Powered by Deep Web Technologies
Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Physics: User/Researcher Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear PairsNuclear

2

Nuclear Physics: User/Researcher Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |Navy Nuclear NavyNuclearAdvisors

3

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |Navy Nuclear NavyNuclear Physics

4

Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

5

Nuclear physics information needed for accelerator driven transmutation of nuclear waste  

SciTech Connect (OSTI)

There is renewed interest in using accelerator driven neutron sources to address the problem of high-level long-lived nuclear waste. Several laboratories have developed systems that may have a significant impact on the future use of nuclear power, adding options for dealing with long-lived actinide wastes and fission products, and for power production. This paper describes a new Los Alamos concept using thermal neutrons and examines the nuclear data requirements. 7 refs., 3 figs., 1 tab.

Lisowski, P.W.; Bowman, C.D.; Arthur, E.D.; Young, P.G.

1991-01-01T23:59:59.000Z

6

Panel report: nuclear physics  

SciTech Connect (OSTI)

Nuclear science is at the very heart of the NNSA program. The energy produced by nuclear processes is central to the NNSA mission, and nuclear reactions are critical in many applications, including National Ignition Facility (NIF) capsules, energy production, weapons, and in global threat reduction. Nuclear reactions are the source of energy in all these applications, and they can also be crucial in understanding and diagnosing the complex high-energy environments integral to the work of the NNSA. Nuclear processes are complex quantum many-body problems. Modeling and simulation of nuclear reactions and their role in applications, coupled tightly with experiments, have played a key role in NNSA's mission. The science input to NNSA program applications has been heavily reliant on experiment combined with extrapolations and physical models 'just good enough' to provide a starting point to extensive engineering that generated a body of empirical information. This body of information lacks the basic science underpinnings necessary to provide reliable extrapolations beyond the domain in which it was produced and for providing quantifiable error bars. Further, the ability to perform additional engineering tests is no longer possible, especially those tests that produce data in the extreme environments that uniquely characterize these applications. The end of testing has required improvements to the predictive capabilities of codes simulating the reactions and associated applications for both well known and well characterized cases as well as incompletely known cases. Developments in high performance computing, computational physics, applied mathematics and nuclear theory have combined to make spectacular advances in the theory of fission, fusion and nuclear reactions. Current research exploits these developments in a number of Office of Science and NNSA programs, and in joint programs such as the SciDAC (Science Discovery through Advanced Computing) that supports the project Building a Universal Nuclear Energy Density Fuctional whose goals are to provide the unified approach to calculating the properties of nuclei. The successful outcome of this, and similar projects is a first steps toward a predictive nuclear theory based on fundamental interactions between constituent nucleons. The application of this theory to the domain of nuclei important for national security missions will require computational resources at the extreme scale, beyond what will be available in the near term future.

Carlson, Joseph A [Los Alamos National Laboratory; Hartouni, Edward P [LLNL

2010-01-01T23:59:59.000Z

7

Whither Nuclear Physics ?  

E-Print Network [OSTI]

Nuclear Physics has had its ups and downs. However in recent years, bucked up by some new and often puzzling data, it has become a potentially very rich field. We review some of these exciting developments in a few important sectors of nuclear physics. Emphasis shall be on the study of exotic nuclei and the new physics that these nuclei are teaching us.

Syed Afsar Abbas

2008-01-07T23:59:59.000Z

8

Nuclear Physics from QCD  

E-Print Network [OSTI]

Effective field theories provide a bridge between QCD and nuclear physics. I discuss light nuclei from this perspective, emphasizing the role of fine-tuning.

U. van Kolck

2008-12-20T23:59:59.000Z

9

Nuclear physics and cosmology  

SciTech Connect (OSTI)

There are important aspects of Cosmology, the scientific study of the large scale properties of the universe as a whole, for which nuclear physics can provide insights. Here, we will focus on Standard Big-Bang Nucleosynthesis and we refer to the previous edition of the School [1] for the aspects concerning the variations of constants in nuclear cosmo-physics.

Coc, Alain [Centre de Sciences Nuclťaires et de Sciences de la MatiŤre (CSNSM), CNRS/IN2P3, Universitť Paris Sud 11, UMR 8609, B‚timent 104, F-91405 Orsay Campus (France)

2014-05-09T23:59:59.000Z

10

Nuclear Physics Review  

SciTech Connect (OSTI)

Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

Walker-Loud, Andre

2014-11-01T23:59:59.000Z

11

Nuclear Physics | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/NewsYouNuclearNuclearNP

12

Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

1995-09-25T23:59:59.000Z

13

The Department of PhysicsPRESENTS Nuclear Physics & Society  

E-Print Network [OSTI]

The Department of PhysicsPRESENTS Nuclear Physics & Society A free, four-day short course on nuclear physics and public policy for anyone who wants to better understand nuclear power nuclear weapons P.M. Applications of Nuclear Physics on Earth: Nuclear power, weapons, and nuclear medicine. Topics

Gilfoyle, Jerry

14

X WORKSHOP ON NUCLEAR PHYSICS (WONP 2005)  

E-Print Network [OSTI]

First Call X WORKSHOP ON NUCLEAR PHYSICS (WONP¬ī 2005) The X International Workshop on Nuclear Physics, Nuclear Physics, Particles and Fields, Physics of Beams, Radiation Physics, Radiation Protection Manso Guevara Nuclear Physics Department Instituto Superior de Tecnologias y Ciencias Aplicadas (In

Stevenson, Paul

15

Physics of Binary Information  

E-Print Network [OSTI]

Basic concepts of theoretical particle physics, including quantum mechanics and Poincar\\'e invariance, the leptonic mass spectrum and the proton mass, can be derived, without reference to first principles, from intrinsic properties of the simplest elements of information represented by binary data. What we comprehend as physical reality is, therefore, a reflection of mathematically determined logical structures, built from elements of binary data.

Walter Smilga

2005-05-05T23:59:59.000Z

16

Nuclear Physics of Neutron Stars  

E-Print Network [OSTI]

Understanding the equation of state (EOS) of cold nuclear matter, namely, the relation between the pressure and energy density, is a central goal of nuclear physics that cuts across a variety of disciplines. Indeed, the limits of nuclear existence, the collision of heavy ions, the structure of neutron stars, and the dynamics of core-collapse supernova, all depend critically on the equation of state of hadronic matter. In this contribution I will concentrate on the special role that nuclear physics plays in constraining the EOS of cold baryonic matter and its impact on the properties of neutron stars.

J. Piekarewicz

2009-01-28T23:59:59.000Z

17

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2  

SciTech Connect (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

18

DOE fundamentals handbook: Nuclear physics and reactor theory  

SciTech Connect (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

19

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1  

SciTech Connect (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

20

Nuclear Physics with Electroweak Probes  

E-Print Network [OSTI]

In recent years, the italian theoretical Nuclear Physics community has played a leading role in the development of a unified approach, allowing for a consistent and fully quantitative description of the nuclear response to electromagnetic and weak probes. In this paper I review the main achievements in both fields, point out some of the open problems, and outline the most promising prospects.

Omar Benhar

2009-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Physics: Experiment Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear PairsNuclear Physicsfrom

22

Physics 129 Nuclear and Particle Physics  

E-Print Network [OSTI]

, homework solutions, handouts and announcements will be posted at my course web site: http://scipp.ucsc.edu/daw/phys129/enrolled This web site is password protected. The username and password will be announced materials will be distributed on the web site above. Nine texts on nuclear and particle physics, all

California at Santa Cruz, University of

23

Neutrinos in Nuclear Physics  

E-Print Network [OSTI]

Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

R. D. McKeown

2014-12-03T23:59:59.000Z

24

Neutrinos in Nuclear Physics  

E-Print Network [OSTI]

Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

McKeown, R D

2014-01-01T23:59:59.000Z

25

Nuclear Physics Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear Pairs

26

Nuclear Safety Information Dashboard | Department of Energy  

Office of Environmental Management (EM)

Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

27

Nuclear Physics Jobs  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman Resources HumanOffice ofNP User

28

Lattice QCD and Nuclear Physics  

SciTech Connect (OSTI)

A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.

Konstantinos Orginos

2007-03-01T23:59:59.000Z

29

Theoretical nuclear physics  

SciTech Connect (OSTI)

This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

Rost, E.; Shephard, J.R.

1992-08-01T23:59:59.000Z

30

Nuclear physics frontier at RCNP, Osaka University  

SciTech Connect (OSTI)

Cyclotron accelerator facility and research activities at Research Center for Nuclear Physics (RCNP), Osaka University, are presented. A special focus is given on several topics in nuclear physics where interesting and important experiment results relevant to the nuclear structure as well as the nuclear astrophysics have been reported.

Ong, H. J. [10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

2014-03-05T23:59:59.000Z

31

PHYSICS 237 SPRING 2006 Nuclear and Elementary Particle Physics  

E-Print Network [OSTI]

. K. Robinson Data Reduction and Error Analysis for the Physical Sciences QA278 .B48 2003 J. M. BlattPHYSICS 237 SPRING 2006 Nuclear and Elementary Particle Physics BOOKS ON RESERVE IN CRERAR LIBRARY 1987 K. S. Krane Introductory Nuclear Physics QC777.K730 1988 Useful references P. R. Bevington and D

32

Anthropic considerations in nuclear physics  

E-Print Network [OSTI]

In this short review, I discuss the sensitivity of the generation of the light and the life-relevant elements like carbon and oxygen under changes of the parameters of the Standard Model pertinent to nuclear physics. Chiral effective field theory allows for a systematic and precise description of the forces between two, three, and four nucleons. In this framework, variations under the light quark masses and the electromagnetic fine structure constant can also be consistently calculated. Combining chiral nuclear effective field theory with Monte Carlo simulations allows to further calculate the properties of nuclei, in particular of the Hoyle state in carbon, that plays a crucial role in the generation of the life-relevant elements in hot, old stars. The dependence of the triple-alpha process on the fundamental constants of Nature is calculated and some implications for our anthropic view of the Universe are discussed.

Ulf-G. MeiŖner

2014-10-11T23:59:59.000Z

33

Laboratory I | Nuclear Physics Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 CERN 73-11 Laboratory I | Nuclear Physics

34

List of Publications A. Nuclear Physics  

E-Print Network [OSTI]

List of Publications (2011-) A. Nuclear Physics B. Atomic and Condensed matter Physics C. Interdisciplinary Areas and Applications #12;A. Nuclear Physics 1. Investigation of cluster structure of 9 Be from, Tripathy S P, Lahiri C, Joshi D S, Sarkar P K, Radiat. Prot. Dosimetry 143, 4 (2011) 3. Structural change

Shyamasundar, R.K.

35

Charged-Particle Thermonuclear Reaction Rates: III. Nuclear Physics Input  

E-Print Network [OSTI]

The nuclear physics input used to compute the Monte Carlo reaction rates and probability density functions that are tabulated in the second paper of this series (Paper II) is presented. Specifically, we publish the input files to the Monte Carlo reaction rate code RatesMC, which is based on the formalism presented in the first paper of this series (Paper I). This data base contains overwhelmingly experimental nuclear physics information. The survey of literature for this review was concluded in November 2009.

Christian Iliadis; Richard Longland; Art Champagne; Alain Coc

2010-04-23T23:59:59.000Z

36

Nuclear & Particle Physics, Astrophysics, Cosmology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production, nuclear weapons, and nuclear threat reduction Proton radiography, muon tomography, proton active interrogation, wide-angle, fast-response optical telescopes, and...

37

Nuclear | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |Agny JumpNationalNovare BiofuelsNuclear

38

LANL | Physics | Quantum Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery ActNuclear Weapons

39

Large Scale Computing and Storage Requirements for Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science at NERSC HPC Requirements Reviews Requirements for Science: Target 2014 Nuclear Physics (NP) Large Scale Computing and Storage Requirements for Nuclear Physics:...

40

Overview of Nuclear Physics at Jefferson Lab  

SciTech Connect (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

McKeown, Robert D. [JLAB

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear Physics from Lattice QCD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear PairsNuclear Physicsfrom Lattice

42

Research in Theoretical Nuclear Physics  

SciTech Connect (OSTI)

A theoretical study of problems relevant to the hadron physics program at Jefferson Laboratory and at other laboratories around the world.

Capstick, Simon; Robson, Don

2005-03-18T23:59:59.000Z

43

Information Physics: The New Frontier  

E-Print Network [OSTI]

At this point in time, two major areas of physics, statistical mechanics and quantum mechanics, rest on the foundations of probability and entropy. The last century saw several significant fundamental advances in our understanding of the process of inference, which make it clear that these are inferential theories. That is, rather than being a description of the behavior of the universe, these theories describe how observers can make optimal predictions about the universe. In such a picture, information plays a critical role. What is more is that little clues, such as the fact that black holes have entropy, continue to suggest that information is fundamental to physics in general. In the last decade, our fundamental understanding of probability theory has led to a Bayesian revolution. In addition, we have come to recognize that the foundations go far deeper and that Cox's approach of generalizing a Boolean algebra to a probability calculus is the first specific example of the more fundamental idea of assigning valuations to partially-ordered sets. By considering this as a natural way to introduce quantification to the more fundamental notion of ordering, one obtains an entirely new way of deriving physical laws. I will introduce this new way of thinking by demonstrating how one can quantify partially-ordered sets and, in the process, derive physical laws. The implication is that physical law does not reflect the order in the universe, instead it is derived from the order imposed by our description of the universe. Information physics, which is based on understanding the ways in which we both quantify and process information about the world around us, is a fundamentally new approach to science.

Kevin H. Knuth

2010-09-27T23:59:59.000Z

44

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute  

E-Print Network [OSTI]

ANNUAL WINTER SCHOOLANNUAL WINTER SCHOOL Petersburg Nuclear Physics Institute National Research February ­ 1 March, 2014 Petersburg Nuclear Physics Institute (PNPI) conducts the XLVIII Annual Winter Physics · Theoretical Physics School · School on Nuclear Reactor Physics · Accelerator Physics School

Titov, Anatoly

45

computational infrastructure for nuclear astrophysics Michael Smith, Physics Division, Oak Ridge Na:onal Lab coordinator@nucastrodata.org  

E-Print Network [OSTI]

computational infrastructure for nuclear astrophysics Michael Smith, Physics Division, Oak Ridge Na:onal Lab coordinator@nucastrodata.org #12;computational infrastructure for nuclear astrophysics system overview ·work with nuclear information, reaction rates, & simulations ·operates "in

46

About Nuclear Physics | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel Production ASUEMSL

47

Nuclear Physics Technology Saves Lives | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear PairsNuclear Physics

48

American particle and nuclear physics planning  

SciTech Connect (OSTI)

In the United States the planning process relevant to future deep inelastic scattering involves both the high energy physics and nuclear physics funding and the two communities. In Canada there is no such split between the communities. Within the past two years there have been several planning initiatives and there may be more to come. We review the current status of both the planning and the plans.

Montgomery, Hugh E. [JLAB

2014-10-01T23:59:59.000Z

49

The nuclear physics of neutron stars  

SciTech Connect (OSTI)

We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

Piekarewicz, J. [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

2014-05-09T23:59:59.000Z

50

Brief 70 Nuclear Engineering Enrollments and Degrees, 2011 Summary Information  

SciTech Connect (OSTI)

The survey includes degrees granted between September 1, 2010 and August 31, 2011. Enrollment information refers to the fall term 2011. The enrollment and degree data include students majoring in nuclear engineering or in an option program equivalent to a major. Thirty-two academic programs reported having nuclear engineering programs during 2011, and data was received from all thirty-two programs. The data for two nuclear engineering programs include enrollments and degrees in health physics options that are also reported in the health physics enrollments and degrees data.

Dr. Don Johnson

2012-10-31T23:59:59.000Z

51

Nuclear physics aspects of double beta decay  

E-Print Network [OSTI]

Comprehensive description of the phenomenology of the $\\beta\\beta$ decay is given, with emphasis on the nuclear physics aspects. After a brief review of the neutrino oscillation results and of motivation to test the lepton number conservation, the mechanism of the $0\

Petr Vogel

2008-07-15T23:59:59.000Z

52

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

. No oil was expected this time because there had been no accidental trapping of tank gas in the oilerAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS l4Uti TANK OPENING REPORT NO.24 9th January, 1981 (1 day open) REFERENCES: Earlier Tank Opening Reports are referenced by the notation 12

Chen, Ying

53

AUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

must be made during the long tank opening scheduled for February 6. 2/ .. #12;#12;2 - A patch of oil~ While it was possible that the oil had come from the gas handling system it was assumed to be due to ourAUSTRALIAN NATIONAL UNIVERSITY DEPARTMENT OF NUCLEAR PHYSICS l4UD TANK OPENING REPORT NO. 10 Two

Chen, Ying

54

RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT  

E-Print Network [OSTI]

RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT The large electromagnetic field generated physics research--for example, for investigating nuclear structure, hadronic structure, atomic physics Berkeley Laboratory--it became clear that heavy-ion physics without nuclear contact could be very useful

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

55

Input to review of STFC UK Nuclear Physics Community  

E-Print Network [OSTI]

Input to review of STFC UK Nuclear Physics Community Introduction STFC covers essentially and project funding for Astronomy, Nuclear Physics, Particle Physics and Space Science Since STFC was formed programme. Grant funding Nuclear Physics grant funding was in EPSRC until 2007 and then moved to STFC

Crowther, Paul

56

22.101 Applied Nuclear Physics, Fall 2004  

E-Print Network [OSTI]

Fundamentals of nuclear physics for engineering students. Basic properties of the nucleus and nuclear radiations. Elementary quantum mechanical calculations of bound-state energies and barrier transmission probability. ...

Yip, Sidney

57

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

E-Print Network [OSTI]

Low-Energy Nuclear Physics National Joseph Carlson / HPC Initiative: Building a Universal Joseph Carlson Jonathan Engel Nuclear Energy Density Functional Structure and Reactions

Gerber, Richard A.

2012-01-01T23:59:59.000Z

58

Physics -Particle and Nuclear Physics | Theory of Nuclear Fission Springer is part of Springer Science+Business Media  

E-Print Network [OSTI]

Physics - Particle and Nuclear Physics | Theory of Nuclear Fission © Springer is part of Springer Science+Business Media Theory of Nuclear Fission A Textbook Series: Lecture Notes in Physics, Vol. 838 v arious aspects of the nuclear f ission phenomenon discov ered by Hahn, Strassmann and Meitner

Pomorski, Krzysztof

59

KRNFYSIK, FRDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I  

E-Print Network [OSTI]

K√?RNFYSIK, F√?RDJUPNINGSKURS FKF 021 Nuclear Physics, Advanced Course I Antal po√§ng: 5.0. Valfri f√∂r. Partikelfysik. Laborationerna √§r obligatoriska. Litteratur Krane, K.S.: Introductory Nuclear Physics

60

KRNFYSIK, FRDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I  

E-Print Network [OSTI]

K√?RNFYSIK, F√?RDJUPNINGSKURS FKF021 Nuclear Physics, Advanced Course I Po√§ng: 5.0 Betygskala: TH. Partikelfysik. Laborationerna √§r obligatoriska. Litteratur: Krane, K.S.: Introductory Nuclear Physics

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Physics of Nuclear Reactors, March,21 2011 What do we know ?  

E-Print Network [OSTI]

Dr. Danon Physics of Nuclear Reactors, March,21 2011 #12;What do we know ? All the information we have is from the media. More reliable; nuclear related information: www.nei.org www.iaea.org THE REST IS INTERPRETATION OF THIS DATA #12;BWR Reactor (Mark I containment) #12;BWR containment in more

Danon, Yaron

62

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH Compiled by A.V. Zaytseva,b a Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia b Novosibirsk State University, 630090 Novosibirsk, Russia c Budker Institute of Nuclear Physics, SB RAS #12; Preface 5 1 General surveys

63

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH V.S. Fadin, R of Nuclear Physics, 630090 Novosibirsk, Russia, and Novosibirsk State University, 630090 Novosibirsk, Russia, Gruppo collegato di Cosenza, Arcavacata di Rende, I-87036 Cosenza, Italy c Petersburg Nuclear Physics

64

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH V.S. Fadin, R of colours V.S. Fadina , R. Fioreb a Budker Institute of Nuclear Physics, and Novosibirsk State University of Nuclear Physics, SB RAS #12;. 1 Introduction In the BFKL approach [1], impact factors appear

65

Postdoctoral Position in Theoretical Nuclear and Elementary Particle Physics  

E-Print Network [OSTI]

Postdoctoral Position in Theoretical Nuclear and Elementary Particle Physics Indiana University The Nuclear Theory group at the Physics Department of Indiana University invites ap- plications for a postdoctoral position in the fields of Nuclear Theory and Elementary Particle Physics, broadly defined

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

66

Reprinted from Nuclear Physics A654 (1999) 436~457~  

E-Print Network [OSTI]

Reprinted from YSICS A Nuclear Physics A654 (1999) 436~457~ www.eIsevier.nl/locate/npe Accelerator-driven Transmutation Projects. The Importance of Nuclear Physics Research for Waste Transmutation. Waclaw Gudowsk? aRoyal Institute of Technology,Stockholm, Sweden ELSEVIER #12;International Nuclear Physics Conference 1998 UNESCO

67

INT Summer School Proposal Lattice QCD for Nuclear Physics  

E-Print Network [OSTI]

INT Summer School Proposal Lattice QCD for Nuclear Physics Organizers Huey-Wen Lin Department of Nuclear Physics, Johann-Joachim-Becher-Weg 45 55099 Mainz, Germany meyerh@kph.uni-mainz.de David Richards techniques to the study of nuclear physics. The goal of this summer school is to educate and prepare the next

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

68

Nuclear Physics Explained in Simple Terms Ernest M. Henley  

E-Print Network [OSTI]

Nuclear Physics Explained in Simple Terms Ernest M. Henley University of Washington Alejandro Garc challenges that the human mind has ever undertaken. Nuclear physics is a mature science, more than one be understood. We wrote this book to address the curiosity of the lay person with respect to nuclear physics

Garcia, Alejandro

69

Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques  

E-Print Network [OSTI]

Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques Masha Sosonkina1 into the field of nuclear physics calculations where the objective functions are very complex and computationally the ab initio nuclear physics code MFDn and the VTDIRECT95 code for derivative-free op- timization. We

Sosonkina, Masha

70

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCES BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH D.S. Gurov, P.V. Martyshkin, V.V. Petrov, V.V. Zuev Budker Institute of Nuclear Physics 630090, Novosibirsk, Russia M are included. @ Budker Institute of Nuclear Physics SB RAS #12

71

NP2010: An Assessment and Outlook for Nuclear Physics  

SciTech Connect (OSTI)

This grant provided partial support for the National Research Councilís (NRC) decadal survey of nuclear physics. This is part of NRCís larger effort to assess and discuss the outlook for different fields in physics and astronomy, Physics 2010, which takes place approximately every ten years. A report has been prepared as a result of the study that is intended to inform those who are interested about the current status of research in this area and to help guide future developments of the field. A pdf version of the report is available for download, for free, at http://www.nap.edu/catalog.php?record_id=13438. Among the principal conclusions reached in the report are that the nuclear physics program in the United States has been especially well managed, principally through a recurring long-range planning process conducted by the community, and that current opportunities developed pursuant to that planning process should be exploited. In the section entitled ďBuilding the Foundation for the Future,Ē the report notes that attention needs to be paid to certain elements that are essential to the continued vitality of the field. These include ensuring that education and research at universities remain a focus for funding and that a plan be developed to ensure that forefront-computing resources, including exascale capabilities when developed, be made available to nuclear science researchers. The report also notes that nimbleness is essential for the United States to remain competitive in a rapidly expanding international nuclear physics arena and that streamlined and flexible procedures should be developed for initiating and managing smaller-scale nuclear science projects.

Lancaster, James

2014-05-22T23:59:59.000Z

72

Quantum Monte Carlo methods for nuclear physics  

E-Print Network [OSTI]

Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states and transition moments in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

J. Carlson; S. Gandolfi; F. Pederiva; Steven C. Pieper; R. Schiavilla; K. E. Schmidt; R. B. Wiringa

2014-12-09T23:59:59.000Z

73

Nuclear physics and heavy element research at LLNL  

SciTech Connect (OSTI)

This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

2009-05-11T23:59:59.000Z

74

Protection of Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy and procedures for the protection of Unclassified Controlled Nuclear Information (UNCI). Canceled by DOE O 471.1 of 9-25-1995.

1992-04-24T23:59:59.000Z

75

Protection of Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy and procedures for the protection of Unclassified Controlled Nuclear Information (UCNI). This directive does not cancel another directive. Chg 1 dated 4-24-92.

1988-02-03T23:59:59.000Z

76

Identification of Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policy and procedures for identifying Unclassified Controlled Nuclear Information (UNCI) and for reviewing and marking documents and material containing UNCI. Cancels DOE O 5650.3. Canceled by DOE O 471.1 of 9-25-95.

1992-06-08T23:59:59.000Z

77

US Nuclear Regulatory Commission Input to DOE Request for Information...  

Energy Savers [EERE]

US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart...

78

MICHAEL L. CORRADINI Wisconsin Distinguished Professor Nuclear Engineering and Engineering Physics, Chair, Engineering Physics Department  

E-Print Network [OSTI]

MICHAEL L. CORRADINI Wisconsin Distinguished Professor Nuclear Engineering and Engineering Physics.S. Mechanical Engineering - 1975 Marquette University, Milwaukee WI M.S. Nuclear Engineering - 1976 Massachusetts Institute of Technology PhD Nuclear Engineering - 1978 Massachusetts Institute of Technology

Volpe, Francesco

79

Nuclear Physics A 770 (2006) 131 Relativistic nuclear energy density functional  

E-Print Network [OSTI]

Nuclear Physics A 770 (2006) 1­31 Relativistic nuclear energy density functional constrained by low-energy 10 February 2006 Available online 3 March 2006 Abstract A relativistic nuclear energy density nuclear physics: the relationship between low-energy, non- perturbative QCD and the rich structure

Weise, Wolfram

80

Nuclear Physics and National Security in an Age of Terrorism  

E-Print Network [OSTI]

Nuclear Physics and National Security in an Age of Terrorism Jerry Gilfoyle Physics Department, University of Richmond, Virginia Outline: 1. How do we assess the threat? 1. Nuclear Weapons 101 2. Catching to the threat? ­ prevention ­ mitigation (i.e. cleanup, cures, etc.) ­ retaliation #12;Nuclear Weapons 101 What

Gilfoyle, Jerry

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Regulatory Commission Information Digest, 1991 edition  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs.

Olive, K L

1991-03-01T23:59:59.000Z

82

Office of Nuclear Physics Jehanne Simon-Gillo  

E-Print Network [OSTI]

Office of Nuclear Physics Jehanne Simon-Gillo Acquisition Executive (Acting) Office of Nuclear Physics Jehanne Simon-Gillo Program Manager BNL Site Office Nand Narain Federal Project Director NASA A. McNerney Physics Support D. Raparia E. Beebe A. Kponou M. Okamura A. Pikin #12;

83

The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary  

SciTech Connect (OSTI)

Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it provides an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.

