To build on the work of year one by expanding the smart control algorithm developed to a micro-grid of ten houses; to perform a cost analysis; to evaluate alternate energy sources; to study system reliability; to develop the energy management algorithm, and to perform micro-grid software and hardware simulations.

  1. 446 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 1, MARCH 2013 An Information-Theoretic Approach to PMU

    E-Print Network [OSTI]

    Franchetti, Franz

    the phasor measurement unit (PMU) placement problem in electric power systems. Different from, information-theoretic criterion, namely the mutual information (MI) between PMU measurements and power system rigorously models the uncertainty reduction on power system states from PMU measurements. Thus, it can

  2. Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing

    E-Print Network [OSTI]

    Huang, Jianwei

    Exploring Smart Grid and Data Center Interactions for Electric Power Load Balancing Hao Wang infrastructure often known as the smart grid [10]. Smart grid is differences. However, the impact of load redistribu- tions on the power grid is not well understood yet

  3. Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    Optimal Charging of Electric Vehicles in Smart Grid: Characterization and Valley-Filling Algorithms with different EV battery charging rate constraints, that is distributed across a smart power grid network the power grid. One way to tackle this problem is to adopt a "smart grid" solution, which allows EVs

  4. Case Study - EPB Smart Grid Investment Grant

    Office of Environmental Management (EM)

    Smart switches installed in EPB service territory A Smarter Electric Circuit: Electric Power Board of Chattanooga Makes the Switch EPB of Chattanooga, Tennessee, is one of the...

  5. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen...

    Broader source: Energy.gov (indexed) [DOE]

    providing customers with information and data displays so they can better control their electricity consumption and costs. Each customer with an activated smart meter can view...

  6. Conference Proceedings Available - The Smart Grid Experience...

    Energy Savers [EERE]

    the Grid Through Integration Conservation and Optimization via VoltVar Control Systems Driving the Integrated Grid - Including DMS, DA, DERMS, DRMS Communications and Cyber...

  7. DOE Publishes Notice of Public Meeting for Smart Grid-connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Smart Grid-connected Buildings DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings April 8, 2014 - 9:30am Addthis DOE has published a notice of public...

  8. EV-Smart Grid Interoperability Centers in Europe and the United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and...

  9. Smart Grid Status and Metrics Report | OSTI, US Dept of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Status and Metrics Report Re-direct Destination: To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived...

  10. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical...

    Broader source: Energy.gov (indexed) [DOE]

    RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments on "Smart Grid RFI: Addressing Policy and Logistical Challenges. RedSeal Comments...

  11. Update to the 2008 EAC Report: "Smart Grid: Enabler of the New...

    Energy Savers [EERE]

    Support of the Energy Independence and Security Act (EISA) of 2007 Report to NIST on the Smart Grid Interoperability Standards Roadmap Smart Grid: Enabler of the New Energy Economy...

  12. Microsoft Word - DOE Smart Grid RFI_APGA Comments 110110.doc

    Broader source: Energy.gov (indexed) [DOE]

    of Energy 1000 Independence Avenue, SW, Room 8H033 Washington, D.C. 20585 RE: Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation, 75...

  13. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    SciTech Connect (OSTI)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-06-23T23:59:59.000Z

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control system design, and integration of wind power in a smart grid.

  14. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chassin, David P.; Fuller, Jason C.; Djilali, Ned

    2014-01-01T23:59:59.000Z

    Simulation of smart grid technologies requires a fundamentally new approach to integrated modeling of power systems, energy markets, building technologies, and the plethora of other resources and assets that are becoming part of modern electricity production, delivery, and consumption systems. As a result, the US Department of Energy’s Office of Electricity commissioned the development of a new type of power system simulation tool called GridLAB-D that uses an agent-based approach to simulating smart grids. This paper presents the numerical methods and approach to time-series simulation used by GridLAB-D and reviews applications in power system studies, market design, building control systemmore »design, and integration of wind power in a smart grid.« less

  15. Compressed Meter Reading for Delay-sensitive and Secure Load Report in Smart Grid

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    of smart meters, which collects the current load of smart meters installed at each home and then forwards1 Compressed Meter Reading for Delay-sensitive and Secure Load Report in Smart Grid Husheng Li, Rukun Mao, Lifeng Lai and Robert. C. Qiu Abstract-- It is a key task in smart grid to send the readings

  16. Representation and Self-Configuration of Physical Entities in Extended Smart Grid Perimeter

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . We describe these mechanisms and their implementation on examples from the home domain. Index Terms--Smart1 Representation and Self-Configuration of Physical Entities in Extended Smart Grid Perimeter Zheng of Smart Grids to Smart Energy Management Systems in relevant domains, we propose a framework and a set

  17. Smart Grid Privacy Workshop Summary Report (January 2012) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart GridEnergy Smart Grid

  18. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid

    E-Print Network [OSTI]

    Galli, Stefano; Wang, Zhifang

    2010-01-01T23:59:59.000Z

    Is Power Line Communication (PLC) a good candidate for Smart Grid applications? The objective of this paper is to address this important question. To do so we provide an overview of what PLC can deliver today by surveying its history and describing the most recent technological advances in the area. We then address Smart Grid applications as instances of sensor networking and network control problems and discuss the main conclusion one can draw from the literature on these subjects. The application scenario of PLC within the Smart Grid is then analyzed in detail. Since a necessary ingredient of network planning is modeling, we also discuss two aspects of engineering modeling that relate to our question. The first aspect is modeling the PLC channel through fading models. The second aspect we review is the Smart Grid control and traffic modeling problem which allows us to achieve a better understanding of the communications requirements. Finally, this paper reports recent studies on the electrical and topologic...

  19. Georgia State UniversitySensorweb Research Laboratory SmartGridLab+

    E-Print Network [OSTI]

    Wang, Weichao

    UniversitySensorweb Research Laboratory SmartGridLab Emulator Design Song Tan, et al , SCORE: Smartgrid

  20. Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    E-Print Network [OSTI]

    Fan, Zhong; Gormus, Sedat; Efthymiou, Costas; Kalogridis, Georgios; Sooriyabandara, Mahesh; Zhu, Ziming; Lambotharan, Sangarapillai; Chin, Woon Hau

    2011-01-01T23:59:59.000Z

    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.

