National Library of Energy BETA

Sample records for infographic turning bacteria

  1. FORGE Phase Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Infographic FORGE Phase Infographic FORGE Phase Infographic More Documents & Publications FORGE Infographic FORGE Phase Infographic EERE Strategic Plan Infographic FORGE Phase Infographic Milford, Utah FORGE Map

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol This...

  3. BioenergizeME Infographic Challenge Infographic Guide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Infographic Guide BioenergizeME Infographic Challenge Infographic Guide Infographic Guide for the BioenergizeME Infographic Challenge. bioenergizeme_infographic_guide.pdf (1.79 MB) More Documents & Publications BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Rubric

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: BIOfuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  5. EERE Strategic Plan Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications BioenergizeME Infographic Challenge Infographic Guide BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Social Media ...

  6. Biogas Opportunities Roadmap Progress Report Infographic | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biogas Opportunities Roadmap Progress Report Infographic Biogas Opportunities Roadmap Progress Report Infographic biogasopportunitesroadmapprogressreportinfographic.pdf ...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy History

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bessie's Biofuel

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  9. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuel Acts

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Impacts

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  11. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  12. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Alternatives: Cellulosic Ethanol 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol 2016 Bioenergizeme Infographic Challenge: Renewable ...

  13. BioenergizeME Infographic Challenge Map | Department of Energy

    Energy Savers [EERE]

    Then click "View Infographic" to access the infographic's Web page. Click the black ... Then click "View Infographic" to access the infographic's Web page. Click the black ...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Tertiary Treatment

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  15. 2016 Bioenergizeme Infographic Challenge: Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  16. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Williamsburg HS for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The...

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel

  18. 2016 Bioenergizeme Infographic Challenge: Space Algae

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Cascade High School in Everett, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Troy High School in Troy, MI, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  20. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: The History of Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  4. 2016 Bioenergizeme Infographic Challenge: Roads to Success

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Denmark-Olar High in Denmark , SC, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  5. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Energy from Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: What is Biomass?

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass Reduces Carbon Dioxide

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  8. 2016 Bioenergizeme Infographic Challenge: Transportation Sustainability

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Denmark-Olar High School in Denmark, SC, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  9. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Why is it important?

    Broader source: Energy.gov [DOE]

    This infographic was created by students from The Preuss School in La Jolla, CA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  10. 2016 Bioenergizeme Infographic Challenge: Sustainable Transportation

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Dwight-Englewood School in Englewood, NJ, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  11. BIOENERGIZEME INFOGRAPHIC CHALLENGE: What is Biogas?

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  12. 2016 Bioenergizeme Infographic Challenge: Algae Biofuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy Through Time

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Robinson HS in Tampa, FL, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Careers in Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  15. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy Career: Plant Operator

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  16. 2016 Bioenergizeme Infographic Challenge: Education in Bioenergy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Education in Bioenergy 2016 Bioenergizeme Infographic Challenge: Education in Bioenergy 2016 Bioenergizeme Infographic Challenge: Education in Bioenergy This infographic was created by students from Smithtown High School East in St. James, NY

  17. 2016 Bioenergizeme Infographic Challenge: Transportation Sustainability

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Dwight-Englewood School in Englewood, NJ, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: From Fields to Fuel

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Workforce and Education

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  20. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuels Sustainable Transportation

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Iowa Ethanol Production

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sparks HS in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy News Today

    Broader source: Energy.gov [DOE]

    This infographic was created by students from The Preuss School in La Jolla, CA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  4. FORGE Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FORGE Infographic FORGE Infographic The Frontier Observatory for Research in Geothermal Energy (FORGE) constitutes the strategic thrust of the Geothermal Technologies Office, Department of Energy, over the next five years. Advances in EGS technologies could unlock up to 10% of the nation's energy supply from enhanced geothermal systems (EGS), geothermal energy potential where there is little or no fluid or permeable rock. The FORGE infographic below shows the scope of this undertaking. Click

  5. EGS Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Infographic.pdf (18.09 MB) More Documents & Publications Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Enhanced Geothermal System (EGS) ...

  6. INFOGRAPHIC: Wind Energy in America | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Wind Energy in America INFOGRAPHIC: Wind Energy in America Addthis 1 of 6 This infographic details key findings from the 2011 Wind Market Report. | Infographic by Sarah Gerrity. 2 of 6 This infographic details key findings from the 2011 Wind Market Report. | Infographic by Sarah Gerrity. 3 of 6 This infographic details key findings from the 2011 Wind Market Report. | Infographic by Sarah Gerrity. 4 of 6 This infographic details key findings from the 2011 Wind Market Report. |

  7. Energy Saver 101: Water Heating Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver 101: Water Heating Infographic Energy Saver 101: Water Heating Infographic Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic ...

  8. BioenergizeME Infographic Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spring 2015 Infographic Challenge Winner Read more BioenergizeME Infographic Challenge: Algae for a Cleaner and Greener Tomorrow BioenergizeME Infographic Challenge: Algae for a...

  9. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biomass: Types/Characteristics BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biomass: Types/Characteristics This infographic was created by students from Albany Academies and Academy of the Holy Names in Albany, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy,

  10. BioenergizeME Infographic Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Infographic Challenge: Cellulosic Ethanol BioenergizeME Spring 2016 Infographic Challenge Winner Read more BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Infographic Challenge: Algae as a Biofuel BioenergizeME Spring 2016 Infographic Challenge First Runner Up Read more BioenergizeME

  11. BioenergizeME Infographic Challenge Rubric | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rubric BioenergizeME Infographic Challenge Rubric Rubric for the BioenergizeME Infographic Challenge. bioenergizeme_rubric.png (840.38 KB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Infographic Guide BioenergizeME Infographic Challenge Toolkit

  12. 2016 Bioenergizeme Infographic Challenge: History of Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  13. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. ...

  14. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biofuels vs Fossil Fuels

    Broader source: Energy.gov [DOE]

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  15. 2016 Bioenergizeme Infographic Challenge: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  16. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Understanding the Grid INFOGRAPHIC: Understanding the Grid November 17, 2014 - 2:05pm Addthis Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by Sarah Gerrity, Energy Department. Sarah Gerrity Sarah

  17. BioenergizeME Infographic Challenge Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioenergizeME Infographic Challenge Map BioenergizeME Infographic Challenge Map X BioenergizeME Map Explore the BioenergizeME Infographic Challenge Map to view infographics submitted by student teams from across the country! Click the colored markers to see details about infographics. Then click "View Infographic" to access the infographic's Web page. Click the black markers to learn more about U.S. integrated biorefinery projects that have received funding from the Bioenergy

  18. BioenergizeME Infographic Challenge Annual Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Update BioenergizeME Infographic Challenge Annual Update Annual Update for the BioenergizeME Infographic Challenge. 2016_annual_update.pdf (512.49 KB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Flyer BioenergizeME Infographic Challenge Toolkit

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: A "Biomassive" Innovation: Fueling Life in Appalachia

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Belfry School in Belfry, KY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  20. BIOENERGIZEME INFOGRAPHIC CHALLENGE: From Fish Food to Fuel

    Broader source: Energy.gov [DOE]

    This infographic was created by students from LISD TECH Center in Adrian, MI, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  1. 2016 Bioenergizeme Infographic Challenge: History in the Making

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Denmark-Olar High in Denmark , SC, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  2. 2016 Bioenergizeme Infographic Challenge: Biobutanol- A Better Bio-Alternative

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  3. 2016 Bioenergizeme Infographic Challenge: Hemp as an Alternative to Plastic

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Cascade High School in Everett, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  4. Solar Decathlon 2013 Infographic: The Path to a Brighter Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar...