Lamont, Stephen Philip [Los Alamos National Laboratory; Brisson, Marcia [DOE-IN; Curry, Michael [DEPT. OF STATE

2011-02-17T23:59:59.000Z

84

Nuclear & Particle Physics, Astrophysics, Cosmology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/NewsYou areCleanNuMatNuclear

85

Nuclear and Radiological Engineering and Medical Physics Programs  

E-Print Network [OSTI]

Nuclear and Radiological Engineering and Medical Physics Programs The George W. Woodruff School #12 Engineering Industry Graduate School DOE National Labs Nuclear Navy #12; 104 Operating Nuclear Power plants one of the highest among all engineers #12;Westinghouse AP1000 Areva EPR GE Nuclear ESBWR B&W m

Weber, Rodney

86

Job advertisement Faculty 08 (Physics, Mathematics and Computer Science), Institute of Nuclear Physics, has an  

E-Print Network [OSTI]

Job advertisement Faculty 08 (Physics, Mathematics and Computer Science), Institute of Nuclear and astroparticle physics, nuclear chemistry and precision physics with ultracold neutrons and ion traps. We Physics, has an opening within the framework of the Cluster of Excellence PRISMA for a University

van Straten, Duco

87

Summaries of FY 1992 research in nuclear physics  

SciTech Connect (OSTI)

This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

Not Available

1993-07-01T23:59:59.000Z

88

Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC: Information services for the Physics and Engineering Communities data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1992-10-01T23:59:59.000Z

89

Radioactive target needs for nuclear reactor physics and nuclear astrophysics , G. Barreau1  

E-Print Network [OSTI]

Radioactive target needs for nuclear reactor physics and nuclear astrophysics B.Jurado1* , G Gradignan, France 2 IPN, CNRS/IN2P3, Univ. Paris-Sud, 91405 Orsay, France Abstract: Nuclear reaction cross sections of short-lived nuclei are key inputs for new generation nuclear reactor simulations and for models

Boyer, Edmond

90

Nuclear Thermal Rockets: The Physics of the Fission Reactor  

E-Print Network [OSTI]

Nuclear Thermal Rockets: The Physics of the Fission Reactor Shane D. Ross Control and Dynamical heats up when it passes through a nuclear reactor, where controlled fission of some fissionable material, with the nuclear fission reactor as a heat source [Lawrence, Witter, and Humble, 1992]. it works essentially

Ross, Shane

91

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics  

E-Print Network [OSTI]

Pulsed Nuclear Magnetic Resonance: Spin Echoes MIT Department of Physics (Dated: February 5, 2014) In this experiment, the phenomenon of Nuclear Magnetic Resonance (NMR) is used to determine the magnetic moments-factor in atomic spectroscopy and is given by g = (¬Ķ/¬ĶN )/I, (2) and ¬ĶN is the nuclear magneton, e /2mp

Seager, Sara

92

NUCLEAR PHYSICS THIRD SERIES, VOLUME 32, NUMBER 6 DECEMBER 1985  

E-Print Network [OSTI]

NUCLEAR PHYSICS THIRD SERIES, VOLUME 32, NUMBER 6 DECEMBER 1985 Coulomb energy systematics and the missing J =--, ' + state in 98 R. Sherr Department ofPhysics, Princeton University, Princeton, Xeiv Jersey 08544 Cr. Bertsch Department ofPhysics, University of Tennessee, Knoxville, Tennessee 37996 (Received 22

Bertsch George F.

93

High Energy Physics and Nuclear Physics Network Requirements  

SciTech Connect (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily reliant on transoceanic connectivity, which is subject to longer term service disruptions than terrestrial connectivity. The network engineering aspects of undersea connectivity will continue to be a significant part of the planning, deployment, and operation of the data analysis infrastructure for HEP and NP experiments for the foreseeable future. Given their critical dependency on networking services, the experiments have expressed the need for tight integration (both technically and operationally) of the domestic and the transoceanic parts of the network infrastructure that supports the experiments. 4. The datasets associated with simulations continue to increase in size, and the need to move these datasets between analysis centers is placing ever-increasing demands on networks and on data management systems at the supercomputing centers. In addition, there is a need to harmonize cybersecurity practice with the data transfer performance requirements of the science. This report expands on these points, and addresses others as well. The report contains a findings section in addition to the text of the case studies discussed during the review.

Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

2014-03-02T23:59:59.000Z

94

Statistical Physics of the Mutual Information Neri Merhav  

E-Print Network [OSTI]

: Jaynes, Shore & Johnson, Burg, ... Physics of information: Landauer, Bennet, Maroney, Plenio & Vitelli

Merhav, Neri

95

Nuclear safety information sharing agreement between NRC and...  

Office of Environmental Management (EM)

for DOE and NRC to exchange information related to safety issues associated with non-reactor nuclear facilities. The NRC-DOE Inter-Agency nuclear safety information sharing...

96

Accelerator mass spectrometry: from nuclear physics to dating  

SciTech Connect (OSTI)

The discussion reviews the use of accelerators originally intended for nuclear physics to do high resolution mass spectrometry for the purpose of isotope dating and age estimation of materials. (GHT)

Kutschera, W.

1982-01-01T23:59:59.000Z

97

MHTGR NUCLEAR PHYSICS BENCHMARKS Issued By: General Atomics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

no furth the report without prior en no longer needed, document has been MHTGR NUCLEAR PHYSICS BENCHMARKS Issued By: General Atomics P.O. Box85608 San Diego, California 92186-9784...

98

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics  

E-Print Network [OSTI]

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Internal Note performance of the counter for the detection of one MIP 3 #12;(Minimum Ionizing Particle). Their hardness

Boyer, Edmond

99

The Future of High Energy Nuclear Physics in Europe  

E-Print Network [OSTI]

In less than two years from now, the LHC at CERN will start operating with protons and later with heavy ions in the multi TeV energy range. With its unique physics potential and a strong, state-of-the complement of detectors, the LHC will provide the European, and in fact worldwide Nuclear Physics community, with a forefront facility to study nuclear matter under extreme conditions well into the next decade.

J. Schukraft

2006-02-14T23:59:59.000Z

100

* This reference number refers to the recommendation number given in the EPSRC/STFC Review of Nuclear Physics and Nuclear Engineering Report Action Plan for the EPSRC/STFC Review of Nuclear Physics and Nuclear Engineering  

E-Print Network [OSTI]

of Nuclear Physics and Nuclear Engineering Report Action Plan for the EPSRC/STFC Review of Nuclear Physics and Nuclear Engineering Preface This document will outline the recommendations in order of importance skills provision in nuclear engineering and related areas. Although these two areas have significant

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Future directions in particle and nuclear physics at multi-GeV hadron beam facilities  

SciTech Connect (OSTI)

This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

1993-11-01T23:59:59.000Z

102

KRNFYSIK AK FKF011 Nuclear Physics, Basic Course  

E-Print Network [OSTI]

K√?RNFYSIK AK FKF011 Nuclear Physics, Basic Course Po√§ng: 3.0 Betygskala: TH Obligatorisk f√∂r: F3 Valfri f√∂r: E4 Kursansvarig: Docent Per Kristiansson, per.kristiansson@nuclear.lu.se F√∂rkunskapskrav

103

KRNFYSIK AK FKF 011 Nuclear Physics, Basic Course  

E-Print Network [OSTI]

K√?RNFYSIK AK FKF 011 Nuclear Physics, Basic Course Antal po√§ng: 3.0. Obligatorisk f√∂r: F3. Valfri f√∂r: E4. Kursansvarig: Docent Per Kristiansson, per.kristiansson@nuclear.lu.se F√∂rkunskapskrav

104

Nuclear physics from strong coupling QCD  

E-Print Network [OSTI]

The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.

Michael Fromm; Philippe de Forcrand

2009-12-14T23:59:59.000Z

105

Nuclear and Plasma Physics Heriot-Watt  

E-Print Network [OSTI]

and nano-diamond for fusion reactors" Romanian J Physics, 56 Supplement, 15-22, 2011 5. D. A. J. Moran, D

Greenaway, Alan

106

Testing the Physics of Nuclear Isomers  

SciTech Connect (OSTI)

For much of the past century, physicists have searched for methods to control the release of energy stored in an atom's nucleus. Nuclear fission reactors have been one successful approach, but finding other methods to capitalize on this potential energy source have been elusive. One possible source being explored is nuclear isomers. An isomer is a long-lived excited state of an atom's nucleus--a state in which decay back to the nuclear ground state is inhibited. The nucleus of an isomer thus holds an enormous amount of energy. If scientists could develop a method to release that energy instantaneously in a gamma-ray burst, rather than slowly over time, they could use it in a nuclear battery. Research in the late 1990s indicated that scientists were closer to developing such a method--using x rays to trigger the release of energy from the nuclear isomer hafnium-178m ({sup 178m}Hf). To further investigate these claims, the Department of Energy (DOE) funded a collaborative project involving Lawrence Livermore, Los Alamos, and Argonne national laboratories that was designed to reproduce those earlier results.

Hazi, A

2006-01-25T23:59:59.000Z

107

University of Washington, Nuclear Physics Laboratory annual report, 1995  

SciTech Connect (OSTI)

The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

NONE

1995-04-01T23:59:59.000Z

108

Nuclear Physics Division Theoretical Study Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear Pairs High-ResolutionCEBIT 67-18

109

Nuclear Physics Long Range Plan | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D ConsortiumNuclear Pairs High-ResolutionCEBIT

110

Intermediate/high energy nuclear physics  

SciTech Connect (OSTI)

This report discusses progress on the following research: quark cluster model; solving quantum field theories in non-perturbative regime;relativistic wave equations, quarkonia and electron-positron resonances; nuclear dependence at large transverse momentum; factorization at the order of power corrections; single-spin asymmetries; and hadronic photon production. (LSP)

Vary, J.P.

1992-01-01T23:59:59.000Z

111

Research in heavy-ion nuclear physics  

SciTech Connect (OSTI)

This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the {sup 24}Mg+{sup 24}Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development.

Sanders, S.J.; Prosser, F.W.

1992-01-01T23:59:59.000Z

112

Resource Letter FNP-1: Frontiers of nuclear physics G. F. Bertscha)  

E-Print Network [OSTI]

Resource Letter FNP-1: Frontiers of nuclear physics G. F. Bertscha) Department of Physics activities in nuclear physics and also a guide for finding useful nuclear data. The major areas included, and nuclear instrumentation. © 2004 American Association of Physics Teachers. DOI: 10.1119/1.1763174 I

Bertsch George F.

113

Dynamic adaptations in ab-initio nuclear physics calculations on multicore computer architectures  

E-Print Network [OSTI]

Dynamic adaptations in ab-initio nuclear physics calculations on multicore computer architectures application MFDn (Many Fermion Dynamics for nuclear structure) used for ab-initio nuclear physics calcu of the quantum many-body problem transcends several areas of physics and chemistry. Nuclear physics faces

Sosonkina, Masha

114

Nuclear Science--A Guide to the Nuclear Science Wall Chart 2003 Contemporary Physics Education Project (CPEP)  

E-Print Network [OSTI]

Nuclear Science--A Guide to the Nuclear Science Wall Chart ©2003 Contemporary Physics Education Project (CPEP) 7-1 Chapter 7 Nuclear Reactions Nuclear reactions and nuclear scattering are used, protons, alphas, or "heavy ions"), creates these reactions when they strike a target nucleus. Nuclear

115

Accelerating Innovation: How Nuclear Physics Benefits Us All  

SciTech Connect (OSTI)

From fighting cancer to assuring food is safe to protecting our borders, nuclear physics impacts the lives of people around the globe every day. In learning about the nucleus of the atom and the forces that govern it, scientists develop a depth of knowledge, techniques and remarkable research tools that can be used to develop a variety of often unexpected, practical applications. These applications include devices and technologies for medical diagnostics and therapy, energy production and exploration, safety and national security, and for the analysis of materials and environmental contaminants. This brochure by the Office of Nuclear Physics of the USDOE Office of Science discusses nuclear physics and ways in which its applications fuel our economic vitality, and make the world and our lives safer and healthier.

Not Available

2011-01-01T23:59:59.000Z

116

Theoretical Nuclear Physics - Research - Cyclotron Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe LifeNew class ofTheoretical Nuclear

117

physical security | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions Program LANL TRU

118

Nuclear energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycleenergy

119

Nuclear safety | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohnSecurityControls |NavyNuclearLife Cycleenergysafety

120

National Nuclear Physics Summer School (NNPSS) 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy Login The National Library

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Princeton Plasma Physics Lab - Nuclear energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Author Lastenergy Energy that originates

122

Princeton Plasma Physics Lab - Nuclear safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR Primary Author Lastenergy Energy that

123

Suggested Courses for ME Students Interested in Nuclear Engineering: *For information on the Nuclear Engineering Minor, see: Nuclear Engineering Program  

E-Print Network [OSTI]

Suggested Courses for ME Students Interested in Nuclear Engineering: *For information on the Nuclear Engineering Minor, see: Nuclear Engineering Program Required Courses: ME 4015-4016 ­ Engineering Technical Electives: NSEG 3145-3146: Fundamentals of Nuclear Engineering Application of fundamental

Virginia Tech

124

Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review  

SciTech Connect (OSTI)

The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

Redondo, Antonio [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

125

Alexey Anisyonkov Budker Institute of Nuclear Physics  

E-Print Network [OSTI]

to manage data Userfriendly Web interface to control and to manage stored configuration data Command line interface for base functionalities to retrieve and to modify data Web I/F, python API to query and browsing database information #12;AGIS stores as external data as own data managed through API/WEB I

126

Theoretical nuclear physics. 1998 progress report  

SciTech Connect (OSTI)

Summaries of progress made on the following topics are given: (1) nonresonant contributions to inelastic N{r_arrow}{Delta}(1232) parity violation; (2) neutron distribution effects in elastic nuclear parity violation; (3) Wilson RG for scalar-plus-fermion field theories at finite density; (4) Perturbation theory for spin ladders using angular momentum coupled bases; (5) mean-field theory for spin ladders using angular momentum density; (6) finite temperature renormalization group effective potentials for the linear Sigma model; (7) negative-parity baryon resonances from lattice QCD; (8) the N{r_arrow}{Delta} electromagnetic transition amplitudes from QCD sum rules; and (9) higher nucleon resonances in exclusive reactions ({gamma}, {pi}N) on nuclei.

NONE

1998-09-01T23:59:59.000Z

127

Physical Security Systems | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxfordVeteransAdministrationPhysical Security Systems |

128

Some physical and biological properties of the nuclear polyhedrosis virus of Heliothis zea (Boddie) and Heliothis virescens (Fabricius)  

E-Print Network [OSTI]

University Directed by: Dr. L. L. Keeley Laboratory investi ations were conducted into so ie of the physical and biological properties of the nuclear polyhedrosis virus ("!PV) of Heliothis zea (Boddie) and Peiiothi s virescens (Fabricius). information... the ranges of shapes and. sizes reported f' or other insect nuclear viruses. In contrast, the strength of alkali and dis- solving period necessary to dissolve Heliothis nuclear polyhedra are somewhat higher than those reported for other insect polyhedra...

MacFarlane, Johnny James

1969-01-01T23:59:59.000Z

129

Nuclear Physics A 587 (1995) 787-801 (3He,t) reactions on unstable nuclei  

E-Print Network [OSTI]

ELSEVIER NUCLEAR PHYSICS A Nuclear Physics A 587 (1995) 787-801 (3He,t) reactions on unstable,t) reactions on unstable nuclei theoretically. Since this charge-exchange reaction takes place on the nuclear in nuclear physics since we got a new tool, "beams of unstable nuclei" [1,2]. Many experimentalists have

Fernández de Córdoba, Pedro

130

Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 INSTRUMENTS  

E-Print Network [OSTI]

ELSEVIER Nuclear Instruments and Methods in Physics Research A 356 (1995) l-4 NUCLEAR INSTRUMENTS 8 METHODS IN PHYSICS REgtR?n Thermodynamics of dynamic nuclear polarization W.Th. Wenckebach Faculty ofApplied Physics, Delfr Unicersity of Technology, P.O.B. 5046, 2600 GA De& The Netherlands Abstract Dynamic nuclear

Dutz, Hartmut

131

Physics of Nuclear Collisions at High Energy  

SciTech Connect (OSTI)

A wide range of problems has been investigated in the research program during the period of this grant. Although the major effort has been in the subject of heavy-ion collisions, we have also studied problems in biological and other physical systems. The method of analysis used in reducing complex data in multiparticle production to simple descriptions can also be applied to the study of complex systems of very different nature. Phase transition is an important phenomenon in many areas of physics, and for heavy-ion collisions we study the fluctuations of multiplicities at the critical point. Human brain activities as revealed in EEG also involve fluctuations in time series, and we have found that our experience enables us to find the appropriate quantification of the fluctuations in ways that can differentiate stroke and normal subjects. The main topic that characterizes the research at Oregon in heavy-ion collisions is the recombination model for the treatment of the hadronization process. We have avoided the hydrodynamical model partly because there is already a large community engaged in it, but more significantly we have found the assumption of rapid thermalization unconvincing. Recent results in studying LHC physics lead us to provide more evidence that shower partons are very important even at low p_T, but are ignored by hydro. It is not easy to work in an environment where the conventional wisdom regards our approach as being incorrect because it does not adhere to the standard paradigm. But that is just what a vibrant research community needs: unconventional approach may find evidences that can challenge the orthodoxy. An example is the usual belief that elliptic flow in fluid dynamics gives rise to azimuthal anisotropy. We claim that it is only sufficient but not necessary. With more data from LHC and more independent thinkers working on the subject what is sufficient as a theory may turn out to be incorrect in reality. Another area of investigation that has long been associated with this PI is the study of quark-hadron phase transition in heavy-ion collisions. Finally, at LHC enough particles are produced to make feasible the investigation of intermittency and erraticity indices that we have proposed as signatures of that phase transition.

Hwa, Rudolph C.

2012-05-01T23:59:59.000Z

132

Nuclear and fundamental physics instrumentation for the ANS project  

SciTech Connect (OSTI)

This report summarizes work carried out during the period 1991-1995 in connection with the refinement of the concepts and detailed designs for nuclear and fundamental physics research instrumentation at the proposed Advanced Neutron source at Oak Ridge National Laboratory. Initially, emphasis was placed on refining the existing System Design Document (SDD-43) to detail more accurately the needs and interfaces of the instruments that are identified in the document. The conceptual designs of these instruments were also refined to reflect current thinking in the field of nuclear and fundamental physics. In particular, the on-line isotope separator (ISOL) facility design was reconsidered in the light of the development of interest in radioactive ion beams within the nuclear physics community. The second stage of this work was to define those instrument parameters that would interface directly with the reactor systems so that these parameters could be considered for the ISOL facility and particularly for its associated ion source. Since two of these options involved ion sources internal to the long slant beam tube, these were studied in detail. In addition, preliminary work was done to identify the needs for the target holder and changing facility to be located in the tangential through-tube. Because many of the planned nuclear and fundamental physics instruments have similar needs in terms of detection apparatus, some progress was also made in defining the parameters for these detectors. 21 refs., 32 figs., 2 tabs.

Robinson, S.J. [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics; Raman, S.; Arterburn, J.; McManamy, T.; Peretz, F.J. [Oak Ridge National Lab., TN (United States); Faust, H. [Institut Laue-Langevin, 38 - Grenoble (France); Piotrowski, A.E. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

1996-05-01T23:59:59.000Z

133

Self-consistent methods in nuclear structure physics  

SciTech Connect (OSTI)

The authors present a very brief description of the Hartree Fock method in nuclear structure physics, discuss the numerical methods used to solve the self-consistent equations, and analyze the precision and convergence properties of solutions. As an application, they present results pertaining to quadrupole moments and single-particle quadrupole polarizations in superdeformed nuclei with A {approximately} 60.

Dobaczewski, J. [Warsaw Univ. (Poland). Inst. of Theoretical Physics][Oak Ridge National Lab., TN (United States). Joint Inst. for Heavy Ion Research]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

1997-11-01T23:59:59.000Z

134

Nuclear and Particle Physics Conference 2631 May, 2003, Dubrovnik, Croatia  

E-Print Network [OSTI]

Nuclear and Particle Physics Conference 26­31 May, 2003, Dubrovnik, Croatia Hard Exclusive all kinematic region A. Borissov, NAPP 2003, May 28, Dubrovnik, Croatia #12; The Target and Beam, Dubrovnik, Croatia #12; Generalized Parton Distributions (GPDs) Orbital Angular Momentum Lq Compton (DVCS

135

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics  

E-Print Network [OSTI]

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics THERMAL components linking the cold mass to the vacuum vessel such as support posts and an insulation vacuum barrier aluminium thermal shield. The recent commissioning and operation of two SSS prototypes in the LHC Test

Paris-Sud XI, Université de

136

AUSTRALIAN NATIONAL UNIVERSITY DEPART~ffiNT OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

AUSTRALIAN NATIONAL UNIVERSITY DEPART~ffiNT OF NUCLEAR PHYSICS 14UD Tfu~K OPENING REPORT No.4l 15th that came to us, (including fuzzballs), and tests that we carried out (40/8). Later, we evaluated that we were unable to pull open the door of the storage vessel because of partial vacuum inside

Chen, Ying

137

DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62  

E-Print Network [OSTI]

DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62 This report covers three tank openings; 2 history. We were plagued throughout these tank openings by poor beam transmission and spent most of our have, were manufactured and installed. The first tank opening2 May t.o 6 May 1988. This tank opening

Chen, Ying

138

Polynomial regression with derivative information in nuclear reactor uncertainty quantification*  

E-Print Network [OSTI]

1 Polynomial regression with derivative information in nuclear reactor uncertainty quantification in the outputs. The usual difficulties in modeling the work of the nuclear reactor models include the large size, Argonne National Laboratory, Argonne, IL, USA b Nuclear Engineering Division, Argonne National Laboratory

Anitescu, Mihai

139

Nuclear Safety Information Agreement Between the U.S. Nuclear...  

Office of Environmental Management (EM)

Operations (NRC)), Jim O'Brien, Director, Office of Nuclear Safety (EHSS DOE), Robert Johnson (Chief, Fuel Manufacturing Branch (NRC)) Front Row: Matt Moury, Associate Under...

140

Identification and Protection of Unclassified Controlled Nuclear Information Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides detailed requirements to supplement DOE O 471.1A, Identification and Protection of Unclassified Controlled Nuclear Information. Change 1, dated 10/23/01, was added to the Manual to clarify when and how encryption requirements for Unclassified Controlled Nuclear Information may be waived. Canceled by DOE O 471.1B.

2000-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

www.engr.utk.edu/nuclear Departmental Information  

E-Print Network [OSTI]

www.engr.utk.edu/nuclear Departmental Information Department of Nuclear Engineering 315 Pasqua Hall Knoxville, TN 37996-2300 Phone: (865) 974-2525 Fax: (865) 974-0668 E-mail: utne@utk.edu Online: www.engr.utk.edu/nuclear G U I D E F O R P R O S P E C T I V E S T U D E N T S DepartmentofNuclearEngineering 315Pasqua

Tennessee, University of

142

Physical Mechanism of Nuclear Reactions at Low Energies  

E-Print Network [OSTI]

The physical mechanism of nuclear reactions at low energies caused by spatial extension of electron is considered. Nuclear reactions of this type represent intra-electronic processes, more precisely, the processes occurring inside the area of basic localization of electron. Distinctive characteristics of these processes are defined by interaction of the own field produced by electrically charged matter of electron with free nuclei. Heavy nucleus, appearing inside the area of basic localization of electron, is inevitably deformed because of interaction of protons with the adjoining layers of electronic cloud, which may cause nuclear fission. If there occur "inside" electron two or greater number of light nuclei, an attractive force appears between the nuclei which may result in the fusion of nuclei. The intra-electronic mechanism of nuclear reactions is of a universal character. For its realization it is necessary to have merely a sufficiently intensive stream of free electrons, i.e. heavy electric current, and as long as sufficiently great number of free nuclei. This mechanism may operate only at small energies of translational motion of the centers of mass of nuclei and electron. Because of the existence of simple mechanism of nuclear reactions at low energies, nuclear reactor turns out to be an atomic delayed-action bomb which may blow up by virtue of casual reasons, as it has taken place, apparently, in Chernobyl. The use of cold nuclear reactions for production of energy will provide mankind with cheap, practically inexhaustible, and non-polluting energy sources.

V. P. Oleinik; Yu. D Arepjev

2003-06-09T23:59:59.000Z

143

Nuclear Regulatory Commission Information Digest 1992 edition. Volume 4  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, the activities NRC licenses, and general information on domestic and worldwide nuclear energy. This digest is a compilation of nuclear- and NRC-related data and is designed to provide a quick reference to major facts about the agency and industry it regulates. In general, the data cover 1975 through 1991, with exceptions noted. Information on generating capacity and average capacity factor for operating US commercial nuclear power reactors is obtained from monthly operating reports that are submitted directly to the NRC by the licensee. This information is reviewed by the NRC for consistency only and no independent validation and/or verification is performed.

Olive, K [ed.] [ed.

1992-03-01T23:59:59.000Z

144

TEI Piraeus students' knowledge on the beneficial applications of nuclear physics: Nuclear energy, radioactivity - consequences  

E-Print Network [OSTI]

The recent nuclear accident in Japan revealed the confusion and the inadequate knowledge of the citizens about the issues of nuclear energy, nuclear applications, radioactivity and their consequences In this work we present the first results of an ongoing study which aims to evaluate the knowledge and the views of Greek undergraduate students on the above issues. A web based survey was conducted and 131 students from TEI Piraeus answered a multiple choice questionnaire with questions of general interest on nuclear energy, nuclear applications, radioactivity and their consequences. The survey showed that students, like the general population, have a series of faulty views on general interest nuclear issues. Furthermore, the first results indicate that our educational system is not so effective as source of information on these issues in comparison to the media and internet

Pilakouta, Mirofora

2011-01-01T23:59:59.000Z

145

The Auxiliary Field Diffusion Monte Carlo Method for Nuclear Physics and Nuclear Astrophysics  

E-Print Network [OSTI]

In this thesis, I discuss the use of the Auxiliary Field Diffusion Monte Carlo method to compute the ground state of nuclear Hamiltonians, and I show several applications to interesting problems both in nuclear physics and in nuclear astrophysics. In particular, the AFDMC algorithm is applied to the study of several nuclear systems, finite, and infinite matter. Results about the ground state of nuclei ($^4$He, $^8$He, $^{16}$O and $^{40}$Ca), neutron drops (with 8 and 20 neutrons) and neutron rich-nuclei (isotopes of oxygen and calcium) are discussed, and the equation of state of nuclear and neutron matter are calculated and compared with other many-body calculations. The $^1S_0$ superfluid phase of neutron matter in the low-density regime was also studied.

Stefano Gandolfi

2007-12-09T23:59:59.000Z

146

Introduction A major goal in nuclear physics is to understand how  

E-Print Network [OSTI]

Introduction A major goal in nuclear physics is to understand how nuclear binding, stability article 20 Nuclear Physics News, Vol. 13, No. 1, 2003 Ab Initio Calcula the accurate calculation of nuclear matrix ele- ments needed for some tests of the standard model

Mihaila, Bogdan

147

BNL Strategic Plan for Nuclear Physics T. Kirk, Associate Laboratory Director, HENP  

E-Print Network [OSTI]

BNL Strategic Plan for Nuclear Physics T. Kirk, Associate Laboratory Director, HENP January 3, 2005 Abstract: The strategic plan for Nuclear Physics at Brookhaven National Laboratory seeks to align itself of the Laboratory to the advance of nuclear physics. To accomplish these guiding principles, we seek to identify

148

Nuclear Data Measurements for 21st Century Reactor Physics Applications  

SciTech Connect (OSTI)

The United States Department of Energy (DOE), Office of Nuclear Energy (NE) has embarked on a long-term program to significantly advance the science and technology of nuclear energy. This is in response to the overall national plan for accelerated development of domestic energy resources on several fronts, punctuated by recent dramatic events that have emphasized the need for the US to reduce its dependence on foreign petroleum supplies. Key aspects of the DOE-NE agenda are embodied in the Generation-IV (Gen-IV) advanced nuclear energy systems development program and in the Advanced Fuel Cycle (AFC) program. The planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current nuclear power reactor systems as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The success of the overall NE effort will depend not only on sophisticated system development and engineering, but also on the advances in the supporting sciences and technologies. Of these, one of the most important is the improvement of the relevant fundamental nuclear science data bases, especially the evaluated neutron interaction cross section files that serve as the foundation of all reactor system designs, operating strategies, and fuel cycle engineering activities. The new concepts for reactors and fuel cycles involve the use of transuranic nuclides that were previously of little interest, and where experimentally measured information is lacking. The current state of the cross section database for some of these nuclides is such that design computations for advanced fast-spectrum reactor systems and fuel cycles that incorporate such materials in significant quantities are meaningful only for approximate conceptual applications. No actual system could reliably be designed according to currently accepted standards, nor could such a system be safely and efficiently operated, with the limited nuclear data and related information now available.

