National Library of Energy BETA

Sample records for infiltration measurement technique

  1. PFT Air Infiltration Measurement Technique | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to...

  2. PFT Air Infiltration Measurement Technique | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PFT Air Infiltration Measurement Technique PFT Air Infiltration Measurement Technique The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. The Brookhaven National Laboratory developed the PFT (PerFluorocarbon tracer gas) technique to measure changes over time when determining a building's air-infiltration rate. The airtightness of a building can be determined by using several

  3. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  4. Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier Acoustic Building Infiltration Measurement System/Sonic Leak Quantifier Building infiltration, the uncontrolled leakage of air in and out of a building envelope, accounts for a significant portion of the heating and cooling energy for buildings and is estimated to account for nearly 4% of all energy use in the United States. Infiltration can be measured on residential and small commercial

  5. Oxygen Transport Kinetics in Infiltrated SOFCs Cathode by Electrical Conductivity Relaxation Technique

    SciTech Connect (OSTI)

    Li, Yihong; Gerdes, Kirk; Liu, Xingbo

    2013-07-01

    Infiltration has attracted increasing attention as an effective technique to modify SOFC cathodes to improve cell electrochemical performance while maintaining material compatibility and long-term stability. However, the infiltrated material's effect on oxygen transport is still not clear and detailed knowledge of the oxygen reduction reaction in infiltrated cathodes is lacking. In this work, the technique of electrical conductivity relaxation (ECR) is used to evaluate oxygen exchange in two common infiltrated materials, Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} and La{sub 0.6}Sr{sub 0.4}CoO{sub 3-?}. The ECR technique is also used to examine the transport processes in a composite material formed with a backbone of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-?} and possessing a thin, dense surface layer composed of the representative infiltrate material. Both the surface oxygen exchange process and the oxygen exchange coefficient at infiltrate/LSCF interface are reported. ECR testing results indicate that the application of infiltrate under certain oxygen partial pressure conditions produces a measureable increase in the fitted oxygen exchange parameter. It is presently only possible to generate hypotheses to explain the observation. However the correlation between improved electrochemical performance and increased oxygen transport measured by ECR is reliably demonstrated. The simple and inexpensive ECR technique is utilized as a direct method to optimize the selection of specific infiltrate/backbone material systems for superior performance.

  6. Acoustic Building Infiltration Measurement System (ABIMS) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Acoustic Building Infiltration Measurement System (ABIMS) Acoustic Building Infiltration Measurement System (ABIMS) Addthis 1 of 4 ABIMS team member performs a microphone calibration. Image: Argonne National Laboratory 2 of 4 ABIMS team member fits an insert into the test chamber to simulate a façade leak. Image: Argonne National Laboratory 3 of 4 ABIMS team member runs the acoustic measurement from the labview interface. Image: Argonne National Laboratory 4 of 4 ABIMS team members

  7. Perfluorocarbon tracer method for air-infiltration measurements

    DOE Patents [OSTI]

    Dietz, R.N.

    1982-09-23

    A method of measuring air infiltration rates suitable for use in rooms of homes and buildings comprises the steps of emitting perfluorocarbons in the room to be measured, sampling the air containing the emitted perfluorocarbons over a period of time, and analyzing the samples at a laboratory or other facility.

  8. Engineering report single-shell tank farms interim measures to limit infiltration through the vadose zone

    SciTech Connect (OSTI)

    HAASS, C.C.

    1999-10-14

    Identifies, evaluates and recommends interim measures for reducing or eliminating water sources and preferential pathways within the vadose zone of the single-shell tank farms. Features studied: surface water infiltration and leaking water lines that provide recharge moisture, and wells that could provide pathways for contaminant migration. An extensive data base, maps, recommended mitigations, and rough order of magnitude costs are included.

  9. Uncertainty Analysis Technique for OMEGA Dante Measurements ...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Analysis Technique for OMEGA Dante Measurements Citation Details In-Document Search Title: Uncertainty Analysis Technique for OMEGA Dante Measurements You are...

  10. Comparison of 17 Ice Nucleation Measurement Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 Ice Nucleation Measurement Techniques for Immersion Freezing For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research...

  11. Review of air flow measurement techniques

    SciTech Connect (OSTI)

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  12. NREL: Measurements and Characterization - Capacitance Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capacitance Techniques Deep-level transient spectroscopy generated graph showing six defect levels; DLTS signal (Y-axis) versus Temperature (X-axis). DLTS characterizes defect levels to assist in identification of impurities and potential recombination centers. Capacitance techniques monitor the movement of electronic charge within a semiconductor device and provide a measure of free-carrier and electrically active defect-state properties. Capacitance is the charge storage capacity and is

  13. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

    2014-05-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  14. Infiltration into Fractured Bedrock

    SciTech Connect (OSTI)

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  15. REVIEW OF AIR FLOW MEASUREMENT TECHNIQUES

    Office of Scientific and Technical Information (OSTI)

    ... the tracer gas injection system and anticipate the next ... that happens when a change in concentration is called for. ... The discussion focuses on one class of tracer techniques - ...

  16. Technique for Measuring Hybrid Electronic Component Reliability

    SciTech Connect (OSTI)

    Green, C.C.; Hernandez, C.L.; Hosking, F.M.; Robinson, D.; Rutherford, B.; Uribe, F.

    1999-01-01

    Materials compatibility studies of aged, engineered materials and hardware are critical to understanding and predicting component reliability, particularly for systems with extended stockpile life requirements. Nondestructive testing capabilities for component reliability would significantly enhance lifetime predictions. For example, if the detection of crack propagation through a solder joint can be demonstrated, this technique could be used to develop baseline information to statistically determine solder joint lifelengths. This report will investigate high frequency signal response techniques for nondestructively evaluating the electrical behavior of thick film hybrid transmission lines.

  17. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  18. Optical fiber sensor technique for strain measurement

    DOE Patents [OSTI]

    Butler, Michael A.; Ginley, David S.

    1989-01-01

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study.

  19. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  20. A technique for measuring compressive properties of single microballoons :

    Office of Scientific and Technical Information (OSTI)

    comparison of carbon microballoons of varying tap densities (Conference) | SciTech Connect SciTech Connect Search Results Conference: A technique for measuring compressive properties of single microballoons : comparison of carbon microballoons of varying tap densities Citation Details In-Document Search Title: A technique for measuring compressive properties of single microballoons : comparison of carbon microballoons of varying tap densities A technique has been developed to obtain

  1. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home.

  2. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Heating Season Energy and Moisture Levels

    SciTech Connect (OSTI)

    Vieira, R.; Parker, D.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.

    2013-09-01

    Two identical laboratory homes designed to model existing Florida building stock were sealed and tested to 2.5 ACH50. Then, one was made leaky with 70% leakage through the attic and 30% through windows, to a tested value of 9 ACH50. Reduced energy use was measured in the tighter home (2.5 ACH50) in the range of 15% to 16.5% relative to the leaky (9 ACH50) home. Internal moisture loads resulted in higher dew points inside the tight home than the leaky home. Window condensation and mold growth occurred inside the tight home. Even cutting internal moisture gains in half to 6.05 lbs/day, the dew point of the tight home was more than 15 degrees F higher than the outside dry bulb temperature. The homes have single pane glass representative of older Central Florida homes.