  5. 2016 Bioenergizeme Infographic Challenge: Oil Consumption vs Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  6. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biosolids to Biofuels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biosolids to Biofuels BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biosolids to Biofuels BIOENERGIZEME INFOGRAPHIC CHALLENGE: Biosolids to Biofuels This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy History of Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy BIOENERGIZEME INFOGRAPHIC CHALLENGE: History of Bioenergy This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA

  8. 2016 Bioenergizeme Infographic Challenge: Use of Fossil Fuels & Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  9. 2016 Bioenergizeme Infographic Challenge: Biofuels Hit the Road

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  10. 2016 Bioenergizeme Infographic Challenge: Biofuel Jobs and Education

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Sparks High School in Sparks, NV, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  11. 2016 Bioenergizeme Infographic Challenge: US Energy Consumption By Source

    Broader source: Energy.gov [DOE]

    This infographic was created by students from High Tech Early College in Denver, CO, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  12. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental impacts of Bio energy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  13. Solar Decathlon 2013 Infographic: The Path to a Brighter Future...

    Energy Savers [EERE]

    Infographic: The Path to a Brighter Future Solar Decathlon 2013 Infographic: The Path to a Brighter Future September 13, 2013 - 11:50am Addthis Our latest infographic -- Solar ...

  14. 2016 Bioenergizeme Infographic Challenge: The History of Ethanol |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The History of Ethanol 2016 Bioenergizeme Infographic Challenge: The History of Ethanol 2016 Bioenergizeme Infographic Challenge: The History of Ethanol This infographic was created by students from Smithtown High School East in St. James, NY

  15. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Travel to the Future with Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  16. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Effects of Bioenergy on the Environment

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Corn to Ethanol the Process

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Broad Run HS in Ashburn, VA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge...

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae Biofuel This infographic was created by students from Seward HS in Seward, AK, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a broad and complex topic. The ideas expressed in these infographics reflect where students are in the

  19. America's Clean Efficient Fleets: An Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Efficient Fleets: An Infographic America's Clean Efficient Fleets: An Infographic Addthis 1 of 4 Image: Infographic by Hantz Leger (DOE). Date taken: 2012-03-19 15:57 2 of 4 Image: Infographic by Hantz Leger (DOE). 3 of 4 Image: Infographic by Hantz Leger (DOE). Date taken: 2012-03-19 15:57 Investing in Efficiency 4 of 4 Investing in Efficiency Image: Infographic by Hantz Leger (DOE). Date taken: 2012-03-19 15:57

  20. City Energy Profiles and Action Toolbox Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City Energy Profiles and Action Toolbox Infographic City Energy Profiles and Action Toolbox Infographic City Energy Profiles and Action Toolbox Infographic This Cities Leading Through Energy Analysis and Planning (Cities-LEAP) City Energy Profiles and Action Toolbox infographic describes the data available in the city energy profiles tool and the city action toolbox. Download this infographic. More Documents & Publications Cities Leading Through Energy Analysis and Planning Infographic

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner ...

  2. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic ...

  3. 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Algae as a Biofuel 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel 2016 Bioenergizeme Infographic Challenge: Algae as a Biofuel

  4. 2016 Bioenergizeme Infographic Challenge: Energy From Biomass | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy From Biomass 2016 Bioenergizeme Infographic Challenge: Energy From Biomass 2016 Bioenergizeme Infographic Challenge: Energy From Biomass

  5. 2016 Bioenergizeme Infographic Challenge: The Algae's Always Greener |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Algae's Always Greener 2016 Bioenergizeme Infographic Challenge: The Algae's Always Greener 2016 Bioenergizeme Infographic Challenge: The Algae's Always Greener

  6. INFOGRAPHIC: Wide Bandgap Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Wide Bandgap Semiconductors INFOGRAPHIC: Wide Bandgap Semiconductors January 21, 2014 - 12:44pm Addthis INFOGRAPHIC: Wide Bandgap Semiconductors MORE RESOURCES Watch the video on WBG semiconductors Read the Advanced Manufacturing Office fact sheet on WBG semiconductors Subscribe to Advanced Manufacturing Office news updates Learn about the Clean Energy Manufacturing Initiative For decades, power electronics - or tiny pieces of equipment such as inverters and rectifiers made of

  7. BioenergizeME Infographic Challenge: Understanding America's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infographic Challenge Understanding America's Bioenergy Choices Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national...

  8. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the infographic above, our power grid is a network of power plants, substations, transformers, wires, sensors and poles that carry electricity sometimes hundreds of miles to be...

  9. 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme ...

  10. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Benefits of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Benefits of Bioenergy Corn Can Save the Earth BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Benefits of Bioenergy Corn Can Save the Earth BIOENERGIZEME ...

  11. BioenergizeME Infographic Challenge Toolkit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toolkit BioenergizeME Infographic Challenge Toolkit Toolkit for the BioenergizeME Infographic Challenge. bioenergizeme_toolkit.pdf (1.89 MB) More Documents & Publications Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge BioenergizeME Infographic Challenge Flyer Webinar: BioenergizeME Office Hours Webinar: Biomass Basics

  12. INFOGRAPHIC: The Fuel Cell Electric Vehicle | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle INFOGRAPHIC: The Fuel Cell Electric Vehicle This infographic shows how fuel cell electric vehicles (FCEVs) work and some of the benefits of FCEVs, such as how they reduce greenhouse gas emissions, emit only water, and operate efficiently. INFOGRAPHIC: The Fuel Cell Electric Vehicle (FCEV) (497.65 KB) More Documents & Publications Amped Up! Volume 1, No. 4: The Transportation Issue Fuel Cell Technologies

  13. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (BioHydrogen) | Department of Energy One Man's Yardwaste is Another Man's Energy (BioHydrogen) BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen) BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen) This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic

  14. BioenergizeME Infographic Challenge Social Media Guide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Social Media Guide BioenergizeME Infographic Challenge Social Media Guide Social Media Guide for the BioenergizeME Infographic Challenge. bioenergizeme_social_media_guide.pdf (244.42 KB) More Documents & Publications BioenergizeME Infographic Challenge Flyer BioenergizeME Infographic Challenge Toolkit Webinar: BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

  15. 2016 BioenergizeME Infographic Challenge Winners Crowned | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2016 BioenergizeME Infographic Challenge Winners Crowned 2016 BioenergizeME Infographic Challenge Winners Crowned May 25, 2016 - 2:38pm Addthis 2016 BioenergizeME Infographic Challenge Winners Crowned The winner of the 2016 BioenergizeME Infographic Challenge was announced during a special awards ceremony on May 11, 2016, by Dr. Jonathan Male, Director of the Bioenergy Technologies Office (BETO). The winning infographic entitled "Cellulosic Ethanol: Fueling the Future," was

  16. Understanding Energy Use in Cities Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding Energy Use in Cities Infographic Understanding Energy Use in Cities Infographic Understanding Energy Use in Cities Infographic This Cities Leading through Energy Analysis and Planning (Cities-LEAP) infographic describes the key points from the report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities. Download this infographic. Read the Report cities-leap paper cover.jpg Read City-Level Energy Decision Making: Data Use in