Rahmat Aryaeinejad; Jerald D. Cole; Mark W. Drigert; James K. Jewell; Christopher A. McGrath; David W. Nigg; Edward L. Reber

2003-03-01T23:59:59.000Z

149

Program Information | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

and Operating (M&O) Contract Competition Program Information Program Information FY 2015 Performance Evaluation Plan (PEP) FY 2013 Performance Evaluation Report (PER)...

150

NUCLEAR INFORMATION SERVICES AT THE NATIONAL NUCLEAR DATA CENTER.  

SciTech Connect (OSTI)

The National Nuclear Data Center has provided remote access to its databases and other resources since 1986. This year we have completed the modernization of our databases and Web site. Resources available from our Web site will be summarized and some of the major improvements described in more detail.

BURROWS,T.W.; DUNFORD,C.L.

2004-09-26T23:59:59.000Z

151

Identification and Protection of Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides requirements and responsibilities for identifying and protecting the unauthorized dissemination of Unclassified Controlled Nuclear Information. Cancels DOE O 471.1A and DOE M 471.1-1.

2010-03-01T23:59:59.000Z

152

Briefing, Classification of Nuclear Weapons-Related Information- June 2014  

Broader source: Energy.gov [DOE]

This brief will familiarize individuals from agencies outside of DOE who may come in contact with RD and FRD with the procedures for identifying, classifying, marking, handling, and declassifying documents containing Nuclear Weapons-Related Information.

153

Reprinted from Nuclear Physics A663&664 (2000) 169c-182c  

E-Print Network [OSTI]

.eIsevier.nl/locate/npe Transmutation of Nuclear Waste Waclaw Gudowski aRoyal Institute of Technology,Stockholm, Sweden ELSEVIER #12;Nuclear Physics A663&664 (2000) 169c-182c Transmutation of Nuclear Waste Waclaw Gudowski Royal Institute at the dawn of nuclear era in 1940 anticipated that management of radioactive materials and nuclear waste

154

Daniel E. Archer Ph.D., Experimental Nuclear Structure Physics, Florida State University, 1996  

E-Print Network [OSTI]

Daniel E. Archer Ph.D., Experimental Nuclear Structure Physics, Florida State University, 1996 M with particular expertise in experimental nuclear physics, including "hands-on" laboratory experience · Leadership.S., Physics, Florida State University, 1993 B.S., Physics (Major), Computer Based Honors Program (Minor

155

Physics 5B General Information Winter 2009 Instructor: Howard Haber  

E-Print Network [OSTI]

Physics 5B General Information Winter 2009 Instructor: Howard Haber O#ce: ISB, Room 326 Phone:30--8:00 pm Auditya Sharma Physics 5J Honors Section in ISB, Room 231: Thursdays 2:00--3:45 pm David Smith#n@ucsc.edu) at times to be announced in class and on the course website. REQUIRED TEXTBOOK: Physics for Scientists

California at Santa Cruz, University of

156

Physics 5B General Information Winter 2009 Instructor: Howard Haber  

E-Print Network [OSTI]

Physics 5B General Information Winter 2009 Instructor: Howard Haber Office: ISB, Room 326 Phone:30­8:00 pm Auditya Sharma Physics 5J Honors Section in ISB, Room 231: Thursdays 2:00­3:45 pm David Smith@ucsc.edu) at times to be announced in class and on the course website. REQUIRED TEXTBOOK: Physics for Scientists

California at Santa Cruz, University of

157

Essay Review Physics from Fisher Information  

E-Print Network [OSTI]

that the physics would not be there without the measurement is di cult to say. It is, of course, a standard part

Lavis, David

158

The informational physics indeed can help to understand Nature?  

E-Print Network [OSTI]

In our previous articles ("The Information and the Matter", v1, v5; more systematically the informational conception is presented in arXiv paper "The Information as Absolute", 2010) it was rigorously shown that the Matter is some informational system (structure), which is an [practically] infinitesimal sub-sets of the utmost infinite and fundamental Set "Information". Here some physical consequences from this conception are considered.

S. V. Shevchenko; V. V. Tokarevsky

2010-06-01T23:59:59.000Z

159

Application of AdS/CFT in Nuclear Physics  

E-Print Network [OSTI]

We review some recent progress in studying the nuclear physics especially nucleon-nucleon (NN) force within the gauge-gravity duality, in context of noncritical string theory. Our main focus is on the holographic QCD model based on the $AdS_6$ background. We explain the noncritical holography model and obtain the vector-meson spectrum and pion decay constant. Also, we study the NN interaction in this frame and calculate the nucleon-meson coupling constants. A further topic covered is a toy model for calculating the light nuclei potential. In particular, we calculate the light nuclei binding energies and also excited energies of some available excited states. We compare our results with the results of other nuclear models and also with the experimental data. Moreover, we describe some other issues which are studied using the gauge-gravity duality.

M. R. Pahlavani; R. Morad

2014-03-11T23:59:59.000Z

160

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling of nuclear reactors  

E-Print Network [OSTI]

288 Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, 2013 Multi-physics modelling practices in a nutshell', Int. J. Nuclear Energy Science and Technology, Vol. 7, No. 4, pp.288 Energy and Nuclear Applications', Göteborg, Sweden, 13­14 October 2011 Copyright © 2013 Inderscience

Demazière, Christophe

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear Instruments and Methods in Physics Research A 474 (2001) 273284 Optimal coded aperture patterns for improved SNR in nuclear  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 474 (2001) 273≠284 Optimal coded aperture patterns for improved SNR in nuclear medicine imaging Roberto Accorsia , Francesca Gasparinib , Richard C. Lanzaa, * a Nuclear Engineering Department, Massachusetts Institute of Technology, Room NW13-221, 77

Schettini, Raimondo

2001-01-01T23:59:59.000Z

162

Physics of Nuclear Medicine Polytechnic Institute of NYU, Brooklyn, NY 11201  

E-Print Network [OSTI]

to undergo radioactive decay, which gives off energy and results in a more stable nucleus #12;EL5823 NuclearPhysics of Nuclear Medicine Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Based on J. L are from the textbook. #12;EL5823 Nuclear Physics Yao Wang, Polytechnic U., Brooklyn 2 Lecture Outline

Suel, Torsten

163

Nuclear Engineering & Radiation Health Physics Program Outcomes Ability to apply knowledge of mathematics, science, and engineering  

E-Print Network [OSTI]

Nuclear Engineering & Radiation Health Physics Program Outcomes · Ability to apply knowledge for engineering practice · Ability to apply knowledge of atomic and nuclear physics to nuclear and radiological of mathematics, science, and engineering · Ability to design and conduct experiments as well as analyze

Tullos, Desiree

164

Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point  

E-Print Network [OSTI]

Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point , Yaron Danonc , Brian Morettia , and Jeffrey Muskb a Department of Physics and Nuclear Engineering, United States Military Academy, West Point, NY 10996 b Nuclear Science and Engineering Research Center

Danon, Yaron

165

The r-process nucleosynthesis: Nuclear physics challenges  

SciTech Connect (OSTI)

About half of the nuclei heavier than iron observed in nature are produced by the socalled rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved and for which essentially no experimental data exist. The present contribution emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Their impact on the r-abundance distribution resulting from the decompression of neutron star matter is discussed.

Goriely, S. [Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

2012-10-20T23:59:59.000Z

166

Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 INSTRUMENTS  

E-Print Network [OSTI]

ELSEVIER Nuclear Instruments and Methods in Physics Research A 360 (1995) 189-192 NUCLEARFaculty ofPhysics and Nuclear Techniques Academy ofMining and Metallurgy, Cracow, Poland h INFN, Torino INSTRUMENTS 8 METHODS IN PHYSICS RESEARCH SectIonA A fast, high-granularity silicon multiplicity detector

Ramello, Luciano

167

Nuclear Instruments and Methods in Physics Research A 499 (2003) 437468 The BRAHMS experiment at RHIC  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 499 (2003) 437­468 The BRAHMS experiment, USA f H. Niewodniczanski Institute of Nuclear Physics, Krak!ow, Poland g Cyclotron Institute, Texas A. Wadag , J. Westergaardb , A. Wielocha , I.S. Zgurad a M. Smoluchowski Institute of Physics, Jagiellonian

168

Nuclear Physics A549 (1992) 439-460 North-Holland  

E-Print Network [OSTI]

Nuclear Physics A549 (1992) 439-460 North-Holland odel calculations of doubly closed shell nuclei PHYSICS R In recent years much progress has been made in the development of the non- relativistic nuclear theory (1) A. Fabrocini Department ofPhysics, University of Pisa and INFN, Sezione di Pisa, I-56100 Pisa

Lagaris, Isaac

169

Progress in Particle and Nuclear Physics 73 (2013) 134 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

Progress in Particle and Nuclear Physics 73 (2013) 1­34 Contents lists available at ScienceDirect Progress in Particle and Nuclear Physics journal homepage: www.elsevier.com/locate/ppnp Review Geo field between Geology and Physics: the study of the Earth's geo-neutrino flux. We describe competing

Mcdonough, William F.

170

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR PHYSICS  

E-Print Network [OSTI]

STRUCTURE OF NUCLEAR REACTION INDUCED BY LOW ENERGY DEUTERONin the nuclear reaction induced by low energy deuteron on

Saxon, D.S.

2010-01-01T23:59:59.000Z

171

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel - Final Technical Report  

SciTech Connect (OSTI)

The nuclear industry interest in advanced fuel and reactor design often drives towards fuel with uranium enrichments greater than 5 wt% 235U. Unfortunately, little data exists, in the form of reactor physics and criticality benchmarks, for uranium enrichments ranging between 5 and 10 wt% 235U. The primary purpose of this project is to provide benchmarks for fuel similar to what may be required for advanced light water reactors (LWRs). These experiments will ultimately provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5 wt% 235U fuel.

William Anderson; James Tulenko; Bradley Rearden; Gary Harms

2008-09-11T23:59:59.000Z

172

Contact Information | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact

173

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests  

E-Print Network [OSTI]

Mini-Proceedings ECT*: Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests, ECT*-Trento, 29 August - 2 September, 2011

C. Curceanu; J. Marton; E. Milotti

2011-12-06T23:59:59.000Z

174

Propagation of Cosmic Rays: Nuclear Physics in Cosmic-Ray Studies  

SciTech Connect (OSTI)

The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and {alpha}-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse {gamma}-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near future. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

Moskalenko, Igor V. [NASA/Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Joint Center for Astrophysics/University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Strong, Andrew W. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1603, D-85740 Garching (Germany); Mashnik, Stepan G. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

2005-05-24T23:59:59.000Z

175

Investigating Biological Matter with Theoretical Nuclear Physics Methods  

E-Print Network [OSTI]

The internal dynamics of strongly interacting systems and that of biomolecules such as proteins display several important analogies, despite the huge difference in their characteristic energy and length scales. For example, in all such systems, collective excitations, cooperative transitions and phase transitions emerge as the result of the interplay of strong correlations with quantum or thermal fluctuations. In view of such an observation, some theoretical methods initially developed in the context of theoretical nuclear physics have been adapted to investigate the dynamics of biomolecules. In this talk, we review some of our recent studies performed along this direction. In particular, we discuss how the path integral formulation of the molecular dynamics allows to overcome some of the long-standing problems and limitations which emerge when simulating the protein folding dynamics at the atomistic level of detail.

Pietro Faccioli

2011-08-25T23:59:59.000Z

176

VT Nuclear Services ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergyVRB Power SystemsVT

177

Information Security | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA JourneyISTI Information Science

178

Nuclear Filter Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin andNsbowde's blog Home >NuFilter

179

Site Information | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude'SecurityAdministration rankedInformation | National

180

Contact Information | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration helps|STEMChernobylMarchInformation |

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS).  

SciTech Connect (OSTI)

Sandia National Laboratories was tasked with developing the Defense Nuclear Material Stewardship Integrated Inventory Information Management System (IIIMS) with the sponsorship of NA-125.3 and the concurrence of DOE/NNSA field and area offices. The purpose of IIIMS was to modernize nuclear materials management information systems at the enterprise level. Projects over the course of several years attempted to spearhead this modernization. The scope of IIIMS was broken into broad enterprise-oriented materials management and materials forecasting. The IIIMS prototype was developed to allow multiple participating user groups to explore nuclear material requirements and needs in detail. The purpose of material forecasting was to determine nuclear material availability over a 10 to 15 year period in light of the dynamic nature of nuclear materials management. Formal DOE Directives (requirements) were needed to direct IIIMS efforts but were never issued and the project has been halted. When restarted, duplicating or re-engineering the activities from 1999 to 2003 is unnecessary, and in fact future initiatives can build on previous work. IIIMS requirements should be structured to provide high confidence that discrepancies are detected, and classified information is not divulged. Enterprise-wide materials management systems maintained by the military can be used as overall models to base IIIMS implementation concepts upon.

Aas, Christopher A.; Lenhart, James E.; Bray, Olin H.; Witcher, Christina Jenkin

2004-11-01T23:59:59.000Z

182

Nuclear Double Beta Decay, Fundamental Particle Physics, Hot Dark Matter, And Dark Energy  

E-Print Network [OSTI]

Nuclear double beta decay, an extremely rare radioactive decay process, is - in one of its variants - one of the most exciting means of research into particle physics beyond the standard model. The large progress in sensitivity of experiments searching for neutrinoless double beta decay in the last two decades - based largely on the use of large amounts of enriched source material in "active source experiments" - has lead to the observation of the occurrence of this process in nature (on a 6.4 sigma level), with the largest half-life ever observed for a nuclear decay process (2.2 x 10^{25} y). This has fundamental consequences for particle physics - violation of lepton number, Majorana nature of the neutrino. These results are independent of any information on nuclear matrix elements (NME)*. It further leads to sharp restrictions for SUSY theories, sneutrino mass, right-handed W-boson mass, superheavy neutrino masses, compositeness, leptoquarks, violation of Lorentz invariance and equivalence principle in the neutrino sector. The masses of light-neutrinos are found to be degenerate, and to be at least 0.22 +- 0.02 eV. This fixes the contribution of neutrinos as hot dark matter to >=4.7% of the total observed dark matter. The neutrino mass determined might solve also the dark energy puzzle. *(It is briefly discussed how important NME for 0nubb decay really are.)

Hans V. Klapdor-Kleingrothaus; Irina V. Krivosheina

2010-07-15T23:59:59.000Z

183

Graduate Student Information - MST - UW Plasma Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAboutPolicies

184

CeramPhysics Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009 | OpenCeradyne Inc Jump to: navigation,

185

Identification and Protection of Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order provides requirements and responsibilities for identifying and protecting the unauthorized dissemination of Unclassified Controlled Nuclear Information. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05. Cancels DOE O 471.1. Canceled by DOE O 471.1B dated 3-1-10.

2000-06-30T23:59:59.000Z

186

Integrating INIS into a high energy physics information environment thoughts from CERN  

E-Print Network [OSTI]

Information searchers from the high energy physics community expect an integrated information environment. The CERN Library offers its print and electronic collections through a combined Web interface and maintains the database by semi-automated processes to upload bibliographic and full-text records. Suggestions are offered by which INIS could develop its own Web interface and better match HEP usersí expectations. These include implementing full-text linking, increasing currency, expanding search and display functions and developing the richness of the data. Links with the National Nuclear Data Center and Crossref could also increase its visibility.

Yeomans, Joanne; Baudic, Romain; Picchioli, Ingrid; International Conference on Nuclear Knowledge Management : Strategies, Information Management and Human Resource Development. Special Session : The Role of INIS in Knowledge Preservation

2004-01-01T23:59:59.000Z

187

The Institute for Nuclear and Particle Physics at the Department of Physics in the Faculty of Science has the following immediate openings  

E-Print Network [OSTI]

experi- mental methods of nuclear physics (e.g. the neutrinoless double beta decay or the direct search

188

ARTICLE IN PRESS Nuclear Instruments and Methods in Physics Research A 587 (2008) 4651  

E-Print Network [OSTI]

ARTICLE IN PRESS Nuclear Instruments and Methods in Physics Research A 587 (2008) 46­51 Discovery. Visnjica , R. Vondrasekq , A. Yushkovl a Department of Physics, Princeton University, Princeton, NJ 08544 INFN and Dipartimento di Fisica Nucleare e Teorica, University of Pavia, Pavia 27100, Italy k School

Mukhopadhyay, Sujoy

189

RUSSIAN ACADEMY OF SCIENCE G.I. BUDKER INSTITUTE OF NUCLEAR PHYSICS  

E-Print Network [OSTI]

RUSSIAN ACADEMY OF SCIENCE G.I. BUDKER INSTITUTE OF NUCLEAR PHYSICS SIBERIAN BRANCH I.I. Averbukh.V. Shikhovtseva,b a Budker Institute of Nuclear Physics b Novosibirsk State University 630090, Novosibirsk, Russia- tained during the ion source testing. 70 mA, 50 keV .. , .. , .. a,b , .. a,b , .. a

190

Nuclear Physics from QCD : The Anticipated Impact of Exa-Scale Computing  

E-Print Network [OSTI]

I discuss highlights in the progress that is being made toward calculating processes of importance in nuclear physics from QCD using high performance computing. As exa-scale computing resources are expected to become available around 2017, I present current estimates of the computational resources required to accomplish central goals of nuclear physics.

Martin J. Savage

2010-12-04T23:59:59.000Z

191

ELSEYIER Nuclear Physics A73 1 (2004) 3 19-326 www.elsevier.comilocate/npe  

E-Print Network [OSTI]

ELSEYIER Nuclear Physics A73 1 (2004) 3 19-326 www.elsevier.comilocate/npe Evidence for the JacobiThe Niewodniczanski Institute of Nuclear Physics, Polish Academy of Siences, Radzikowskiego 152, PL-31342 Krakow The y-rays from the decay of the GDR in the compound nucleus reaction 1sO+28Si at bombarding enery

Pomorski, Krzysztof

192

GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012  

SciTech Connect (OSTI)

The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed training needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.

Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Gavrilyuk-Burakova, Anna; Diakov, Oleksii; Drapey, Sergiy; Proskurin, Dmitry; Dickman, Deborah A.; Ferguson, Ken

2011-10-01T23:59:59.000Z

193

Large Scale Computing and Storage Requirements for Nuclear Physics Research  

SciTech Connect (OSTI)

IThe National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,000 users and hosting some 550 projects that involve nearly 700 codes for a wide variety of scientific disciplines. In addition to large-scale computing resources NERSC provides critical staff support and expertise to help scientists make the most efficient use of these resources to advance the scientific mission of the Office of Science. In May 2011, NERSC, DOEís Office of Advanced Scientific Computing Research (ASCR) and DOEís Office of Nuclear Physics (NP) held a workshop to characterize HPC requirements for NP research over the next three to five years. The effort is part of NERSCís continuing involvement in anticipating future user needs and deploying necessary resources to meet these demands. The workshop revealed several key requirements, in addition to achieving its goal of characterizing NP computing. The key requirements include: 1. Larger allocations of computational resources at NERSC; 2. Visualization and analytics support; and 3. Support at NERSC for the unique needs of experimental nuclear physicists. This report expands upon these key points and adds others. The results are based upon representative samples, called ďcase studies,Ē of the needs of science teams within NP. The case studies were prepared by NP workshop participants and contain a summary of science goals, methods of solution, current and future computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel, ďmulti-coreĒ environment that is expected to dominate HPC architectures over the next few years. The report also includes a section with NERSC responses to the workshop findings. NERSC has many initiatives already underway that address key workshop findings and all of the action items are aligned with NERSC strategic plans.

Gerber, Richard A.; Wasserman, Harvey J.

2012-03-02T23:59:59.000Z

194

http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors  

E-Print Network [OSTI]

http://arXiv.org/physics/0507088 Teaching About Nature's Nuclear Reactors J. Marvin Herndon reactors existed in uranium deposits on Earth long before Enrico Fermi built the first man-made nuclear reactors. The subject of planetocentric nuclear fission reactors can be a jumping off point for stimulating

Learned, John

195

PHYSICAL REVIEW C 87, 064608 (2013) Nuclear meson transparency in a relativistic Glauber model  

E-Print Network [OSTI]

interactions (FSI) between the tagged hadron and the nuclear environment vanish. The SSC can also be produced be of the order of the nuclear radius (lf RA). Observation of the onset of CT at a certain energy scale can teach traditional nuclear-physics calculations. The measurement of the onset and magnitude of the CT effect allows

Gent, Universiteit

196

Nuclear Physics A471 (1987) 604-612 North-Holland, Amsterdam  

E-Print Network [OSTI]

Nuclear Physics A471 (1987) 604-612 North-Holland, Amsterdam LIGHT PARTICLE CORRELATIONS IN HEAVY of the importance of this conservation law for light particle correlations. In this paper we modify the equations-body limit yields a nuclear matter binding energy of -15.75 MeV, saturates at p = po, and yields a nuclear

Bauer, Wolfgang

197

Nuclear Physics A452 (19X6) 699-722 V'North-Holland Publishing Company  

E-Print Network [OSTI]

Nuclear Physics A452 (19X6) 699-722 V'North-Holland Publishing Company THE NUCLEAR LATTICE MODEL the essential features of the mass-yield curves, such as their U-shape and their power-law dependence for low. Introduction The production of complex fragments in nuclear collisions at intermediate and high energies

Bauer, Wolfgang

198

PHYSICAL REVIEW C 76, 054603 (2007) Zipf's law in nuclear multifragmentation and percolation theory  

E-Print Network [OSTI]

PHYSICAL REVIEW C 76, 054603 (2007) Zipf's law in nuclear multifragmentation and percolation theory investigate the average sizes of the n largest fragments in nuclear multifragmentation events near the critical point of the nuclear matter phase diagram. We perform analytic calculations employing Poisson

Bauer, Wolfgang

199

Nuclear Physics A531 (1991) 253-284 North-Holland  

E-Print Network [OSTI]

Nuclear Physics A531 (1991) 253-284 North-Holland F E ATIO SINGLE-PARTICLE STRENGTH A E VA SHELL with what is expected from depletions calculated in infinite nuclear matter. Inclusion of higher order terms interacting Fermi systems. The interest in nuclear spectral functions has been revived by recent accurate (,e

Seevinck, Michiel

200

PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network [OSTI]

PHYSICAL REVIEW C 72, 025806 (2005) Nuclear fusion in dense matter: Reaction rate and carbon August 2005) In this paper we analyze the nuclear fusion rates among equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Oregon State University Department of Nuclear Engineering & Radiation Health Physics NeutronSpring 2011  

E-Print Network [OSTI]

THE Oregon State University Department of Nuclear Engineering & Radiation Health Physics Neutron's Study Abroad Program. Arnold will earn a B.S. in Nuclear Engineering with a minor in French when she graduates this spring. INSIDE Why would a nuclear engineering student add a French minor to an already

Tullos, Desiree

202

PHYSICS AND ENGINEERING OF NUCLEAR REACTORS AT THE ECOLE NATIONALE SUPRIEURE DE PHYSIQUE  

E-Print Network [OSTI]

PHYSICS AND ENGINEERING OF NUCLEAR REACTORS AT THE ECOLE NATIONALE SUP√?RIEURE DE PHYSIQUE DE IV International Forum. The Energy and Nuclear Engineering (GEN) curriculum of the Ecole Nationale. The objective is to train engineers who shall master not only nuclear engineering for the production

Paris-Sud XI, Université de

203

Thin-thick hydrogen target for nuclear physics  

SciTech Connect (OSTI)

In spectroscopic studies of unstable nuclei, hydrogen targets are of key importance. The CHyMENE Project aims to provide to the nuclear physics community a thin and pure solid windowless hydrogen or deuterium target. CHyMENE project must respond to this request for the production of solid Hydrogen. The solid hydrogen target is produced in a continuous flow (1 cm/s) by an extrusion technique (developed with the PELIN laboratory) in a vacuum chamber. The shape of the target is determined by the design of the nozzle at the extrusion process. For the purpose, the choice is a rectangular shape with a width of 10 mm and a thickness in the range of 30-50 microns necessary for the physics objectives. The cryostat is equipped with a GM Cryocooler with sufficient power for the solidification of the hydrogen in the lower portion of the extruder. In the higher part of the cryostat, the hydrogen gas is first liquefied and partially solidified. It is then compressed at 100 bars in the cooled extruder before expulsion of the film through the nozzle at the center of the reaction vacuum chamber. After the previous step, the solid hydrogen ribbon falls by gravity into a dedicated chamber where it sublimes and the gas is pumped and evacuated in a exhaust line. This paper deals with the design of the cryostat with its equipment, with the sizing of the thermal bridge (Aluminum and copper), with the results regarding the contact resistance as well as with the vacuum computations of the reaction and recovery hydrogen gas chambers.

Gheller, J.-M.; Juster, F.-P.; Authelet, G. [CEA Saclay, Irfu/SACM, F-91191 Gif-Sur-Yvette cedex (France); Vinyar, I. [PELIN Limited Liability Company 27 A, Gzhatskaya Str, office 103 St. Petersbourg 195220 (Russian Federation); Relland, J. [CEA Saclay, Irfu/SIS, F-91191 Gif-Sur-Yvette cedex (France); Commeaux, C. [Institut de Physique Nuclťaire, campus Universitaire-Bat 103, 91406 Orsay cedex (France)

2014-01-29T23:59:59.000Z

204

Review of the ISTC innovative nuclear programs (information review)  

SciTech Connect (OSTI)

The information will be included in the review, with special attention on details of corresponding experimental programs: Novel reactor concepts, fit with GIF and INPRO: Supercritical Pressure Water aspects, Heavy metals (Lead, Lead-Bismuth) technology, HTGR critical modeling, engineering. Molten salts. Reactor data benchmarking, Accelerator Driven Systems (experimental modelling), Nuclear data measurements, Severe accident study (corium modelling, QUENCH, Chernobyl), Experimental Analysis of Hydraulically Induced Vibrations in Compact Curling Tube Steam Generators. (authors)

Tocheny, L. V. [ISTC - International Science and Technology Center, Moscow (Russian Federation)

2006-07-01T23:59:59.000Z

205

Neutron and nuclear data revised for the 1997/98 handbook of chemistry and physics  

SciTech Connect (OSTI)

The 1997/98 Handbook of Chemistry and Physics will contain revised nuclear data information dealing with scattering and absorption properties of neutrons. All of these nuclear data were recently reevaluated. The 2,200 meter per second neutron cross sections and the neutron resonance integrals evaluation was performed in conjunction with the 1997 KAPL Wall-Chart of the Nuclides to insure consistency in the recommended values in the Handbook and on the Chart. The 2,200 meters per second neutron cross sections presented in the Handbook correspond to room temperature neutrons, 20.43 C, or a thermal neutron energy of 0.0253 electron volts, (eV). Neutron resonance integrals are defined over the energy range from 0.5 eV up to 0.1 {times} 10{sup 6} eV. They are averaged over a flux spectrum with a 1/E shape. Evaluated experimental data are derived from either a direct measurement or from 1/E spectrum averaged resonance parameter information. Resonance integrals are presented for neutron capture, charged particle or neutron fission reactions. Thermal neutron scattering is used for the investigation of the static and dynamic properties of condensed matter and it requires a knowledge of neutron scattering lengths. The Handbook presents bound atom neutron coherent scattering lengths in units of fentometers. Stellar slow neutron capture processes occur in a thermal neutron spectrum with temperatures approximately 30 keV. 30 keV Maxwellian averaged neutron cross sections for astrophysical applications are a new parameter presented in the 78th edition of the Handbook. No new parameters will be added to the Table of Isotopes` nuclear information but revised values will be provided for parameters of all known nuclides of the 112 chemical elements.

Holden, N.E. [Brookhaven National Lab., Upton, NY (United States). Reactor Div.