  3. Measurement and fitting techniques for the assessment of material

    Office of Scientific and Technical Information (OSTI)

    nonlinearity using nonlinear Rayleigh waves (Journal Article) | SciTech Connect Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves Citation Details In-Document Search Title: Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic

  4. A new technique to measure tunneling barrier height in solid...

    Office of Scientific and Technical Information (OSTI)

    Title: A new technique to measure tunneling barrier height in solid media Authors: Mason, Thomas A 1 ; Dattelbaum, Andrew M 1 ; Mara, Nathan A 1 ; Kaschner, George C 1 ; ...

  5. Application of electron stimulated desorption techniques to measure the

    Office of Scientific and Technical Information (OSTI)

    isotherm and the mean residence time of hydrogen physisorbed on a metal surface (Journal Article) | SciTech Connect Application of electron stimulated desorption techniques to measure the isotherm and the mean residence time of hydrogen physisorbed on a metal surface Citation Details In-Document Search Title: Application of electron stimulated desorption techniques to measure the isotherm and the mean residence time of hydrogen physisorbed on a metal surface Electron stimulated desorption

  6. Use of automatic vehicle identification techniques for measuring traffic

    Office of Scientific and Technical Information (OSTI)

    performance and performing incident detection. Final report (Technical Report) | SciTech Connect Technical Report: Use of automatic vehicle identification techniques for measuring traffic performance and performing incident detection. Final report Citation Details In-Document Search Title: Use of automatic vehicle identification techniques for measuring traffic performance and performing incident detection. Final report Traffic performance information is an integral part of traffic control

  7. Blower-door techniques for measuring interzonal leakage

    SciTech Connect (OSTI)

    Hult, Erin L.; Sherman, Max H.; Walker, Iain

    2013-01-01

    Abstract The standard blower door test methods, such as ASTM E779, describe how to use a single blower door to determine the total leakage of a single-zone structure such as a detached single-family home. There are no standard test methods for measuring interzonal leakage in a two-zone or multi-zone building envelope such as might be encountered in with an attached garage or in a multifamily building. Some practitioners have been using techniques that involve making multiple measurements with a single blower door as well as combined measurements using multiple blower doors. Even for just two zones there are dozens of combinations of one-door and two-door test protocols that could conceivably be used to determine the interzonal air tightness. We examined many of these two-zone configurations using both simulation and measured data to estimate the accuracy and precision of each technique for realistic measurement scenarios. We also considered the impact of taking measurements at a single pressure versus over multiple pressures. We compared the various techniques and evaluated them for specific uses. Some techniques work better in one leakage regime; some are more sensitive to wind and other noise; some are more suited to determining only a subset of the leakage values. This paper makes recommendations on which techniques to use or not use for various cases and provides data that could be used to develop future test methods.

  8. Assessment of Weatherization Assistance Program Needs for Improved Residential Measure Selection Techniques

    SciTech Connect (OSTI)

    Gettings, M.B.

    1991-01-01

    This report documents a study conducted by the Oak Ridge National Laboratory (ORNL) to evaluate the current measure selection techniques and needs of agencies within the Weatherization Assistance Program (WAP). The study precedes initiation of a project to revise and upgrade the current means of selecting energy conservation measures for low-income single- and multi-family housing and includes recommendations for the revision. Issues relevant to the formation of the revised audit procedures are discussed. Currently available audits are reviewed. No single- to multi-family audit program was found capable of fulfilling the currents needs of the WAP. Recommendations include the separate development of single- and multi-family audits. Addition of specific features to the single-family audit is recommended, including (1) measure ranking unique to each eligible house, (2) heating and cooling equipment measures, (3) cooling envelope measures, (4) means of determining the amount of infiltration work to be performed, (5) potential for customizing and simplifying to meet local needs, and (6) implementation on either a personal computer or as an alternate manual technique. A single-family audit development plan is proposed which includes examination of several existing programs as potential starting points. Recommendations related to the development of a WAP multi-family audit include examination of several existing private programs for possible use by state WAP agencies expressing the greatest need and further study of the DOE supported programs ASEAM and CIRA as possible starting points for a DOE procedure. Early identification of approved multi-family measures and their applicability to various building stock, equipment types, and fuels is also recommended.

  9. Porous body infiltrating method

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY)

    2002-01-01

    A mixture is formed that comprises at least some to about 10 wt % boron nitride and silicon. A body comprising a component that is wetted by or reacts with silicon is contacted with the mixture and the contacted body is infiltrated with silicon from the mixture.

  10. Uncertainty Analysis Technique for OMEGA Dante Measurements (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Uncertainty Analysis Technique for OMEGA Dante Measurements Citation Details In-Document Search Title: Uncertainty Analysis Technique for OMEGA Dante Measurements The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser

  11. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect (OSTI)

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  12. The use of microdosimetric techniques in radiation protection measurements

    SciTech Connect (OSTI)

    Chen, J.; Hsu, H.H.; Casson, W.H.; Vasilik, D.G.

    1997-01-01

    A major objective of radiation protection is to determine the dose equivalent for routine radiation protection applications. As microdosimetry has developed over approximately three decades, its most important application has been in measuring radiation quality, especially in radiation fields of unknown or inadequately known energy spectra. In these radiation fields, determination of dose equivalent is not straightforward; however, the use of microdosimetric principles and techniques could solve this problem. In this paper, the authors discuss the measurement of lineal energy, a microscopic analog to linear energy transfer, and demonstrate the development and implementation of the variance-covariance method, a novel method in experimental microdosimetry. This method permits the determination of dose mean lineal energy, an essential parameter of radiation quality, in a radiation field of unknown spectrum, time-varying dose rate, and high dose rate. Real-time monitoring of changes in radiation quality can also be achieved by using microdosimetric techniques.

  13. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season. ​

  14. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    SciTech Connect (OSTI)

    2014-04-01

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  15. Novel polarization-sensitive micropulse lidar measurement technique

    SciTech Connect (OSTI)

    Flynn, Connor J.; Mendoza, Albert; Zheng, Yunhui; Mathur, Savyasachee

    2007-03-19

    Polarization-sensitive detection of elastic backscatter is useful for detection of cloud phase and depolarizing aerosols. The U.S. DOE Atmospheric Radiation Measurements (ARM) Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio δlinear, the circular depolarization ratio δcirc, and the hybrid MPL depolarization ratio δMPL. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program.

  16. Apparent thermal conductivity measurements by an unguarded technique

    SciTech Connect (OSTI)

    Graves, R.S.; Yarbrough, D.W.; McElroy, D.L.