  17. 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biofuels vs Fossil Fuels 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels 2016 Bioenergizeme Infographic Challenge: Biofuels vs Fossil Fuels This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic Challenge encourages young people to improve their foundational understanding of bioenergy, which is a

  18. BioenergizeME Infographic Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ŏ - 30 million retired Christma s trees could produce 68 million gallons of green gasoline . - 68 million gallons of green gasoline could take you from New York to Los Angeles 700,000 times. 3 DESIGN Now it's time to bring everything together in one cohesive design. Create the layout, and choose a color scheme. Bring your sketches to life with hand-drawn or digital illustrations and icons. Be sure to use a consistent design style throughout the infographic. 1 RESEARCH 5 STEPS FOR BUILDING AN

  19. INFOGRAPHIC: Carbon Capture 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture 101 INFOGRAPHIC: Carbon Capture 101 January 7, 2016 - 11:34am Addthis Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be hard to understand. This infographic breaks it down for you. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Carbon capture is an important part of the Energy Department's Fossil Energy research and development efforts, but it can be

  20. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  1. Energy Saver 101: Water Heating Infographic

    Broader source: Energy.gov [DOE]

    Looking for ways to save money on water heating? Energy Saver 101: Water Heating infographic lays out evergything you need to know about water heating and shares ways to save energy and money.

  2. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Imagine Renewable Fuel

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Ballston Spa, NY, as part of the U.S. Department of Energy-BioenergizeME...

  3. BIOENERGIZEME INFOGRAPHIC CHALLENGE: A "Biomassive" Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The ideas expressed in these infographics reflect where students are in the learning process and do not necessarily reflect the state of knowledge of the U.S. Department of Energy ...

  4. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Oil Future of the World

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Miami Palmetto Senior High School in Pinecrest, FL, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  5. 2016 Bioenergizeme Infographic Challenge: Sustainable Lignin-Based Methanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from High Tech High North County in San Marcos, CA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  6. 2016 Bioenergizeme Infographic Challenge: Fossil Fuels vs Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  7. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tomorrow | Department of Energy Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow BIOENERGIZEME INFOGRAPHIC CHALLENGE: Algae: for a Cleaner and Greener Tomorrow

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bioenergy: Creating Biofuels from Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from North Caddo Magnet High School in Vivian, LA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  9. 2016 Bioenergizeme Infographic Challenge: Renewable Alternatives: Cellulosic Ethanol

    Broader source: Energy.gov [DOE]

    This infographic was created by students from General Douglas MacArthur High School in Levittown, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  10. Energy Saver 101 Infographic: Home Energy Audits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Audits Energy Saver 101 Infographic: Home Energy Audits August 15, 2013 - 3:19pm Addthis New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting energy. | Infographic by Sarah Gerrity, Energy Department. New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is

  11. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Feedstocks | Department of Energy Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks This infographic was created by students from Franklin High School in Franklin, MA

  12. U.S. Virgin Islands Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infographic U.S. Virgin Islands Infographic U.S. Virgin Islands Infographic This infographic highlights progress the U.S. Virgin islands has made toward meeting its goal of a 60% reduction in fossil fuel use by 2025. Click on the link below to download a full-resolution version. Download the USVI Infographic. (10.92 MB) More Documents & Publications Almost 1,500 solar water heating and PV systems have popped up throughout the territory since the EDIN-USVI project launched in February 2010,

  13. BioenergizeME Infographic Challenge Flyer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flyer BioenergizeME Infographic Challenge Flyer Flyers for the BioenergizeME Infographic Challenge can be downloaded in three sizes: 3.5"x5", 8.5"x11", and 11"x16" bioenergizeme_flyer_3.5x5.pdf (169.61 KB) bioenergizeme_flyer_8.5x11.pdf (187.31 KB) bioenergizeme_flyer_11x16.pdf (189.66 KB) More Documents & Publications BioenergizeME Infographic Challenge Toolkit BioenergizeME Infographic Challenge Infographic Guide

  14. Energy Saver 101 Infographic: Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Energy Saver 101 Infographic: Home Cooling June 13, 2014 - 5:10pm Addthis Just in time for summer, our new Energy Saver 101 infographic covers everything you need to know about home cooling. Download a <a href="/node/920771">high-resolution version</a> of the home cooling infographic. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Just in time for summer, our new Energy Saver 101 infographic covers everything you

  15. Energy Saver 101 Infographic: Landscaping | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landscaping Energy Saver 101 Infographic: Landscaping April 3, 2014 - 4:04pm Addthis Our new Energy Saver 101 infographic highlights everything you need to know to landscape for energy savings. Download a <a href="/node/898361">high resolution version</a> of the infographic or individual sections. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our new Energy Saver 101 infographic highlights everything you need to know to

  16. Infographic: Where in Space is the Energy Department? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Infographic: Where in Space is the Energy Department? Infographic: Where in Space is the Energy Department? June 9, 2015 - 2:54pm Addthis In the infographic above, learn about the space missions, past and present, where technology from the Energy Department and its National Labs has made discovery possible. | Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. In the infographic above, learn about the space missions, past and present,

  17. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Powering the World One Poop at a Time

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Genesee Career Institute in Flint, MI, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Comparison of Bio-fuels to Other Commonly Used Forms of Energy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  19. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Environmental Benefits of Bioenergy Corn Can Save the Earth

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown HS East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME Infographic...

  20. BioenergizeME Infographic Challenge Registration

    Broader source: Energy.gov [DOE]

    Complete the registration form to register for the 2016 BioenergizeME Infographic Challenge. We encourage you to register early to help us in planning for a timely review. The registration period closes on Feb. 4, 2016, at 5 p.m. Central Time.

  1. Winning Infographics Depict Future of Geothermal Energy | Department of

    Energy Savers [EERE]

    Washington, D.C. | Department of Energy BioenergizeME Infographic Challenge Students Recognized in Washington, D.C. Winning BioenergizeME Infographic Challenge Students Recognized in Washington, D.C. August 5, 2016 - 10:00am Addthis 2016 BioenergizeME Infographic Challenge Winning Team: (From left to right) Maria Zeitlin (advisor), Lexington Zografakis, Sydney Bracht, and Sidney Davis were recognized by Jonathan Male, Director of the Bioenergy Technologies Office. The team and their advisor

  2. BioenergizeME Infographic Challenge Winners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenge Winners BioenergizeME Infographic Challenge Winners BioenergizeME Spring 2015 Infographic Challenge Award Ceremomy at Bioenergy 2015. BioenergizeME Spring 2015 Infographic Challenge Award Ceremomy at Bioenergy 2015. Spring 2016 Challenge Winners: Winning Team, Director's Prize for Excellence in Content, Design, and Social Media Promotion: Cellulosic Ethanol: The Fuel of the Future-Smithtown High School East in St. James, New York First Runner Up: Algae as a Biofuel-Smithtown High

  3. Cities Leading Through Energy Analysis and Planning Infographic |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cities Leading Through Energy Analysis and Planning Infographic Cities Leading Through Energy Analysis and Planning Infographic The Cities Leading through Energy Analysis and Planning (Cities-LEAP) project delivers standardized, localized energy data and analysis that enables cities to lead clean energy innovation and integrate strategic energy analysis into decision making. Two Cities-LEAP infographics catalog the programs and tools currently supporting local