1997-07-01T23:59:59.000Z

206

JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research  

E-Print Network [OSTI]

JET Papers Presented at International Atomic Energy Agency 10th International Conference on Plasma Physics and Controlled Nuclear Research

207

Nuclear Physics Science Network Requirements Workshop, May 2008 - Final Report  

SciTech Connect (OSTI)

The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States of America. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In May 2008, ESnet and the Nuclear Physics (NP) Program Office of the DOE Office of Science organized a workshop to characterize the networking requirements of the science programs funded by the NP Program Office. Most of the key DOE sites for NP related work will require significant increases in network bandwidth in the 5 year time frame. This includes roughly 40 Gbps for BNL, and 20 Gbps for NERSC. Total transatlantic requirements are on the order of 40 Gbps, and transpacific requirements are on the order of 30 Gbps. Other key sites are Vanderbilt University and MIT, which will need on the order of 20 Gbps bandwidth to support data transfers for the CMS Heavy Ion program. In addition to bandwidth requirements, the workshop emphasized several points in regard to science process and collaboration. One key point is the heavy reliance on Grid tools and infrastructure (both PKI and tools such as GridFTP) by the NP community. The reliance on Grid software is expected to increase in the future. Therefore, continued development and support of Grid software is very important to the NP science community. Another key finding is that scientific productivity is greatly enhanced by easy researcher-local access to instrument data. This is driving the creation of distributed repositories for instrument data at collaborating institutions, along with a corresponding increase in demand for network-based data transfers and the tools to manage those transfers effectively. Network reliability is also becoming more important as there is often a narrow window between data collection and data archiving when transfer and analysis can be done. The instruments do not stop producing data, so extended network outages can result in data loss due to analysis pipeline stalls. Finally, as the scope of collaboration continues to increase, collaboration tools such as audio and video conferencing are becoming ever more critical to the productivity of scientific collaborations.

Tierney, Ed., Brian L; Dart, Ed., Eli; Carlson, Rich; Dattoria, Vince; Ernest, Michael; Hitchcock, Daniel; Johnston, William; Kowalski, Andy; Lauret, Jerome; Maguire, Charles; Olson, Douglas; Purschke, Martin; Rai, Gulshan; Watson, Chip; Vale, Carla

2008-11-10T23:59:59.000Z

208

MRI: Acquisition of a computing cluster for nuclear physics and astrophysics research at the University of Richmond  

E-Print Network [OSTI]

MRI: Acquisition of a computing cluster for nuclear physics and astrophysics research, 23173 USA January 25, 2007 1 #12;2 Contents 1 Introduction 1 2 Nuclear Physics 1 2.1 Out.5 Role of Senior Personnel in Nuclear Physics . . . . . . . . . . . . . . . . . . . . . . 4 3

Gilfoyle, Jerry

209

Nuclear Instruments and Methods in Physics Research A 544 (2005) 171178 Simulation of long-distance beam propagation in the  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 544 (2005) 171­178 Simulation of long. Davidson, Philip C. Efthimion, Richard Majeski, Edward A. Startsev Plasma Physics Laboratory, Princeton, spallation neutron sources, high energy and nuclear physics experiments, and nuclear ARTICLE IN PRESS www

Gilson, Erik

210

A program in Medium-Energy Nuclear Physics  

SciTech Connect (OSTI)

This report discusses research on the following topics: single electron scattering; coincidence electron scattering; photonuclear reactions; pion scattering; and the GWU nuclear detector. (LSP).

Berman, B.L.

1991-12-31T23:59:59.000Z

211

A program in Medium-Energy Nuclear Physics  

SciTech Connect (OSTI)

This report discusses research on the following topics: single electron scattering; coincidence electron scattering; photonuclear reactions; pion scattering; and the GWU nuclear detector. (LSP).

Berman, B.L.

1991-01-01T23:59:59.000Z

212

For more information please visit the programme website: http://www.ictp.it/programmes/mmp.aspx MASTER'S OF ADVANCED STUDIES IN MEDICAL PHYSICS  

E-Print Network [OSTI]

- Radiobiology - Radiation Physics - Radiation Dosimetry - Physics of Nuclear Medicine - Medical Physics Imaging in radiotherapy, diagnostic and interventional radiology, nuclear medicine and radiation protection in a hospital

213

Nuclear Physics B264 (1986) 487-492 North-Holland Publishing Company  

E-Print Network [OSTI]

Nuclear Physics B264 (1986) 487-492 © North-Holland Publishing Company GRAVITON PRODUCTION law or any other form of inflation [4]. The gravitational waves can also affect pulsar timing

Columbia University

214

Nuclear Physics B296 (1988) 710-716 North-Holland, Amsterdam  

E-Print Network [OSTI]

Nuclear Physics B296 (1988) 710-716 North-Holland, Amsterdam INTEGRAL CONSTRAINTS IN GENERAL with boundary 3 G. Eq. (4) is a general-relativistic analogue of Gauss' law. This sort of relation between

Columbia University

215

Nuclear Physics B244 (1984) 541-548 North-Holland Publishing Company  

E-Print Network [OSTI]

Nuclear Physics B244 (1984) 541-548 © North-Holland Publishing Company CONSTRAINTS ON GENERALIZED inflationary cosmologies. Models with power law inflation (R ~ P') are considered in detail and the maximum

Columbia University

216

Nuclear Physics A 781 (2007) 317341 Symmetry energies, pairing energies, and mass  

E-Print Network [OSTI]

Nuclear Physics A 781 (2007) 317­341 Symmetry energies, pairing energies, and mass equations J of the respective mass equation since symmetry energies are related to the curvature of the nuclear mass surface and pairing energies of atomic nuclei are related to the differences between the excitation energies

O'Donnell, Tom

217

www.physicstoday.org November 2012 Physics Today 59 Nuclear energy can provide great  

E-Print Network [OSTI]

www.physicstoday.org November 2012 Physics Today 59 Nuclear energy can provide great The Nuclear on keeping costs and book length in check. For example, most of the graphics use gray- scale, with only a few pages in the cen- ter providing color plates. In addition, in many places additional graphics could have

218

Alliance for Nuclear Accountability ANA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332 Utility Location01.AlleviatingOpenNuclear

219

A program in medium-energy nuclear physics  

SciTech Connect (OSTI)

This report discusses the following topics: electron-scattering nuclear-structure studies; coincidence electrodisintegration studies of light nuclei; pion scattering and reactions on the three-body nuclei; and pion scattering from shell-model nuclei.

Berman, B.L.; Dhuga, K.S.

1990-01-01T23:59:59.000Z

220

Neutron Detectors for Detection of Nuclear Materials at LANL...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nuclear Instruments and Methods in Physics Research A 559 (2006) 207210 High precision numerical accuracy in physics research  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 559 (2006) 207≠210 High precision numerical by physicists. However, current com- puters are able to perform billions of FP operations each second, and some in the near future. They are reviewed in Section 3, with an evaluation of their performance overhead

Villard, Gilles

2006-01-01T23:59:59.000Z

222

EVALUATION METHODOLOGY FOR PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION OF GENERATION IV NUCLEAR ENERGY SYSTEMS: AN OVERVIEW.  

SciTech Connect (OSTI)

This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: (1) System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. (2) Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. (3) Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are first evaluated for segments and then aggregated for complete pathways. Results are aggregated as appropriate to permit pathway comparisons and system assessment. The paper highlights the current achievements in the development of the Proliferation Resistance and Physical Protection Evaluation Methodology. The way forward is also briefly presented together with some conclusions.

BARI, R.; ET AL.

2006-03-01T23:59:59.000Z

223

Evaluation Methodology For Proliferation Resistance And Physical Protection Of Generation IV Nuclear Energy Systems: An Overview  

SciTech Connect (OSTI)

This paper provides an overview of the methodology approach developed by the Generation IV International Forum Expert Group on Proliferation Resistance & Physical Protection for evaluation of Proliferation Resistance and Physical Protection robustness of Generation IV nuclear energy systems options. The methodology considers a set of alternative systems and evaluates their resistance or robustness to a collection of potential threats. For the challenges considered, the response of the system to these challenges is assessed and expressed in terms of outcomes. The challenges to the system are given by the threats posed by potential proliferant States and sub-national adversaries on the nuclear systems. The characteristics of the Generation IV systems, both technical and institutional, are used to evaluate their response to the threats and determine their resistance against the proliferation threats and robustness against sabotage and theft threats. System response encompasses three main elements: 1.System Element Identification. The nuclear energy system is decomposed into smaller elements (subsystems) at a level amenable to further analysis. 2.Target Identification and Categorization. A systematic process is used to identify and select representative targets for different categories of pathways, within each system element, that actors (proliferant States or adversaries) might choose to use or attack. 3.Pathway Identification and Refinement. Pathways are defined as potential sequences of events and actions followed by the proliferant State or adversary to achieve its objectives (proliferation, theft or sabotage). For each target, individual pathway segments are developed through a systematic process, analyzed at a high level, and screened where possible. Segments are connected into full pathways and analyzed in detail. The outcomes of the system response are expressed in terms of PR&PP measures. Measures are high-level characteristics of a pathway that include information important to the evaluation methodology users and to the decisions of a proliferant State or adversary. They are first evaluated for segments and then aggregated for complete pathways. Results are aggregated as appropriate to permit pathway comparisons and system assessment. The paper highlights the current achievements in the development of the Proliferation Resistance and Physical Protection Evaluation Methodology. The way forward is also briefly presented together with some conclusions.

T. Bjornard; R. Bari; R. Nishimura; P. Peterson; J. Roglans; D. Bley; J. Cazalet; G.G.M. Cojazzi; P. Delaune; M. Golay; G. Rendad; G. Rochau; M. Senzaki; I. Therios; M. Zentner

2006-05-01T23:59:59.000Z

224

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 32 (2006) S61S68 doi:10.1088/0954-3899/32/12/S07  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl of longitudinal dynamics at RHIC J H Lee (for the BRAHMS Collaboration1 ) Physics Department, Brookhaven NationalQGP', that we have searched for. In order to characterize the nature of the created nuclear (partonic

225

Dimension of physical systems, information processing, and thermodynamics  

E-Print Network [OSTI]

We ask how quantum theory compares to more general physical theories from the point of view of dimension. To do so, we first give two model independent definition of the dimension of physical systems, based on measurements and on the capacity of storing information. While both definitions are equivalent in classical and quantum mechanics, they are in general different in generalized probabilistic theories. We discuss in detail the case of a theory known as 'boxworld', and show that such a theory features systems with a dimension mismatch. This dimension mismatch can be made arbitrarily large by using an amplification procedure. Furthermore, we show that the dimension mismatch of boxworld has strong consequences on its power for performing information-theoretic tasks, leading to the collapse of communication complexity and to the violation of information causality. Finally, we discuss the consequences of a dimension mismatch from the perspective of thermodynamics, and ask whether this effect could break Landauer's erasure principle and thus the second law.

Nicolas Brunner; Marc Kaplan; Anthony Leverrier; Paul Skrzypczyk

2014-12-18T23:59:59.000Z

226

Accelerating Ab Initio Nuclear Physics Calculations with GPUs  

E-Print Network [OSTI]

This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.

Hugh Potter; Dossay Oryspayev; Pieter Maris; Masha Sosonkina; James Vary; Sven Binder; Angelo Calci; Joachim Langhammer; Robert Roth; ‹mit «atalyŁrek; Erik Saule

2014-12-18T23:59:59.000Z

227

Joint Actinide Shock Physics Experimental Research | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How toNuclear SecuritySecurity

228

Nuclear Science and Physics Data from the Isotopes Project, Lawrence Berkeley National Laboratory (LBNL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Isotopes Project pages at Lawrence Berkeley National Laboratory have been a source of nuclear data and reference information since the mid-nineties. Almost all of the data, the results of analyses, the specialized charts and interfaces, and the extensive bibiographic references are fed to the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory and maintained there. The Isotope Project pages at LBNL provide a glimpse of early versions for many of the nuclear data resources.

229

Nuclear Many-Body Physics Where Structure And Reactions Meet  

E-Print Network [OSTI]

The path from understanding a simple reaction problem of scattering or tunneling to contemplating the quantum nuclear many-body system, where structure and continuum of reaction-states meet, overlap and coexist, is a complex and nontrivial one. In this presentation we discuss some of the intriguing aspects of this route.

Naureen Ahsan; Alexander Volya

2009-06-24T23:59:59.000Z

230

Bogoliubov Laboratory of Theoretical Physics JOINT INSTITUTE FOR NUCLEAR RESEARCH  

E-Print Network [OSTI]

role increasing the ``cold fusion'' probability in electronic molecules whose nuclear constituents have. Therefore, widths of such resonances giving a probability of a fusion of the nu­ clear constituents for the molecules LiD and H 2 O. There exists also a well­known exam­ ple [?] of muon catalyzed fusion of deuteron

231

PHYSICS OF NUCLEAR REACTORS Nuclear reactions and cross sections 1-10  

E-Print Network [OSTI]

neutron wavelength, D is given by: cE mM Mm 2 + = h D , (1.22) 1 Bell and Glasstone, Nuclear Reactor

Danon, Yaron

232

Statistical physics of networks, information and complex systems  

SciTech Connect (OSTI)

In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.

Ecke, Robert E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

233

NNSA conducts second seismic source physics experiment | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclear Security AdministrationSecurity

234

Nuclear Instruments and Methods in Physics Research A 542 (2005) 134141 Study of water distribution and transport in a polymer  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 542 (2005) 134­141 Study of water has been developed at the Penn State Breazeale Nuclear Reactor. Neutron images allow us to visualize

Mench, Matthew M.

235

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum to ``Dead time and pileup in pulsed parametric  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 533 (2004) 612 Erratum Erratum to ``Dead time Danon√?, Bryndol Sones, Robert Block Department of Mechanical Aerospace and Nuclear Engineering

Danon, Yaron

236

Nuclear Instruments and Methods in Physics Research A ] (  

E-Print Network [OSTI]

in the '80s by Fiorini and Niinikoski for searching rare events like neutrinoless double beta decay (bb-0n.60.Pq; 29.40.Vj; 95.35.√ĺd; 7.20.Mc Keywords: Cryogenic detectors; Neutrino mass; Neutrinoless double beta decay; Dark matter; WIMPs; Fundamental physics 1. Introduction Cryogenic detectors were proposed

237

Physical Protection  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

2009-07-23T23:59:59.000Z

238

Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei  

E-Print Network [OSTI]

Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a "standard" scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei (Ge-76, Se-82, Te-130, and Xe-136), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.

G. L. Fogli; E. Lisi; A. M. Rotunno

2009-08-06T23:59:59.000Z

239

Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei  

SciTech Connect (OSTI)

Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a few nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.

Fogli, G. L.; Rotunno, A. M. [Dipartimento Interateneo di Fisica 'Michelangelo Merlin', Via Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy); Lisi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)

2009-07-01T23:59:59.000Z

240

LANL | Physics | Nuclear Weapons and Global Security Data Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery ActNuclear Weapons and Global

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SciTech Connect: Nuclear Physics: The Ultracold Neutron Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) Ca (2) CuFuture(and other)EmissionNovel Solvent

242

Physics and Engineering Models | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxfordVeteransAdministrationPhysical Security Systemsand

243

Physical fitness training reference manual for security force personnel at fuel cycle facilities possessing formula quantities of special nuclear materials  

SciTech Connect (OSTI)

The recommendations contained throughout this NUREG are being provided to the Nuclear Regulatory Commission (NRC) as a reference manual which can be used by licensee management as they develop a program plan for the safe participation of guards, Tactical Response Team members (TRTs), and all other armed response personnel in physical fitness training and in physical performance standards testing. The information provided in this NUREG will help licensees to determine if guards, TRTs, and other armed response personnel can effectively perform their normal and emergency duties without undue hazard to themselves, to fellow employees, to the plant site, and to the general public. The recommendations in this NUREG are similar in part to those contained within the Department of Energy (DOE) Medical and Fitness Implementation Guide which was published in March 1991. The guidelines contained in this NUREG are not requirements, and compliance is not required. 25 refs.

Arzino, P.A.; Caplan, C.S.; Goold, R.E. (California State Univ., Hayward, CA (United States). Foundation)

1991-09-01T23:59:59.000Z

244

Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics  

E-Print Network [OSTI]

The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted r...

KŠlmŠn, Pťter

2015-01-01T23:59:59.000Z

245

w x Z .Nuclear Physics B 570 FS 2000 525589 www.elsevier.nlrlocaternpe  

E-Print Network [OSTI]

w x Z .Nuclear Physics B 570 FS 2000 525­589 www.elsevier.nlrlocaternpe Boundary conditions emphasizing the role of a triplet of algebras: the Verlinde, graph fusion and Pasquier algebras. We show the current Z .status for WZW sl 3 theories. Finally, a systematic generalisation of the formalism of Cardy

Pearce, Paul A.

246

NETWORKING FOR HIGH ENERGY AND NUCLEAR PHYSICS AS GLOBAL E-SCIENCE  

E-Print Network [OSTI]

an overview of the status and outlook for the world's research networks, technology advances, and the problemNETWORKING FOR HIGH ENERGY AND NUCLEAR PHYSICS AS GLOBAL E-SCIENCE Harvey B Newman, California are vital for every phase of high energy physicists' work. Our bandwidth usage, and the typical capacity

Low, Steven H.

247

Nuclear Physics A 635 (1998) 4701483 Boson forbidden low-energy E1-transitions  

E-Print Network [OSTI]

Nuclear Physics A 635 (1998) 4701483 Boson forbidden low-energy E1-transitions in spherical nuclei; accepted 23 March 1998 Abstract Low-energy E1-transitions in spherical nuclei forbidden in the ideal boson.V. PACS: 21.60.-n; 21.60.Jz; 23.20.-g Keywords: Low-energy E1-transitions; Fermion structure of phonons

Ponomarev, Vladimir

1998-01-01T23:59:59.000Z

248

Nuclear Physics A 757 (2005) 127 Quarkgluon plasma and color glass condensate at  

E-Print Network [OSTI]

Nuclear Physics A 757 (2005) 1­27 Quark­gluon plasma and color glass condensate at RHIC hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus, the so-called quark­gluon plasma (QGP). We also discuss evidence for a possible precursor state

249

Nuclear Physics A 717 (2003) 199213 www.elsevier.com/locate/npe  

E-Print Network [OSTI]

nucleus C.A. Bertulani , P. Danielewicz National Superconducting Cyclotron Laboratory, Michigan State: bertulani@nscl.msu.edu (C.A. Bertulani), danielewicz@nscl.msu.edu (P. Danielewicz). 0375-9474/03/$ ­ see;200 C.A. Bertulani, P. Danielewicz / Nuclear Physics A 717 (2003) 199­213 Under some circumstances

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

250

Elsevier Editorial System(tm) for Nuclear Inst. and Methods in Physics Research, A Manuscript Draft  

E-Print Network [OSTI]

Elsevier Editorial System(tm) for Nuclear Inst. and Methods in Physics Research, A Manuscript DraftD; Henry J Frisch, PhD; Stephen Mrenna, PhD Abstract: We investigate the impact of theoretical on the predicted jet energies. The distributions produced at the CDF environment are intended for comparison

Frisch, Henry

251

LOW-ENERGY NUCLEAR PHYSICS NATIONAL HPC INITIATIVE: BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)  

SciTech Connect (OSTI)

This document is a summary of the physics research carried out by the University of Washington centered group. Attached are reports for the previous years as well as the full exit report of the entire UNEDF collaboration.

Bulgac, A

2013-03-27T23:59:59.000Z

252

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

253

Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

254

Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

255

Nuclear Physics: A Key Ingredient in Astrophysical Modeling F.-K. Thielemann, D. Argast, F. Brachwitz, J.L. Fisker, C. Frohlich, R. Hirschi, E.  

E-Print Network [OSTI]

1 Nuclear Physics: A Key Ingredient in Astrophysical Modeling F.-K. Thielemann, D. Argast, F of Physics & Astronomy, Univ. of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland Nuclear physics. In this review we will survey how these aspects of nuclear physics enter the modeling of astrophysical objects. 1

Rauscher, Thomas

256

Nuclear Instruments and Methods in Physics Research A 467468 (2001) 202205 Control and data acquisition systems for high field  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 467­468 (2001) 202­205 Control and data, Budker Institute of Nuclear Physics of SBRAS, Lavrentyeva 11, 630090 Novosibirsk, Russia Abstract for installation at Bessy-II (Germany). The second one controls a 10 T wiggler which is under testing now

Kozak, Victor R.

257

Nuclear Instruments and Methods in Physics Research A 478 (2002) 158162 Study of high-pressure hydrogen-operated wire  

E-Print Network [OSTI]

diameter, 1 mm wire spacing. Anode­cathode gaps: 3:5 mm The chambers were tested in a vessel filledNuclear Instruments and Methods in Physics Research A 478 (2002) 158­162 Study of high. Sorokaa , A.A. Vorobyova , N.I. Voropaeva a High Energy Physics Division (HEPD), Petersburg Nuclear

Kammel, Peter

258

Nuclear Instruments and Methods in Physics Research A 554 (2005) 494499 Micro-pocket fission detectors (MPFD) for  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 554 (2005) 494­499 Micro-pocket fission, A.S.M. Sabbir Ahmed, J. Kenneth Shultis S.M.A.R.T. Laboratory, Department of Mechanical and Nuclear and tested as in-core flux monitors in the 250 kW TRIGA nuclear reactor at Kansas State University

Shultis, J. Kenneth

259

Nuclear Instruments and Methods in Physics Research A 503 (2003) 276278 Neutrino studies in nuclei and intense neutrino sources  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 503 (2003) 276­278 Neutrino studies in nuclei interactions. Nuclear responses for neutrinos are crucial for neutrino studies in nuclei. The responses, which are mainly nuclear spin isospin responses, are studied indirectly by charge exchange hadronic reactions

Washington at Seattle, University of

260

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Broader source: Energy.gov [DOE]

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Charged particle assisted nuclear reactions in solid state environment: renaissance of low energy nuclear physics  

E-Print Network [OSTI]

The features of electron assisted neutron exchange processes in crystalline solids are survayed. It is stated that, contrary to expectations, the cross section of these processes may reach an observable magnitude even in the very low energy case because of the extremely huge increment caused by the Coulomb factor of the electron assisted processes and by the effect of the crystal-lattice. The features of electron assisted heavy charged particle exchange processes, electron assisted nuclear capure processes and heavy charged particle assisted nuclear processes are also overviewed. Experimental observations, which may be related to our theoretical findings, are dealt with. The anomalous screening phenomenon is related to electron assisted neutron and proton exchange processes in crystalline solids. A possible explanation of observations by Fleischmann and Pons is presented. The possibility of the phenomenon of nuclear transmutation is qualitatively explained with the aid of usual and charged particle assisted reactions. The electron assisted neutron exchange processes in pure $Ni$ and $Li-Ni$ composite systems (in the Rossi-type E-Cat) are analyzed and it is concluded that these reactions may be responsible for recent experimental observations.

Pťter KŠlmŠn; TamŠs Keszthelyi

2015-02-05T23:59:59.000Z

262

MOX Services Unclassified Information System PIA, National Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

System PIA, National Nuclear Services Administration More Documents & Publications TRAIN-PIA.pdf Occupational Medicine - Assistant PIA, Idaho National Laboratory Manchester...

263

UCLA Intermediate Energy Nuclear and Particle Physics Research: Final Report  

SciTech Connect (OSTI)

This project covers the following research: (a) Investigations into the structure of the proton and neutron. This is done by investigating the different resonance states of nucleons with beams of tagged, polarized photons, linearly as well as circularly, incident on polarized hydrogen/deuterium targets and measuring the production of {pi}{sup #25;0}, 2{pi}{sup #25;}0, 3{pi}{sup #25;0}, {eta}#17;, {eta}', {omega}, etc. The principal detector is the Crystal Ball multiphoton spectrometer which has an acceptance of nearly 4#25;. It has been moved to the MAMI accelerator facility of the University of Mainz, Germany. We investigate the conversion of electromagnetic energy into mesonic matter and conversely. (b) We investigate the consequences of applying the "standard" symmetries of isospin, G√ʬ?¬?parity, charge conjugation, C, P, T, and chirality using rare and forbidden decays of light mesons such as the {eta}#17;,{eta}' and {omega}. We also investigate the consequences of these symmetries being slightly broken symmetries. We do this by studying selected meson decays using the Crystal Ball detector. (c) We determine the mass, or more precisely the mass difference of the three light quarks (which are inputs to Quantum Chromodynamics) by measuring the decay rate of specially selected {eta}#17; and {eta}' decay modes, again we use the Crystal Ball. (d)We have started a new program to search for the 33 missing cascade baryons using the CLAS detector at the Thomas Jefferson Laboratory. Cascade resonances are very special: they have double strangeness and are quite narrow. This implies that they can be discovered by the missing mass technique in photoproduction reactions such as in {gamma}p{yields}{Xi}{sup #4;√ʬ?¬?}K{sup +}K{sup +}. The cascade program is of particular importance for the upgrade to 12 GeV of the CLAS detector and for design of the Hall D at JLab. (e) Finally, we are getting more involved in a new program to measure the hadronic matter form factor of complex nuclei, in particular the "neutron skin" of {sup 208}Pb, which is of great interest to astroparticle physics for determining the properties of neutron stars. Processes of study are coherent and non√ʬ?¬?coherent #25;0 photoproduction. The Crystal Ball is uniquely suited for these studies because of the large acceptance, good direction and energy resolution and it is an inclusive detector for the #25;{pi}{sup 0} final state and exclusive for background such as 2#25;{pi}{sup 0}.

B.M.K. Nefkens (Principal Investigator, ed.); J. Goetz; A. Lapik; M. Korolija; S. Prakhov; A. Starostin (ed.)

2011-05-18T23:59:59.000Z

264

Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995  

SciTech Connect (OSTI)

Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

1995-12-31T23:59:59.000Z

265

PHYSICAL REVIEW A 90, 063412 (2014) Effect of nuclear vibration on high-order-harmonic generation of aligned H2  

E-Print Network [OSTI]

PHYSICAL REVIEW A 90, 063412 (2014) Effect of nuclear vibration on high-order-harmonic generation of aligned H2 + molecules Dmitry A. Telnov,1,* John Heslar,2, and Shih-I Chu2,3, 1 Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia 2 Department of Physics, Center for Quantum

Chu, Shih-I

266

46 March 2012 Physics Today www.physicstoday.org he kind of neutrinos emitted in nuclear beta  

E-Print Network [OSTI]

46 March 2012 Physics Today www.physicstoday.org T he kind of neutrinos emitted in nuclear beta of intriguing applications beyond fun- damental particle-physics research. Like all neutrinos, they're very begun providing valuable clues about the origin and thermal history of Earth (see PHYSICS TODAY

Mcdonough, William F.

267

PHYSICAL REVIEW B 84, 155319 (2011) Nonequilibrium nuclear polarization and induced hyperfine and dipolar magnetic fields in  

E-Print Network [OSTI]

PHYSICAL REVIEW B 84, 155319 (2011) Nonequilibrium nuclear polarization and induced hyperfine Department of Physics and Astronomy, California State University, Fullerton, California 92835, USA 2 Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City

Flatte, Michael E.

268

Large-x connections of nuclear and high-energy physics  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. I review specific examples of this interplay from recent works of the CTEQ-Jefferson Lab collaboration, including hadron structure at large parton momentum and gauge boson production at colliders. I devote particular attention to quantifying theoretical uncertainties arising in the treatment of large partonic momentum contributions to deep inelastic scattering observables, and to discussing the experimental progress needed to reduce these.

Accardi, Alberto [Hampton U., JLAB

2013-11-01T23:59:59.000Z

269

Final Report 10th Conference on the Intersections of Particle and Nuclear Physics  

SciTech Connect (OSTI)

The 10th Conference on the Intersections of Particle and Nuclear Physics was held in LaJolla, California on May 26 to May 31, 2009. The Conference Proceedings are published by the American Institute of Physics in Volume 1182 of the AIP Conference Proceedings (ISBN: 978-0-7354-0723-7). The Proceedings include papers from each of the Conference Presenters and a detailed schedule of talks at the Conference. The Table of Contents of the Conference Proceedings is available at http://scitation.aip.org/content/aip/proceeding/aipcp/1182. Support by the U.S. Department of Energy and by DOE Laboratories was essential to the success of the Conference.