  1. An Innovative Solution for Cloud Computing Authentication: Grids of EAP-TLS Smart Cards

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Innovative Solution for Cloud Computing Authentication: Grids of EAP-TLS Smart Cards Pascal clients. This paper aims to solve this issue by proposing an innovative paradigm based on a grid of smart the scalability of this server linked to smart card grids whose distributed computation manages the concurrence

  2. Dealing with Uncertainty in the Smart Grid: A Learning Game Approach

    E-Print Network [OSTI]

    Dealing with Uncertainty in the Smart Grid: A Learning Game Approach Hélène Le Cadre Jean-Sébastien Bedo Abstract In this article, the smart grid is modeled as a decentralized and hierarchical network such as renewables. These predictions will then be used as inputs to optimize the smart grid operations [2

  3. EL Program: Smart Grid Program Manager: George Arnold, Designated Goal Liaison; David Wollman,

    E-Print Network [OSTI]

    Magee, Joseph W.

    EL Program: Smart Grid Program Manager: George Arnold, Designated Goal Liaison; David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Engineering Laboratory Office, x2433; Dean and power flows, and additional advancements to create a smart grid. In response to a mandate given

  4. Opening Remarks by George W. Arnold, National Coordinator for Smart Grid Interoperability

    E-Print Network [OSTI]

    Magee, Joseph W.

    Opening Remarks by George W. Arnold, National Coordinator for Smart Grid Interoperability Conference on Smart Grid Interoperability Standards January 31, 2011 Introduction Chairman Wellinghoff the opportunity to escribe NIST's and our partners efforts to develop standards for an interoperable d smart grid

  5. Intelligent Residential Air-Conditioning System with Smart-Grid Functionality

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Intelligent Residential Air-Conditioning System with Smart-Grid Functionality Auswin George residential air-conditioning (A/C) system controller that has smart grid functionality. The qualifier, conditional on anticipated retail energy prices. The term "smart- grid functionality" means that retail energy

  6. Experience you can trust. The U.S. Smart Grid Revolution

    E-Print Network [OSTI]

    Experience you can trust. The U.S. Smart Grid Revolution KEMA's Perspectives for Job Creation of Contents The U.S. Smart Grid Revolution December 23, 2008 KEMA's Perspectives for Job Creation i 1.S...............................................................................................2-1 2.2 Smart Grid Activity in the U

  7. Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

  8. A Proposed Framework for Heuristic Approaches to Resource Allocation in the Emerging Smart Grid

    E-Print Network [OSTI]

    Maciejewski, Anthony A.

    A Proposed Framework for Heuristic Approaches to Resource Allocation in the Emerging Smart Grid Tim, Anthony A. Maciejewski Abstract-As smart grids introduce profound changes in the operation of the electric for solving the smart grid RA (SGRA) problem using a heuristic approach such as a genetic algorithm

  9. DESIGN OF TEMPERATURE SENSOR ARRAY IN SMART ELECTRIC GRID BASED ON SAW RESONATORS

    E-Print Network [OSTI]

    Wang, Ji

    387 DESIGN OF TEMPERATURE SENSOR ARRAY IN SMART ELECTRIC GRID BASED ON SAW RESONATORS Yu-lin HAN1 than 1, and the sensitivity of sensor is up to 4 KHz/. Keywords: SAW; Smart electric grid; Temperature the stability of smart electric grids. Equipment and parts of the power system in urgent need of online

  10. Challenges on Software Defect Analysis in Smart Grid Applications Mohsen Anvaari Daniela S. Cruzes Reidar Conradi

    E-Print Network [OSTI]

    Challenges on Software Defect Analysis in Smart Grid Applications Mohsen Anvaari Daniela S. Cruzes and Technology Trondheim, Norway {mohsena,dcruzes,conradi}@idi.ntnu.no Abstract--Smart Grid software applications the relationship between the characteristics of Smart Grid software applications as a ULSS and their software

  11. Secure Communication and Authentication Against Off-line Dictionary Attacks in Smart Grid Systems

    E-Print Network [OSTI]

    Wang, Yongge

    Secure Communication and Authentication Against Off-line Dictionary Attacks in Smart Grid Systems This paper studies the security requirements for remote authentication and communication in smart grid to smart grid systems. For example, in order to unlock the credentials stored in tamper

  12. Toward Distributed Intelligent: A Case Study of Peer to Peer Communication in Smart Grid

    E-Print Network [OSTI]

    Wang, Wenye

    Toward Distributed Intelligent: A Case Study of Peer to Peer Communication in Smart Grid Mingkui, Raleigh, NC, USA Email: {mwei2, wwang}@ncsu.edu Abstract--Smart grid is an emerging cyber-physical system. As a result, traditional centralized control is not always effective in smart grid, and distributed control

  13. Combating False Data Injection Attacks in Smart Grid Using Kalman Filter

    E-Print Network [OSTI]

    Cao, Xiaojun (Matt)

    Combating False Data Injection Attacks in Smart Grid Using Kalman Filter Kebina Manandhar Dept of South Florida Email: yliu@cse.usf.edu Abstract--The security of Smart Grid, being one of the very important aspects of the Smart Grid system, is studied in this paper. We first discuss different pitfalls

  14. Review and Evaluation of Security Threats on the Communication Networks in the Smart Grid

    E-Print Network [OSTI]

    Wang, Wenye

    Review and Evaluation of Security Threats on the Communication Networks in the Smart Grid Zhuo Lu Park, NC 27709 Email: cliff.wang@us.army.mil Abstract--The smart grid, generally referred in the smart grid. In this paper, we aim at classifying and evaluating the security threats

  15. An Ensemble Empirical Mode Decomposition Approach for Voltage Sag Detection in a Smart Grid Context

    E-Print Network [OSTI]

    Brest, Université de

    An Ensemble Empirical Mode Decomposition Approach for Voltage Sag Detection in a Smart Grid Context Yassine Amirat1,2 , Mohamed Benbouzid2 , Tianzhen Wang3 and Sylvie Turri2 Abstract­Smart grids have become, using the instantaneous power for voltage sags detection in smart grids. Copyright © 2013 Praise Worthy

  16. SMART WATER GRID INTERNATIONAL CONFERENCE 2013 12-14 November 2013, Incheon, Republic of Korea

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID INTERNATIONAL CONFERENCE 2013 12-14 November 2013, Incheon, Republic of Korea SMART WATER GRIDS AND NETWORK VULNERABILITY Pierre Y. Julien1 and Olga A. Martyusheva2 1 Professor, Colorado State University, Fort Collins, CO 80521-1372, USA Keywords: Energy Conservation; Smart Water Grid