    1983-01-01

    An unguarded longitudinal heat-flow apparatus for measuring the apparent thermal conductivity (lambda/sub a) of insulations was tested with mean specimen temperatures from 300 to 330/sup 0/K on samples up to 0.91 m wide, 1.52 m long, and 0.15 m thick. Heat flow is provided by a horizontal electrically heated Nichrome screen sandwiched between test samples that are bounded by temperature controlled copper plates and 9 cm of mineral fiber insulation. A determinate error analysis shows lambda/sub a/ measurement uncertainty to be less than +- 1.7% for insulating materials as thin as 3 cm. Three-dimensional thermal modeling indicates negligible error in lambda/sub a/ due to edge loss for insulations up to 7.62 cm thick when the temperature difference across the sample is measured at the sceen center. System repeatability and reproducibility were determined to be +- 0.2%. Differences of lambda/sub a/ results from the screen tester and results from the National Bureau of Standards were 0.1% for a 10-kg/m/sup 3/ Calibration Transfer Standard and 0.9% for 127-kg/m/sup 3/ fibrous glass board (SRM 1450b). Measurements on fiberglass and rock wool batt insulations showed the dependence of lambda/sub a/ on density, temperature, temperature difference, plate emittance, and heat flow direction. Results obtained for lambda/sub a/ as a function of density at 24/sup 0/C differed by less than 2% from values obtained with a guarded hot plate. These results demonstrate that this simple technique has the accuracy and sensitivity needed for useful lambda/sub a/ measurements on thermal insulating materials.

  17. Technique development for polarized pipe-to-soil potential measurements

    SciTech Connect (OSTI)

    Dabkowski, J.

    1989-12-01

    Research project PR-200-513 was undertaken with the overall objective to develop practical techniques for determining the polarized pipe-to-soil potential of a buried pipeline. The importance of this project rests with the fact that pipe-to-soil potential measurements are the most commonly used means of assessing the level of cathodic protection on buried gas transmission pipelines. In the recent past years there has been a considerable amount of effort devoted to developing methods and instruments to correct measured pipe-to-soil potentials for IR drops that may occur from currents (from the cathodic protection system or stray sources) in the soil to obtain the polarized potential. However, many of the methods or instruments available are either time-consuming, cumbersome to use in the field, applicable to only certain types of cathodic protection systems and under particular circumstances, subject to influences from stray current sources or not fully developed as of yet. Thus, there is a need to develop a practical method of determining the polarized pipe potential free of IR drop errors. Hence, the objectives of the research program conducted were: (1) to test and evaluate comparatively existing polarized potential measurement approaches, and (2) to develop new approaches to determining the polarized potential.

  18. Two-frequency lidar technique for mesospheric Na temperature measurements

    SciTech Connect (OSTI)

    She, C.Y.; Latifi, H.; Yu, J.R.; Alvarez, R.J. II ); Bills, R.E.; Gardner, C.S. )

    1990-06-01

    The authors describe a new two-frequency lidar for measuring Na temperature profiles that uses a stabilized cw single-mode dye laser oscillator (rms frequency jitter < 1 MHz) followed by a pulsed-dye power amplifier (140 MHz FWHM linewidth) which is pumped by an injection-locked Nd:YAG laser. The laser oscillator is tuned to the two operating frequencies by observing the Doppler-free structure of the Na D{sub 2} fluorescence spectrum in a vapor cells. The lidar technique and the initial observations of the temperature profile between 82 and 102 km at Ft. Collins, CO (40.6{degree}N,105{degree}W) are described. Absolute temperature accuracies at the Na layer peak of better than {plus minus}3 K with a vertical resolution of 1 km and an integration period of approximately 5 min were achieved.

  19. Modeling a ponded infiltration experiment at Yucca Mountain, NV

    SciTech Connect (OSTI)

    Hudson, D.B.; Guertal, W.R. [Foothill Engineering, Inc., Mercury, NV (United States); Flint, A.L. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    Yucca Mountain, Nevada is being evaluated as a potential site for a geologic repository for high level radioactive waste. As part of the site characterization activities at Yucca Mountain, a field-scale ponded infiltration experiment was done to help characterize the hydraulic and infiltration properties of a layered dessert alluvium deposit. Calcium carbonate accumulation and cementation, heterogeneous layered profiles, high evapotranspiration, low precipitation, and rocky soil make the surface difficult to characterize.The effects of the strong morphological horizonation on the infiltration processes, the suitability of measured hydraulic properties, and the usefulness of ponded infiltration experiments in site characterization work were of interest. One-dimensional and two-dimensional radial flow numerical models were used to help interpret the results of the ponding experiment. The objective of this study was to evaluate the results of a ponded infiltration experiment done around borehole UE25 UZN {number_sign}85 (N85) at Yucca Mountain, NV. The effects of morphological horizons on the infiltration processes, lateral flow, and measured soil hydaulic properties were studied. The evaluation was done by numerically modeling the results of a field ponded infiltration experiment. A comparison the experimental results and the modeled results was used to qualitatively indicate the degree to which infiltration processes and the hydaulic properties are understood. Results of the field characterization, soil characterization, borehole geophysics, and the ponding experiment are presented in a companion paper.

  20. A technique for measuring compressive properties of single microballoo...

    Office of Scientific and Technical Information (OSTI)

    quantitative microscopy in an effort to correlate morphology to mechanical properties. ... PROPERTIES; RESOLUTION; POLYMERS; SENSITIVITY; MEASURING INSTRUMENTS; MORPHOLOGY

  1. Groundwater contamination from stormwater infiltration

    SciTech Connect (OSTI)

    Pitt, R.; Clark, S.; Parmer, K.

    1995-10-01

    The research summarized here was conducted during the first year of a 3-yr cooperative agreement (CR819573) to identify and control stormwater toxicants, especially those adversely affecting groundwater. The purpose of this research effort was to review the groundwater contamination literature as it relates to stormwater. Prior to urbanization groundwater is recharged by rainfall-runoff and snowmelt infiltrating through pervious surfaces including grasslands and woods. This infiltrating water is relatively uncontaminated. Urbanization, however, reduces the permeable soil surface area through which recharge by infiltration occurs. This results in much less groundwater recharge and greatly increased surface runoff. In addition the waters available for recharge carry increased quantities of pollutants. With urbanization, waters having elevated contaminant concentrations also recharge groundwater including effluent from domestic septic tanks, wastewater from percolation basins and industrial waste injection wells, infiltrating stormwater, and infiltrating water from agricultural irrigation. The areas of main concern that are covered by this paper are: the source of the pollutants, stormwater constituents having a high potential to contaminate groundwater, and the treatment necessary for stormwater.

  2. Technique for extending the range of a signal measuring circuit

    DOE Patents [OSTI]

    Chaprnka, Anthony G.; Sun, Shan C.; Vercellotti, Leonard C.

    1978-01-01

    An input signal supplied to a signal measuring circuit is either amplified or attenuated as necessary to establish the magnitude of the input signal within the defined dynamic range of the measuring circuit and the output signal developed by the measuring circuit is subsequently readjusted through amplification or attenuation to develop an output signal which corresponds to the magnitude of the initial input signal.

  3. Air exchange effectiveness in office buildings: Measurement techniques and results

    SciTech Connect (OSTI)

    Fisk, W.J.; Faulkner, D.