  4. Winning BioenergizeME Infographic Challenge Students Recognized in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, D.C. | Department of Energy Winning BioenergizeME Infographic Challenge Students Recognized in Washington, D.C. Winning BioenergizeME Infographic Challenge Students Recognized in Washington, D.C. August 5, 2016 - 10:00am Addthis 2016 BioenergizeME Infographic Challenge Winning Team: (From left to right) Maria Zeitlin (advisor), Lexington Zografakis, Sydney Bracht, and Sidney Davis were recognized by Jonathan Male, Director of the Bioenergy Technologies Office. The team and their

  5. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  6. Energy Saver 101 Infographic: Home Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Energy Saver 101 Infographic: Home Heating December 16, 2013 - 10:48am Addthis Our new Energy Saver 101 infographic lays out everything you need to know about home heating -- from how heating systems work and the different types on the market to what to look for when replacing your system and proper maintenance. Download a <a href="/node/784286">high-resolution version</a> of the infographic or individual sections. | Infographic by <a

  7. 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy of Tomorrow Today | Department of Energy Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today 2016 Bioenergizeme Infographic Challenge: Algae Biofuels, Exploring the Energy of Tomorrow Today

  8. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  9. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Broader source: Energy.gov (indexed) [DOE]

    R A T I O N B i o e n e r g i z e M E U . S . D E P A R T M ENT O F E N E R G Y BioenergizeME Infographic Challenge 2016 Annual Update "Exploring the Future American Energy Landscape" CHALLENGE DEADLINES TOPIC AREA 1 - BIOENERGY HISTORY RESEARCH TOPICS AND PROMPTS The 2016 Annual Update contains the deadlines and prompts for the 2016 BioenergizeME Infographic Challenge. In this challenge, student teams research, interpret, apply, and then design an infographic that responds to one of

  10. Energy Saver 101: Home Cooling Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Saver 101: Home Cooling Infographic Energy Saver 101: Home Cooling Infographic While home cooling only accounts for 6 percent of the average home's energy use, it can lead to high energy bills during the warm months. This summer, don't let your energy bills go through the roof. Our Energy Saver 101 infographic covers everything you need to know about home cooling -- from how an air conditioner works and the different types of systems on the market to proper maintenance and energy-saving

  11. INFOGRAPHIC: Everything You Need to Know About Supercomputers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Everything You Need to Know About Supercomputers INFOGRAPHIC: Everything You Need to Know About Supercomputers November 18, 2015 - 5:37pm Addthis Infographic by <a href="/node/1332956">Carly Wilkins</a> and <a href="/node/379579">Sarah Gerrity</a>. Infographic by Carly Wilkins and Sarah Gerrity. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs What are the key facts? National Labs are home to some of the most

  12. BIOENERGIZEME INFOGRAPHIC CHALLENGE: A History of Bio-Fuel

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Ballston Spa, NY, as part of the U.S. Department of Energy-BioenergizeME...

  13. 2016 Bioenergizeme Infographic Challenge: The Miracles of Biomass

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Malta, NY, as part of the U.S. Department of Energy-BioenergizeME...

  14. INFOGRAPHIC: Let's Get to Work on Solar Soft Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Let's Get to Work on Solar Soft Costs INFOGRAPHIC: Let's Get to Work on Solar Soft Costs December 2, 2013 - 1:00pm Addthis Learn how soft costs are contributing to the price of ...

  15. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another...

    Broader source: Energy.gov (indexed) [DOE]

    One Man's Yardwaste is Another Man's Energy (BioHydrogen) This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department ...

  16. Energy Saver 101 Infographic: Home Energy Audits | Department...

    Broader source: Energy.gov (indexed) [DOE]

    New Energy Saver 101 infographic breaks down a home energy audit, explaining what energy auditors look for and the special tools they use to determine where a home is wasting...

  17. INFOGRAPHIC | Made in America: Clean Energy Jobs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Breaking down the latest Clean Energy Roundup from the Environmental Entrepreneurs. More details here. | Infographic by Sarah...

  18. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Bio-Fuel at Farms

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Ballston Spa, NY, as part of the U.S. Department of Energy-BioenergizeME...

  19. 2016 Bioenergizeme Infographic Challenge: Job Opportunities in Bioenergy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Malta, NY, as part of the U.S. Department of Energy-BioenergizeME...

  20. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Broader source: Energy.gov (indexed) [DOE]

    BioenergizeME Infographic Challenge Understanding America's Bioenergy Choices Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department is challenging high school-aged students to investigate a bioenergy topic and design an infographic that illustrates their research. � For more information, please visit

  1. BIOENERGIZEME INFOGRAPHIC CHALLENGE: One Man's Yardwaste is Another Man's Energy (BioHydrogen)

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  2. 2016 Bioenergizeme Infographic Challenge: From Feedstock to Fuel Pump: Careers in the Biofuel Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Williamsburg High School for Architecture and Design in Brooklyn, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The...

  3. New Infographic and Projects to Keep Your Energy Bills Out of...

    Energy Savers [EERE]

    New Infographic and Projects to Keep Your Energy Bills Out of Hot Water New Infographic and Projects to Keep Your Energy Bills Out of Hot Water April 19, 2013 - 3:21pm Addthis New ...

  4. 2016 Bioenergizeme Infographic Challenge: Environmental Impacts of Bioenergy vs Fossil Energy

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Smithtown High School East in St. James, NY, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  5. INFOGRAPHIC: Better Buildings Leading to Big Energy Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Better Buildings Leading to Big Energy Savings INFOGRAPHIC: Better Buildings Leading to Big Energy Savings May 11, 2016 - 12:35pm Addthis Better Buildings partners have saved more than $1.3 billion on energy costs. Our new infographic explains how Better Buildings works and why it’s important. | Graphic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department Better Buildings partners have saved more than $1.3 billion on energy costs. Our new

  6. INFOGRAPHIC: How Appliance Standards Help Consumers Save Big | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Appliance Standards Help Consumers Save Big INFOGRAPHIC: How Appliance Standards Help Consumers Save Big December 14, 2015 - 3:10pm Addthis FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and Equipment Standards Program. | Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department FACT: Consumers are saving more than $62 billion a year as a result of the Energy Department's Appliance and

  7. Picture of the Week: Gamma-ray bursts, infographic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gamma-ray bursts: infographic Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. With the help of sophisticated instruments such as the ground based RAPTOR robotic observatory system in New Mexico and the High Altitude Water Chernekov (HAWC) Gamma Ray Observatory in Mexico, scientists at Los Alamos National Lab and around the world are working to understand the ongoing mysteries relating to their physics and origins. Gamma Ray Bursts Click the image to see a larger view.

  8. Infographics from the 2014 National Geothermal Student Competition

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    With the theme of GeoEnergy is Beautiful, the Energy Department's National Geothermal Student Competition in 2014 centered around public awareness. Student teams were asked to create a clear and engaging infographic that would explain geothermal energy simply to a non-technical audience. Phil Ulibarri of Truckee Meadows Community College in Reno earned first place in the Geo Energy is Beautiful contest in 2014.