Marshak, Marvin L. [University of Minnesota] [University of Minnesota

2013-11-03T23:59:59.000Z

270

Risk-informed incident management for nuclear power plants  

E-Print Network [OSTI]

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

271

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

SciTech Connect (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

272

Nuclear Spins in a Nanoscale Device for Quantum Information Processing  

E-Print Network [OSTI]

Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic operations on two fictitious qubits of the I=3/2 system, and propose a quantum state tomography scheme based on the measurement of longitudinal magnetization, $M_z$.

S. K. Ozdemir; A. Miranowicz; T. Ota; G. Yusa; N. Imoto; Y. Hirayama

2006-12-29T23:59:59.000Z

273

Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1992--June 30 , 1993  

SciTech Connect (OSTI)

Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon`s mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon`s mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e{sup +}e{sup {minus}}) problem and heavy-on dynamics. In particular, the sharp electrons observed in {beta}{sup +} irradiation of heavy atoms have recently been subsumed into the ``Composite Particle Scenario,`` generalizing the ``(e{sup +}e{sup {minus}}-Puzzle`` of the pairs from heavy ion collisions to the ``Sharp Lepton Problem.``

Griffin, J.J.; Cohen, T.D.

1993-07-01T23:59:59.000Z

274

Nuclear PhysicsB278(1986)721-737 North-Holland, Amsterdam  

E-Print Network [OSTI]

Nuclear PhysicsB278(1986)721-737 North-Holland, Amsterdam DIAGRAMMATIC EXPANSIONS FOR THE YANGSdinger equation with the Gauss' law constraint. However, his method involves certain ans~itze already at firstSdinger equation ~A~(x) 8A;(x~ +BT(x)BT(x) +.[AI = E,,+.[A] (:2.6) and the Gauss' law condition $ D~bz--z~+,[Al= 0

Chan, Hue Sun

275

Vol. 18, No. 3, 2008, Nuclear Physics News 3 The views expressed here do not represent the views and policies of NuPECC except where explicitly identified.  

E-Print Network [OSTI]

editorial Vol. 18, No. 3, 2008, Nuclear Physics News 3 The views expressed here do not represent, nuclear physics seemed to be lacking in the theoretical tools required to go beyond a qualitative. Furthermore, rather than borrowing freely from related fields of research, nuclear physics drifted in the dol

Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group

276

UPDATE: nuclear power program information and data, July-September 1981  

SciTech Connect (OSTI)

UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATA is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

DOE /NBM--6011986

1981-01-01T23:59:59.000Z

277

Update: nuclear power program information and data, March-April 1981  

SciTech Connect (OSTI)

UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATE is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

Not Available

1981-01-01T23:59:59.000Z

278

Update: nuclear power program information and data, October-December 1981  

SciTech Connect (OSTI)

UPDATE is published by the Office of Coordination and Special Projects, Office of Nuclear Reactor Programs, to provide a quick reference source on the current status of nuclear powerplant construction and operation in the United States and for information on the fuel cycle, economics, and performance of nuclear generating units. Similar information on other means of electric generation as related to nuclear power is included when appropriate. The subject matter of the reports and analyses presented in UPDATE will vary from issue to issue, reflecting changes in foci of interest and new developments in the field of commercial nuclear power generation. UPDATE is intended to provide a timely source of current statistics, results of analyses, and programmatic information proceeding from the activities of the Office of Nuclear Reactor Programs and other components of the Department of Energy, as well as condensations of topical articles from other sources of interest to the nuclear community. It also facilitates quick responses to requests for data and information of the type often solicited from this office.

Not Available

1981-01-01T23:59:59.000Z

279

Colloquium: Majorana Fermions in nuclear, particle and solid-state physics  

E-Print Network [OSTI]

Ettore Majorana (1906-1938) disappeared while traveling by ship from Palermo to Naples in 1938. His fate has never been fully resolved and several articles have been written that explore the mystery itself. His demise intrigues us still today because of his seminal work, published the previous year, that established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own anti-particle. This work has long had a significant impact in neutrino physics, where this fundamental question regarding the particle remains unanswered. But the formalism he developed has found many uses as there are now a number of candidate spin-1/2 neutral particles that may be truly neutral with no quantum number to distinguish them from their anti-particles. If such particles exist, they will influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double beta decay can only exist if neutrinos are massive Majorana particles. Hence, many efforts to search for this process are underway. Majorana's influence doesn't stop with particle physics, however, even though that was his original consideration. The equations he derived also arise in solid state physics where they describe electronic states in materials with superconducting order. Of special interest here is the class of solutions of the Majorana equation in one and two spatial dimensions at exactly zero energy. These Majorana zero modes are endowed with some remarkable physical properties that may lead to advances in quantum computing and, in fact, there is evidence that they have been experimentally observed. This review first summarizes the basics of Majorana's theory and its implications. It then provides an overview of the rich experimental programs trying to find a fermion that is its own anti-particle in nuclear, particle, and solid state physics.

S. R. Elliott; M. Franz

2014-12-01T23:59:59.000Z

280

Nuclear Instruments and Methods in Physics Research A262 (1987) 353-358 353 North-Holland, Amsterdam  

E-Print Network [OSTI]

UK D.B. SYME and G. HUXTABLE Nuclear Physics Division, AERE, Harwell, Oxfordshire, UK Received6 July of the detector was evaluated using the IBIS (intense bunched ion source) accelerator at AERE, Harwell

de Souza, Romualdo T.

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nuclear Instruments and Methods in Physics Research A 476 (2002) 565568 Bistable damage in neutron-irradiated silicon diodes  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 476 (2002) 565­568 Bistable damage in neutronE15 kO cm) diodes was irradiated at room temperature with neutrons from a nuclear reactor to fluences about neutron spectrum, dosimetry and irradiation facility can be found elsewhere [9]. After

Zavrtanik, Marko

282

Nuclear Instruments and Methods in Physics Research B28 (1987) 175-184 North-Holland, Amsterdam  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research B28 (1987) 175-184 North-Holland, Amsterdam 175.M. GHONIEM Mechanical, Aerospace and Nuclear Engineering Department University of California, Los Angeles code uses both power-law cross sections and a newly developed solution to the scattering integral

Ghoniem, Nasr M.

283

A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea  

SciTech Connect (OSTI)

This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)] [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)

2014-04-15T23:59:59.000Z

284

Unclassified Controlled Nuclear Information (UCNI) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014 EIAUltrafastaminoindazole,sediments. |

285

BFS, a Legacy to the International Reactor Physics, Criticality Safety, and Nuclear Data Communities  

SciTech Connect (OSTI)

Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. Data provided by these two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades The Russian Federation has been a major contributor to both projects with the Institute of Physics and Power Engineering (IPPE) as the major contributor from the Russian Federation. Included in the benchmark specifications from the BFS facilities are 34 critical configurations from BFS-49, 61, 62, 73, 79, 81, 97, 99, and 101; spectral characteristics measurements from BFS-31, 42, 57, 59, 61, 62, 73, 97, 99, and 101; reactivity effects measurements from BFS-62-3A; reactivity coefficients and kinetics measurements from BFS-73; and reaction rate measurements from BFS-42, 61, 62, 73, 97, 99, and 101.

J. Blair Briggs; Anatoly Tsibulya; Yevgeniy Rozhikhin

2012-03-01T23:59:59.000Z

286

REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS  

SciTech Connect (OSTI)

Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEAís Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facilityís general character, purpose, capacity, and location; (2) Description of the facilityís layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

Richard Metcalf; Robert Bean

2009-10-01T23:59:59.000Z

287

The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos  

E-Print Network [OSTI]

This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a...

Askins, M; Bernstein, A; Dazeley, S; Dye, S T; Handler, T; Hatzikoutelis, A; Hellfeld, D; Jaffke, P; Kamyshkov, Y; Land, B J; Learned, J G; Marleau, P; Mauger, C; Gann, G D Orebi; Roecker, C; Rountree, S D; Shokair, T M; Smy, M B; Svoboda, R; Sweany, M; Vagins, M R; van Bibber, K A; Vogelaar, R B; Wetstein, M J; Yeh, M

2015-01-01T23:59:59.000Z

288

Intermediate/high energy nuclear physics. Technical progress report, June 15, 1992--June 14, 1993  

SciTech Connect (OSTI)

Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e{sup +}e{sup {minus}} resonances; associated production of Higgs boson at collider energies, and microscopic nuclear many-body theory and reactions. 135 refs.

Vary, J.P.

1992-12-31T23:59:59.000Z

289

CONTACT INFORMATION Department of Physics Office: (304) 293-5102  

E-Print Network [OSTI]

, Newark, Delaware, January 2007 ≠ July 2008 EDUCATION Ph.D., Physics, December 2006 University of Maryland, PHYS784 (Spring 2010) ∑ Electricity and Magnetism I, PHYS333 (Fall 2009) ∑ Plasma Kinetic Theory, PHYS783 (Spring 2009) ∑ Electricity and Magnetism I, PHYS333 (Fall 2008) PROFESSIONAL SERVICE ∑ Co

Cassak, Paul

290

560 Nuclear Instruments and Methods in Physics Research B43 (1989) 560-564 North-Holland, Amsterdam  

E-Print Network [OSTI]

560 Nuclear Instruments and Methods in Physics Research B43 (1989) 560-564 North-Holland, Amsterdam curve (XRC) and Raman 0168-583X/89/$03.50 0 Elsevier Science Publishers B.V. (North-Holland Physics

Woodall, Jerry M.

291

5 year BS/MS Accelerated Physics Program Requirements and other important information.  

E-Print Network [OSTI]

5 year BS/MS Accelerated Physics Program Requirements and other important information. Overall GPA the Graduate School accelerated program application online application and include Statement of purpose Two

Crawford, T. Daniel

292

Intermediate/high energy nuclear physics. [Iowa State Univ. , Ames, Iowa  

SciTech Connect (OSTI)

Progress during the last year is reviewed under the following topics: relativistic hadron--nucleus and nucleus--nucleus collisions (heavy meson production, photon production and fragmentation functions--direct photon production with the QCM and photon fragmentation functions, Cronin efffect and multiple scattering, effective nuclear parton distributions); solving quantum field theories in nonperturbative regime; light-front dynamics and high-spin states (soft form factor of the pion and nucleon for transverse and longitudinal momentum transfers, light front spinors for high-spin objects); high-energy spin physics; relativistic wave equations, quarkonia, and e[sup +]e[sup [minus

Vary, J.P.

1992-01-01T23:59:59.000Z

293

Nuclear Safety Information Agreement Between the U.S. Nuclear Regulatory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission, Office of Nuclear

294

Nuclear safety information sharing agreement between NRC and DOE's Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,ScienceWasteandof

295

PIA - Savannah River Nuclear Solutions Training Records and Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical:Rocky Mountain OTC GSS PIASystemNetwork

296

TEPS/BPA Information | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS1 | E nergyTEPS/BPA

297

NMMSS Information, Reports & Forms | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForN x NSecurity| National

298

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & Blog ¬ĽPhysics Physics Print Because

299

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and Modeling Los AlamosAerosol.Physics

300

Personality Traits, Personality Disorder Dimensions, and Physical Health: The Predictive Ability of Self and Informant Reports  

E-Print Network [OSTI]

Informant-reported Physical Health .......................................................................................... 72 1 CHAPTER I INTRODUCTION As Allport (1937) famously stated, ďpersonality is something and personality does... somethingĒ (p. 48). What does personality do? Personality affects (and is affected by) oneís happiness and subjective well-being, physical health and longevity, mental health, interpersonal relationships, and occupational success (see Ozer & Benet...

Cooper, Luke D

2014-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: EnergyInformation Insolation MapsValueof a

302

arXiv:1004.0373v3[physics.ins-det]8May2012 Measurement of scintillation efficiency for nuclear recoils in liquid argon  

E-Print Network [OSTI]

arXiv:1004.0373v3[physics.ins-det]8May2012 Measurement of scintillation efficiency for nuclear results for nuclear recoil energies between 10 and 250 keVr at zero electric field. II. REVIEW OF PHYSICAL University, New Haven, CT (Dated: May 9, 2012) The scintillation light yield of liquid argon from nuclear

Sheldon, Nathan D.

303

Originally from Venice, Italy Martina studied in Liverpool (UK) for her PhD in Nuclear Physics. In 2003 she started a post-doc at the Lawrence Berkeley National Laboratory, working on the development of gamma-ray tracking detectors for nuclear physics exp  

E-Print Network [OSTI]

Originally from Venice, Italy Martina studied in Liverpool (UK) for her PhD in Nuclear Physics of gamma-ray tracking detectors for nuclear physics experiments. Since May 2005, she is a postdoctoral and, the department! Martina Descovich PhD Education Ph.D. in Nuclear Physics (2003) University

Pouliot, Jean

304

LANL | Physics | Nuclear Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2Recovery Act

305

Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report  

SciTech Connect (OSTI)

OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

NONE

2000-08-01T23:59:59.000Z

306

Physical Protection  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

2005-08-26T23:59:59.000Z

307

Physical Protection  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

2005-08-26T23:59:59.000Z

308

Nuclear Procurement Issues Committee NUPIC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest Basin andNsbowde's blog Home

309

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/NewsYou

310

China Guangdong Nuclear Solar Energy Co Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information onChemithon842667¬į,Cheviot,3.Chimayo,China

311

Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants - Final Technical Report  

SciTech Connect (OSTI)

OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.

Ritterbusch, Stanley; Golay, Michael; Duran, Felicia; Galyean, William; Gupta, Abhinav; Dimitrijevic, Vesna; Malsch, Marty

2003-01-29T23:59:59.000Z

312

Nuclear Fuel Cycle Options Evaluation to Inform R&D Planning  

SciTech Connect (OSTI)

An Evaluation and Screening (E&S) of nuclear fuel cycle options has been conducted in fulfilment of a Charter specified for the study by the U.S. Department of Energy (DOE) Office of Nuclear Energy. The E&S study used an objective and independently reviewed evaluation process to provide information about the potential benefits and challenges that could strengthen the basis and provide guidance for the research and development(R&D) activities undertaken by the DOE Fuel Cycle Technologies Program Office. Using the nine evaluation criteria specified in the Charter and associated evaluation metrics and processes developed during the E&S study, a screening was conducted of 40 nuclear fuel cycle evaluation groups to provide answers to the questions: (1) Which nuclear fuel cycle system options have the potential for substantial beneficial improvements in nuclear fuel cycle performance, and what aspects of the options make these improvements possible? (2)Which nuclear material management approaches can favorably impact the performance of fuel cycle options? (3)Where would R&D investment be needed to support the set of promising fuel cycle system options and nuclear material management approaches identified above, and what are the technical objectives of associated technologies?

R. Wigeland; T. Taiwo; M. Todosow; H. Ludewig; W. Halsey; J. Gehin; R. Jubin; J. Buelt; S. Stockinger; K. Jenni; B. Oakley

2014-04-01T23:59:59.000Z

313

Nuclear Databases: National Resource Nuclear databases consists of carefully organized scientific  

E-Print Network [OSTI]

Nuclear Databases: National Resource Nuclear databases consists of carefully organized scientific information that has been gathered over 50 years of low-energy nuclear physics research worldwide. These powerful databases have enormous value and they represent a genuine national resource. Six core nuclear

Ohta, Shigemi

314

Probing the Telltale Physics: Towards a Cyber-Physical Protocol to Mitigate Information  

E-Print Network [OSTI]

. This is in contrast to our prior work that has assumed all PMU data is accurate. PDC Agent 2 Cluster 1 Agent 1 Fast study the problem of transient stability with distributed control using real-time data from is leveraged to probe and identify phasor measurement unit data corruption and estimate the true information

Kundur, Deepa

315

29.01.03.M1.15 Information Resources Physical Access Page 1 of 4 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

the processes to grant, control, monitor and remove physical access to information resource facilities of their function at the university. 2.1.2 All physical security systems shall comply with applicable regulations PROCEDURE 29.01.03.M1.15 Information Resources ≠ Physical Security Approved July 18, 2005 Revised February

316

The design, creation, and performance of the parallel multiprocessor nuclear physics data acquisition system, DAPHNE  

SciTech Connect (OSTI)

The ever increasing complexity of nuclear physics experiments places severe demands on computerized data acquisition systems. A natural evolution of these system, taking advantage of the independent nature of ''events'', is to use identical parallel microcomputers in a front end to simultaneously analyze separate events. Such a system has been developed at Argonne to serve the needs of the experimental program of ATLAS, a new superconducting heavy-ion accelerator and other on-going research. Using microcomputers based on the National Semiconductor 32016 microprocessor housed in a Multibus I cage, multi-VAX cpu power is obtained at a fraction of the cost of one VAX. The front end interfaces to a VAX 750 on which an extensive user friendly command language based on DCL resides. The whole system, known as DAPHNE, also provides the means to replay data using the same command language. Design concepts, data structures, performance, and experience to data are discussed. 5 refs., 2 figs.

Welch, L.C.; Moog, T.H.; Daly, R.T.; Videbaek, F.

1986-01-01T23:59:59.000Z

317

Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants  

E-Print Network [OSTI]

Quantum electrodynamics is the first successful and still the most successful quantum field theory. Simple atoms, being essentially QED systems, allow highly accurate theoretical predictions. Because of their simple spectra, such atoms have been also efficiently studied experimentally frequently offering the most precisely measured quantities. Our review is devoted to comparison of theory and experiment in the field of precision physics of light simple atoms. In particular, we consider the Lamb shift in the hydrogen atom, the hyperfine structure in hydrogen, deuterium, helium-3 ion, muonium and positronium, as well as a number of other transitions in positronium. Additionally to a spectrum of unperturbed atoms, we consider annihilation decay of positronium and the g factor of bound particles in various two-body atoms. Special attention is paid to the uncertainty of the QED calculations due to the uncalculated higher-order corrections and effects of the nuclear structure. We also discuss applications of simple atoms to determination of several fundamental constants.

Savely G. Karshenboim

2005-09-01T23:59:59.000Z

318

DEPARTMENT OF PHYSICS Physics 32100  

E-Print Network [OSTI]

DEPARTMENT OF PHYSICS Syllabus Physics 32100 Modern Physics for Engineers Designation to one- electron atoms, atomic shell structure and periodic table; nuclear physics, relativity. Prerequisites: Prereq.: Physics 20800 or equivalent, Math 20300 or 20900 (elective for Engineering students

Lombardi, John R.

319

Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities  

SciTech Connect (OSTI)

This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

2011-03-13T23:59:59.000Z

320

The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos  

E-Print Network [OSTI]

This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a follow-on phase incorporating the IsoDAR neutrino beam, the detector would have world-class sensitivity to sterile neutrino signatures and to non-standard electroweak interactions (NSI). WATCHMAN will also be a major, U.S. based integration platform for a host of technologies relevant for the Long-Baseline Neutrino Facility (LBNF) and other future large detectors. This white paper describes the WATCHMAN conceptual design,and presents the results of detailed simulations of sensitivity for the project's nonproliferation and physics goals. It also describes the advanced technologies to be used in WATCHMAN, including high quantum efficiency photomultipliers, Water-Based Liquid Scintillator (WbLS), picosecond light sensors such as the Large Area Picosecond Photo Detector (LAPPD), and advanced pattern recognition and particle identification methods.

M. Askins; M. Bergevin; A. Bernstein; S. Dazeley; S. T. Dye; T. Handler; A. Hatzikoutelis; D. Hellfeld; P. Jaffke; Y. Kamyshkov; B. J. Land; J. G. Learned; P. Marleau; C. Mauger; G. D. Orebi Gann; C. Roecker; S. D. Rountree; T. M. Shokair; M. B. Smy; R. Svoboda; M. Sweany; M. R. Vagins; K. A. van Bibber; R. B. Vogelaar; M. J. Wetstein; M. Yeh

2015-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon #ashers for atmospheric monitoring  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 428 (1999) 593}607 Radio-controlled xenon 84119, USA. Now at: University of Kansas, Department of Physics, Law- rence, KS 66045, USA. Now at: Wave

322

Space Nuclear Power Plant Pre-Conceptual Design Report, For Information  

SciTech Connect (OSTI)

This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

B. Levine

2006-01-27T23:59:59.000Z

323

Progress on an integrated multi-physics simulation predictive capability for plasma chamber nuclear components  

SciTech Connect (OSTI)

Understanding the behavior of a plasma chamber component in the fusion environment requires a simulation technique that is capable of integrating multi-disciplinary computational codes while appropriately treating geometric heterogeneity and complexity. Such a tool should be able to interpret phenomena from mutually dependent scientific disciplines and predict performance with sufficient accuracy and consistency. Integrated multi-physics simulation predictive capability (ISPC) relies upon advanced numerical simulation techniques and is being applied to ITER first wall/shield and Test Blanket Module (TBM) designs. In this paper, progress in ISPC development is described through the presentation of a number of integrated simulations. The simulations cover key physical phenomena encountered in a fusion plasma chamber system, including tritium permeation, fluid dynamics, and structure mechanics. Interface engines were developed in order to pass field data, such as surface deformation or nuclear heating rate, from the structural analysis to the thermo-fluid MHD analysis code for magnetohydrodynamic (MHD) velocity profile assessments, or from the neutronics analysis to the thermo-fluid analysis for temperature calculations, respectively. Near-term effort toward further ISPC development is discussed.

A. Ying; M. Abdou; H. Zhang; R. Munipalli; M. Ulrickson; M. Sawan; B. Merrill

2010-12-01T23:59:59.000Z

324

Neutrinoless double beta decay in deformed nuclei: its implications in particle and nuclear physics .  

E-Print Network [OSTI]

??In my thesis, we calculated the Nuclear Matrix Elements (NME) for neutrinoless double beta decay (0??? decay). Neutrinoless double beta decay is a rare nuclearÖ (more)

Fang, DongLiang

2011-01-01T23:59:59.000Z

325

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nuclaire  

E-Print Network [OSTI]

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la | Canada | Tel 604.222.1047 | Fax 604.222.1074 | www.triumf.ca Accelerating Science for Canada | Un welcomes the investment by Natural Resources Canada (NRCan) through the Isotope Technology Acceleration

Martin, Jeff

326

Workshop materials from the 2nd international training course on physical protection of nuclear facilities and materials, Module 13  

SciTech Connect (OSTI)

This course is intended for representatives of countries where nuclear power is being developed and whose responsibilities include the preparation of regulation and the design and evaluation of physical protection systems. This is the second of two volumes; the first volume is SAND-79-1090. (DLC)

Martin, F. P. [ed.

1980-04-01T23:59:59.000Z

327

Paul Sellin, Centre for Nuclear and Radiation Physics Charge transport and mobility mapping in CdTe  

E-Print Network [OSTI]

Paul Sellin, Centre for Nuclear and Radiation Physics Charge transport and mobility mapping in CdTe, JAP 92 (2002) 3198-3206 Introduction Motivation for this Work: r THM-grown CdTe supplied by Eurorad signal response? r Pulse shape analysis can identify regions of trapping or reduced mobility r Does CdTe

Sellin, Paul

328

Nuclear Instruments and Methods in Physics Research A 422 (1999) 756--760 Dose mapping of inhomogeneities positioned in radiosensitive  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 422 (1999) 756--760 Dose mapping reserved. Keywords: PAG; Dosimetry; Magnetic resonance imaging; Polyacrylamide gel; Gel dosimetry 1 0 3 1 - 6 #12;light attenuation have been proposed [4]. The ap- plications of gel dosimetry so far

Doran, Simon J.

329

Nuclear Instruments and Methods in Physics Research A 545 (2005) 427435 CYBPET: a cylindrical PET system for breast imaging  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 545 (2005) 427­435 CYBPET: a cylindrical PET January 2005 Available online 28 March 2005 Abstract We propose a Cylindrical Breast PET (CYBPET) system of scattered photons from the other breast and the rest of the body. To compare the CYBPET with whole-body PET

Thompson, Chris

330

Nuclear Instruments and Methods in Physics Research A 476 (2002) 522526 A gamma-ray spectrometer system for fusion applications  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 476 (2002) 522­526 A gamma-ray spectrometer electrons hitting the inconel poloidal limiter and/or the vessel; and (b) neutron capture gamma the bremsstrahlung spectra is in agreement with the runaway energy predicted by a test particle model of runaway

Martín-Solís, José Ramón

331

ScienceDirect -Nuclear Instruments and Methods in Physics Researc... 1 of 2 3/16/05 4:36 PM  

E-Print Network [OSTI]

ScienceDirect - Nuclear Instruments and Methods in Physics Researc... 1 of 2 3/16/05 4:36 PM: Quick Search: within All Full-text SourcesAll Full-text Sources 2 of 2 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 407

Ng, Chung-Sang

332

Nuclear Instruments and Methods in Physics Research A 513 (2003) 585595 The RPI multiplicity detector response to g-ray cascades  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 513 (2003) 585­595 The RPI multiplicity Physics, School of Science, National University of Defense Technology, Changsha, Hunan, 410073, People's Republic of China b Department of Mechanical, Aerospace and Nuclear Engineering, Rensselear Polytechnic

Danon, Yaron

333

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Nuclear Physics  

E-Print Network [OSTI]

the Office of Nuclear Physics within the U.S. Department of Energy's Office of Science, RHIC gives physicists of Nuclear Physics within the U.S. Department of Energy's Office of Science Total Upgrade Cost: $ 700 millionThe U.S. Department of Energy's Brookhaven National Laboratory · P.O. Box 5000, Upton NY 11973

334

International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008  

E-Print Network [OSTI]

International Conference on the Physics of Reactors "Nuclear Power: A Sustainable Resource" Casino International Forum for the new nuclear energy systems, we have developed a new concept of molten salt reactor Products which poison the core can be extracted without stopping reactor operation; nuclear waste

Boyer, Edmond

335

Nuclear Instruments and Methods in Physics Research A 555 (2005) 340346 Calculation of gamma multiplicities in a multiplying sample for the  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 555 (2005) 340¬≠346 Calculation of gamma multiplicities in a multiplying sample for the assay of nuclear materials Imre Pa¬ī zsita,√?, Sara A. Pozzib a Department of Nuclear Engineering, Chalmers University of Technology, Fysikgra¬®nd 3, SE-412 96 Go

P√°zsit, Imre

336

BornOppenheimer invariants along nuclear configuration paths Department of Physical Chemistry and the Lise Meitner Minerva Center for Quantum Chemistry,  

E-Print Network [OSTI]

Born­Oppenheimer invariants along nuclear configuration paths Roi Baera) Department of Physical of the wave function. This is done for each calculated state at each nuclear position. Thus he defines a Born to an arbitrary path in nuclear configuration space. We identify invariant electronic states along these paths

Baer, Roi

337

REVIEW OF PARTICLE PHYSICS  

E-Print Network [OSTI]

ONLINE PARTICLE PHYSICS INFORMATION 1.3. Particle Physics Information Platforms . . . . . . . . .14. Particle Physics Education and Outreach

Beringer, Juerg

2013-01-01T23:59:59.000Z

338

Information Resources in High-Energy Physics Surveying the Present Landscape and Charting the Future Course  

E-Print Network [OSTI]

Access to previous results is of paramount importance in the scientific process. Recent progress in information management focuses on building e-infrastructures for the optimization of the research workflow, through both policy-driven and user-pulled dynamics. For decades, High-Energy Physics (HEP) has pioneered innovative solutions in the field of information management and dissemination. In light of a transforming information environment, it is important to assess the current usage of information resources by researchers and HEP provides a unique test-bed for this assessment. A survey of about 10% of practitioners in the field reveals usage trends and information needs. Community-based services, such as the pioneering arXiv and SPIRES systems, largely answer the need of the scientists, with a limited but increasing fraction of younger users relying on Google. Commercial services offered by publishers or database vendors are essentially unused in the field. The survey offers an insight into the most importan...