    1992-07-01

    We define two air exchange effectiveness parameters which indicate the extent of short circuiting, mixing, or displacement air flow in an entire building, the air diffusion effectiveness which indicates the air flow pattern locally, and the normalized local age of air. After describing two tracer gas procedures for measuring these parameters, we discuss assumptions inherent in the data analysis that are often violated in large office buildings. To obtain valuable data, careful selection of buildings for measurements and assessments to determine if operating conditions are reasonably consistent with the assumptions are necessary. Multiple factors, in addition to the air flow pattern in the occupied space, can affect measurement results, consequently, the interpretation of measurements is not straightforward. We summarize the results of measurements in several office buildings and in a research laboratory. Almost all measurements indicate that the extent of both short circuiting and displacement flow is small. A moderate amount of short circuiting is evident from a few measurements in rooms with heated supply air. Ages of air and their reciprocals (local ventilation rates) often vary substantially between rooms, probably because of room-to-room variation in the rate of air supply. For future research, we suggest assessments of measurement accuracy, development of measurement approaches that may be practically applied for a broader range of buildings, and a greater focus on pollutant removal efficiencies.

  4. Thermal Imaging Technique for Measuring Mixing of Fluids - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid flow. Current methods rely on different physical principles such as: pressure measurement, particle tracking using images, heat removal from a wire and Doppler shift...

  5. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  6. Conjunction of Multizone Infiltration Specialists (COMIS) fundamentals

    SciTech Connect (OSTI)

    Feustel, H.E.; Rayner-Hooson, A.

    1990-05-01

    The COMIS workshop (Conjunction of Multizone Infiltration Specialists) was a joint research effort to develop a multizone infiltration mode. This workshop (October 1988--September 1989) was hosted by the Energy Performance of Buildings Group at Lawrence Berkeley Laboratory's Applied Science Division. The task of the workshop was to develop a detailed multizone infiltration program taking crack flow, HVAC-systems, single-sided ventilation and transport mechanism through large openings into account. This work was accomplished not by investigating into numerical description of physical phenomena but by reviewing the literature for the best suitable algorithm. The numerical description of physical phenomena is clearly a task of IEA-Annex XX Air Flow Patterns in Buildings,'' which will be finished in September 1991. Multigas tracer measurements and wind tunnel data will be used to check the model. The agenda integrated all participants' contributions into a single model containing a large library of modules. The user-friendly program is aimed at researchers and building professionals. From its announcement in December 1986, COMIS was well received by the research community. Due to the internationality of the group, several national and international research programmes were co-ordinated with the COMIS workshop. Colleagues for France, Italy, Japan, The Netherlands, People's Republic of China, Spain, Sweden, Switzerland, and the United States of America were working together on the development of the model. Even though this kind of co-operation is well known in other fields of research, e.g., high energy physics; for the field of building physics it is a new approach. This document contains an overview about infiltration modelling as well as the physics and the mathematics behind the COMIS model. 91 refs., 38 figs., 9 tabs.

  7. A poloidal field measurement technique: Pitch angle measurements via injected He/sup +/ ions

    SciTech Connect (OSTI)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He/sup +/ ions injected into the plasma by a perpendicular He/sup 0/ beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b/sub x/ and b/sub y/, respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to /delta/b/sub x/, which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs.

  8. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  9. Acoustic Building Infiltration Measurement System (ABIMS)

    Broader source: Energy.gov [DOE]

    Lead Performer: Argonne National Laboratory - Lemont, IL Partner: Illinois Institute of Technology - Chicago, IL

  10. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ralph T Muehleisen, rmuehleisen@anl.gov Argonne National Laboratory Acoustic Building ...field tests Team Members * Argonne: Ralph T Muehleisen, Eric Tatara * IIT: Ganesh Raman, ...

  11. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Milostan (EL), Todd Levin * IIT: Ganesh Raman, Kanthasamy Chelliah, Hiren Kumar Patel 14 ... and Presentations Conference Papers Raman, Ganesh, Manisha Prakash, Rakesh C. ...

  12. Reduce Air Infiltration in Furnaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Infiltration in Furnaces Reduce Air Infiltration in Furnaces This tip sheet describes ... PROCESS HEATING TIP SHEET 5 PDF icon Reduce Air Infiltration in Furnaces (January 2006) ...

  13. Techniques for reducing error in the calorimetric measurement of low wattage items

    SciTech Connect (OSTI)

    Sedlacek, W.A.; Hildner, S.S.; Camp, K.L.; Cremers, T.L.

    1993-08-01

    The increased need for the measurement of low wattage items with production calorimeters has required the development of techniques to maximize the precision and accuracy of the calorimeter measurements. An error model for calorimetry measurements is presented. This model is used as a basis for optimizing calorimetry measurements through baseline interpolation. The method was applied to the heat measurement of over 100 items and the results compared to chemistry assay and mass spectroscopy.

  14. Simultaneous PVDF/VISAR measurement technique for isentropic loading with graded density impactors

    SciTech Connect (OSTI)

    Reinhart, W.D.

    1998-07-01

    A simultaneous PVDF/VISAR measurement technique was used for isentropic-loading experiments with a polymethyl methacrylate (PMMA) specimen. The experiments used a graded density impactor accelerated onto a tantalum driver backed with PMMA and then lithium fluoride windows for each experiment. Simultaneous measurements made at each window interface provided precise transit time and particle velocity measurements which can be used to determine the stress-vs-strain loading path using Lagrangian analysis techniques. The experimental technique provides access to 40 GPa stress levels in PMMA under isentropic-loading conditions. {copyright} {ital 1998 American Institute of Physics.}

  15. Simultaneous PVDF/VISAR measurement technique for isentropic loading with graded density impactors

    SciTech Connect (OSTI)

    Anderson, M.U.; Chhabildas, L.C.; Reinhart, W.D.

    1997-10-01

    A simultaneous PVDF/VISAR measurement technique was used for isentropic-loading experiments with a polymethyl methacrylate (PMMA) specimen. The experiments used a graded density impactor accelerated onto a tantalum driver backed with PMMA and then lithium fluoride windows for each experiment. Simultaneous measurements made at each window interface provided precise transit time and particle velocity measurements which can be used to determine the stress-vs-strain loading path using Lagrangian analysis techniques. The experimental technique provides access to 40 GPa stress levels in PMMA under isentropic-loading conditions.

  16. A new technique to measure tunneling barrier height in solid media

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect A new technique to measure tunneling barrier height in solid media Citation Details In-Document Search Title: A new technique to measure tunneling barrier height in solid media Authors: Mason, Thomas A [1] ; Dattelbaum, Andrew M [1] ; Mara, Nathan A [1] ; Kaschner, George C [1] ; Johnson, Oliver K [2] ; Seegmiller, Daniel [2] ; Fullwood, David T [2] + Show Author Affiliations Los Alamos National Laboratory BYU Publication Date: 2011-05-24 OSTI Identifier:

  17. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    critically important to correctly evaluate the contribution infiltration makes to both energy consumption and equivalent ventilation. ASHRAE Standard 62.2 specifies how much...