  9. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Take hold of your energy future: Bioenergy is derived from organic matter to produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Submissions are due by March 4, 2016, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email

  10. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Submissions are due by March 4, 2016, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email BioenergizeME@ee.doe.gov For more information, please visit

  11. BioenergizeME Infographic Challenge: Understanding America's Bioenergy Choices

    Broader source: Energy.gov (indexed) [DOE]

    produce renewable fuels, products, and power. This national challenge aims to inspire students to explore America's bioenergy choices and share what they learn with others. The Energy Department challenges you to investigate a bioenergy topic and design an infographic that illustrates your research. Register by February 3, 2017, at 5:00 p.m. central time. Follow us on #BioenergizeME. Questions? Email BioenergizeME@ee.doe.gov For more information, please visit

  12. BioenergizeME Office Hours Webinar: Must-Know Tips for the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    Infographics are a useful visual tool for explaining complex information, numbers, or data quickly and effectively. However, you do not need to be an experienced graphic designer to make an eye-catching infographic. To assist student teams with the 2016 BioenergizeME Infographic Challenge, this webinar will highlight strategies for designing engaging infographics and will provide creative approaches that can bring attention to your infographic and motivate others to share it across their social media networks. The webinar will also include lessons learned from previous challenges and tips from last year’s winning team. The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge engages 9th–12th-grade high school teams to research one of four cross-curricular bioenergy topics and design an infographic to share what they have learned. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  13. INFOGRAPHIC: How Do We Know Iran Isn't Building a Nuclear Bomb? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Do We Know Iran Isn't Building a Nuclear Bomb? INFOGRAPHIC: How Do We Know Iran Isn't Building a Nuclear Bomb? February 2, 2016 - 12:00pm Addthis Infographic by <a href="/node/1332956">Carly Wilkins</a>, Energy Department. Infographic by Carly Wilkins, Energy Department. Pat Adams Pat Adams Digital Content Specialist, Office of Public Affairs Carly Wilkins Carly Wilkins Multimedia Designer The Iran Deal puts in place unprecedented monitoring and

  14. New Infographic and Projects to Keep Your Energy Bills Out of...

    Broader source: Energy.gov (indexed) [DOE]

    New Energy Saver 101 infographic lays out the different types of water heaters on the market and will help you figure out how to select the best model for your home. Download a...

  15. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) BioenergizeME Infographic Challenge is an engaging way for students to explore topics in bioenergy and share what they have learned with others across the nation. In this challenge, high school-aged teams (grades 9–12) will use technology to research, interpret, apply, and then design an infographic that responds to one of four cross-curricular bioenergy topics. To make the challenge easier and more effective, this webinar is designed to guide interested students, teachers, and other educators through the submission process and highlight the resources that are available on the BioenergizeME Infographic Challenge website. These resources will assist students with researching their selected topics, developing their infographics, and designing effective social media campaigns. This webinar is part of the BioenergizeME Office Hours webinar series developed by the DOE Bioenergy Technologies Office.

  16. Grades 9-12: Join the BioenergizeME Infographic Challenge!

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the BioenergizeME Infographic Challenge to engage 9th–12th grade students in learning about bioenergy and educating their peers. In this...

  17. 2016 Bioenergizeme Infographic Challenge: Biofuel: Making Sustainable Fuels Through Organic Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    This infographic was created by students from Clean Technologies and Sustainable Industries Early College High School in Malta, NY, as part of the U.S. Department of Energy-BioenergizeME...

  18. Winning Team Announced for 2015 BioenergizeME Infographic Challenge Pilot

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bioenergy Technologies Office (BETO) Director Jonathan Male announced the winner and finalists of the 2015 BioenergizeME Infographic Challenge Pilot in a special webinar awards ceremony on June 3, 2015.

  19. BioenergizeME Office Hours: Guide to the 2016 BioenergizeME Infographic Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 15, 2015 BioenergizeME Office Hours Guide to the 2016 BioenergizeME Infographic Challenge Shannon Zaret Communications Specialist, The Hannon Group Contractor to the U.S. Department of Energy's Bioenergy Technologies Office 2 | Bioenergy Technologies Office | Bioenergy Technologies Office Agenda * Overview * Research Topic Areas And Prompts * Research Resources * Infographic Resources * Rubric * Social Media Campaign * Awards * Registration * Resources for Educators * Questions 3 |

  20. BioenergizeME Office Hours Webinar: Guide to the 2016 BioenergizeME Infographic Challenge

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bioenergy Technologies Office (BETO) is hosting the Guide to the 2016 BioenergizeME Infographic Challenge webinar on Oct. 15, 2015, from 4 p.m. to 4:45 p.m. Eastern...

  1. Students Recognized in Washington, D.C. for their Winning Bioenergy Infographic

    Broader source: Energy.gov [DOE]

    A team of five freshmen from Williamsburg High School for Architecture and Design in Brooklyn, New York—designed an infographic on the benefits of cellulosic ethanol and were invited as guests to the eight annual conference, Bioenergy 2015, in Washington, D.C.

  2. The neutrino turns 60

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The neutrino turns 60 The neutrino turns 60 Although neutrinos are extremely abundant, it took 26 years for scientists to confirm their existence. In the 60 years since the neutrino's discovery, we've slowly learned about this intriguing particle. June 20, 2016 Although neutrinos are extremely abundant, it took 26 years for scientists to confirm their existence. In the 60 years since the neutrino's discovery, we've slowly learned about this intriguing particle. Artwork by Sandbox Studio, Chicago

  3. Diamond turning of glass

    SciTech Connect (OSTI)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  4. Turning windows into solar generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning windows into solar generators Turning windows into solar generators A simple filtration process helped Rice University researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes. August 8, 2016 Turning windows into solar generators UbiQD founder and President Hunter McDaniel shows quantum dots dissolved in a liquid solution that absorbs ultraviolet light and converts the energy into emitted light of different colors. CREDIT: Courtesy of UbiQD

  5. Tune Evaluation From Phased BPM Turn-By-Turn Data

    SciTech Connect (OSTI)

    Alexahin, Y.; Gianfelice-Wendt, E.; Marsh, W.; /Fermilab

    2010-05-18

    In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

  6. Turning collectors for solar radiation

    DOE Patents [OSTI]

    Barak, Amitzur Z.

    1976-01-01

    A device is provided for turning a solar collector about the polar axis so that the collector is directed toward the sun as the sun tracks the sky each day. It includes two heat-expansive elements and a shadow plate. In the morning a first expansive element is heated, expands to turn the collector to face the sun, while the second expansive element is shaded by the plate. In the afternoon the second element is heated, expands to turn the collector to face the sun, while the first is shaded by the plate.

  7. MHD plant turn down considerations

    SciTech Connect (OSTI)

    Lineberry, J.T.; Chapman, J.N.

    1991-01-01

    The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.

  8. Diamond turning machine controller implementation

    SciTech Connect (OSTI)

    Garrard, K.P.; Taylor, L.W.; Knight, B.F.; Fornaro, R.J.

    1988-12-01

    The standard controller for a Pnuemo ASG 2500 Diamond Turning Machine, an Allen Bradley 8200, has been replaced with a custom high-performance design. This controller consists of four major components. Axis position feedback information is provided by a Zygo Axiom 2/20 laser interferometer with 0.1 micro-inch resolution. Hardware interface logic couples the computers digital and analog I/O channels to the diamond turning machine`s analog motor controllers, the laser interferometer, and other machine status and control information. It also provides front panel switches for operator override of the computer controller and implement the emergency stop sequence. The remaining two components, the control computer hardware and software, are discussed in detail below.