Gentil-Beccot, Anne; Holtkamp, Annette; O'Connell, Heath B; Brooks, Travis C; 10.1002/asi.20944

2009-01-01T23:59:59.000Z

339

The MaPLE device of Saha Institute of Nuclear Physics: Construction and its plasma aspects  

SciTech Connect (OSTI)

The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density {approx}3-5x10{sup 10} cm{sup -3} and temperature {approx}7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis [Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700 064 (India)

2010-07-15T23:59:59.000Z

340

Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators  

SciTech Connect (OSTI)

In addition to the human papillomavirus (HPV)-induced immortalization of epithelial cells, which usually requires integration of the viral DNA into the host cell genome, steroid hormone-activated nuclear receptors (NRs) are thought to bind to specific DNA sequences within transcriptional regulatory regions on the long control region to either increase or suppress transcription of dependent genes. In this study, our data suggest that the NR coactivator function of HPV E2 proteins might be mediated through physical and functional interactions with not only NRs but also the NR coactivators GRIP1 (glucocorticoid receptor-interacting protein 1) and Zac1 (zinc-finger protein which regulates apoptosis and cell cycle arrest 1), reciprocally regulating their transactivation activities. GRIP1 and Zac1 both were able to act synergistically with HPV E2 proteins on the E2-, androgen receptor-, and estrogen receptor-dependent transcriptional activation systems. GRIP1 and Zac1 might selectively function with HPV E2 proteins on thyroid receptor- and p53-dependent transcriptional activation, respectively. Hence, the transcriptional function of E2 might be mediated through NRs and NR coactivators to regulate E2-, NR-, and p53-dependent transcriptional activations.

Wu, M.-H. [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114, Taiwan (China); Huang, C.-J. [Molecular Genetics and Biochemistry Laboratory, Cathay Medical Research Institute, Cathay General Hospital, Taipei County 221, Taiwan (China); Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan (China); Liu, S.-T. [Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan (China); Liu, P.-Y. [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114, Taiwan (China); Ho, C.-L. [Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan (China); Huang, S.-M. [Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114, Taiwan (China) and Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan (China)]. E-mail: shihming@ndmctsgh.edu.tw

2007-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

THE NUCLEAR SURFACE D. F. JACKSON  

E-Print Network [OSTI]

THE NUCLEAR SURFACE D. F. JACKSON Dept. of Physics, University of Surrey, Guildford, U.K. Abstract. -- Nuclear scattering and reactions which give information on the nuclear surface are described. These processes include elastic scattering of electrons and of high energy protons, pion reactions with nuclei

Boyer, Edmond

342

Physical protection: threat response and performance goals as applied at the nuclear material inspection and storage (NMIS) building  

SciTech Connect (OSTI)

Only one aspect of nuclear security has been discussed here, a disciplined approach to physical protection systems (PPS) design. The best security against a multitude of threats to the nuclear industry is a dynamic and multifaceted safeguards program. It is one that combines PPS design with employee screening, reliability or behavioral observation programs, procedural control, assessment techniques, response capabilities, and security hardware. To be effective, such a program must be supported by management and applied uniformly to all personnel, including the safeguards and security staff.

Sanford, T.H.

1982-01-01T23:59:59.000Z

343

Standard guide for application of radiation monitors to the control and physical security of special nuclear material  

E-Print Network [OSTI]

1.1 This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) (see 3.1.11) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms. 1.2 Dependable operation of SNM radiation monitors rests on selecting appropriate monitors for the task, operating them in a hospitable environment, and conducting an effective program to test, calibrat...

American Society for Testing and Materials. Philadelphia

1999-01-01T23:59:59.000Z

344

Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications. Revision 1  

SciTech Connect (OSTI)

This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

Galyean, W.J.

1993-06-23T23:59:59.000Z

345

Digital control systems in nuclear power plants: Failure information, modeling concepts, and applications  

SciTech Connect (OSTI)

This report briefly describes some current applications of advanced computerized digital display and control systems at US commercial nuclear power plants and presents the results of a literature search that was made to gather information on the reliability of these systems. Both hardware and software reliability were addressed in this review. Only limited failure rate information was found, with the chemical process industry being the primary source of information on hardware failure rates and expert opinion the primary source for software failure rates. Safety-grade digital control systems are typically installed on a functional like-for-like basis, replacing older analog systems without substantially changing interactions with other plant systems. Future work includes performing a limited probabilistic risk assessment of a representative DCS to assess its risk significance.

Galyean, W.J.

1993-06-23T23:59:59.000Z

346

Nuclear Physics B (Proc. Suppl.) 77 (1999) 64--72 Standard Solar Models  

E-Print Network [OSTI]

reactions. Thirty­nine experts in low energy nuclear ex­ periments and theory, representing many di#er­ ent In this section, I will first summarize the new and relevant results on nuclear fusion reactions and on the screening of nuclear reactions and then summarize the situation with respect to neu­ trino cross sections

Bahcall, John

347

Nuclear Physics A369 (1981) 47082 North-Holland Publishing Company  

E-Print Network [OSTI]

) Abstract: We report on variational calculations of the energy E(p, √?) of asymmetric nuclear matter having p-dependence of various contributions to the nuclear matter energy show that at p the correct energy, density and compressibility of nuclear matter. The contribution of TNI to the ground state

Lagaris, Isaac

348

Theoretical nuclear physics: Final report for period February 1, 1984 to January 31, 1987  

SciTech Connect (OSTI)

Nuclear theory at the University of Colorado emphasizes the study of nuclear structure through the use of nuclear reactions. Recent efforts have been focussed on the role of relativistic models in nucleon-nucleus scattering and reactions. Further work delves into the underlying bases of the reaction theory itself.

Rost, E.; Kunz, P.D.

1987-01-23T23:59:59.000Z

349

Proceedings of the Fourth International Workshop on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. PerretGallix, International Journal of Modern  

E-Print Network [OSTI]

Intelligence for High Energy and Nuclear Physics, eds. B. Denby and D. Perret­Gallix, International Journal on Software Engineering and Artificial Intelligence for High Energy and Nuclear Physics, Pisa, Italy, April 3

Peterson, Carsten

350

Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

NONE

1995-07-14T23:59:59.000Z

351

Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.  

SciTech Connect (OSTI)

This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

2008-03-01T23:59:59.000Z

352

Research in heavy-ion nuclear physics. [Dept. of Physics and Astronomy, The Univ. of Kansas, Lawrence, Kansas  

SciTech Connect (OSTI)

Attention was focused on the fission process in light nuclear systems. A model calculation based on the transition-state model of nuclear fission was applied to [sup 47]V fission as populated through multiple entrance channels and to fusion-fission cross sections for production of [sup 28]Al through three different entrance channels. Angular distributions are shown for different mass channels of the [sup 29]Si+[sup 27]Al reaction at E[sub lab] = 125 MeV. Pronounced structure is seen in the symmetric and near-symmetric fission channels from the [sup 24]Mg+[sup 24]Mg reaction; cross sections for binary fragment emission are shown for E[sub lab] = 90 MeV. A large Bragg-curve detector was used in this experiment. Ways to optimize detector response were studied; in addition, the Bragg detector was instrumented with an internal position-sensitive multiwire proportional counter.

Sanders, S.J.; Prosser, F.W.

1992-01-01T23:59:59.000Z

353

Nuclear Physics User Facilities | U.S. DOE Office of Science...  

Office of Science (SC) Website

link The 88-Inch Cyclotron, located at the Lawrence Berkeley National Laboratory (LBNL) External link , supports ongoing research programs in nuclear structure, astrophysics,...

354

Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities  

SciTech Connect (OSTI)

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEís Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

2009-09-01T23:59:59.000Z

355

E-Print Network 3.0 - applied nuclear physics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulations (2003) Nucleosynthesis Nucleosynthesis in massive pop... of neutrinoless double beta decay nuclear matric elements (2003,2006) Low energy precision electroweak...

356

Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements  

E-Print Network [OSTI]

Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models; to estimate model errors and thereby improve predictive capability; to extrapolate beyond the regions reached by experiment; and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, w...

McDonnell, J D; Higdon, D; Sarich, J; Wild, S M; Nazarewicz, W

2015-01-01T23:59:59.000Z

357

Nuclear Physics A462 (1987) 252-268 North-Holland, Amsterdam  

E-Print Network [OSTI]

-Holland Physics ~blishing Division) #12;B. Nerlo-Porno&a et al. / Multipole moments 253 simple consistency

Pomorski, Krzysztof

358

Propagation of Cosmic Rays: Nuclear Physics in Cosmic-Ray Studies  

E-Print Network [OSTI]

-Planck-Institut f√ľr extraterrestrische Physik, Postfach 1603, D-85740 Garching, Germany Los Alamos National where the nuclear data and isotopic production cross sections in p- and -induced reactions are the key by the CR experiments to the fullest requires accurate nuclear cross sections. INTRODUCTION The origin of CR

Moskalenko, Igor V.

359

Nuclear Physics and National Security in an Age of Jerry Gilfoyle  

E-Print Network [OSTI]

Bombs How does it hurt me? Massive release of energy (blast, light) that can cause hundreds of thousands;Nuclear Weapons 101 What Is Radiation? Emission or release of energy from atomic nuclei in the form of sub with unmatched speed. food processing. waste stream treatment. F&M - June 6, 2009 ­ p. 3/2 #12;Nuclear Weapons

Gilfoyle, Jerry

360

Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements  

E-Print Network [OSTI]

Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models; to estimate model errors and thereby improve predictive capability; to extrapolate beyond the regions reached by experiment; and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

J. D. McDonnell; N. Schunck; D. Higdon; J. Sarich; S. M. Wild; W. Nazarewicz

2015-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Algorithmic information content, Church-Turing thesis, physical entropy, and Maxwell's demon  

SciTech Connect (OSTI)

Measurements convert alternative possibilities of its potential outcomes into the definiteness of the record'' -- data describing the actual outcome. The resulting decrease of statistical entropy has been, since the inception of the Maxwell's demon, regarded as a threat to the second law of thermodynamics. For, when the statistical entropy is employed as the measure of the useful work which can be extracted from the system, its decrease by the information gathering actions of the observer would lead one to believe that, at least from the observer's viewpoint, the second law can be violated. I show that the decrease of ignorance does not necessarily lead to the lowering of disorder of the measured physical system. Measurements can only convert uncertainty (quantified by the statistical entropy) into randomness of the outcome (given by the algorithmic information content of the data). The ability to extract useful work is measured by physical entropy, which is equal to the sum of these two measures of disorder. So defined physical entropy is, on the average, constant in course of the measurements carried out by the observer on an equilibrium system. 27 refs., 6 figs.

Zurek, W.H.

1990-01-01T23:59:59.000Z

362

20th International Training Course (ITC-20) on the physical protection of nuclear facilities and materials evaluation report.  

SciTech Connect (OSTI)

The goal of this evaluation report is to provide the information necessary to improve the effectiveness of the ITC provided to the International Atomic Energy Agency Member States. This report examines ITC-20 training content, delivery methods, scheduling, and logistics. Ultimately, this report evaluates whether the course provides the knowledge and skills necessary to meet the participants needs in the protection of nuclear materials and facilities.

Ramirez, Amanda Ann

2008-09-01T23:59:59.000Z

363

PHYSICAL REVIEW B VOLUME 48, NUMBER 13 1 OCTOBER 1993-1 Determination of the absolute sign of nuclear quadrupole interactions by laser radio-frequency  

E-Print Network [OSTI]

PHYSICAL REVIEW B VOLUME 48, NUMBER 13 1 OCTOBER 1993-1 Determination of the absolute sign of nuclear quadrupole interactions by laser radio-frequency double-resonance experiments Tilo Blasberg the quadrupole moment of nuclear spins I > + with the electric-field-gradient (EFG) tensor leads to a splitting

Suter, Dieter

364

Nuclear Instruments and Methods in Physics Research A 540 (2005) 464469 Fusion neutron detector calibration using a table-top laser  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 540 (2005) 464­469 Fusion neutron detector is designed for observing fusion neutrons at the Z accelerator in Sandia National Laboratories. Nuclear fusion Keywords: Cluster; Laser; Fusion; Neutron; Calibration; Detector 1. Introduction One of the principal

Ditmire, Todd

365

Nuclear Instruments and Methods in Physics Research A 547 (2005) 663678 Determining axial fuel-rod power-density profiles from in-core  

E-Print Network [OSTI]

is proposed for determining power-density profiles in nuclear reactor fuel rods from neutron flux measurementsNuclear Instruments and Methods in Physics Research A 547 (2005) 663¬≠678 Determining axial fuel-rod power-density profiles from in-core neutron flux measurements J. Kenneth Shultis√? Department

Shultis, J. Kenneth

366

Reactor Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactor Physics Reactor and nuclear physics is a key area of research at INL. Much of the research done in reactor physics can be separated into one of three categories:...

367

High Energy Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Energy Science Biological and Environmental Research Fusion Energy Sciences High Energy Physics Nuclear Physics Advanced Scientific Computing Research Pioneering...

368

Theoretical research in intermediate-energy nuclear physics. [Technical progress report, April 1, 1993--March 31, 1994  

SciTech Connect (OSTI)

This paper discusses progress that has been made on the following seven problems: (1) (e, e{prime}p) at high momentum transfer; (2) post,acceleration effects in two-nucleon interferometry of heavy-ion collisions; (3) pion-nucleus interactions above 0.5 GeV; (4) chiral symmetry breaking in nuclei and picnic atom anomaly; (5) atomic screening on nuclear astronomical reactions; (6) QCD related work (coherent pion production from skyrmion-antiskyrmion annihilation, QCD in 1 + 1 dimensions, and correlation functions in the QCD vacuum), and (7) kaonic hydrogen atom experiment. The problems deal with various topics mostly in intermediate-energy nuclear physics. We place priority on (1) and (2), and describe them somewhat in detail below. Other problems are our on-going projects, but we are placing lower priority on them in the second and third year.

Seki, R.

1994-09-01T23:59:59.000Z

369

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010  

Broader source: Energy.gov [DOE]

On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

370

A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1  

SciTech Connect (OSTI)

As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems.

Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R. [Pacific Northwest National Lab., Richland, WA (United States)

1997-02-01T23:59:59.000Z

371

Enabling pulse compression and proton acceleration in a modular ICF driver for nuclear and particle physics applications  

E-Print Network [OSTI]

The existence of efficient ion acceleration regimes in collective laser-plasma interactions opens up the possibility to develop high-energy physics facilities in conjunction with projects for inertial confinement nuclear fusion (ICF) and neutron spallation sources. In this paper, we show that the pulse compression requests to make operative these acceleration mechanisms do not fall in contradiction with current technologies for high repetition rate ICF drivers. In particular, we discuss explicitly a solution that exploits optical parametric chirped pulse amplification and the intrinsic modularity of the lasers aimed at ICF.

F. Terranova; S. V. Bulanov; J. L. Collier; H. Kiriyama; F. Pegoraro

2005-12-07T23:59:59.000Z

372

Post detonation nuclear forensics  

SciTech Connect (OSTI)

The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

Davis, Jay [The Hertz Foundation, 2300 First Street, Suite 250, Livermore, California (United States)

2014-05-09T23:59:59.000Z

373

HARD PARTON PHYSICS IN HIGH ENERGY NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 17  

SciTech Connect (OSTI)

The RIKEN-BNL center workshop on ''Hard parton physics in high energy nuclear collisions'' was held at BNL from March 1st-5th! 1999. The focus of the workshop was on hard probes of nucleus-nucleus collisions that will be measured at RHIC with the PHENIX and STAR detectors. There were about 45 speakers and over 70 registered participants at the workshop, with roughly a quarter of the speakers from overseas. About 60% of the talks were theory talks. A nice overview of theory for RHIC was provided by George Sterman. The theoretical talks were on a wide range of topics in QCD which can be classified under the following: (a) energy loss and the Landau-Pomeranchuk-Migdal effect; (b) minijet production and equilibration; (c) small x physics and initial conditions; (d) nuclear parton distributions and shadowing; (e) spin physics; (f) photon, di-lepton, and charm production; and (g) hadronization, and simulations of high pt physics in event generators. Several of the experimental talks discussed the capabilities of the PHENIX and STAR detectors at RHIC in measuring high pt particles in heavy ion collisions. In general, these talks were included in the relevant theory sessions. A session was set aside to discuss the spin program at RHIC with polarized proton beams. In addition, there were speakers from 08, HERA, the fixed target experiments at Fermilab, and the CERN fixed target Pb+Pb program, who provided additional perspective on a range of issues of relevance to RHIC; from jets at the Tevatron, to saturation of parton distributions at HERA, and recent puzzling data on direct photon production in fixed target experiments, among others.

CARROLL,J.

1999-09-10T23:59:59.000Z

374

Nuclear Science References Database  

E-Print Network [OSTI]

The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center http://www.nndc.bnl.gov/nsr and the International Atomic Energy Agency http://www-nds.iaea.org/nsr.

B. Pritychenko; E. B?tŠk; B. Singh; J. Totans

2014-07-08T23:59:59.000Z

375

Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichaelNorman Rasmussen,Nuclear

376

Quantum Chromodynamics and nuclear physics at extreme energy density. Progress report, May 1992--April 1993  

SciTech Connect (OSTI)

This report discusses research in the following topics: Hadron structure physics; relativistic heavy ion collisions; finite- temperature QCD; real-time lattice gauge theory; and studies in quantum field theory.

Mueller, B.

1993-05-15T23:59:59.000Z

377

Research in heavy-ion nuclear physics. Annual progress report, May 1, 1991--April 30, 1992  

SciTech Connect (OSTI)

This report discusses the following topics: Fusion-fission in light nuclear systems; High-resolution Q-value measurement for the {sup 24}Mg+{sup 24}Mg reaction; Heavy-ion reactions and limits to fusion; and Hybrid MWPC-Bragg curve detector development.

Sanders, S.J.; Prosser, F.W.

1992-01-01T23:59:59.000Z

378

Intermediate/high energy nuclear physics. Technical progress report, June 15, 1991--June 14, 1992  

SciTech Connect (OSTI)

This report discusses progress on the following research: quark cluster model; solving quantum field theories in non-perturbative regime;relativistic wave equations, quarkonia and electron-positron resonances; nuclear dependence at large transverse momentum; factorization at the order of power corrections; single-spin asymmetries; and hadronic photon production. (LSP)

Vary, J.P.

1992-07-01T23:59:59.000Z

379

Paul Sellin, Centre for Nuclear and Radiation Physics Recent developments in compound  

E-Print Network [OSTI]

in large-area thick film materials: Y polycrystalline and epitaxial CdZnTe/CdTe thick films Y Heavy element materials: Y CdMnTe Y GaN Y Synthetic diamond r Conclusion #12;Paul Sellin, Centre for Nuclear and Radiation-grain polycrystalline, with improved single-crystal yield r Reduced concentration of twins r Secondary grain nucleation

Sellin, Paul

380

[Electroweak and other interactions in medium-energy nuclear physics]. Progress report  

SciTech Connect (OSTI)

This report discusses the following topics: spectrum generating algebra; vibrational spectra in the heavy quarkonia; chiral soliton model; pion neutral photoproduction from proton with polarized photons in the delta-1232 region; compton scattering in the delta- 1232 region; nucleon magnetic polarizability and the role of the delta resonance; eta photo- and electroproduction; perturbative QCD; and nuclear muon capture.

Mukhopadhyay, N.C.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ELSEVIER Nuclear Physics A 657 (1999) 59-72 www.elsevier.nl/locate/npe  

E-Print Network [OSTI]

of excitation has been predicted since the introduction of collective models [ 1]. Examples of low-lying nuclear- fluence heavy-ion fusion reactions at energies near and below the Coulomb barrier [9], through the so stems from heavy-ion reactions at intermediate energy [ 15,16], pion-induced double charge exchange

Bertsch George F.

382

Nuclear Physics A 712 (2002) 3758 www.elsevier.com/locate/npe  

E-Print Network [OSTI]

consequences for low-energy reaction rates in nuclear astrophysics. One example is the reaction p + 7Be 8B to the nucleon drip lines. They are characterized by a very low separation energy of the valence nucleon (or can be expanded in powers of kR. All short-distance effects are systematically absorbed into a few low-energy

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

383

Review of Particle Physics  

E-Print Network [OSTI]

11. Particle Physics Education Sites . . . . . . . . .ONLINE PARTICLE PHYSICS INFORMATION 1.11. Particle Physics Education Sites . . . . . . . . . . 12.

Nakamura, Kenzo

2010-01-01T23:59:59.000Z

384

Research in heavy-ion nuclear physics. Annual progress report, May 1, 1992--April 30, 1993  

SciTech Connect (OSTI)

Attention was focused on the fission process in light nuclear systems. A model calculation based on the transition-state model of nuclear fission was applied to {sup 47}V fission as populated through multiple entrance channels and to fusion-fission cross sections for production of {sup 28}Al through three different entrance channels. Angular distributions are shown for different mass channels of the {sup 29}Si+{sup 27}Al reaction at E{sub lab} = 125 MeV. Pronounced structure is seen in the symmetric and near-symmetric fission channels from the {sup 24}Mg+{sup 24}Mg reaction; cross sections for binary fragment emission are shown for E{sub lab} = 90 MeV. A large Bragg-curve detector was used in this experiment. Ways to optimize detector response were studied; in addition, the Bragg detector was instrumented with an internal position-sensitive multiwire proportional counter.

Sanders, S.J.; Prosser, F.W.

1992-01-01T23:59:59.000Z

385

DOE Spent Nuclear Fuel Information In Support of TSPA-VA  

SciTech Connect (OSTI)

RW has started the viability assessment (VA) effort to determine the feasibility of Yucca Mountain as the first geologic repository for spent nuclear fuel (SNF) and high-level waste. One component of the viability assessment will be a total system performance assessment (TSPA), based on the design concept and the scientific data and analysis available, describing the repository's probable behavior relative to the overall system performance standards. Thus, all the data collected from the Exploratory Studies Facility to-date have been incorporated into the latest TSPA model. In addition, the Repository Integration Program, an integrated probabilistic simulator, used in the TSPA has also been updated by Golder Associates Incorporated at December 1997. To ensure that the Department of Energy-owned (DOE-owned) SNF continues to be acceptable for disposal in the repository, it will be included in the TSPA-VA evaluation. A number of parameters are needed in the TSPA-VA models to predict the performance of the DOE-owned SNF materials placed into the potential repository. This report documents all of the basis and/or derivation for each of these parameters. A number of properties were not readily available at the time the TSPA-VA data was requested. Thus, expert judgement and opinion was utilized to determine a best property value. The performance of the DOE-owned SNF will be published as part of the TSPA-VA report. Each DOE site will be collecting better data as the DOE SNF program moves closer to repository license application. As required by the RW-0333P, the National Spent Nuclear Fuel Program will be assisting each site in qualifying the information used to support the performance assessment evaluations.

A. Brewer; D. Cresap; D. Fillmore; H. Loo; M. Ebner; R. McCormack

1998-09-01T23:59:59.000Z

386

DOCTORAL PROGRAMME MATHEMATICS AND PHYSICS, Subprogramme PHYSICS,  

E-Print Network [OSTI]

Slovenia is producing a significant share of its electricity in nuclear power plant. The doctoral programme of nuclear engineering stems from the requirements of the Nuclear power plant Krsko, Slovenian Nuclear SafetyDOCTORAL PROGRAMME MATHEMATICS AND PHYSICS, Subprogramme PHYSICS, Module NUCLEAR ENGINEERING

?umer, Slobodan

387

A Globally Distributed System for Job, Data, and Information Handling for High Energy Physics  

SciTech Connect (OSTI)

The computing infrastructures of the modern high energy physics experiments need to address an unprecedented set of requirements. The collaborations consist of hundreds of members from dozens of institutions around the world and the computing power necessary to analyze the data produced surpasses already the capabilities of any single computing center. A software infrastructure capable of seamlessly integrating dozens of computing centers around the world, enabling computing for a large and dynamical group of users, is of fundamental importance for the production of scientific results. Such a computing infrastructure is called a computational grid. The SAM-Grid offers a solution to these problems for CDF and DZero, two of the largest high energy physics experiments in the world, running at Fermilab. The SAM-Grid integrates standard grid middleware, such as Condor-G and the Globus Toolkit, with software developed at Fermilab, organizing the system in three major components: data handling, job handling, and information management. This dissertation presents the challenges and the solutions provided in such a computing infrastructure.

Garzoglio, Gabriele; /DePaul U.; ,

2005-12-01T23:59:59.000Z

388

FPGA-based Cherenkov Ring Recognition in Nuclear and Particle Physics Experiments  

E-Print Network [OSTI]

and particle physics experiments, for example HADES [2] and PANDA [3] at GSI Germany, BESIII [4] at IHEP China the exploded view of the HADES detector system as an example. The Cherenkov effect was discovered view of the HADES detector system (RICH detector for Cherenkov ring recognition) material with a speed

Jantsch, Axel

389

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A'Hearn, Michael F. - Department of Astronomy, University of Maryland at College Park Aalberts, Daniel P. - Department...

390

Derivative-free optimization for parameter estimation in computational nuclear physics  

E-Print Network [OSTI]

We consider optimization problems that arise when estimating a set of unknown parameters from experimental data, particularly in the context of nuclear density functional theory. We examine the cost of not having derivatives of these functionals with respect to the parameters. We show that the POUNDERS code for local derivative-free optimization obtains consistent solutions on a variety of computationally expensive energy density functional calibration problems. We also provide a primer on the operation of the POUNDERS software in the Toolkit for Advanced Optimization.

Stefan M. Wild; Jason Sarich; Nicolas Schunck

2014-09-17T23:59:59.000Z

391

Physical protection solutions for security problems at nuclear power plants. [PWR; BWR  

SciTech Connect (OSTI)

Under Department of Energy sponsorship, Sandia National Laboratories has developed a broad technological base of components and integrated systems to address security concerns at facilities of importance, including nuclear reactors. The primary security concern at a light water reactor is radiological sabotage, a deliberate set of actions at a plant which could expose the public to a significant amount of radiation (on the order of 10 CFR 100 limits). (Also of importance to plant operators are acts of industrial sabotage that could prevent a plant from producing electrical power).

Darby, J.L.; Jacobs, J.

1980-09-01T23:59:59.000Z

392

Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Home Featured ArticlesScience

393

Patrizia Rossi is the Deputy Associate Director for Nuclear Physics at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment ofGE's E.Gilman About Us PatrickPatrizia

394

Processing experimental data and analysis of simulation codes from Nuclear Physics using distributed and parallel computing  

E-Print Network [OSTI]

In this thesis we tried to show the impact of new technologies on scientific work in the large field of heavy ion physics and as a case study, we present the implementation of the event plane method, on a highly parallel technology: the graphic processor. By the end of the thesis, a comparison of the analysis results with the elliptic flow published by ALICE is made. In Chapter 1 we presented the computing needs at the heavy ion physics experiment ALICE and showed the current state of software and technologies. The new technologies available for some time, Chapter 2, present new performance capabilities and generated a trend in preparing for the new wave of technologies and software, which most indicators show will dominate the future. This was not disregarded by the scientific community and in consequence section 2.2 shows the rising interest in the new technologies by the High Energy Physics community. A real case study was needed to better understand how the new technologies can be applied in HEP and aniso...

Niculescu, Mihai; Hristov, Peter

395

Modeling of Some Physical Properties of Zirconium Alloys for Nuclear Applications in Support of UFD Campaign  

SciTech Connect (OSTI)

Zirconium-based alloys Zircaloy-2 and Zircaloy-4 are widely used in the nuclear industry as cladding materials for light water reactor (LWR) fuels. These materials display a very good combination of properties such as low neutron absorption, creep behavior, stress-corrosion cracking resistance, reduced hydrogen uptake, corrosion and/or oxidation, especially in the case of Zircaloy-4. However, over the last couple of years, in the post-Fukushima Daiichi world, energetic efforts have been undertaken to improve fuel clad oxidation resistance during off-normal temperature excursions. Efforts have also been made to improve upon the already achieved levels of mechanical behavior and reduce hydrogen uptake. In order to facilitate the development of such novel materials, it is very important to achieve not only engineering control, but also a scientific understanding of the underlying material degradation mechanisms, both in working conditions and in storage of used nuclear fuel. This report strives to contribute to these efforts by constructing the thermodynamic models of both alloys; constructing of the respective phase diagrams, and oxidation mechanisms. A special emphasis was placed upon the role of zirconium suboxides in hydrogen uptake reduction and the atomic mechanisms of oxidation. To that end, computational thermodynamics calculations were conducted concurrently with first-principles atomistic modeling.