  17. On Using Cloud Platforms in a Software Architecture for Smart Energy Grids Yogesh Simmhan

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    On Using Cloud Platforms in a Software Architecture for Smart Energy Grids (Poster) Yogesh Simmhan utilities to provide dynamic feedback to curtail peak power load. Smart Grid infrastructure being deployed to monitor and control energy assets for their optimal use. Smart power grids, which leverage large scale

  18. Survey Paper Cyber security in the Smart Grid: Survey and challenges q

    E-Print Network [OSTI]

    Wang, Wenye

    importantly, with the integration of advanced computing and communication technologies, the Smart GridSurvey Paper Cyber security in the Smart Grid: Survey and challenges q Wenye Wang , Zhuo Lu Accepted 29 December 2012 Available online 17 January 2013 Keywords: Smart Grid Cyber security Attacks

  19. Dependability Analysis of Control Center Networks in Smart Grid using Stochastic Petri Nets

    E-Print Network [OSTI]

    Shen, Xuemin "Sherman"

    1 Dependability Analysis of Control Center Networks in Smart Grid using Stochastic Petri Nets: xshen@bbcr.uwaterloo.ca Abstract--As an indispensable infrastructure for the future life, smart grid is being implemented to save energy, reduce costs, and increase reliability. In smart grid, control center

  20. Smart Grid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel Corporation JumpShines after CaliforniaUS

  1. The Quest for Sustainable Smart Grids

    E-Print Network [OSTI]

    Nardelli, Pedro H J; Cardieri, Paulo; Latva-aho, Matti

    2013-01-01T23:59:59.000Z

    This paper is a reply to the opinion paper: Transdisciplinary electric power grid science (PNAS), 2013 [arXiv:1307.7305].

  2. Optimal Energy Storage Control Policies for the Smart Power Grid

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    Optimal Energy Storage Control Policies for the Smart Power Grid Iordanis Koutsopoulos Vassiliki Center for Research and Technology Hellas (CERTH), Greece Abstract--Electric energy storage devices the optimal energy storage control problem from the side of the utility operator. The operator controller

  3. An Electricity Trade Model for Microgrid Communities in Smart Grid

    E-Print Network [OSTI]

    Pedram, Massoud

    is the major trend of future smart grid, which contains various kinds of renewable power generation centers]. This distributed power generation center has made it easier to make use of all kinds of renewable energy sources as a "prosumer" (producer and consumer) [3]. It contains one or multiple kinds of renewable power generation

  4. Control Mechanisms for Residential Electricity Demand in SmartGrids

    E-Print Network [OSTI]

    Snyder, Larry

    Email: lvs2@lehigh.edu Abstract--We consider mechanisms to optimize electricity consumption both within subscription plan. Such methods for controlling electricity consumption are part of demand response, whichControl Mechanisms for Residential Electricity Demand in SmartGrids Shalinee Kishore Department

  5. Semi-Cooperative Learning in Smart Grid Agents

    E-Print Network [OSTI]

    Veloso, Manuela M.

    , either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. #12 generate and use electricity. We need to develop Smart Grid systems in which distributed sustainable energy resources are fully integrated and energy consumption is efficient. Customers, i.e., con- sumers

  6. Autonomous Demand Response in Heterogeneous Smart Grid Topologies

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    , heterogeneous grid, locational marginal price, game theory, Nash equilibrium. I. INTRODUCTION Demand response on locational marginal prices (LMPs), which depend on parameters such as the line c appliances such as air-conditioners and water-heaters [2]. An alternative for DLC is smart pricing, where

  7. Cognitive Radio and Smart Grid Dr. Robert C. Qiu

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Cognitive Radio and Smart Grid Dr. Robert C. Qiu Professor Wireless Networking Systems Laboratory RadioCognitive Radio 2 2/23/2010 #12;Outline Cognitive Radio Cognitive Radio @ Tennessee Tech University Spectrum Sensing and Wideband Spectrum Sensing Cognitive Radio Networks and Testbeds Cognitive

  8. Smart-grid Electricity Allocation via Strip Packing with Slicing

    E-Print Network [OSTI]

    Chan, Timothy M.

    ,biedl,tmchan,alubiw,keshav,vpathak}@uwaterloo.ca 2 Massachusetts Institute of Technology, Cambridge, USA elyot@mit.edu 3 University of Guelph, Guelph in Massachusetts was used less than 88 hours per year [7]. Reducing the infrastructure size is not practical since that future smart grids would obtain (at each substation) daily "demand schedules" for appliance use from

  9. Semi-Cooperative Learning in Smart Grid Agents

    E-Print Network [OSTI]

    electricity. We need to develop Smart Grid systems in which distributed sustainable energy resources are fully-1, prime sponsor DARPA under grant number FA8650-08-C-7812. The views and conclusions in this document the environmental impact of our growing energy demand creates tough new challenges in how we generate and use

  10. Coordination of Cloud Computing and Smart Power Grids

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Coordination of Cloud Computing and Smart Power Grids Amir-Hamed Mohsenian-Rad and Alberto Leon.mohsenian.rad, alberto.leongarcia}@utoronto.ca Abstract--The emergence of cloud computing has established a trend towards increasing the load at locations where they are built. However, data centers and cloud computing also provide

  11. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  12. Grid Interaction Tech Team, and International Smart Grid Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    Provider BAHNHOF POTSDAMER PLATZ Home Area Network (HAN) Grid Operations Coal Natural Gas Nuclear Hydro Renewable Fuel Oil Misc Generation Energy Service Interface (ESI)...

  13. Cost benefit analysis for the implementation of smart metering...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Home application Smart Grid Projects - Customer Behavior...

  14. What can the smart grid Do for you? and what can You Do for the smart grid?

    SciTech Connect (OSTI)

    Chassin, David P.