  9. Diamond turning of thermoplastic polymers

    SciTech Connect (OSTI)

    Smith, E.; Scattergood, R.O.

    1988-12-01

    Single point diamond turning studies were made using a series of thermoplastic polymers with different glass transition temperatures. Variations in surface morphology and surface roughness were observed as a function of cutting speed. Lower glass transition temperatures facilitate smoother surface cuts and better surface finish. This can be attributed to the frictional heating that occurs during machining. Because of the very low glass transition temperatures in polymeric compared to inorganic glasses, the precision machining response can be very speed sensitive.

  10. Turning points in reactor design

    SciTech Connect (OSTI)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  11. TurningPoint Evaluation Results

    Office of Environmental Management (EM)

    Bio-Gas Project Daryl Williams November 18, 2008 Introduction Background Description of Project Partnership Feasibility Study/Business Plan Creation of Quil Ceda Power Funding Creation of Qualco Energy Closing Background Land-Use Changes from Agriculture to Other Types of Development Skykomish River WQ Problems Bacteria Nutrient Loading Relationship Between Tribes and Dairies Poor Economy for Dairy Operations Project Description Sewage Treatment for

  12. Powerpedia Turns Two | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turns Two Powerpedia Turns Two January 27, 2012 - 3:15pm Addthis The 500 most viewed pages on Powerpedia, the Energy Department's internal information-sharing website which turned two on January 27, 2011. | Image credit Thomas O'Neill. The 500 most viewed pages on Powerpedia, the Energy Department's internal information-sharing website which turned two on January 27, 2011. | Image credit Thomas O'Neill. Wikipedia has revolutionized information sharing the world over. Every minute of every day,

  13. Bacteria isolated from amoebae/bacteria consortium

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  14. Bacteria isolated from amoebae/bacteria consortium

    DOE Patents [OSTI]

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  15. ARM - VAP Product - 10rlprofdep1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rlprofdep1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027252 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofdep1turn Data Plot Example 10rlprofdep1turn data plot VAP Output : 10RLPROFDEP1TURN 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm Active

  16. ARM - VAP Product - 10rlprofmr1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rlprofmr1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027254 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Example 10rlprofmr1turn Data Plot Example 10rlprofmr1turn data plot VAP Output : 10RLPROFMR1TURN Raman LIDAR (RL): water vapor mixing ratio and relative humidity profiles, along with PWV Active Dates 1998.03.01 - 2015.09.23

  17. Turning Grass into Gas for Less

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    like this switchgrass could be turned into biofuels, rather than using corn or other food crops. Pull up to the pump these days and chances are your gas will be laced with...

  18. ARM - VAP Product - 10srlprofmr1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    srlprofmr1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027724 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 10SRLPROFMR1TURN Raman LIDAR (RL): 10-sec water vapor mixing ratio andrelative humidity profiles , along with PWV Active Dates 2004.10.01 - 2015.09.23 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF

  19. ARM - VAP Product - 2rlprofdep1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsrlprof2rlprofdep1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027735 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : 2RLPROFDEP1TURN 2-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths Active Dates 2004.10.01 - 2015.09.25 Originating VAP Process Raman LIDAR Vertical Profiles :

  20. ARM - VAP Product - rlprofmerge1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsrlprofrlprofmerge1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1027756 [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send VAP Output : RLPROFMERGE1TURN Merged analog and photon counting profiles used as input for other RLPROF VAPs Active Dates 2004.10.01 - 2015.10.03 Originating VAP Process Raman LIDAR Vertical Profiles : RLPROF

  1. Silicon Carbide Emitter Turn-Off Thyristor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jun; Wang, Gangyao; Li, Jun; Huang, Alex Q.; Melcher, Jerry; Atcitty, Stan

    2008-01-01

    A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5  A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100  W / cm 2 conduction and the 100  W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less

  2. Pumpkin Power: Turning Food Waste into Energy | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew...

  3. Measurement of tool forces in diamond turning

    SciTech Connect (OSTI)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  4. DOE Turns 25 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Turns 25 DOE Turns 25 Washington, DC The Department of Energy marked the 25th anniversary of its establishment in 1977

  5. Illinois Turning Landfill Trash into Future Cash

    Office of Energy Efficiency and Renewable Energy (EERE)

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  6. Corning and Kroger turn whey to yeast

    SciTech Connect (OSTI)

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  7. Science on the Hill: Turning windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: Turning windows into solar panels Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating technology that can turn windows into electric generators. February 7, 2016 solar panel windows The luminescent solar concentrator could turn any window into a daytime power source. Science on the Hill: Turning windows into solar panels Sunlight is abundant, free and for all practical purposes, eternal. Harvesting that light

  8. Turning Algae into Energy in New Mexico

    SciTech Connect (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2013-07-29

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  9. Turning Algae into Energy in New Mexico

    ScienceCinema (OSTI)

    Sayre, Richard; Olivares, Jose; Lammers, Peter

    2014-06-24

    Los Alamos National Laboratory, as part of the New Mexico Consortium - comprised of New Mexico's major research universities, the Lab, and key industry partners - is conducting research into using algae as a feed stock for a renewable source of fuels, and other products. There are hundreds of thousands of different algae species on Earth. They account for approximately half of the net photosynthesis on the planet, yet they have not been used in any kind of a large scale by humanity, with just a few exceptions. And yet, the biomass is easy to transform into useful products, including fuels, and they contain many other natural products that have high value. In this video Los Alamos and New Mexico State University scientists outline the opportunities and challenges of using science to turn algae into energy.

  10. Hard turning micro-machine tool

    DOE Patents [OSTI]

    DeVor, Richard E; Adair, Kurt; Kapoor, Shiv G

    2013-10-22

    A micro-scale apparatus for supporting a tool for hard turning comprises a base, a pivot coupled to the base, an actuator coupled to the base, and at least one member coupled to the actuator at one end and rotatably coupled to the pivot at another end. A tool mount is disposed on the at least one member. The at least one member defines a first lever arm between the pivot and the tool mount, and a second lever arm between the pivot and the actuator. The first lever arm has a length that is less than a length of the second lever arm. The actuator moves the tool mount along an arc.

  11. EECBG Success Story: How Chula Vista, California is Turning Cooking...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chula Vista, California is Turning Cooking Oil Into Savings EECBG Success Story: How Chula Vista, California is Turning Cooking Oil Into Savings January 19, 2011 - 1:21pm Addthis...

  12. Alternative Fuels Data Center: City of Cincinnati Turns Sustainable...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    City of Cincinnati Turns Sustainable Fleet Plan into On-Road Reality to someone by E-mail Share Alternative Fuels Data Center: City of Cincinnati Turns Sustainable Fleet Plan into ...