Michael V. Glazoff

2013-08-01T23:59:59.000Z

396

Interplay of particle, nuclear and atomic physics in rare weak decays  

SciTech Connect (OSTI)

The neutrinoless double beta decays of atomic nuclei are considered at the present the most viable way to access the fundamental nature and absolute mass scale of the neutrino. Recently one sub-class of these decays, the neutrinoless double electron capture (0{nu}ECEC), has attracted a lot of attention due to its potential of detection. In particular, the resonant 0{nu}ECEC is of interest owing to the possible huge enhancement of the corresponding decay rate by a resonance condition. At present the mass differences of the involved atom pairs are being measured by the Penning trap technique for several potential resonant 0{nu}ECEC decays. By evaluating the associated nuclear matrix elements using nuclear-structure models one can access the half-lives of these decays and thus predict their detection potential in underground experiments in the future. The absolute mass scale of the neutrino can also be accessed through beta decays of small decay energy. In these cases the effects of atomic origin may introduce non-negligible, even dramatic effects for Q values in the regime of few hundreds of eV and below.

Suhonen, Jouni [Department of Physics, P.O. Box 35 (YFL), FI-40014 University of jyvaeskylae (Finland)

2010-11-24T23:59:59.000Z

397

Progress in development of silica aerogel for particle- and nuclear-physics experiments at J-PARC  

E-Print Network [OSTI]

This study presents the advancement in hydrophobic silica aerogel development for use as Cherenkov radiators and muonium production targets. These devices are scheduled for use in several particle- and nuclear-physics experiments that are planned in the near future at the Japan Proton Accelerator Research Complex. Our conventional method to produce aerogel tiles with an intermediate index of refraction of approximately 1.05 is extended so that we can now produce aerogel tiles with lower indices of refraction (i.e., 1.03-1.04) and higher indices of refraction (i.e., 1.075-1.08); each with excellent transparency. A new production method, called pin drying, was optimized to produce larger area aerogels consistently with an ultrahigh index of refraction (>1.10). In addition, for use as a thermal-muonium-emitting material at room temperature, dedicated low-density aerogels were fabricated using the conventional method.

Makoto Tabata; Hideyuki Kawai

2014-10-09T23:59:59.000Z

398

Progress in development of silica aerogel for particle- and nuclear-physics experiments at J-PARC  

E-Print Network [OSTI]

This study presents the advancement in hydrophobic silica aerogel development for use as Cherenkov radiators and muonium production targets. These devices are scheduled for use in several particle- and nuclear-physics experiments that are planned in the near future at the Japan Proton Accelerator Research Complex. Our conventional method to produce aerogel tiles with an intermediate index of refraction of approximately 1.05 is extended so that we can now produce aerogel tiles with lower indices of refraction (i.e., 1.03-1.04) and higher indices of refraction (i.e., 1.075-1.08); each with excellent transparency. A new production method, called pin drying, was optimized to produce larger area aerogels consistently with an ultrahigh index of refraction (>1.10). In addition, for use as a thermal-muonium-emitting material at room temperature, dedicated low-density aerogels were fabricated using the conventional method.

Tabata, Makoto

2014-01-01T23:59:59.000Z

399

Managing Information for Sparsely Distributed Articles and Readers: The Virtual Journals of the Joint Institute for Nuclear Astrophysics (JINA)  

E-Print Network [OSTI]

The research area of nuclear astrophysics is characterized by a need for information published in tens of journals in several fields and an extremely dilute distribution of researchers. For these reasons it is difficult for researchers, especially students, to be adequately informed of the relevant published research. For example, the commonly employed journal club is inefficient for a group consisting of a professor and his two students. In an attempt to address this problem, we have developed a virtual journal (VJ), a process for collecting and distributing a weekly compendium of articles of interest to researchers in nuclear astrophysics. Subscribers are notified of each VJ issue using an email-list server or an RSS feed. The VJ data base is searchable by topics assigned by the editors, or by keywords. There are two related VJs: the Virtual Journal of Nuclear Astrophysics (JINA VJ), and the SEGUE Virtual Journal (SEGUE VJ). The JINA VJ also serves as a source of new experimental and theoretical information for the JINA REACLIB reaction rate database. References to review articles and popular level articles provide an introduction to the literature for students. The VJs and support information are available at http://groups.nscl.msu.edu/jina/journals

Richard H. Cyburt; Sam M. Austin; Timothy C. Beers; Alfredo Estrade; Ryan M. Ferguson; A. Sakharuk; Karl Smith; Scott Warren

2009-07-16T23:59:59.000Z

400

PHYSICAL AND MECHANICAL METALLURGY OF ZIRCONIUM ALLOYS FOR NUCLEAR APPLICATIONS: A MULTI-SCALE COMPUTATIONAL STUDY  

SciTech Connect (OSTI)

In the post-Fukushima world, the stability of materials under extreme conditions is an important issue for the safety of nuclear reactors. Because the nuclear industry is going to continue using advanced zirconium cladding materials in the foreseeable future, it become critical to gain fundamental understanding of the several interconnected problems. First, what are the thermodynamic and kinetic factors affecting the oxidation and hydrogen pick-up by these materials at normal, off-normal conditions, and in long-term storage? Secondly, what protective coatings (if any) could be used in order to gain extremely valuable time at off-normal conditions, e.g., when temperature exceeds the critical value of 2200įF? Thirdly, the kinetics of oxidation of such protective coating or braiding needs to be quantified. Lastly, even if some degree of success is achieved along this path, it is absolutely critical to have automated inspection algorithms allowing identifying defects of cladding as soon as possible. This work strives to explore these interconnected factors from the most advanced computational perspective, utilizing such modern techniques as first-principles atomistic simulations, computational thermodynamics of materials, diffusion modeling, and the morphological algorithms of image processing for defect identification. Consequently, it consists of the four parts dealing with these four problem areas preceded by the introduction and formulation of the studied problems. In the 1st part an effort was made to employ computational thermodynamics and ab initio calculations to shed light upon the different stages of oxidation of ziraloys (2 and 4), the role of microstructure optimization in increasing their thermal stability, and the process of hydrogen pick-up, both in normal working conditions and in long-term storage. The 2nd part deals with the need to understand the influence and respective roles of the two different plasticity mechanisms in Zr nuclear alloys: twinning (at low T) and crystallographic slip (higher Tís). For that goal, a description of the advanced plasticity model is outlined featuring the non-associated flow rule in hcp materials including Zr. The 3rd part describes the kinetic theory of oxidation of the several materials considered to be perspective coating materials for Zr alloys: SiC and ZrSiO4. In the 4th part novel and advanced projectional algorithms for defect identification in zircaloy coatings are described. In so doing, the author capitalized on some 12 years of his applied industrial research in this area. Our conclusions and recommendations are presented in the 5th part of this work, along with the list of used literature and the scripts for atomistic, thermodynamic, kinetic, and morphological computations.

Glazoff, Michael Vasily [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Theoretical nuclear physics. Progress report, October 1, 1991--August 1, 1992  

SciTech Connect (OSTI)

This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self- consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the {triangle}-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to {bar p}p {yields} {bar {Lambda} {Lambda}} reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

Rost, E.; Shephard, J.R.

1992-08-01T23:59:59.000Z

402

PROCEEDINGS OF THE RIKEN BNL RESEARCH CENTER WORKSHOP ON LARGE SCALE COMPUTATIONS IN NUCLEAR PHYSICS USING THE QCDOC, SEPTEMBER 26 - 28, 2002.  

SciTech Connect (OSTI)

The massively parallel computer QCDOC (QCD On a Chip) of the RIKEN BNL Research Center (RI3RC) will provide ten-teraflop peak performance for lattice gauge calculations. Lattice groups from both Columbia University and RBRC, along with assistance from IBM, jointly handled the design of the QCDOC. RIKEN has provided $5 million in funding to complete the machine in 2003. Some fraction of this computer (perhaps as much as 10%) might be made available for large-scale computations in areas of theoretical nuclear physics other than lattice gauge theory. The purpose of this workshop was to investigate the feasibility and possibility of using a supercomputer such as the QCDOC for lattice, general nuclear theory, and other calculations. The lattice applications to nuclear physics that can be investigated with the QCDOC are varied: for example, the light hadron spectrum, finite temperature QCD, and kaon ({Delta}I = 1/2 and CP violation), and nucleon (the structure of the proton) matrix elements, to name a few. There are also other topics in theoretical nuclear physics that are currently limited by computer resources. Among these are ab initio calculations of nuclear structure for light nuclei (e.g. up to {approx}A = 8 nuclei), nuclear shell model calculations, nuclear hydrodynamics, heavy ion cascade and other transport calculations for RHIC, and nuclear astrophysics topics such as exploding supernovae. The physics topics were quite varied, ranging from simulations of stellar collapse by Douglas Swesty to detailed shell model calculations by David Dean, Takaharu Otsuka, and Noritaka Shimizu. Going outside traditional nuclear physics, James Davenport discussed molecular dynamics simulations and Shailesh Chandrasekharan presented a class of algorithms for simulating a wide variety of femionic problems. Four speakers addressed various aspects of theory and computational modeling for relativistic heavy ion reactions at RHIC. Scott Pratt and Steffen Bass gave general overviews of how qualitatively different types of physical processes evolve temporally in heavy ion reactions. Denes Molnar concentrated on the application of hydrodynamics, and Alex Krasnitz on a classical Yang-Mills field theory for the initial phase. We were pleasantly surprised by the excellence of the talks and the substantial interest from all parties. The diversity of the audience forced the speakers to give their talks at an understandable level, which was highly appreciated. One particular bonus of the discussions could be the application of highly developed three-dimensional astrophysics hydrodynamics codes to heavy ion reactions.

AOKI,Y.; BALTZ,A.; CREUTZ,M.; GYULASSY,M.; OHTA,S.

2002-09-26T23:59:59.000Z

403

Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenter |Photoinduced2Zoe Martin'sPhysics Print

404

Report on High Performance Building's Energy Modeling, Physical Building Information Modeling for Solar Building Design and Simulation  

E-Print Network [OSTI]

This report was created for the National Science Foundation-Physical Building Information Modeling (NSF-PBIM) project. This report describes the analysis of a solar office building using the following software: the legacy tools (DOE 2.1e, the F...

Alcocer, J.; Haberl, J. S.

2012-01-01T23:59:59.000Z

405

Draft Advanced Nuclear Energy Projects Solicitation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Draft Advanced Nuclear Energy Projects Solicitation Draft Advanced Nuclear Energy Projects Solicitation INFORMATIONAL MATERIALS DRAFT ADVANCED NUCLEAR ENERGY PROJECTS SOLICITATION...

406

Nuclear Simulation and Radiation Physics Investigations of the Target Station of the European Spallation Neutron Source  

SciTech Connect (OSTI)

The European Spallation Neutron Source (ESS) delivers high-intensity pulsed particle beams with 5-MW average beam power at 1.3-GeV incident proton energy. This causes sophisticated demands on material and geometry choices and a very careful optimization of the whole target system. Therefore, complex and detailed particle transport models and computer code systems have been developed and used to study the nuclear assessment of the ESS target system. The purpose here is to describe the methods of calculation mainly based on the Monte Carlo code to show the performance of the ESS target station. The interesting results of the simulations of the mercury target system are as follows: time-dependent neutron flux densities, energy deposition and heating, radioactivity and afterheat, materials damage by radiation, and high-energy source shielding. The results are discussed in great detail. The validity of codes and models, further requirements to improve the methods of calculation, and the status of running and planned experiments are given also.

Filges, Detlef; Neef, Ralf-Dieter; Schaal, Hartwig [Forschungszentrum Juelich GmbH (Germany)

2000-10-15T23:59:59.000Z

407

Theoretical descriptions of compound-nuclear reactions: open problems & challenges  

E-Print Network [OSTI]

Compound-nuclear processes play an important role for nuclear physics applications and are crucial for our understanding of the nuclear many-body problem. Despite intensive interest in this area, some of the available theoretical developments have not yet been fully tested and implemented. We revisit the general theory of compound-nuclear reactions, discuss descriptions of pre-equilibrium reactions, and consider extensions that are needed in order to get cross section information from indirect measurements.

Brett V. Carlson; Jutta E. Escher; Mahir S. Hussein

2014-03-04T23:59:59.000Z

408

Nuclear Instruments and Methods in Physics Research A 517 (2004) 180188 Spectral identification of thin-film-coated and solid-form  

E-Print Network [OSTI]

Nuclear Instruments and Methods in Physics Research A 517 (2004) 180­188 Spectral identification or solid-form bulk detectors. There have been many attempts to fabricate boron-based solid-form detectors as solid- form bulk detectors. Hence, a method to distinguish between the two devices is necessary

Shultis, J. Kenneth

409

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

Ghoniem, Nasr M.

410

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS*  

E-Print Network [OSTI]

J. H. Scofield and D. M. Fleetwood, IEEE Transactions on Nuclear Science NS-38, 1567-77 (December 1991). PHYSICAL BASIS FOR NONDESTRUCTIVE TESTS OF MOS RADIATION HARDNESS* John H. Scofield Department noise and channel mobility measurements may be useful in defining nondestructive hardness assurance test

Scofield, John H.

411

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nuclaire et en physique des particules  

E-Print Network [OSTI]

and Accelerator Science 19 May 2009 Stan Schriber (center) with student poster prize recipients (from left of Vancouver welcomed over 1300 accelerator scientists, engineers, students, and exhibitors from around physics, and jointly sponsored by the Institute of Electrical and Electronic Engineers (IEEE), the Nuclear

412

231A. Hernndez-Sols et al. / Annals of Nuclear Energy 57 (2013) 230245 Lattice calculations use nuclear libraries as input basis data,  

E-Print Network [OSTI]

#12;231A. Hernández-Solís et al. / Annals of Nuclear Energy 57 (2013) 230­245 Lattice calculations use nuclear libraries as input basis data, describing the properties of nuclei and the fundamental/or estimated values from nuclear physics models are the source of information of these libraries. Because

Demazière, Christophe

413

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

operator such as EDF, the time required to compute nuclear reactor core simulations is rather critical. Introduction As operator of nuclear power plants, EDF needs many nuclear reactor core simulationsInternational Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009

Vialle, Stéphane

414

Michael L. Corradini Nuclear Engineering & Engineering Physics -Birthdate -8/6/52, US Citizen 1500 Engineering Drive, Madison WI -Phone: 608-263-1648 -Email: Corradini@engr.wisc.edu  

E-Print Network [OSTI]

Michael L. Corradini ­ Nuclear Engineering & Engineering Physics - Birthdate - 8/6/52, US Citizen Distinguished Professor, Nuclear Engineering, University of Wisconsin-Madison EDUCATION B.S. - 1975 - Mechanical Engineering Marquette University, Milwaukee WI M.S. - 1976 - Nuclear Engineering Massachusetts Institute

Volpe, Francesco

415

Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

2013-08-26T23:59:59.000Z

416

Engineering Physics and Mathematics Division progress report for period ending August 31, 1989  

SciTech Connect (OSTI)

This paper contains abstracts on research performed at the Engineering Physics and Mathematics Division of Oak Ridge National Laboratory. The areas covered are: mathematical science; nuclear-data measurement and evaluation; intelligent systems; nuclear analysis and shielding; and Engineering Physics Information Center. (LSP)

Not Available

1989-12-01T23:59:59.000Z

417

GIS: a web-based genomics information system for efficiently manipulating and accessing genome physical maps.  

E-Print Network [OSTI]

??Biological science has entered the genome era. Global genome integrative physical and genetic mapping promises to revolutionize modern genomics research. To facilitate manipulation and applicationsÖ (more)

Chen, Huaming

2012-01-01T23:59:59.000Z

418

Nuclear Instruments and Methods in Physics Research A 518 (2004) 775798 CUORE: a cryogenic underground observatory for rare events  

E-Print Network [OSTI]

-67010 Assergi (L'Aquila), Italy f Laboratorio de Fisica Nuclear y Altas Energias, Universid"ad de of 130 Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary

419

ORISE: Health physics services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas...

420

Faculty Position Therapeutic Medical Physics  

E-Print Network [OSTI]

spectroscopy, fluoroscopy, ultrasound, digital radiography, and nuclear medicine. The Colorado State University of subjects in Radiation Therapy Physics, Medical Imaging Physics, and Radiological Physics and Dosimetry

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RELATIVISTIC NUCLEAR COLLISIONS: THEORY  

E-Print Network [OSTI]

Effects in Relativistic Nuclear Collisions", Preprint LBL-Pion Interferometry of Nuclear Collisions. 18.1 M.Gyulassy,was supported by the Office of Nuclear Physics of the U.S.

Gyulassy, M.

2010-01-01T23:59:59.000Z

422

Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics  

SciTech Connect (OSTI)

This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

1993-03-01T23:59:59.000Z

423

Physical features of small disperse coal dust fraction transportation and structurization processes in iodine air filters of absorption type in ventilation systems at nuclear power plants  

E-Print Network [OSTI]

The research on the physical features of transportation and structurization processes by the air-dust aerosol in the granular filtering medium with the cylindrical coal adsorbent granules in an air filter of the adsorption type in the heating ventilation and cooling (HVAC) system at the nuclear power plant is completed. The physical origins of the coal dust masses distribution along the absorber with the granular filtering medium with the cylindrical coal granules during the air-dust aerosol intake process in the near the surface layer of absorber are researched. The quantitative technical characteristics of air filtering elements, which have to be considered during the optimization of air filters designs for the application in the ventilation systems at the nuclear power plants, are obtained.

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

424

GIS: a web-based genomics information system for efficiently manipulating and accessing genome physical maps  

E-Print Network [OSTI]

Biological science has entered the genome era. Global genome integrative physical and genetic mapping promises to revolutionize modern genomics research. To facilitate manipulation and applications of the results from genomics research, many...

Chen, Huaming

2000-01-01T23:59:59.000Z

425

E-Print Network 3.0 - astronomy nuclear transition Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Physics and Nuclear Engineering Summary: EPSRCSTFC Review of Nuclear Physics and Nuclear Engineering A report prepared for EPSRC and STFC... of the scope of RCUK funded...

426

Nuclear Physics using NIF  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world's premier inertial confinement fusion facility designed to achieve sustained thermonuclear burn (ignition) through the compression of hydrogen isotopic fuels to densities in excess of 10{sup 3} g/cm{sup 3} and temperatures in excess of 100 MK. These plasma conditions are very similar to those found in the cores of Asymptotic Giant Branch (AGB) stars where the s-process takes place, but with a neutron fluence per year 10{sup 4} times greater than a star. These conditions make NIF an excellent laboratory to measure s-process (n,{gamma}) cross sections in a stellar-like plasma for the first time. Starting in Fall 2009, NIF has been operating regularly with 2-4 shots being performed weekly. These experiments have allowed the first in situ calibration of the detectors and diagnostics needed to measure neutron capture, including solid debris collection and prompt {gamma}-ray detection. In this paper I will describe the NIF facility and capsule environment and present two approaches for measuring s-process neutron capture cross sections using NIF.

Bernstein, L A; Bleuel, D L; Caggiano, J A; Cerjan, C; Gostic, J; Hatarik, R; Hartouni, E; Hoffman, R D; Sayre, D; Schneider, D G; Shaughnessy, D; Stoeffl, W; Yeamans, C; Greife, U; Larson, R; Hudson, M; Herrmann, H; Kim, Y H; Young, C S; Mack, J; Wilson, D; Batha, S; Hoffman, N; Langenbrunner, J; Evans, S

2011-09-28T23:59:59.000Z

427

Research in nuclear physics  

SciTech Connect (OSTI)

This report discusses the following topics: electron capture decay of {sup 179}Ta; search for 17-keV neutrinos in the Internal Bremsstrahlung Spectrum of {sup 125}I; and {beta}{sup +} decay and cosmic-ray half-life of {sup 91}Nb.

Kozub, R.L.; Hindi, M.M.

1992-06-01T23:59:59.000Z

428

DOE Fundamentals Handbook: Classical Physics  

SciTech Connect (OSTI)

The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton`s Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

Not Available

1992-06-01T23:59:59.000Z

429

DOE Fundamentals Handbook: Classical Physics  

SciTech Connect (OSTI)

The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

Not Available

1992-06-01T23:59:59.000Z

430

Nuclear Astrophysics  

E-Print Network [OSTI]

Nuclear physics has a long and productive history of application to astrophysics which continues today. Advances in the accuracy and breadth of astrophysical data and theory drive the need for better experimental and theoretical understanding of the underlying nuclear physics. This paper will review some of the scenarios where nuclear physics plays an important role, including Big Bang Nucleosynthesis, neutrino production by our sun, nucleosynthesis in novae, the creation of elements heavier than iron, and neutron stars. Big-bang nucleosynthesis is concerned with the formation of elements with A nuclear physics inputs required are few-nucleon reaction cross sections. The nucleosynthesis of heavier elements involves a variety of proton-, alpha-, neutron-, and photon-induced reactions, coupled with radioactive decay. The advent of radioactive ion beam facilities has opened an important new avenue for studying these processes, as many involve radioactive species. Nuclear physics also plays an important role in neutron stars: both the nuclear equation of state and cooling processes involving neutrino emission play a very important role. Recent developments and also the interplay between nuclear physics and astrophysics will be highlighted.

Carl R. Brune

2005-02-28T23:59:59.000Z

431

Risk-informing decisions about high-level nuclear waste repositories  

E-Print Network [OSTI]

Performance assessments (PAs) are important sources of information for societal decisions in high-level radioactive waste (HLW) management, particularly in evaluating safety cases for proposed HLW repository development. ...

Ghosh, Suchandra Tina, 1973-

2004-01-01T23:59:59.000Z

432

Physical features of accumulation and distribution processes of small disperse coal dust precipitations and absorbed radioactive chemical elements in iodine air filter at nuclear power plant  

E-Print Network [OSTI]

The physical features of absorption process of radioactive chemical elements and their isotopes in the iodine air filters of the type of AU-1500 at the nuclear power plants are researched. It is shown that the non-homogenous spatial distribution of absorbed radioactive chemical elements and their isotopes in the iodine air filter, probed by the gamma-activation analysis method, is well correlated with the spatial distribution of small disperse coal dust precipitations in the iodine air filter. This circumstance points out to an important role by the small disperse coal dust fractions of absorber in the absorption process of radioactive chemical elements and their isotopes in the iodine air filter. The physical origins of characteristic interaction between the radioactive chemical elements and the accumulated small disperse coal dust precipitations in an iodine air filter are considered. The analysis of influence by the researched physical processes on the technical characteristics and functionality of iodine ...

Ledenyov, Oleg P; Poltinin, P Ya; Fedorova, L I

2012-01-01T23:59:59.000Z

433

Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Albania concerning Scientific and Technical Co-operation in High-Energy Physics  

E-Print Network [OSTI]

Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Albania concerning Scientific and Technical Co-operation in High-Energy Physics

2014-01-01T23:59:59.000Z

434

Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics  

E-Print Network [OSTI]

Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of People's Republic of Bangladesh concerning Education, Scientific and Technical Co-operation in High-Energy Physics

2014-01-01T23:59:59.000Z

435

Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Mongolia concerning Scientific and Technical Co-operation in High-Energy Physics  

E-Print Network [OSTI]

Co-operation agreement between the European Organization for Nuclear Research (CERN) and the Government of Mongolia concerning Scientific and Technical Co-operation in High-Energy Physics

2014-01-01T23:59:59.000Z

436

Ion-matter interactions and applications Physical Research Laboratory  

E-Print Network [OSTI]

Astrophysics Quantum Optics Quantum Information Theoretical Physics Nuclear, Atomic, Particle Physics, Non secondary electrons effects, especially with proton beams Due to the Bragg peak, increased localized damage Therapy Traditional tumor therapy Chemo Radiation (x-ray) Disadvantage Large dose required for deep

Bapat, Bhas

437

The Decline and Death of Nuclear Power  

E-Print Network [OSTI]

2012). NRC: Nuclear Security and Safeguards.nrc.gov.in nuclear reactor maintenance and security. However, when aof nuclear power plants, as well as physical security to

Melville, Jonathan

2013-01-01T23:59:59.000Z

438

Reactor Physics Parametric and Depletion Studies in Support of TRISO Particle Fuel Specification for the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

Reactor physics calculations were initiated to answer several major questions related to the proposed TRISO-coated particle fuel that is to be used in the prismatic Very High Temperature Reactor (VHTR) or the Next Generation Nuclear Plant (NGNP). These preliminary design evaluation calculations help ensure that the upcoming fuel irradiation tests will test appropriate size and type of fuel particles for a future NGNP reactor design. Conclusions from these calculations are expected to confirm and suggest possible modifications to the current particle fuel parameters specified in the evolving Fuel Specification. Calculated results dispel the need for a binary fuel particle system, which is proposed in the General Atomics GT-MHR concept. The GT-MHR binary system is composed of both a fissile and fertile particle with 350- and 500- micron kernel diameters, respectively. For the NGNP reactor, a single fissile particle system (single UCO kernel size) can meet the reactivity and power cycle length requirements demanded of the NGNP. At the same time, it will provide substantial programmatic cost savings by eliminating the need for dual particle fabrication process lines and dual fuel particle irradiation tests required of a binary system. Use of a larger 425-micron kernel diameter single fissile particle (proposed here), as opposed to the 350-micron GT-MHR fissile particle size, helps alleviate current compact particle packing fractions fabrication limitations (<35%), improves fuel block loading for higher n-batch reload options, and tracks the historical correlation between particle size and enrichment (10 and 14 wt% U-235 particle enrichments are proposed for the NGNP). Overall, the use of the slightly larger kernel significantly broadens the NGNP reactor core design envelope and provides increased design margin to accommodate the (as yet) unknown final NGNP reactor design. Maximum power-peaking factors are calculated for both the initial and equilibrium NGNP cores. Radial power-peaking can be fully controlled with particle packing fraction zoning (no enrichment zoning required) and discrete burnable poison rods. Optimally loaded NGNP cores can expect radial powerpeaking factors as low as 1.14 at beginning of cycle (BOC), increasing slowly to a value of 1.25 by end of cycle (EOC), an axial power-peaking value of 1.30 (BOC), and for individual fuel particles in the maximum compact <1.05 (BOC) and an approximate value of 1.20 (EOC) due to Pu-239 buildup in particles on the compact periphery. The NGNP peak particle powers, using a conservative total power-peaking factor (~2.1 factor), are expected to be <150 mW/particle (well below the 250 mW/particle limit, even with the larger 425-micron kernel size).

James W. Sterbentz; Bren Phillips; Robert L. Sant; Gray S. Chang; Paul D. Bayless

2003-09-01T23:59:59.000Z

439

The integrated workstation: A common, consistent link between nuclear plant personnel and plant information and computerized resources  

SciTech Connect (OSTI)

The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. Data concerning a power plant's design, configuration, operational and maintenance histories, and current status, and the information that can be derived from them, provide the link between the plant and plant staff. It is through this information bridge that operations, maintenance and engineering personnel understand and manage plant performance. However, it is necessary to transform the vast quantity of data available from various computer systems and across communications networks into clear, concise, and coherent information. In addition, it is important to organize this information into a consolidated, structured form within an integrated environment so that various users throughout the plant have ready access at their local station to knowledge necessary for their tasks. Thus, integrated workstations are needed to provide the inquired information and proper software tools, in a manner that can be easily understood and used, to the proper users throughout the plant. An effort is underway at the Oak Ridge National Laboratory to address this need by developing Integrated Workstation functional requirements and implementing a limited-scale prototype demonstration. The integrated Workstation requirements will define a flexible, expandable computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades to add enhanced applications. The functionality to be supported by the integrated workstation and inherent capabilities to be provided by the workstation environment win be described. In addition, general technology areas which are to be addressed in the Integrated Workstation functional requirements will be discussed.

Wood, R.T.; Knee, H.E.; Mullens, J.A.; Munro, J.K. Jr.; Swail, B.K.; Tapp, P.A.