    2010-06-15T23:59:59.000Z

    The intersection of technology and economics is where all the Smart Grid benefits arise. If we do one without the other, then utilities and consumers hardly see any enduring benefit at all and the investment made in the underlying infrastructure justified on the basis of those benefits is wasted. (author)

  15. Smart Grid The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant Misra, Member, IEEE, Guoliang Xue, Fellow, IEEE,

    E-Print Network [OSTI]

    Misra, Satyajayant

    Smart Grid ­ The New and Improved Power Grid: A Survey Xi Fang, Student Member, IEEE, Satyajayant--The Smart Grid, regarded as the next generation power grid, uses two-way flows of electricity the literature till 2011 on the enabling technologies for the Smart Grid. We explore three major systems, namely

  16. Houston's Smart Grid: Transforming the Future of Electric Distribution & Energy Consumption 

    E-Print Network [OSTI]

    Bartel, W.

    2012-01-01T23:59:59.000Z

    % saved 52% on event days 13 What?s Next? Smart Meters Were Just The Beginning HAN Devices Smart Appliances Smart Meter Texas Portal Intelligent Grid Phase 1: Customer Insight Smart Meters Storage Electric vehicles Phase 2...: Customer Engagement Micro Grids Aggregated Demand Management Phase 3: Customer Co-Creator of Value 2010 2020 2014 2013 2012 2011 Price control / load control Advanced Grid 14 We can?t do it alone Per the DOE Grant Agreement,: ?If you...

  17. Multi-Agent Systems and Control, Intelligent Robotics, and Cybernetics. Power Electronics, Renewable Energy, and Smart Grid.

    E-Print Network [OSTI]

    Wu, Yih-Min

    . Power Electronics, Renewable Energy, and Smart Grid. Computer Science and Engineering. Embedded Systems

  18. GRID INDEPENDENT FUEL CELL OPERATED SMART HOME

    SciTech Connect (OSTI)

    Dr. Mohammad S. Alam

    2003-12-07T23:59:59.000Z

    A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journal paper is under review. Three theses have been completed and three additional theses are in progress.

  19. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    and utilize the generation as a flexible asset. With theflexible topology that can be co-optimized along with generationflexible grid from the supply side, i.e. , the generation,

  20. Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects

    SciTech Connect (OSTI)

    Lee, Russell [ORNL

    2010-01-01T23:59:59.000Z

    This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first section of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.

  1. Smart Meters and a Smarter Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFIGrid: Enabler ofSmart Meters

  2. Smart Grid Projects Are Improving Performance and Helping Consumers Better

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart GridEnergy Smart

  3. Smart Meters and a Smarter Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and a Smarter Grid Smart Meters

  4. Smart-Grid-Vendor.pdf | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmart Meters and a Smarter Grid Smart

  5. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON SMART GRID 1

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Metering for Power Market Pricing in Smart Grid Husheng Li, Lifeng Lai, and Robert Caiming Qiu Abstract--Remote metering is a key task in smart grid to col- lect the power load information for the pricing in power market. A wireless communication infrastructure is assumed for the smart meter network. The dynamics

  6. OE Smart Grid Talking Points[1]

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-ZeroNew0035DepartmentRenewable Energy and a Smart

  7. Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    1 Efficient and Secure Wireless Communications for Advanced Metering Infrastructure in Smart Grids metering infrastructure (AMI) [3] is a key task in smart grid [6] [4]. In such a system, each power user is equipped with a smart meter with the capability of two- way communications, which can monitor the power

  8. A Distortion-Theoretic Perspective for Redundant Metering Security in a Smart Grid

    E-Print Network [OSTI]

    Kundur, Deepa

    A Distortion-Theoretic Perspective for Redundant Metering Security in a Smart Grid Mustafa El--In a smart grid environment some customers employ third-party meters and terminals for integrity verification of the smart meter power measurements reported by the electric utility company. We address the security issues

  9. Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design

    E-Print Network [OSTI]

    Wong, Vincent

    meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user1 Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design Pedram Samadi

  10. Southern California Smart Grid Symposium California Institute of TechnologyCalifornia Institute of Technology

    E-Print Network [OSTI]

    Southern California Smart Grid Symposium California Institute of TechnologyCalifornia Institute Service in a Smart Grid World Hung po ChaoHung-po Chao Director, Market Strategy and Analysis October 13 of Technology Competitive Electricity Markets with Consumer Subscription Service in a SmartConsumer Subscription

  11. Faculty Position in Smart-Grid Technologies and Power Systems Department of Electronics

    E-Print Network [OSTI]

    Faculty Position in Smart-Grid Technologies and Power Systems Department of Electronics Carleton-track) appointment in the area of smart grid technology and power systems at the rank of Assistant, Associate or Full with an electrical power background to complement our existing strengths and build the stream of "smart technologies

  12. Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids

    E-Print Network [OSTI]

    Namboodiri, Vinod

    1 Towards a Secure, Wireless-Based, Home Area Network for Metering in Smart Grids Vinod Namboodiri and the consumer. This work takes a comprehensive look at wireless security in the smart meter-based home, Student Member, IEEE, Ward Jewell, Fellow, IEEE Abstract--Compared to the conventional grid, the smart

  13. Smart Grid Communication and Co-Simulation Vincenzo Liberatore, Member, IEEE Computer, Ahmad Al-Hammouri

    E-Print Network [OSTI]

    Liberatore, Vincenzo

    , different media may be appropriate in different circumstances. For example, smart appliances in the home can1 Smart Grid Communication and Co-Simulation Vincenzo Liberatore, Member, IEEE Computer, Ahmad Al-Hammouri Abstract--The smart power grid will extensively rely on networked control to increase efficiency

  14. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOE Smart8Responses

  15. Volttron: An Agent Platform for the Smart Grid

    SciTech Connect (OSTI)

    Haack, Jereme N.; Akyol, Bora A.; Carpenter, Brandon J.; Tews, Cody W.; Foglesong, Lance W.

    2013-05-06T23:59:59.000Z

    VOLLTRON platform enables the deployment of intelligent sensors and controllers in the smart grid and provides a stable, secure and flexible framework that expands the sensing and control capabilities. VOLTTRON platform provides services fulfilling the essential requirements of resource management and security for agent operation in the power grid. The facilities provided by the platform allow agent developers to focus on the implementation of their agent system and not on the necessary "plumbing' code. For example, a simple collaborative demand response application was written in less than 200 lines of Python.