  13. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    SciTech Connect (OSTI)

    Petrenko, A.V.; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  14. When to Turn Off Your Lights | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » When to Turn Off Your Lights When to Turn Off Your Lights The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of bulb and the

  15. Turn Motors Off When Not in Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turn Motors Off When Not in Use Turn Motors Off When Not in Use Motors do not use energy when turned off. Reducing motor operating time by just 10% usually saves more energy than replacing a standard efficiency motor with a premium efficiency motor. This tip sheet discusses pros and cons of repeated motor starts and stops and provides suggested actions. Motor Systems Tip Sheet #10 Turn Motors Off When Not in Use (November 2012) (458 KB) More Documents & Publications Improving Motor and Drive

  16. ARM - VAP Product - aerich2nf1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsaerinfaerich2nf1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.54391027273 What is this? Generate Citation ARM Data Discovery Browse...

  17. ARM - VAP Product - aerich1nf1turn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsaerinfaerich1nf1turn Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.54391027272 What is this? Generate Citation ARM Data Discovery Browse...

  18. Carbon Capture Turned Upside Down: High-Temperature Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Turned Upside Down: High-Temperature Adsorption & Low-Temperature Desorption (HALD) Previous Next List Joos, Lennart; Lejaeghere, Kurt; Huck, Johanna M.; Van...

  19. Turning Bayesian model averaging into Bayesian model combination...

    Office of Scientific and Technical Information (OSTI)

    Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James 1 ; Monteith, Kristine 2 ; Seppi, Kevin 2 ; Martinez, Tony 2 + Show Author ...

  20. EECBG Success Story: Georgia County Turning Industrial and Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Georgia County Turning Industrial and Farm Waste Into Big Energy Savings EECBG Success ... Learn more. Addthis Related Articles EECBG Success Story: County Aims to Save with ...

  1. PPPL featured as DOE celebrates turning 35 | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    featured as DOE celebrates turning 35 October 5, 2012 Tweet Widget Google Plus One Share on Facebook 35 Years at the Department of Energy (Flickr Photostream)...

  2. NREL: Technology Deployment - More Than 70 Countries Turn to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Than 70 Countries Turn to the Clean Energy Solutions Center for Policy Assistance News Solutions Center Announces Collaboration with R20 Regions of Climate Action Clean Energy ...

  3. real-estate-infographic-final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NUMBER OF SOLAR HOMES IN AMERICA IS GROWING QUICKLY THE NUMBER OF SOLAR HOMES IN AMERICA IS GROWING QUICKLY SOLAR HOMES SELL FOR MORE MONEY SOLAR HOMES SELL FOR MORE MONEY SUNSHOT INITIATIVE TRAINING PROGRAMS SUNSHOT INITIATIVE TRAINING PROGRAMS ON THE MARKET: BUYING & SELLING A SOLAR HOME ON THE MARKET: BUYING & SELLING A SOLAR HOME The number of households with solar energy systems in the U.S. is expected to surpass 1,000,000 this year. With this large number of solar homes in the U.S.

  4. Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

    SciTech Connect (OSTI)

    Kraus, R.; Fisher, A.S.; /SLAC

    2005-12-15

    The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle injection. With some changes to the apparatus this goal is within reach and will make turn-by-turn imaging a very useful tool in beam diagnostics.

  5. LX-17 Corner-Turning and Reactive Flow Failure

    SciTech Connect (OSTI)

    Souers, P C; Andreski, H; Cook III, C F; Garza, R; Pastrone, R; Phillips, D; Roeske, F; Vitello, P; Molitoris, J

    2004-03-11

    We have performed a series of highly-instrumented experiments examining corner-turning of detonation. A TATB booster is inset 15 mm into LX-17 (92.5% TATB, 7.5% kel-F) so that the detonation must turn a right angle around an air well. An optical pin located at the edge of the TATB gives the start time of the corner-turn. The breakout time on the side and back edges is measured with streak cameras. Three high-resolution X-ray images were taken on each experiment to examine the details of the detonation. We have concluded that the detonation cannot turn the corner and subsequently fails, but the shock wave continues to propagate in the unreacted explosive, leaving behind a dead zone. The detonation front farther out from the corner slowly turns and eventually reaches the air well edge 180{sup o} from its original direction. The dead zone is stable and persists 7.7 {micro}s after the corner-turn, although it has drifted into the original air well area. Our regular reactive flow computer models sometimes show temporary failure but they recover quickly and are unable to model the dead zones. We present a failure model that cuts off the reaction rate below certain detonation velocities and reproduces the qualitative features of the corner-turning failure.

  6. NM company wants to turn your windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM company wants to turn your windows into solar panels NM company wants to turn your windows into solar panels "There's an opportunity to generate electricity and power buildings with their windows" August 1, 2016 The UbiQD Team The UbiQD team celebrates the opening of its new quantum dot manufacturing facility in Los Alamos July 29. Contact Hunter McDaniel UbiQD Email UbiQD LLC, a quantum dot company, says it can turn windows into solar generators. "There's an opportunity to

  7. Diamond turning of Si and Ge single crystals

    SciTech Connect (OSTI)

    Blake, P.; Scattergood, R.O.

    1988-12-01

    Single-point diamond turning studies have been completed on Si and Ge crystals. A new process model was developed for diamond turning which is based on a critical depth of cut for plastic flow-to-brittle fracture transitions. This concept, when combined with the actual machining geometry for single-point turning, predicts that {open_quotes}ductile{close_quotes} machining is a combined action of plasticity and fracture. Interrupted cutting experiments also provide a meant to directly measure the critical depth parameter for given machining conditions.

  8. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  9. Potential of Diazorphic, Endophytic Bacteria Associated with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane ...

  10. Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen...

    Office of Scientific and Technical Information (OSTI)

    for Rapid Bacteria Pathogen Detection in Human Blood. Citation Details In-Document Search Title: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen ...

  11. When to Turn Off Your Lights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    are not already factored into the rate. LED Lighting The operating life of a light emitting diode (LED) is unaffected by turning it on and off. While lifetime is reduced for...

  12. To the Cloud! Apidae Helps Modelers Turn Information into Knowledge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy To the Cloud! Apidae Helps Modelers Turn Information into Knowledge To the Cloud! Apidae Helps Modelers Turn Information into Knowledge October 26, 2015 - 2:41pm Addthis Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae

  13. Turning Leftover Trees into Biogasoline | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turning Leftover Trees into Biogasoline Turning Leftover Trees into Biogasoline June 7, 2010 - 11:00am Addthis Researchers at Virginia Tech are working to show how biogasoline could potentially be created in existing petroleum refineries, instead of at new biorefineries as shown here. | File illustration Researchers at Virginia Tech are working to show how biogasoline could potentially be created in existing petroleum refineries, instead of at new biorefineries as shown here. | File illustration

  14. As summer turns to fall, a new school year begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As summer turns to fall, a new school year begins Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit As summer turns to fall, a new school year begins Welcome to the back-to-school issue of Community Connections August 1, 2013 Kurt Steinhaus, Director of the Community Programs Office Kurt Steinhaus, Director of the Community Programs Office Contact Community Programs Office Director Kurt

  15. Nuclear Navy Turns 50 | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Navy Turns 50 Nuclear Navy Turns 50 Washington, DC Crew members of the U.S.S. Enterprise, the first nuclear-powered aircraft carrier, spell out NR-50! To commemorate the 50th anniversary of the Nuclear Navy. Admiral Hyman G. Rickover formed the Nuclear Power Branch within the Navy's Bureau of Ships in August 1948. The Office of Naval Reactors is an integrated organization of DOE and the Department of Navy. The Enterprise's eight A2W nuclear reactors were developed by Bettis Laboratory, with the