  18. Use of image processing techniques for heat transfer measurements using thermochromic liquid crystals

    SciTech Connect (OSTI)

    Crabtree, J.A.

    1994-06-01

    A Macintosh-based image processing code has been developed for use in making continuous temperature profile measurements using thermochromic liquid crystals. This software is the result of extensive modifications to the public domain software, NIH Image developed by the National Institutes of Health. These modifications primarily include routines to quantify the TLC color changes as temperature measurements while providing a simple user interface. Using these techniques, one can perform literally thousands of temperature measurements over a small area (307,200 temperature measurements in a 640*480 image), thus making continuous profile measurement possible. This technique was developed in support of the Advanced Neutron Source Reactor (a new nuclear fission research reactor being developed at Oak Ridge National Lab.) for use in experiments designed to study the impact of a flow blockage at the inlet to the reactor core.

  19. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Flint, L.E.; Flint, A.L. Hevesi, J.A. [Geological Survey, Mercury, NV (United States)

    1994-12-31

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface.

  20. On the physics of unstable infiltration, seepage, and gravity drainage in partially saturated tuffs

    SciTech Connect (OSTI)

    Faybishenko, B.; Bodvarsson, G.S.; Salve, R.

    2002-04-01

    To improve understanding of the physics of dynamic instabilities in unsaturated flow processes within the Paintbrush nonwelded unit (PTn) and the middle nonlithophysal portion of the Tonopah Spring welded tuff unit (TSw) of Yucca Mountain, we analyzed data from a series of infiltration tests carried out at two sites (Alcove 4 and Alcove 6) in the Exploratory Studies Facility, using analytical and empirical functions. The analysis of infiltration rates measured at both sites showed three temporal scales of infiltration rate: (1) a macro-scale trend of overall decreasing flow, (2) a meso-scale trend of fast and slow motion exhibiting three-stage variations of the flow rate (decreasing, increasing, and [again] decreasing flow rate, as observed in soils in the presence of entrapped air), and (3) micro-scale (high frequency) fluctuations. Infiltration tests in the nonwelded unit at Alcove 4 indicate that this unit may effectively dampen episodic fast infiltration events; however, well-known Kostyakov, Horton, and Philip equations do not satisfactorily describe the observed trends of the infiltration rate. Instead, a Weibull distribution model can most accurately describe experimentally determined time trends of the infiltration rate. Infiltration tests in highly permeable, fractured, welded tuff at Alcove 6 indicate that the infiltration rate exhibits pulsation, which may have been caused by multiple threshold effects and water-air redistribution between fractures and matrix. The empirical relationships between the extrinsic seepage from fractures, matrix imbibition, and gravity drainage versus the infiltration rate, as well as scaling and self-similarity for the leading edge of the water front are the hallmark of the nonlinear dynamic processes in water flow under episodic infiltration through fractured tuff. Based on the analysis of experimental data, we propose a conceptual model of a dynamic fracture flow and fracture-matrix interaction in fractured tuff, incorporating the time dependent processes of water redistribution in the fracture-matrix system.

  1. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J.; Currier, Robert P.; Laia, Jr., Joseph R.; Barbero, Robert S.

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  2. Dynamic analysis of pressure infiltration processes

    SciTech Connect (OSTI)

    Biswas, D.K.; Gatica, J.E.; Tewari, S.N.

    1995-12-01

    Unidirectional pressure infiltration of porous preforms by molten metal/alloys is investigated in this study. The dynamics of the process is analyzed via the numerical solution of a mathematical model. Comparison against classical asymptotic analyses shows that, for realistic samples, end effects may become important and render asymptotic results unreliable. A comparison with experiments proves the model to be an efficient predictive tool in the analysis of infiltration processes for different preform/melt systems.

  3. Measurement of nonlinear index by a relay-imaged top-hat Z-scan technique

    SciTech Connect (OSTI)

    Shimada, T.; Kurnit, N.A.; Sheik-Bahae, M.

    1996-04-01

    Measurements of the nonlinear index of a number of optical materials of interest for the National Ignition Facility have been performed at 1,064 nm and 355 nm by a modified version of the ``top-hat`` technique and the results compared with the more standard gaussian-beam Z-scan technique. The top-hat technique has the advantages of higher sensitivity and smaller uncertainties introduced by beam-quality considerations. The authors have made what they feel to be an additional improvement by placing the defining aperture for the top hat at the front focal plane of the lens that focuses the beam into the sample and then reimaging the input aperture with a second lens onto a ccd camera. Reimaging eliminates diffraction fringes and provides a stationary image even for a wedged sample; recording the entire image permits minimization of spurious effects such as varying interference fringes.

  4. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect (OSTI)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  5. Techniques for the measurement of disruption halo currents in the National Spherical Torus Experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gerhardt, S. P.; Fredrickson, E.; Guttadora, L.; Kaita, R.; Kugel, H.; Menard, J.; Takahashi, H.

    2011-10-06

    This paper describes techniques for measuring halo currents, and their associated toroidal peaking, in the National Spherical Torus Experiments. The measurements are based on three techniques: (i) measurement of the toroidal field created by the poloidal halo current, either with segmented Rogowski coils or discrete toroidal field sensors, (ii) the direct measurement of halo currents into specially instrument tiles, and (iii) small Rogowski coils placed on the mechanical supports of in-vessel components. For the segmented Rogowski coils and discrete toroidal field detectors, it is shown that the toroidal peaking factor inferred from the data is significantly less than the peakingmore » factor of the underlying halo current distribution, and a simple model is developed to relate the two. For the array of discrete toroidal field detectors and small Rogowski sensors, the compensation steps that are used to isolate the halo current signal are described. The electrical and mechanical design of compact under-tile resistive shunts and mini-Rogowski coils is described. Example data from the various systems is shown.« less

  6. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOE Patents [OSTI]

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  7. Opal photonic crystals infiltrated with chalcogenide glasses

    SciTech Connect (OSTI)

    Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.; Tikhomirov, V. K.; Lyubin, V.; Lidzey, D. G.; Ariu, M.; Reynolds, A. L.

    2001-06-25

    Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties of the infiltrated regions. {copyright} 2001 American Institute of Physics.