  16. Pacific Northwest Smart Grid Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO Website Directory PPPOLarson.CherylPacific

  17. Economic evaluation of distribution system smart grid investments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey; Scirbona, Charlie

    2014-12-31T23:59:59.000Z

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore »investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less

  18. Economic evaluation of distribution system smart grid investments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet [Abdullah Gul Univ., Kayseri (Turkey); Cheng, Danling [Electrical Distribution Design, Inc., Blacksburg, VA (United States); Broadwater, Robert P. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Cocks, George [Orange and Rockland Utilities, Inc., Spring Valley, NY (United States); Hamilton, Stephanie [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, Xiaoyu [Brookhaven National Lab. (BNL), Upton, NY (United States); Roark, Jeffrey [Orange and Rockland Utilities, Inc., Spring Valley, NY (United States); Scirbona, Charlie [Orange and Rockland Utilities, Inc., Spring Valley, NY (United States)

    2014-12-31T23:59:59.000Z

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  19. Smart Grid: Opportunities and Challenges Toward a Stronger and Smarter Grid

    E-Print Network [OSTI]

    Amin, S. Massoud

    from the Electric Power Research Institute (EPRI), and support from EPRI, NSF, and ORNL for parts electrical energy infrastructure ­ Transforming the Network into a Smart Grid ­ Developing an Expanded and Using Alternative Transportation Fuels · Greening the electric power supply ­ Expanding the Use

  20. An Efficient Energy Curtailment Scheme For Outage Management in Smart Grid

    E-Print Network [OSTI]

    Durrani, Salman

    as to minimize the total cost incurred to the system due to the power outage (i.e., social optimality). The game that a smart grid will transform the current power grid into one that functions more intelligently, giving J challenges for reliable smart grid operation is the post-outage management of power among the users

  1. Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms

    E-Print Network [OSTI]

    Tan, Chee Wei

    ForReview Only 1 Electric Vehicle Charging in Smart Grid: Optimality and Valley-filling Algorithms infrastructure cost. On the other hand, we can adopt a "smart grid" solution, which allows EVs to communicate and unacceptable voltage variation that overload the power grid [1]. To tackle this problem, we may increase

  2. A Smart Grid Voltage Sag Detector using an EEMD-Based Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Smart Grid Voltage Sag Detector using an EEMD-Based Approach Yassine Amirat, Member, IEEE and Mohamed Benbouzid, Senior Member, IEEE Abstract--Smart grids have become a focal point in renewable energy source researches. Sustainability and viability of distributed grids are highly dependent

  3. Toward Real Time Data Analysis for Smart Grids

    SciTech Connect (OSTI)

    Yin, Jian; Gorton, Ian; Sharma, Poorva

    2012-11-10T23:59:59.000Z

    This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL’s FPGI and show that our system can provide real time guarantees to a diverse set of applications.

  4. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier

  5. Smart Grid Environmental Benefits … Part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew RFID

  6. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down” in theWhat waters does

  7. Grid Interaction Tech Team, and International Smart Grid Collaboration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the

  8. Elforsk Smart grid programme (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJump to: navigation,Electrosolar JumpElettropiemme Srl Jump

  9. Algorithmes hybrides pour la gestion intelligente de l'nergie dans les smart grids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Algorithmes hybrides pour la gestion intelligente de l'énergie dans les smart grids Robin ROCHE1 électrique plus intelligent, dit smart grid. Les travaux présentés dans cet article proposent un système de l'on nomme "smart grid", ou réseau électrique intelligent (Simoes et al., 2011) (voir figure 1

  10. Optimisation de Smart Grid: d'un modle intgratif vers une simulation multi-agents autonomique

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimisation de Smart Grid: d'un modèle intégratif vers une simulation multi-agents autonomique-agents intégrative de Smart Grid pour répondre aux besoins de simulation, d'analyse et d'optimisa- tion de tels systèmes. Mots-clés : Modélisation, simulation, multi- agents, smart grid Abstract Multi

  11. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    ScienceCinema (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-06-07T23:59:59.000Z

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  12. JCPES Smart_Grid_Comments_July 12.2010_DoE_FINAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the National Broadband Plan by ) Docket No. Empowering Consumers and the Smart Grid: ) Data Access, Third Party Use, and Privacy ) COMMENTS OF THE JOINT CENTER FOR POLITICAL AND...

  13. Data Privacy and the Smart Grid: A Voluntary Code of Conduct...

    Broader source: Energy.gov (indexed) [DOE]

    announcing the availability of a draft Voluntary Code of Conduct (VCC), which addresses data privacy surrounding smart grid technologies, for public comment. The primary goal of...

  14. Future States: The Convergence of Smart Grid, Renewables, Shale Gas, and Electric Vehicles

    SciTech Connect (OSTI)

    Dick Cirillo; Guenter Conzelmann

    2013-03-20T23:59:59.000Z

    Dick Cirillo and Guenter Conzelmann present on research involving renewable energy sources, the use of natural gas, electric vehicles, and the SMART grid.

  15. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

  16. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  17. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  18. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  19. 1154 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 4, JULY/AUGUST 2012 A Comparison of Smart Grid Technologies

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    of Smart Grid Technologies and Progresses in Europe and the U.S. Marcelo Godoy Simões, Senior Member, IEEE the electric power grid. The U.S. federal government has ratified the "smart grid initiative" as the official. This paper presents the development of smart grids and an analysis of the methodologies, milestones

  20. IEEE Communications Magazine August 2012 530163-6804/12/$25.00 2012 IEEE CYBER SECURITY FOR SMART GRID COMMUNICATIONS

    E-Print Network [OSTI]

    Zhang, Yan

    FOR SMART GRID COMMUNICATIONS Daojing He, Chun Chen, and Jiajun Bu, Zhejiang University Sammy Chan, City University Secure Service Provision in Smart Grid Communications INTRODUCTION An increasing demand grids. As the world's largest engineered system, the smart grid will expand the current capabilities

  1. Smart Grid Integrity Attacks: Characterizations and Countermeasures

    SciTech Connect (OSTI)

    Annarita Giani; Eilyan Bitar; Miles McQueen; Pramod Khargonekar; Kameshwar Poolla

    2011-10-01T23:59:59.000Z

    Real power injections at loads and generators, and real power flows on selected lines in a transmission network are monitored, transmitted over a SCADA network to the system operator, and used in state estimation algorithms to make dispatch, re-balance and other energy management system [EMS] decisions. Coordinated cyber attacks of power meter readings can be arranged to be undetectable by any bad data detection algorithm. These unobservable attacks present a serious threat to grid operations. Of particular interest are sparse attacks that involve the compromise of a modest number of meter readings. An efficient algorithm to find all unobservable attacks [under standard DC load flow approximations] involving the compromise of exactly two power injection meters and an arbitrary number of power meters on lines is presented. This requires O(n2m) flops for a power system with n buses and m line meters. If all lines are metered, there exist canonical forms that characterize all 3, 4, and 5-sparse unobservable attacks. These can be quickly detected in power systems using standard graph algorithms. Known secure phase measurement units [PMUs] can be used as countermeasures against an arbitrary collection of cyber attacks. Finding the minimum number of necessary PMUs is NP-hard. It is shown that p + 1 PMUs at carefully chosen buses are sufficient to neutralize a collection of p cyber attacks.