  16. Turning Bayesian model averaging into Bayesian model combination

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Turning Bayesian model averaging into Bayesian model combination Citation Details In-Document Search Title: Turning Bayesian model averaging into Bayesian model combination Authors: Carroll, James [1] ; Monteith, Kristine [2] ; Seppi, Kevin [2] ; Martinez, Tony [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-07-28 OSTI Identifier: 1084524 Report Number(s): LA-UR-11-04419; LA-UR-11-4419 DOE Contract Number: AC52-06NA25396

  17. Employees turn student | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employees turn student Employees turn student Posted: April 19, 2013 - 1:05pm Y-12 offered classes at UT back in 1954. Read more At every stage of its development - from the initial floating of ideas to the realization of those ideas - the University of Tennessee's new Engineering Management graduate program seems a perfect example of the possibilities created by Y-12 and UT's formal partnership. "Through the leadership of Dr. Rupy Sawhney, we started out with an initiative in Industrial

  18. Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect (OSTI)

    Yang, Xi; Huang, Xiaobiao

    2015-11-10

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  19. Re-engineering bacteria for ethanol production

    DOE Patents [OSTI]

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  20. Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Central Ohio Turns Trash Into Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Google Bookmark Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Delicious Rank Alternative Fuels Data Center: Central Ohio Turns Trash

  1. Turning Ideas into Impact: The Energy Department's Office of Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitions | Department of Energy Ideas into Impact: The Energy Department's Office of Technology Transitions Turning Ideas into Impact: The Energy Department's Office of Technology Transitions December 8, 2015 - 9:05am Addthis Find out how we connect scientists with innovators and entrepreneurs, like the company who used the National Labs’ supercomputing power to model aerodynamics of long-haul trucks to improve efficiency. | Image by Oak Ridge National Laboratory Find out how we

  2. Analysis of the influence of tool dynamics in diamond turning

    SciTech Connect (OSTI)

    Fawcett, S.C.; Luttrell, D.E.; Keltie, R.F.

    1988-12-01

    This report describes the progress in defining the role of machine and interface dynamics on the surface finish in diamond turning. It contains a review of literature from conventional and diamond machining processes relating tool dynamics, material interactions and tool wear to surface finish. Data from experimental measurements of tool/work piece interface dynamics are presented as well as machine dynamics for the DTM at the Center.

  3. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for ...

  4. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  5. Problem Turned Into Performance for Solar Cells | U.S. DOE Office...

    Office of Science (SC) Website

    Problem Turned Into Performance for Solar Cells Basic Energy Sciences (BES) BES Home About ... Problem Turned Into Performance for Solar Cells Boundaries between crystalline grains - ...

  6. Meet a Machine: ATLAS turns NNSA operators into heavylifting heroes |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) ATLAS turns NNSA operators into heavylifting heroes Thursday, July 14, 2016 - 10:27am The United States doesn't explosively test nuclear weapons, but NNSA is still charged with making sure the U.S. nuclear arsenal is safe and secure, and effective. This is why the U.S. nuclear security enterprise is home to the most brilliant minds and cutting-edge technologies for extreme physics and energy science. Learn about one of the members of NNSA's

  7. Computational modeling of drug-resistant bacteria. Final report

    SciTech Connect (OSTI)

    MacDougall, Preston

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  8. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  9. Transformation of gram positive bacteria by sonoporation

    DOE Patents [OSTI]

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  10. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  11. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  12. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  13. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect (OSTI)

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  14. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  15. Los Alamos turns its nuclear weapons power to war on cancer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos turns its nuclear weapons power to war on cancer Los Alamos turns its nuclear weapons power to war on cancer Los Alamos Physicist Eva Birnbaum shows how the laboratory ...

  16. Property Transfer or Turn In Form, HQ F 1400.18 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 Property Transfer or Turn In Form, HQ F 1400.18 (63.58 KB) More Documents & Publications DOE HQ F 1400.18 DOE F 1400.8 DOE HQ F 580

  17. AutoGrid - Turning Big Data Into Power with the Energy Data Platform and Apps

    SciTech Connect (OSTI)

    Narayan, Amit; Dresselhuys, Eric; Kulp, Yann; Buseman, Greg; Piette, Mary Ann; Tang, Andrew; Dailey, Karla; Knudsen, Chris

    2014-03-25

    AutoGrid personnel discuss how they are turning big data into power with the energy data platform and apps.

  18. Proposed plant will turn wood residues into synfuel

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A group of entrepreneurs plan to have a plant operating in Burney, CA. The projected facility will produce an estimated 21,000 gallons of oil per day, converting about 300 tons of raw material. Converting cellulose into synthetic fuel is superior to alcohol production. The process yields approximately 84 gallons of synthetic fuel per ton of raw material. The entire LHG (liquid hydrogen gas) patented facility is self-sufficient and releases only carbon dioxide into the atmosphere. Synfuel production is a three-phase process. First, butyl alcohol (butanol) and acetone are produced from a portion of the raw material. This is facilitated by adding to the raw material a bacteria culture. The planned facility in Burney will have thirty-five 2100 gallon fermentation tanks and will produce 1.25 million gallons of butanol. Next, organic material is blended with water and is pumped into patented LHG catalytic converters, charged with carbon monoxide gas as a catalyst and then heated to 350 degrees C at 2000 to 5000 psi. Here, the organic material is converted to No. 4 oil with bituminous tar as a residue. A patented gasifier system produces the carbon monoxide catalyst plus COH (carbon hydroxide) gas. The COH is used to power a gas turbine driving a 100 kW generator and a central hydraulic pump. The facility, which will be energy self-sufficient, will have approximately 50 kW of excess power to sell to the local utility power grid. Finally, the No. 4 oil, butanol and liquified COH gas are blended to produce any grade fuel oil or a gasoline substitute of very high octane.

  19. Copy of Synthetic Biology of Novel Thermophilic Bacteria for...

    Office of Scientific and Technical Information (OSTI)

    Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of ... Title: Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of ...

  20. Discovery of functional toxin/antitoxin systems in bacteria by...

    Office of Scientific and Technical Information (OSTI)

    ...antitoxin systems in bacteria by shotgun cloning Citation Details In-Document Search Title: Discovery of functional toxinantitoxin systems in bacteria by shotgun cloning ...

  1. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    Bacteria increase arid-land soil surface temperature through the production of sunscreens Prev Next Title: Bacteria increase arid-land soil surface temperature through the ...

  2. Xylan utilization in human gut commensal bacteria is orchestrated...

    Office of Scientific and Technical Information (OSTI)

    Xylan utilization in human gut commensal bacteria is orchestrated by unique modular ... Title: Xylan utilization in human gut commensal bacteria is orchestrated by unique modular ...

  3. Estimating Bacteria Emissions from Inversion of Atmospheric Transport...

    Office of Scientific and Technical Information (OSTI)

    Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics Citation Details In-Document Search Title: Estimating Bacteria ...

  4. Advanced Biofuels: How Scientists are Engineering Bacteria to...

    Office of Environmental Management (EM)

    Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - ...

  5. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  6. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  7. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  8. How Bacteria Make Magnets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Bacteria Make Magnets For a number of animals, including birds, fish and mammals, there is evidence that magnets are used for orientation. However, little is known about how...

  9. Comparative genomics of the lactic acid bacteria

    SciTech Connect (OSTI)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  10. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.