  8. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45 135, 225, and 315, at each of four gantry angles (0, 90, 180, 270) using a 3 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 0.036, 0.121 0.023, and 0.093 0.013 cm.Conclusions: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  9. An Analysis Technique for Active Neutron Multiplicity Measurements Based on First Principles

    SciTech Connect (OSTI)

    Evans, Louise G; Goddard, Braden; Charlton, William S; Peerani, Paolo

    2012-08-13

    Passive neutron multiplicity counting is commonly used to quantify the total mass of plutonium in a sample, without prior knowledge of the sample geometry. However, passive neutron counting is less applicable to uranium measurements due to the low spontaneous fission rates of uranium. Active neutron multiplicity measurements are therefore used to determine the {sup 235}U mass in a sample. Unfortunately, there are still additional challenges to overcome for uranium measurements, such as the coupling of the active source and the uranium sample. Techniques, such as the coupling method, have been developed to help reduce the dependence of calibration curves for active measurements on uranium samples; although, they still require similar geometry known standards. An advanced active neutron multiplicity measurement method is being developed by Texas A&M University, in collaboration with Los Alamos National Laboratory (LANL) in an attempt to overcome the calibration curve requirements. This method can be used to quantify the {sup 235}U mass in a sample containing uranium without using calibration curves. Furthermore, this method is based on existing detectors and nondestructive assay (NDA) systems, such as the LANL Epithermal Neutron Multiplicity Counter (ENMC). This method uses an inexpensive boron carbide liner to shield the uranium sample from thermal and epithermal neutrons while allowing fast neutrons to reach the sample. Due to the relatively low and constant fission and absorption energy dependent cross-sections at high neutron energies for uranium isotopes, fast neutrons can penetrate the sample without significant attenuation. Fast neutron interrogation therefore creates a homogeneous fission rate in the sample, allowing for first principle methods to be used to determine the {sup 235}U mass in the sample. This paper discusses the measurement method concept and development, including measurements and simulations performed to date, as well as the potential limitations.

  10. An optical technique for measuring divergence, beam profile, and aiming direction, of relativistic negative hydrogen ions

    SciTech Connect (OSTI)

    Hershcovitch, A.

    1988-02-01

    A novel, nonobstructive diagnostic technique for high energy H/sup minus/D/sup minus/ ion beams is described. This scheme employs spectroscopic techniques designed to measure beam profile, perpendicular velocity spread (i.e., divergence), and orientation of multiMeV H/sup minus/ beams. The basic principle of this method is to photoneutralize a small portion of the H/sup minus/ beam in a way such that the photodetachment process results in the formation of excited hydrogen atoms in the n = 2 levels. Observation of fluorescence from spontaneous decay of H(sp) andor induced deacy of H(2s) can be readily used to determine beam profile. Doppler broadening measurements can be used to determine velocity spread from which beam emittance is calculated. With off-the-shelf instruments resolutions of 1 mm for beam profile and 2 x 10/sup minus/2) ..pi.. cm-mrad are possible. For photodetachment, the best commercially available laser is found to be ArF eximer laser. The analysis is performed for the 200 MEV BNL Linac. The laser, which has a pulse duration which has a pulse duration which is of 10/sup minus/5) of the linac can produce sufficient signal at a negligible beam loss. In addition, measurements of minute Doppler shifts of this Lyman-Alpha radiation by a spectrograph could in principle resolve beam direction to within 1.57 ..mu..rad. The process under consideration has a resonance known as the shape resonance. As the following literature review indicates, the total cross section is known and there is a reasonable agreement between theory and experiment. There are no experimental measurements of partical cross sections. nevertheless, there are theoretical estimates which agree within 15%. 10 refs., 1 fig.

  11. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect (OSTI)

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  12. Measuring water velocity using DIDSON and image cross-correlation techniques

    SciTech Connect (OSTI)

    Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.

    2009-08-01

    To design or operate hydroelectric facilities for maximum power generation and minimum ecological impact, it is critical to understand the biological responses of fish to different flow structures. However, information is still lacking on the relationship between fish behavior and flow structures despite many years of research. Existing field characterization approaches conduct fish behavior studies and flow measurements separately and coupled later using statistical analysis. These types of studies, however, lack a way to determine the specific hydraulic conditions or the specific causes of the biological response. The Dual-Frequency Identification Sonar (DIDSON) has been in wide use for fish behavior studies since 1999. The DIDSON can detect acoustic targets at long ranges in dark or turbid dark water. PIV is a state-of-the-art, non-intrusive, whole-flow-field technique, providing instantaneous velocity vector measurements in a whole plane using image cross-correlating techniques. There has been considerable research in the development of image processing techniques associated with PIV. This existing body of knowledge is applicable and can be used to process the images taken by the DIDSON. This study was conducted in a water flume which is 9 m long, 1.2 m wide, and 1.2 m deep when filled with water. A lab jet flow was setup as the benchmark flow to calibrate DIDSON images. The jet nozzle was 6.35 cm in diameter and core jet velocity was 1.52 m/s. Different particles were used to seed the flow. The flow was characterized based on the results using Laser Doppler Velocimetry (LDV). A DIDSON was mounted about 5 meters away from the jet nozzle. Consecutive DIDSON images with known time delay were divided into small interrogation spots after background was subtracted. Across-correlation was then performed to estimate the velocity vector for each interrogation spot. The estimated average velocity in the core zone was comparable to that obtained using a LDV. This proof-of-principle project demonstrated the feasibility of extracting water flow velocity information from underwater DIDSON images using image cross-correlation techniques.

  13. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm-3 carrier density, and ~0.1 cm2 V-1 s-1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application ofmore » infiltration synthesis in fabricating metal oxide electronic devices.« less

  14. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    SciTech Connect (OSTI)

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm-3 carrier density, and ~0.1 cm2 V-1 s-1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application of infiltration synthesis in fabricating metal oxide electronic devices.

  15. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    SciTech Connect (OSTI)

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-11-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12100 mA s currenttime product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Womens Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD FBP. Veo reconstructions showed slight improvement over STD FBP reconstructions (4%9% increase in accuracy). The most improved ID and WA% measures were for the smaller airways, especially for low dose scans reconstructed at half DFOV (18 cm) with the EDGE algorithm in combination with 100% ASIR to mitigate noise. Using the BONE + ASIR at half BONE technique, measures improved by a factor of 2 over STD FBP even at a quarter of the x-ray dose. Conclusions: The flexibility of ASIR in combination with higher frequency algorithms, such as BONE, provided the greatest accuracy for conventional and low x-ray dose relative to FBP. Veo provided more modest improvement in qCT measures, likely due to its compatibility only with the smoother STD kernel.

  16. Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    SciTech Connect (OSTI)

    Reichardt, Thomas A.; Timlin, Jerilyn Ann; Jones, Howland D. T.; Sickafoose, Shane M.; Schmitt, Randal L.

    2010-09-01

    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects.

  17. A15 multifilamentary superconductors by the infiltration process

    SciTech Connect (OSTI)

    Pickus, M.R.; Holthuis, J.T.; Rosen, M.

    1980-05-01

    The inherent brittleness of the A15 compounds, and the requirement for a filamentary morphology, led to a heavy reliance on a powder approach for the preparation of superconducting tapes and wires. The quench-age technique, a non-powder process, was employed for the niobium-aluminum system, following the special features of the equilibrium phase diagram. The powder approach proved particularly effective for binaries, such as Nb-Sn, and for the ternaries Nb(Al,Ge) and Nb(Al,Si). Two variations of the powder process were assessed. One involved the use of precompounded powder of the desired stoichiometry but required simultaneous application of heat and pressure. The second variation was the infiltration process. This process involves the preparation of a ductile niobium matrix containing a controlled network of interconnected pores which are subsequently infiltrated with liquid metals (Sn) or low melting-point eutectics (e.g., Al-Ge, Al-Si). The composite is then subjected to a thermomechanical treatment to form a multiply connected array of A15 filaments in a niobium matrix. Multifilamentary conductors, based on Nb/sub 3/Sn, Nb/sub 3/Al, Nb/sub 3/ (Al,Ge) and Nb/sub 3/ (Al,Si), were readily obtained. Nb/sub 3/Sn conductors made by the infiltration process exhibit a critical temperature (Tc) of 18.1 K and a critical current carrying capacity (I/sub c/) of 8 x 10/sup 4/ amp.cm/sup -2/ at 12 Tesla.