  2. A Security Architecture for Data Aggregation and Access Control in Smart Grids

    E-Print Network [OSTI]

    Ruj, Sushmita; Stojmenovic, Ivan

    2011-01-01T23:59:59.000Z

    We propose an integrated architecture for smart grids, that supports data aggregation and access control. Data can be aggregated by home area network, building area network and neighboring area network in such a way that the privacy of customers is protected. We use homomorphic encryption technique to achieve this. The consumer data that is collected is sent to the substations where it is monitored by remote terminal units (RTU). The proposed access control mechanism gives selective access to consumer data stored in data repositories and used by different smart grid users. Users can be maintenance units, utility centers, pricing estimator units or analyzing and prediction groups. We solve this problem of access control using cryptographic technique of attribute-based encryption. RTUs and users have attributes and cryptographic keys distributed by several key distribution centers (KDC). RTUs send data encrypted under a set of attributes. Users can decrypt information provided they have valid attributes. The ac...

  3. The Evolution of the Internet Community and the "Yet-to-Evolve" Smart Grid Community: Parallels and Lessons-to-be-Learned

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    of the co-located Smart Grid and home automation networkbetween the Smart Grid and home automation systems is beingthe expansion of the Smart Grid into the home environment.

  4. Customer Engagement in AEP gridSMART Residential Transactive System

    SciTech Connect (OSTI)

    Widergren, Steven E.; Marinovici, Maria C.; Fuller, Jason C.; Subbarao, Krishnappa; Chassin, David P.; Somani, Abhishek

    2014-12-31T23:59:59.000Z

    — In 2013, AEP Ohio (AEP) operated a 5-minute real-time price (RTP) electricity market system on 4 distribution feeders as part of their gridSMART® demonstration project. The RTP households were billed for their electricity usage according to an RTP tariff approved by the Public Utility Commission of Ohio. They were given the incentive that their annual bill would be no greater than if they were on the flat-rate tariff, but they had financial incentives to shift consumption from high price periods to low price periods. Incentives were also available for response under high prices from local events, such as reaching the distribution feeder capacity or a critical peak pricing event. An analysis of this transactive system experiment was completed in early 2014. This paper describes the incentive provided to the customer, the nature of their interaction with the smart thermostat that provided automated response to the transactive signal, and their level of satisfaction with the program.

  5. Communication options for protection and control device in Smart Grid applications

    E-Print Network [OSTI]

    Minh, Hyunsik Eugene

    2013-01-01T23:59:59.000Z

    Increasing use of electricity, interest in renewable energy sources, and need for a more reliable power grid system are some of the many drivers for the concept of the Smart Grid technology. In order to achieve these goals, ...

  6. SmartGrid Consortium: Smart Grid Roadmap for the State of New York |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmarttheSmartSmartDepartment of

  7. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat andSmallFootHome Dc's

  8. Smart Grid: Creating Jobs while Delivering Reliable,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat andSmallFootHome

  9. Comfort demand leading the optimization to energy supply from the Smart Grid 

    E-Print Network [OSTI]

    Aduba,K.; Zeiler,W.; Boxem,G.

    2014-01-01T23:59:59.000Z

    stochastic behaviour, which necessitates for a change in the the management of the grid Slootweg et al., 2011 statedthe increase in decentralised active loads such as, micro Combined Heat and Power (µCHP), Electrical-vehicles, heat pumps which can... of uncertainty within Smart Energy Systems by applying offices as LVPP with different types of energy storage on different systems levels, connecting energy demand and supply within offices (nano Grid) with micro Grid (field or street) and public Smart Grid...

  10. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14T23:59:59.000Z

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  11. Smart Grid RFI: Addressing Policy and Logistical Challenges, Comments from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public Comments and

  12. Smart Grid RFI: Addressing Policy and Logistical Challenges. Comments of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public Comments andthe

  13. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public Comments

  14. Smart Grid Regional and Energy Storage Demonstration Projects: Awards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI Public CommentsDepartment of

  15. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI

  16. DOE Launches New Smart Grid Web Portal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offorEnergy LabSmart Grid Web Portal

  17. 2012 Smart Grid Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2EnergySmart Grid Peer Review 2012

  18. Smart Grid Control and Optimization | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew RFID SensorsSmart

  19. Smart Grid 2010 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation ActivitySmart Grid

  20. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation8 PreparedSmart Grid

  1. Smart Grid Investment Grant Topic Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart Grid Investment Grant Topic

  2. Smart Grid Investment Grants: Map of Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart Grid Investment Grant

  3. Smart Grid Outreach and Communication Strategy: Next Steps - EAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondarySmart Grid InvestmentNovember

  4. Smart Grid Characteristics, Values, and Metrics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOE Smart Grid

  5. Grid Integration of Offshore Windparks (Smart Grid Project) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska: EnergyStrategy |Information

  6. Capacity Analysis of a Wireless Backhaul for Metering in the Smart Grid

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Capacity Analysis of a Wireless Backhaul for Metering in the Smart Grid Babak Karimi and Vinod. With the introduction of AMI technology, two-way communication between a smart meter (SM) and the control center, as well as between the smart meter and customer loads would be facilitated for demand response, dynamic

  7. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  8. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15T23:59:59.000Z

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  9. Topic 7 : Smart Grid Privacy and Security 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to manage their load / bills. · Energy Detective®, Google Power meter®, ... #12;Smart Meter Privacy Concerns Grid 8 · Each appliance has a "signature": Power Usage to Personal Activity Mapping #12;Smart Meter have their own signature. · Laptop computers have their own signature #12;Smart Meter Privacy Concerns

  10. Lassoing Line Outages in the Smart Power Grid

    E-Print Network [OSTI]

    Zhu, Hao

    2011-01-01T23:59:59.000Z

    Fast and accurate unveiling of power line outages is of paramount importance not only for preventing faults that may lead to blackouts, but also for routine monitoring and control tasks of the smart grid, including state estimation and optimal power flow. Existing approaches are either challenged by the \\emph{combinatorial complexity} issues involved, and are thus limited to identifying single- and double-line outages; or, they invoke less pragmatic assumptions such as \\emph{conditionally independent} phasor angle measurements available across the grid. Using only a subset of voltage phasor angle data, the present paper develops a near real-time algorithm for identifying multiple line outages at the affordable complexity of solving a quadratic program via block coordinate descent iterations. The novel approach relies on reformulating the DC linear power flow model as a \\emph{sparse} overcomplete expansion, and leveraging contemporary advances in compressive sampling and variable selection using the least-abso...