1993-01-01T23:59:59.000Z

440

The integrated workstation: A common, consistent link between nuclear plant personnel and plant information and computerized resources  

SciTech Connect (OSTI)

The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. Data concerning a power plant`s design, configuration, operational and maintenance histories, and current status, and the information that can be derived from them, provide the link between the plant and plant staff. It is through this information bridge that operations, maintenance and engineering personnel understand and manage plant performance. However, it is necessary to transform the vast quantity of data available from various computer systems and across communications networks into clear, concise, and coherent information. In addition, it is important to organize this information into a consolidated, structured form within an integrated environment so that various users throughout the plant have ready access at their local station to knowledge necessary for their tasks. Thus, integrated workstations are needed to provide the inquired information and proper software tools, in a manner that can be easily understood and used, to the proper users throughout the plant. An effort is underway at the Oak Ridge National Laboratory to address this need by developing Integrated Workstation functional requirements and implementing a limited-scale prototype demonstration. The integrated Workstation requirements will define a flexible, expandable computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades to add enhanced applications. The functionality to be supported by the integrated workstation and inherent capabilities to be provided by the workstation environment win be described. In addition, general technology areas which are to be addressed in the Integrated Workstation functional requirements will be discussed.

Wood, R.T.; Knee, H.E.; Mullens, J.A.; Munro, J.K. Jr.; Swail, B.K.; Tapp, P.A.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reliability Engineering and System Safety 92 (2007) 609618 The nuclear industry's transition to risk-informed regulation and  

E-Print Network [OSTI]

Reliability Engineering and System Safety 92 (2007) 609­618 The nuclear industry's transition a Nuclear Science and Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Nuclear Power Engineering, Quality and Safety Management Department, Tokyo Electric Power

442

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009 and Nuclear Engineering Troy, New York, 12180 D.P. Barry, G. Leinweber, N.J. Drindak (ret.), J.G. Hoole Knolls

Danon, Yaron

443

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)  

E-Print Network [OSTI]

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009) Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009.P. Barry Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute 110 8

Danon, Yaron

444

Brief 71 Health Physics Enrollments and Degrees, 2011 Summary (11-12  

SciTech Connect (OSTI)

The survey includes degrees granted between September 1, 2010 and August 31, 2011. Enrollment information refers to the fall term 2011. The enrollment and degree data include students majoring in health physics or in an option program equivalent to a major. Twenty-four academic programs reported having health physics programs during 2011. The data for two health physics options within nuclear engineering programs are also included in the enrollments and degrees that are reported in the nuclear engineering enrollments and degrees data.

Dr. Don Johnson

2012-11-07T23:59:59.000Z

445

Fundamentals of Plasma Physics  

E-Print Network [OSTI]

of students (from physics, engineering physics, elec- trical engineering, nuclear engineering and other un;PREFACE Plasma physics is a relatively new branch of physics that became a mature science over the last). Thus, plasma physics has developed in large part as a branch of applied or engineering physics

Callen, James D.

446

Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

2006-02-07T23:59:59.000Z

447

Physical Building Information Modeling for Solar Building Design and Simulation- Annual Report 2011  

E-Print Network [OSTI]

information from BIM to Radiance. For Building Integrated Photovoltaic (BIPV), we have researched on how to build solar models in BIM that can calculate solar position and solar insolation. 1.2 Research on BIM simplification methods, BIM topology, and data... we will continue investigating the use of Modelica to integrate the daylighting modeling with thermal modeling. 4 c) BIPV prototypes We have developed a Building Integrated Photovoltaic (BIPV) prototype in the BIM (Autodesk Revit) platform...

Yan, W.; Haberl, J.; Clayton, M.; Jeong, W.; Kim, J.; Kota, S.; Alcocer, J.; Dixit, M.

2011-01-01T23:59:59.000Z

448

Physics with energetic radioactive ion beams  

SciTech Connect (OSTI)

Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

Henning, W.F.

1996-12-31T23:59:59.000Z

449

MODELING SECURITY IN CYBER-PHYSICAL SYSTEMS  

E-Print Network [OSTI]

network at the Davis-Besse nuclear power plant in Oak Harbor, Ohio, was infected [39]. There have been the behavior of the adversary is controlled by a threat model that captures both the cyber aspects (with-physical systems, threat models, protocols for treaty verification. 1. Introduction The rapid growth of information

Burmester, Mike

450

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 29 (2003) 769775 PII: S0954-3899(03)58133-6  

E-Print Network [OSTI]

distributions of the fragments, knock-out and stripping reactions, Coulomb excitation, etc. Rare nuclear experiments. Correlation experiments with low-energy proton­proton 0954-3899/03/040769+07$30.00 © 2003 IOP. The same happens in nuclear interactions in peripheral collisions, when little energy is transferred

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

451

Physics high-ranking Journals (category 2) Advances in Physics  

E-Print Network [OSTI]

Physics high-ranking Journals (category 2) Advances in Physics Annual Review of Astronomy and Astrophysics Annual Review of Nuclear and Particle Science Applied Physics Letters Astronomy & Astrophysics Astronomy and Astrophysics Review Astrophysical Journal European Physical Journal D. Atomic, Molecular

452

Proceedings of the workshop on nuclear and particle physics at energies up to 31 GeV: new and future aspects  

SciTech Connect (OSTI)

This report contains the proceedings of the LAMPF Workshop on Nuclear and Particle Physics at Energies up to 31 GeV, New and Future Aspects, held in Los Alamos, January 5 to 8, 1981. Included are invited talks and contributed papers covering recent developments in (a) weak and unified interactions (including discussions of neutrino oscillations), (b) the hadronic description of strong interactions, (c) the quark description of strong interactions, (d) hypernuclei, and (e) new facilities and proposed experiments. One of the motivations for the Workshop was to explore physics justifications for a future high-intensity proton accelerator in this energy regime. Separate abstracts were prepared for papers from this meeting. Six papers were previously included in the data base.

Bowman, J.D.; Kisslinger, L.S.; Silbar, R.R. (eds.)

1981-03-01T23:59:59.000Z

453

Guidelines for nuclear power plant safety issue prioritization information development. Supplement 4  

SciTech Connect (OSTI)

This is the fifth in a series of reports to document the use of a methodology developed by the Pacific Northwest Laboratory to calculate, for prioritization purposes, the risk, dose and cost impacts of implementing resolutions to reactor safety issues (NUREG/CR-2800, Andrews et al. 1983). This report contains results of issue-specific analyses for 23 issues. Each issue was considered within the constraints of available information as of winter 1986, and two staff-weeks of labor. The results are referenced, as one consideration in setting priorities for reactor safety issues, in NUREG-0933, ''A Prioritization of Generic Safety Issues.''

Tabatabai, A.S.; Fecht, B.A.; Powers, T.B.; Bickford, W.E.; Andrews, W.B.; Gallucci, R.H.V.; Bian, S.H.; Daling, P.M.; Eschbach, E.J.; Allen, C.H.

1986-07-01T23:59:59.000Z

454

Rapid prediction of various physical properties for middle distillate fuel utilizing directly coupled liquid chromatography//sup 1/H nuclear magnetic resonance  

SciTech Connect (OSTI)

A group property approach has been developed to predict 17 physical properties of middle distillate (e.g., jet and diesel) fuels from experimentally derived liquid chromatography//sup 1/H nuclear magnetic resonance (LC//sup 1/H NMR) data. In the LC//sup 1/H NMR technique, the fuel is separated according to chemical class and the average molecular structure for each chemical class is then calculated. These average molecular structures form a basis set to predict the physical properties of the fuel. The physical properties that can be obtained in this manner are cetane number, cetane index, density, specific gravity, pour point, flash point, viscosity, filterability, heat of combustion, cloud point, volume percent aromatics, residual carbon content, and the initial, 10%, 50%, 90%, and end boiling points. Fourteen of the correlation coefficients for the predictions are better than 0.90 with 11 of the predictions falling either within or approximately equal to the ASTM method reproducibility for the measurement of the fuel property. The present method also provides chemical insight concerning the influence of chemical structural changes on the physical properties of the fuel as well as requiring much less analysis time and sample volume than corresponding ASTM methods.

Caswell, K.A.; Glass, T.E.; Swann, M.; Dorn, H.C.

1989-02-01T23:59:59.000Z

455

Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics  

E-Print Network [OSTI]

Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

2015-01-01T23:59:59.000Z

456

Preprint of D. A. B. Miller, "Optics for Digital Information Processing," in Semiconductor Quantum Optoelectronics, eds. A. Miller, M. Ebrahimzadeh, and D. M. Finlayson, Proceedings of the Fiftieth Scottish Universities Summer School in Physics, St. Andre  

E-Print Network [OSTI]

Preprint of D. A. B. Miller, "Optics for Digital Information Processing," in Semiconductor Quantum several related areas in the use of optics in information processing. There are three main sections on, respectively, the physics of optics and electronics for digital information processing, the physics

Miller, David A. B.

457

342 Nuclear Instruments and Methods in Physics Research B58 (1991) 342-346 North-Holland  

E-Print Network [OSTI]

of the Mn-based, ternary Heusler alloy PtMnSb 112,131, which is a very promising material for normal to investigate physical prop- erties of surfaces, in particular, the electronic, magnetic and chemical properties- and short-ranged surface magnetic order in ferro- magnetic samples. In addition, grazing-angle particle

Rau, Carl

458

Nuclear Instruments and Methods in Physics Research A 559 (2006) 352354 Further developments in the CUORICINO experiment  

E-Print Network [OSTI]

on neutrinoless Double Beta Decay (DBD) of 130 Te consisting of an array of 62 TeO2 crystals with a total active discovery in the field of particle physics. The discovery of the neutrinoless Double Beta Decay (0n- DBD

459

arXiv:submit/0451583[physics.gen-ph]8Apr2012 Including Nuclear Degrees of Freedom in a Lattice  

E-Print Network [OSTI]

of condensed matter physics. In the Fleischmann­Pons excess heat effect [4, 5], a great deal of energy Institute of Technology, Cambridge, MA 02139, USA E-mail: plh@mit.edu 2 Department of Computer Science and Engineering, University of Engineering and Technology. Lahore, Pakistan Abstract. Motivated by many

Williams, Brian C.

460

Summary of the Activities of the Experimental Section of the Nuclear Physics Division in the Past Month  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSumin Kim Sumin Kim SuminAugust 27 -Summary of-a!!

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

QCD Thermodynamics at High Temperature Peter Petreczky Large Scale Computing and Storage Requirements for Nuclear Physics (NP),  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuary 13,Putting veterans to8 (ReleasedQA/QCQCD

462

Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems; NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) QUARTERLY PROGRESS REPORT  

SciTech Connect (OSTI)

This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.

ERROR, [value too long for type character varying(50); Hejzlar, Pavel; Yarsky, Peter; Driscoll, Mike; Wachs, Dan; Weaver, Kevan; Czerwinski, Ken; Pope, Mike; Parry, James; Marshall, Theron D.; Davis, Cliff B.; Crawford, Dustin; Hartmann, Thomas; Saha, Pradip

2005-01-31T23:59:59.000Z

463

Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental  

E-Print Network [OSTI]

1 Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental Health and Safety using the following reference materials: I. American National Standards for Safe Use of Lasers - ANSI Z

Huennekens, John

464

Physics Division annual report - 1998  

SciTech Connect (OSTI)

Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

NONE

1999-09-07T23:59:59.000Z

465

NUCLEAR CHEMISTRY DIV. ANNUAL REPORT 1980-81  

E-Print Network [OSTI]

Polarization Phenomena in Nuclear Physics-1980, AIP Conf.Barrett and D.F. Jackson, Nuclear Sizes and Structure, (K Production in Relativistic Nuclear Collisions A. Shor, K.

Cerny, J.

2010-01-01T23:59:59.000Z

466

Engineering Physics Division progress report for period ending November 30, 1980  

SciTech Connect (OSTI)

Separate abstracts are included for sections concerning measurement of nuclear cross sections and related quantities; nuclear cross-section evaluations and theory; nuclear cross-section processing, testing, and sensitivity analysis; engineering physics division integral experiments and their analyses; development of methods for shield and reactor analysis; analyses for specific systems or applications; energy model validation; systems reliability and operations research; and information analysis and distribution.

Not Available

1980-12-01T23:59:59.000Z

467

Canadian Nuclear Astrophysics Institute Letter of Intent  

E-Print Network [OSTI]

nuclear physics data as well as astronomical observations, both of which are critically needed in order 1 Canadian Nuclear Astrophysics Institute Letter of Intent Final version April 29, 2011), astrophysics and nuclear physics theory and computational simulation (TC) as well as nuclear physics

Herwig, Falk

468

ENDF-related Nuclear Data from the T-2 Group (T-2 Nuclear Information Service) at Los Alamos National Laboratory (LANL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Each of these sections of the website is an index to the contents of the specifically named ENDF/B-VII library of data. Links in each index provide access to more information about the individual materials, including raw and interpreted views of the ENDF file, and PDF plots of the cross sections and distributions. Also provided is a section of information and graphs related to the Energy Balance of ENDF/B-VII and table of neutron Kerma data. [Information taken from http://t2.lanl.gov/data/data.html

469

Emergency Response Health Physics  

SciTech Connect (OSTI)

Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

Mena, RaJah [National Security Technologies, LLC, Remote Sensing LaboratoryĖNellis; Pemberton, Wendy [National Security Technologies, LLC, Remote Sensing LaboratoryĖNellis; Beal, William [Remote Sensing Laboratory at Andrews

2012-05-01T23:59:59.000Z

470

Is Nuclear Energy the Solution?  

E-Print Network [OSTI]

10.1007/s11270-009-0270-y Is Nuclear Energy the Solution?MHS) attended a lecture on ďNuclear ResponsibilityĒ on theof the Alliance for Nuclear Responsibility. The information

Saier, Milton H.; Trevors, Jack T.

2010-01-01T23:59:59.000Z

471

22.101 Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering  

E-Print Network [OSTI]

We continue the study of the neutron-proton system by taking up the well-known problem of neutron scattering in hydrogen. The scattering cross section has been carefully measured to be 20.4 barns over a wide energy range. Our intent is to apply the method of phase shifts summarized in the preceding lecture to this problem. We see very quickly that the s-wave approximation (the condition of interaction at low energy) is very well justified in the neutron energy range of 1- 1000 eV. The scattering-state solution, with E> 0, gives us the phase shift or equivalently the scattering length. This calculation yields a cross section of 2.3 barns which is considerably different from the experimental value. The reason for the discrepancy lies in the fact that we have not taken into account the spin-dependent nature of the n-p interaction. The neutron and proton spins can form two distinct spin configurations, the two spins being parallel (triplet state) or anti-parallel (singlet), each giving rise to a scattering length. When this is taken into account, the new estimate is quite close to the experimental value. The conclusion is therefore that n-p interaction is spin-dependent and that the anomalously large value of the hydrogen scattering cross section for neutrons is really due to this aspect of the nuclear force. For the scattering problem our task is to solve the radial wave equation for s-wave for solutions with E> 0. The interior and exterior solutions have the form ur () = Bsin ( Kr ' ) , r < ro (8.1) and ur () = C sin(

unknown authors

472

Risk-informed public safety policy for seismic events in the vicinity of a nuclear power plant  

E-Print Network [OSTI]

Nuclear Power Plants (NPPs) are potentially vulnerable to accidents, which can either be internally or externally initiated. External events include natural events like tornadoes, hurricanes, and earthquakes. The purpose ...

Afolayan Jejeloye, Olubukola

2002-01-01T23:59:59.000Z

473

A unified risk-Informed framework to assess the proliferation risk and license the proliferation performance of nuclear energy systems  

E-Print Network [OSTI]

In order to strengthen the current non-proliferation regime it is necessary to guarantee high standards of security for the sites that use, store, produce, or reprocess special nuclear materials (SNM). The current surge ...

Cavalieri d'Oro, Edoardo

2011-01-01T23:59:59.000Z

474

A Unified Risk-Informed Framework to Assess the Proliferation Risk and License the Proliferation Performace of Nuclear Energy  

E-Print Network [OSTI]

In order to strengthen the current non-proliferation regime it is necessary to guarantee high standards of security for the sites that use, store, produce, or reprocess special nuclear materials (SNM). The current surge ...

d'Oro, Edoardo Cavalieri

475

Summary of the contractor information exchange meeting for improving the safety of Soviet-Designed Nuclear Power Plants, February 19, 1997  

SciTech Connect (OSTI)

This report summarizes a meeting held on February 19, 1997, in Washington, D.C. The meeting was held primarily to exchange information among the contractors involved in the U.S. Department of Energy`s efforts to improve the safety of Soviet-designed nuclear power plants. Previous meetings have been held on December 5-6, 1995, and May 22, 1996. The meetings are sponsored by the U.S. Department of Energy and coordinated by the Pacific Northwest National Laboratory. The U.S. Department of Energy works with countries to increase the level of safety at 63 Soviet-designed nuclear reactors operating in Armenia, Bulgaria, the Czech Republic, Hungary, Lithuania, Russia, Slovakia, and Ukraine. The work is implemented largely by commercial companies and individuals who provide technologies and services to the countries with Soviet-designed nuclear power plants. Attending the meeting were 71 representatives of commercial contractors, the U.S. Department of Energy, the U.S. Department of State, national laboratories, and other federal agencies. The presentations and discussions that occurred during the exchange are summarized in this report. While this report captures the general presentation and discussion points covered at the meeting, it is not a verbatim, inclusive record. To make the report useful, information presented at the meeting has been expanded to clarify issues, respond to attendees` requests, or place discussion points in a broader programmatic context. Appendixes A through F contain the meeting agenda, list of attendees, copies of presentation visuals and handouts, the Strategy Document discussed at the meeting, and a summary of attendees` post-meeting evaluation comments. As with past information exchanges, the participants found this meeting valuable and useful. In response to the participant`s requests, a fourth information exchange will be held later in 1997.

NONE

1997-04-01T23:59:59.000Z

476

Publisher's Note: ''The MaPLE device of Saha Institute of Nuclear Physics: Construction and its plasma aspects'' [Rev. Sci. Instrum. 81, 073507 (2010)  

SciTech Connect (OSTI)

The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density {approx} 3-5 Multiplication-Sign 1010 cm-3 and temperature {approx} 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis [Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700 064 (India)

2010-07-15T23:59:59.000Z

477

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

478

INFORMATION: Inspection Report on "Removal of Categories I and II Special Nuclear Material from Sandia National Laboratories-New Mexico"  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Sandia National Laboratories-New Mexico (Sandia) develops science-based technologies in support of national security in areas such as nuclear weapons, nonproliferation, military technologies, and homeland security. Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, and reliable and can fully support the Nation's deterrence policy. Part of this mission includes systems engineering of nuclear weapons; research, design, and development of non-nuclear components; manufacturing of non-nuclear weapons components; the provision of safety, security, and reliability assessments of stockpile weapons; and the conduct of high-explosives research and development and environmental testing. Sandia Corporation, a subsidiary of Lockheed Martin Corporation, operates Sandia for the National Nuclear Security Administration (NNSA). On May 7, 2004, the Secretary announced that the Department would evaluate missions at DOE sites to consolidate Special Nuclear Material (SNM) in the most secure environments possible. The Administrator of the NNSA said that this effort was a key part of an overall plan to transform the nuclear weapons complex into a smaller, safer, more secure, and more efficient national security enterprise. In February 2008, Sandia was the first site to report it had reduced its on-site inventory of nuclear material below 'Categories I and II' levels, which require the highest level of security to protect material such as plutonium and highly enriched uranium. The Office of Inspector General initiated an inspection to determine if Sandia made appropriate adjustments to its security posture in response to the removal of the Categories I and II SNM. We found that Sandia adjusted its security posture in response to the removal of Categories I and II SNM. For example, security posts were closed; unneeded protective force weapons and equipment were excessed from the site; and, Sandia's Site Safeguards and Security Plan was modified. We also found that some highly enriched uranium in a complex material configuration was not removed from Sandia. This material was designated as Category III material using a methodology for assessing the attractiveness of complex materials that was not specifically addressed in any current DOE directive. Although DOE and NNSA officials believed that this designation was appropriate, the methodology used to support this designation had not, as of the time of our review, been incorporated into the DOE directives system. Historically, the Department has considered the categorization of SNM to be an important national security and public policy issue. Consequently, we believe that expedited action should be taken to formalize this methodology in the DOE directives system and that it be disseminated throughout the Department of Energy complex.

None

2010-01-01T23:59:59.000Z

479

Nuclear criticality safety guide  

SciTech Connect (OSTI)

This technical reference document cites information related to nuclear criticality safety principles, experience, and practice. The document also provides general guidance for criticality safety personnel and regulators.

Pruvost, N.L.; Paxton, H.C. [eds.] [eds.

1996-09-01T23:59:59.000Z

480

Reference handbook: Nuclear criticality  

SciTech Connect (OSTI)

The purpose for this handbook is to provide Rocky Flats personnel with the information necessary to understand the basic principles underlying a nuclear criticality.

Not Available

1991-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "information nuclear physics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Testing two nuclear physics approximations used in the standard leaky box model for the spallogenic production of LiBeB  

E-Print Network [OSTI]

The spallative production rates of Lithium, Beryllium and Boron (LiBeB) are a necessary component in any calculation of the evolution of these nuclei in the Galaxy. Previous calculations of these rates relied on two assumptions relating to the nuclear physics aspects: the straight-ahead approximation that describes the distribution of fragment energies and the assumption that the major contributor to the production rate arises from single-step reactions between primary cosmic ray projectiles and interstellar medium targets. We examine both assumptions by using a semi-empirical description for the spall's energy distribution and by including the reactions that proceed via intermediary fragments. After relaxing the straight-ahead approximation we find the changes in the production rates and emerging fluxes are small and do not warrant rejection of this approximation. In contrast we discover that two-step reactions can alter the production rate considerably leading to noticeable increases in the efficiency of producing the LiBeB nuclei. Motivated by this result we introduce a cascade technique to compute the production rates exactly and find that the results differ only slightly from those of our two-step calculations. We thus conclude that terminating the reaction network at the two-step order is sufficiently accurate for current studies of spallation.

J. P. Kneller; J. R. Phillips; T. P. Walker

2003-02-05T23:59:59.000Z

482

Operational health physics training  

SciTech Connect (OSTI)

The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

NONE

1992-06-01T23:59:59.000Z

483

Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2  

SciTech Connect (OSTI)

This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

Weiss, A. J. [comp.

1988-02-01T23:59:59.000Z

484

Z Machine | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

use for the nuclear weapons mission as well as increased interest by researchers in high energy density physics, condensed matter physics, planetary science, and laboratory...

485

Nuclear Systems Modeling & Simulation | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Modeling and Simulation SHARE Nuclear Systems Modeling and Simulation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion model for the...

486

Nuclear Systems Modeling, Simulation & Validation | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Modeling and Simulation SHARE Nuclear Systems Modeling, Simulation and Validation Reactor physics depletion model for the Advanced Test Reactor Reactor physics depletion...

487

MASTER'S OF ADVANCED STUDIES IN MEDICAL PHYSICS  

E-Print Network [OSTI]

and Physiology as applied to Medical Physics · Radiobiology · Radiation Physics · Radiation Dosimetry · Physics of Nuclear Medicine · Medical Physics Imaging Fundamentals · Physics of Diagnostic and Interventional radiology, nuclear medicine and radiation protection in a hospital of the clinical network (hospitals

488

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 477486 doi:10.1088/0029-5515/46/4/008  

E-Print Network [OSTI]

, The Australian National University, Canberra 2600, Australia Received 9 November 2005, accepted for publication 1, Australia 2 Department of Theoretical Physics, Research School of Physical Sciences and Engineering

Dewar, Robert L.

2006-01-01T23:59:59.000Z

489

Proposal for a High Energy Nuclear Database  

E-Print Network [OSTI]

Proposal for a High Energy Nuclear Database David A. Brown 1it requires the high-energy nuclear physics com- munityís ?compilations of high-energy nuclear data for applications

Brown, David A.; Vogt, Ramona

2005-01-01T23:59:59.000Z

490

Triangle Universities Nuclear Laboratory : 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLongTitan TitanDukeNCSU Nuclear Physics|

491

Triangle Universities Nuclear Laboratory : 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLongTitan TitanDukeNCSU Nuclear Physics|

492

Nuclear scales  

SciTech Connect (OSTI)

Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

Friar, J.L.

1998-12-01T23:59:59.000Z

493

Physics Division progress report for period ending September 30, 1983  

SciTech Connect (OSTI)

Research and development activities are summarized in the following areas: Holifield Heavy Ion Research Facility, nuclear physics, the UNISOR program, accelerator-based atomic physics, theoretical physics, nuclear science applications, atomic physics and plasma diagnostics for fusion program, high-energy physics, the nuclear data project, and the relativistic heavy-ion collider study. Publications and papers presented are listed. (WHK)

Not Available

1983-12-01T23:59:59.000Z

494

Past and present of nuclear matter  

SciTech Connect (OSTI)

The subject of nuclear matter is interesting for many fields of physics ranging from condensed matter to lattice QCD. Knowing its properties is important for our understanding of neutron stars, supernovae and cosmology. Experimentally, we have the most precise information on ground state nuclear matter from the mass formula and from the systematics of monopole vibrations. This gives us the ground state density, binding energy and the compression modulus k at ground state density. However, those methods can not be extended towards the regime we are most interested in, the regime of high density and high temperature. Additional information can be obtained from the observation of neutron stars and of supernova explosions. In both cases information is limited by the rare events that nature provides for us. High energy heavy ion collisions, on the other hand, allow us to perform controlled experiments in the laboratory. For a very short period in time we can create a system that lets us study nuclear matter properties. Density and temperature of the system depend on the mass of the colliding nuclei, on their energy and on the impact parameter. The system created in nuclear collisions has at best about 200 constituents not even close to infinite nuclear matter, and it lasts only for collision times of {approx} 10{sup {minus}22}sec, not an ideal condition for establishing any kind of equilibrium. Extended size and thermal and chemical equilibrium, however, axe a priori conditions of nuclear matter. As a consequence we need realistic models that describe the collision dynamics and non-equilibrium effects in order to relate experimental observables to properties of nuclear matter. The study of high energy nuclear collisions started at the Bevalac. I will try to summarize the results from the Bevalac studies, the highlights of the continuing program, and extension to higher energies without claiming to be complete.

Ritter, H.G.

1994-05-01T23:59:59.000Z

495

Intermediate Energy Nuclear Physics Program  

SciTech Connect (OSTI)

The originally proposed and funded research activities followed two major areas of study: semileptonic probes of the hadronic neutral current and charm production. The charm production work revolved around the Jefferson Lab experiment E03-008, 'Sub-threshold J/psi Photoprouction', which ran in late 2004. The PI was a co-spokesperson for the experiment. For the three year renewal proposal starting in 2007, the scope and size of the research project changed and increased. In addition to the parity violating studies, the PI had well defined lead roles in a series experiments nucleon spin-structure functions.

Dunne, James, A.

2012-06-22T23:59:59.000Z

496

Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics  

E-Print Network [OSTI]

. In this study, the availability and use of commercial satellite imagery systems, commercial computer codes for satellite imagery analysis, Comprehensive Test Ban Treaty (CTBT)verification International Monitoring System (IMS), publicly available information...

Solodov, Alexander

2009-06-02T23:59:59.000Z

497

Physics Division annual review, April 1, 1991--March 31, 1992  

SciTech Connect (OSTI)

This report contains brief discusses on topics in the following areas: Research at atlas; operation and development of atlas; medium-energy nuclear physics and weak interactions; theoretical nuclear physics; and atomic and molecular physics research.

Henning, W.F.

1992-08-01T23:59:59.000Z

498

PIA - Savannah River Nuclear Solutions Training Records and Informatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

499

Nuclear Forensics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell BatteriesArchives Events/NewsYouNuclearNuclear Forensics

500

Physics division annual report 2006.  

SciTech Connect (OSTI)

This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

Glover, J.; Physics

2008-02-28T23:59:59.000Z