  18. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency)1/2 relation. The experimental validation is performed on three samples (SiO2, CaF2 and Ge), which havemore » a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.« less

  19. The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement

    SciTech Connect (OSTI)

    Hua, Zilong; Ban, Heng; Hurley, David H.

    2015-05-05

    A frequency scan photothermal reflectance technique to measure thermal diffusivity of bulk samples is studied in this manuscript. Similar to general photothermal reflectance methods, an intensity-modulated heating laser and a constant intensity probe laser are used to determine the surface temperature response under sinusoidal heating. The approach involves fixing the distance between the heating and probe laser spots, recording the phase lag of reflected probe laser intensity with respect to the heating laser frequency modulation, and extracting thermal diffusivity using the phase lag – (frequency)1/2 relation. The experimental validation is performed on three samples (SiO2, CaF2 and Ge), which have a wide range of thermal diffusivities. The measured thermal diffusivity values agree closely with literature values. Lastly, compared to the commonly used spatial scan method, the experimental setup and operation of the frequency scan method are simplified, and the uncertainty level is equal to or smaller than that of the spatial scan method.

  20. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry- Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  1. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry-Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  2. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

    SciTech Connect (OSTI)

    Ahtee, Ville; Brown, Steven W.; Larason, Thomas C.; Lykke, Keith R.; Ikonen, Erkki; Noorma, Mart

    2007-07-10

    Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.

  3. Relationship between alveolar bone measured by /sup 125/I absorptiometry with analysis of standardized radiographs: 2. Bjorn technique

    SciTech Connect (OSTI)

    Ortman, L.F.; McHenry, K.; Hausmann, E.

    1982-05-01

    The Bjorn technique is widely used in periodontal studies as a standardized measure of alveolar bone. Recent studies have demonstrated the feasibility of using /sup 125/I absorptiometry to measure bone mass. The purpose of this study was to compare /sup 125/I absorptiometry with the Bjorn technique in detecting small sequential losses of alveolary bone. Four periodontal-like defects of incrementally increasing size were produced in alveolar bone in the posterior segment of the maxilla of a human skull. An attempt was made to sequentially reduce the amount of bone in 10% increments until no bone remained, a through and through defect. The bone remaining at each step was measured using /sup 125/I absorptiometry. At each site the /sup 125/I absorptiometry measurements were made at the same location by fixing the photon source to a prefabricated precision-made occlusal splint. This site was just beneath the crest and midway between the borders of two adjacent teeth. Bone loss was also determined by the Bjorn technique. Standardized intraoral films were taken using a custom-fitted acrylic clutch, and bone measurements were made from the root apex to coronal height of the lamina dura. A comparison of the data indicates that: (1) in early bone loss, less than 30%, the Bjorn technique underestimates the amount of loss, and (2) in advanced bone loss, more than 60% the Bjorn technique overestimates it.

  4. Uranium Sequestration via Phosphate Infiltration/Injection Test...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Sequestration via Phosphate InfiltrationInjection Test History Supporting the Preferred Alternative 1 300 Area GW Concentrations - Uranium High River Stage - GW...

  5. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    SciTech Connect (OSTI)

    Bulutsuz, A. G.; Demircioglu, P. Bogrekci, I.; Durakbasa, M. N.

    2015-03-30

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailed surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface roughness.

  6. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    SciTech Connect (OSTI)

    Jaworske, D.A.; Perry, W.D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  7. Techniques for Equation-of-State Measurements on a Three-Stage Light-Gas Gun

    SciTech Connect (OSTI)

    REINHART,WILLIAM D.; CHHABILDAS,LALIT C.; THORNHILL,T.G.

    2000-09-14

    Understanding high pressure behavior materials is necessary in order to address the physical processes associated with hypervelocity impact events related to space science applications including orbital debris impact and impact lethality. Until recently the highest-pressure states in materials have been achieved from impact loading techniques from two-stage light gas guns with velocity limitations of approximately 81cm/s. In this paper, techniques that are being developed and implemented to obtain the needed shock loading parameters (Hugoniot states) for material characterization studies, namely shock velocity and particle velocity, will be described at impact velocities up to 11 kds. The determination of equation-of-state (EOS) and thermodynamic states of materials in the regimes of extreme high pressures is now attainable utilizing the three-stage launcher. What is new in this report is that these techniques are being implemented for use at engagement velocities never before attained utilizing two-stage light-gas gun technology. The design and test methodologies used to determine Hugoniot states are described in this paper.

  8. Fissile material measurements using the differential die-away self interrogation technique

    SciTech Connect (OSTI)

    Schear, Melissa A; Menlove, Howard O; Tobin, Stephen J; Evans, Louise G; Lee, S Y

    2010-01-01

    Currently, there is substantial research effort focused on quantifying plutonium (Pu) mass in spent fuel using non-destructive assay (NDA) techniques. Of the several techniques being investigated for this purpose, Differential Die-Away Self-Interrogation (DDSI) is a recently proposed, neutron-based NDA technique capable of quantifying the total fissile content in an assembly. Unlike the conventional Differential Die-Away (DDA) technique, DOSI does not require an external neutron source for sample interrogation, but rather, uses the spontaneous fission neutrons originating from {sup 244}Cm within the spent fuel for self-interrogation. The essence of the technique lies in the time separation between the detection of spontaneous fission neutrons from {sup 244}Cm and the detection of induced fission neutrons at a later time. The DDSI detector design imposes this time separation by optimizing the die-away times ({tau}) of the detector and sample interrogation regions to obtain an early and late neutron distribution respectively. The ratio of the count rates in the late gate to the early gate for singles, doubles, and triples is directly proportional to the fissile content present in the sample, which has already been demonstrated for simplified fuel cases using the Monte Carlo N-Particle eXtended (MCNPX) code. The current work applies the DDSI concept to more complex samples, specifically spent Pressurized Water Reactor (PWR) assemblies with varying isotopics resulting from a range of initial enrichment, bumup, and cooling time. We assess the feasibility of using the late gate to early gate ratio as a reliable indicator of overall fissile mass for a range of assemblies by defining a {sup 239}Pu effective mass which indicates the mass of {sup 239}Pu that would yield the same DDSI signal as the combined mass of major fissile isotopes present in the sample. This work is important for assessing the individual capability of the DDSI instrument in quantifying fissile mass in an assembly in order to use this information for a possible integration with another NDA instrument for direct Pu mass determination.

  9. Measurement and fitting techniques for the assessment of material nonlinearity using nonlinear Rayleigh waves

    SciTech Connect (OSTI)

    Torello, David; Kim, Jin-Yeon; Qu, Jianmin; Jacobs, Laurence J.