  11. Integrated Retail and Wholesale Power System Operation with Smart-Grid Functionality

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Integrated Retail and Wholesale Power System Operation with Smart-Grid Functionality Dionysios of retail and wholesale power markets operating over transmission and distribution networks with smart-grid functionality. This test bed seams together two existing test beds, the AMES Wholesale Power Market Test Bed

  12. BLOOM FILTER BASED INTRUSION DETECTION FOR SMART GRID SCADA Saranya Parthasarathy and Deepa Kundur

    E-Print Network [OSTI]

    Kundur, Deepa

    BLOOM FILTER BASED INTRUSION DETECTION FOR SMART GRID SCADA Saranya Parthasarathy and Deepa Kundur for implementation across multiple resource constrained SCADA field devices in the smart grid. The predictable and regular nature of the SCADA communication patterns is exploited to detect intrusions in the field devices

  13. A mean field game analysis of electric vehicles in the smart grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 A mean field game analysis of electric vehicles in the smart grid Romain Couillet1, Samir Medina electrical vehicles (EV) or electrical hybrid oil-electricity vehicles (PHEV) in the smart grid energy market It is widely recognized [1], [2], [3] that the future intense penetration of electrical vehicles (EV) and plug

  14. SECURITY OF SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State),

    E-Print Network [OSTI]

    Wang, Weichao

    storage devices Local power generation Digital sensors and controls Real-time data Real-time price signals to purchase power based on dynamic pricing; Improved quality of power: less wastage; Integration of large variety of generation options; PRIMARY OBJECTIVES OF SMART GRIDS 3 #12;SMART GRID ARCHITECTURE Energy

  15. SmartSolarGrid Deciding what to do with Solar Energy production

    E-Print Network [OSTI]

    Ferreira, Paulo

    SmartSolarGrid Deciding what to do with Solar Energy production Diogo Morgado and Paulo Ferreira. Solar energy has been subject of great development in the past years, which led to the concept of Solar, Solar energy, Solar road, Smart- SolarGrid 1 Introduction Mankind is facing a threat from the effects

  16. Demand Response Design based on a Stackelberg Game in Smart Grid

    E-Print Network [OSTI]

    Bahk, Saewoong

    of a real-time two-way communication system. This is called demand-side management (DSM) [2]. Among DSMDemand Response Design based on a Stackelberg Game in Smart Grid Sung-Guk Yoon, Young-June Choi- time demand response can be applied. A smart grid network consisting of one retailer and many customers

  17. On the Exact Solution to a Smart Grid Cyber-Security Analysis Problem

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    terminal units (RTUs), SCADA systems measure data such as trans- mission line power flows, bus power1 On the Exact Solution to a Smart Grid Cyber-Security Analysis Problem Kin Cheong Sou, Henrik Sandberg and Karl Henrik Johansson Abstract--This paper considers a smart grid cyber-security problem

  18. Factored Models for Multiscale Decision-Making in Smart Grid Customers Prashant P. Reddy

    E-Print Network [OSTI]

    Veloso, Manuela M.

    of customers in the management of demand, and renewable energy supply, is a critical goal of the Smart Grid on offering customers financial incentives through variable-price tariffs; we also contribute an ef- fective the past decade (Str- bac 2008). Smart Grid customers are steadily acquiring dis- tributed renewable

  19. THE SMART GRID Where We Are Today and What the Future Holds

    E-Print Network [OSTI]

    Edwards, Paul N.

    , protects, and automatically optimizes the operation of its interconnected elements..."5 , while the Federal-grid.html. Accessed April 2012 2 Troxell, Wade O. "Smart Grid: Transforming the US Power Grid." Powerpoint do we need it? The United States electrical grid, consisting of over 5,000 power plants, over 200

  20. 1996 IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 Active Participation of Demand Through a

    E-Print Network [OSTI]

    Dixon, Juan

    in the smart-grid and distributed generation paradigm. Index Terms--Ancillary services, day ahead market

  1. IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 4, JULY 2014 1621 Realizing Unified Microgrid Voltage Profile and

    E-Print Network [OSTI]

    Qu, Zhihua

    IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 4, JULY 2014 1621 Realizing Unified Microgrid Voltage the information received locally from the neighboring nodes in the microgrid, and the critical nodes without DG the microgrid to have a unified voltage profile, and incorporating the subgradient method facilitates its

  2. Noncooperative Games for Autonomous Consumer Load Balancing over Smart Grid

    E-Print Network [OSTI]

    Agarwal, Tarun

    2011-01-01T23:59:59.000Z

    Traditionally, most consumers of electricity pay for their consumptions according to a fixed rate. With the ad- vancement of Smart Grid technologies, large-scale implementation of variable-rate metering becomes more practical. As a result, consumers will be able to control their electricity consumption in an automated fashion, where one possible scheme is to have each individual maximize their own utility as a noncooperative game. In this paper, noncooperative games are formulated among the electricity consumers in Smart Grid with two real-time pricing schemes, where the Nash equilibrium operation points are investigated for their uniqueness and load balancing properties. The first pricing scheme charges a price according to the average cost of electricity borne by the retailer and the second one charges according to a time-variant increasing-block price, where for each scheme, a zero-revenue model and a constant-rate revenue model are considered. In addition, the relationship between the studied games and ce...

  3. Abstract--Smart grid technologies in combination with the methodological foundation laid by the economic theory of

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Abstract-- Smart grid technologies in combination with the methodological foundation laid customers of electricity. We further claim that smart grid technologies that enable load response and load reliability from a public to a private good are the enabling smart grid technologies and the design

  4. Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

  5. IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 675 A Lightweight Message Authentication Scheme for

    E-Print Network [OSTI]

    Shen, Xuemin "Sherman"

    IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 675 A Lightweight Message Authentication Scheme for Smart Grid Communications Mostafa M. Fouda, Member, IEEE, Zubair Md. Fadlullah, Member Abstract--Smart grid (SG) communication has recently received significant attentions to facilitate

  6. JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1 Service-Orientation and the Smart Grid

    E-Print Network [OSTI]

    Aiello, Marco

    JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1 Service-Orientation and the Smart Grid and the advantages brought by Service-Oriented Architectures. Index Terms--Smart Grid, Electricity Distribution is receiving growing attention, that is the concepts falling under the name of the Smart Grid. The challenges

  7. 3360 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 7, JULY 2013 Wireless Mesh Network in Smart Grid: Modeling

    E-Print Network [OSTI]

    Wang, Wenye

    in Smart Grid: Modeling and Analysis for Time Critical Communications Yi Xu, Member, IEEE, and Wenye Wang, Senior Member, IEEE Abstract--Communication networks are an indispensable com- ponent in the smart grid that are located distributively in the grid. In particular, wireless networks will be deployed widely in the smart

  8. Standards-enabled Smart Grid for the Future Valeriy Vyatkin, Senior Member, IEEE, Gulnara Zhabelova, non-member,

    E-Print Network [OSTI]

    Ulieru, Mihaela

    1 Standards-enabled Smart Grid for the Future EnergyWeb Valeriy Vyatkin, Senior Member, IEEE for the Smart Grid is proposed which combines two recently developed industrial standards. The utility network that can be created using interoperable Smart Grid devices. Using Matlab-based simulation environment we

  9. IEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 2, SEPTEMBER 2010 213 Automated Load Curve Data Cleansing

    E-Print Network [OSTI]

    Wang, Ke

    planning [1]. Two key features in the global vision of smart grid [2] are self-healing from powerIEEE TRANSACTIONS ON SMART GRID, VOL. 1, NO. 2, SEPTEMBER 2010 213 Automated Load Curve Data of valid load curve data is critical for supporting decision making in a smart grid system. For example

  10. Machine Learning for Demand Forecasting in Smart Grid Saima Aman, Wei Yin, Yogesh Simmhan, and Viktor Prasanna

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    planning and conservation. These experiments are part of the Los Angeles Smart Grid Demonstration ProjectMachine Learning for Demand Forecasting in Smart Grid Saima Aman, Wei Yin, Yogesh Simmhan of AMIs and data collection in a Smart Grid environment means that all applications, including demand

  11. Topic 3: Smart Grid Communications A.H. MohsenianRad (U of T) 1Networking and Distributed Systems

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    Aggregator PLC IP WMN ZigBee (Home Area Network) Substations Operation Sensors PLC IP/IEC #12;Smart GridTopic 3: Smart Grid Communications A.H. MohsenianRad (U of T) 1Networking and Distributed Systems Reference Model for Smart Grid Dr. Hamed Mohsenian-Rad Texas Tech UniversityCommunications and Control

  12. IEEE Smart Grid Series of Standards IEEE 2030 (Interoperability) and IEEE 1547 (Interconnection) Status: Preprint

    SciTech Connect (OSTI)

    Basso, T.; DeBlasio, R.

    2012-04-01T23:59:59.000Z

    The IEEE American National Standards smart grid publications and standards development projects IEEE 2030, which addresses smart grid interoperability, and IEEE 1547TM, which addresses distributed resources interconnection with the grid, have made substantial progress since 2009. The IEEE 2030TM and 1547 standards series focus on systems-level aspects and cover many of the technical integration issues involved in a mature smart grid. The status and highlights of these two IEEE series of standards, which are sponsored by IEEE Standards Coordinating Committee 21 (SCC21), are provided in this paper.

  13. Control and Optimization Meet the Smart Power Grid - Scheduling of Power Demands for Optimal Energy Management

    E-Print Network [OSTI]

    Koutsopoulos, Iordanis

    2010-01-01T23:59:59.000Z

    The smart power grid aims at harnessing information and communication technologies to enhance reliability and enforce sensible use of energy. Its realization is geared by the fundamental goal of effective management of demand load. In this work, we envision a scenario with real-time communication between the operator and consumers. The grid operator controller receives requests for power demands from consumers, with different power requirement, duration, and a deadline by which it is to be completed. The objective is to devise a power demand task scheduling policy that minimizes the grid operational cost over a time horizon. The operational cost is a convex function of instantaneous power consumption and reflects the fact that each additional unit of power needed to serve demands is more expensive as demand load increases.First, we study the off-line demand scheduling problem, where parameters are fixed and known. Next, we devise a stochastic model for the case when demands are generated continually and sched...

  14. Smart Grid Consortium, Response of New York State Smart Grid Addressing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOE Smart

  15. The Evolution of the Internet Community and the"Yet-to-Evolve" Smart Grid Community: Parallels and Lessons-to-be-Learned

    SciTech Connect (OSTI)

    McParland, Charles

    2009-11-06T23:59:59.000Z

    The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, the vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the Internet are expected to be informative and pertinent.

  16. Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies

    SciTech Connect (OSTI)

    Widergren, Steven E.; Paget, Maria L.; Secrest, Thomas J.; Balducci, Patrick J.; Orrell, Alice C.; Bloyd, Cary N.

    2011-05-10T23:59:59.000Z

    This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.

  17. Smart Grid Week: How the Transition to 21st Century Grid Impacts You |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI PublicDepartment of

  18. TITLE XIII- SMART GRID SEC. 1301- 1308 STATEMENT OF POLICY ON MODERNIZATION OF ELECTRICITY GRID

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,ZaleskiThis Decision considers anExercise PlanningCOUNCILXIII--SMART GRID

  19. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30T23:59:59.000Z

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly™ response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly™ Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  20. Benchmarking Grid Information Systems Laurence Field1

    E-Print Network [OSTI]

    Sakellariou, Rizos

    Benchmarking Grid Information Systems Laurence Field1 and Rizos Sakellariou2 1 CERN, Geneva. Grid information systems play a central role in today's pro- duction Grid infrastructures, enabling the discovery of a range of in- formation about the Grid services that exist in an infrastructure. As the number