    2015-03-31

    This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.

  10. Measurement of isotope separation factors in the palladium-hydrogen system using a thermistor technique

    SciTech Connect (OSTI)

    Ortiz, T.M.

    1998-05-01

    The range of available data on separation factors in the palladium-hydrogen/deuterium system has been extended. A matched pair of glass-coated bead thermistors was used to measure gas phase compositions. The compositions of the input gas--assumed also to be the solid phase composition--were measured independently be mass spectrometry as being within 0.5 mole% of the values used to calibrate the thermistors. This assumption is based on the fact that > 99% of the input gas is absorbed into the solid. Separation factors were measured for 175 K {le} T {le} 389 K and for 0.195 {le} x{sub H} {le} 0.785.

  11. Laser-ablated active doping technique for visible spectroscopy measurements on Z.

    SciTech Connect (OSTI)

    Gomez, Matthew Robert

    2013-09-01

    Visible spectroscopy is a powerful diagnostic, allowing plasma parameters ranging from temperature and density to electric and magnetic fields to be measured. Spectroscopic dopants are commonly introduced to make these measurements. On Z, dopants are introduced passively (i.e. a salt deposited on a current-carrying surface); however, in some cases, passive doping can limit the times and locations at which measurements can be made. Active doping utilizes an auxiliary energy source to disperse the dopant independently from the rest of the experiment. The objective of this LDRD project was to explore laser ablation as a method of actively introducing spectroscopic dopants. Ideally, the laser energy would be delivered to the dopant via fiber optic, which would eliminate the need for time-intensive laser alignments in the Z chamber. Experiments conducted in a light lab to assess the feasibility of fibercoupled and open-beam laser-ablated doping are discussed.

  12. Measurement of Interfacial Tension By Use of Pendant Drop Video Techniques

    Energy Science and Technology Software Center (OSTI)

    1992-06-26

    An instrument and associated software to measure the interfacial tension (IFT) of aqueous surfactant solutions and crude oil. The method involves injection of a drop of fluid (such as crude oil) into a second immiscible phase to determine the IFT between the two phases. The instrument is composed of an AT-class computer, optical cell, illumination, video camera and lens, video frame digitizer board, monitor, and software. The camera displays an image of the pendant dropmore » on the monitor, which is then processed by the frame digitizer board and non-proprietary software to determine the IFT. Several binary and ternary phase systems were taken from the literature and used to measure the precision and accuracy of the instrument in determining IFTs.« less

  13. Aerosol characterization study using multi-spectrum remote sensing measurement techniques.

    SciTech Connect (OSTI)

    Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew Stephen; Servantes, Brandon Lee

    2013-09-01

    A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

  14. Considerations for the use of the modified line reversal technique for gas temperature measurement

    SciTech Connect (OSTI)

    Winkleman, B.C.

    1993-06-01

    Several areas related to the successful and accurate application of modified line reversal are discussed. Initially, generalized modified line reversal equations are developed. A review of basic line reversal theory is presented followed by development of correction factors for optical system effects. Image size and their effect on accurate determinations of spectral radiances is discussed. Temperature biases introduced by image vignetting is calculated. Measured image irradiances are given.

  15. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    SciTech Connect (OSTI)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  16. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    SciTech Connect (OSTI)

    Smalyuk, V A

    2012-06-07

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  17. Diagnostic techniques for magnetically confined high-temperature plasmas. II. Magnetic and electric measurements, charge-exchange diagnostics, particle-beam diagnostics, and fusion-product measurements

    SciTech Connect (OSTI)

    Goldston, R.J.

    1982-07-01

    A general overview of the four diagnostic techniques is given. Prospects for each technique are discussed. (MOW)

  18. Optical fiber sensor technique for strain measurement during materials deposition, chemical reaction, and relaxation

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1988-01-21

    Laser light from a common source is split and conveyed through two similar optical fibers and emitted at their respective ends to form an interference pattern, one of the optical fibers having a portion thereof subjected to a strain. Changes in the strain cause changes in the optical path length of the strain fiber, and generate corresponding changes in the interference pattern. The interference pattern is received and transduced into signals representative of fringe shifts corresponding to changes in the strain experienced by the strained one of the optical fibers. These signals are then processed to evaluate strain as a function of time, typical examples of the application of the apparatus including electrodeposition of a metallic film on a conductive surface provided on the outside of the optical fiber being strained, so that strains generated in the optical fiber during the course of the electrodeposition are measurable as a function of time. In one aspect of the invention, signals relating to the fringe shift are stored for subsequent processing and analysis, whereas in another aspect of the invention the signals are processed for real-time display of the strain changes under study. 9 figs.

  19. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOE Patents [OSTI]

    Jesse, Stephen [Knoxville, TN; Geohegan, David B. [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  20. Appendix B Surface Infiltration and Aquifer Test Data

    Office of Legacy Management (LM)

    B Surface Infiltration and Aquifer Test Data This page intentionally left blank ... 1000 1100 1200 1300 1400 TIME (MIN) INF-8 TEST I 300 400 TIME (MIN) INF-8 TEST 2 200 250 ...

  1. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    SciTech Connect (OSTI)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75

  2. Summer Infiltration/Ventilation Test Results from the FRTF Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summer Infiltration/Ventilation Test Results from the FRTF Laboratory Summer Infiltration/Ventilation Test Results from the FRTF Laboratory This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. PDF icon cq7_ventilation_hothumid_parker.pdf More Documents & Publications Critical Question #7: What are the Best Practices for Single-Family Ventilation in All Climate Regions?

  3. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, Joseph B.; Dunmead, Stephen D.; Halverson, Danny C.; Landingham, Richard L.

    1991-01-01

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced.

  4. Cermet materials prepared by combustion synthesis and metal infiltration

    DOE Patents [OSTI]

    Holt, J.B.; Dunmead, S.D.; Halverson, D.C.; Landingham, R.L.

    1991-01-29

    Ceramic-metal composites (cermets) are made by a combination of self-propagating high temperature combustion synthesis and molten metal infiltration. Solid-gas, solid-solid and solid-liquid reactions of a powder compact produce a porous ceramic body which is infiltrated by molten metal to produce a composite body of higher density. AlN-Al and many other materials can be produced. 6 figures.

  5. Single Step Electrode Infiltration Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Single Step Electrode Infiltration Process National Energy Technology Laboratory Contact NETL About This Technology Technology Marketing Summary Research is active on the patent pending technology titled, "Method of Forming Catalyst Layer by Single Step Infiltration." This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology

  6. Analysis of storm-water infiltration ponds on the North Carolina Outer Banks

    SciTech Connect (OSTI)

    Chescheir, G.M.; Fipps, G.; Skaggs, R.W.

    1990-09-01

    Increasing development along the North Carolina coast has been linked to the deterioration of water quality in adjacent sounds and estuaries. Degradation of water quality in sounds and estuaries threatens the coastal ecology which provides resources for the area's fishing and tourism industries. The state of N.C. adopted the current Stormwater Runoff Disposal Rules in 1988 requiring stormwater management plans for new development in 20 coastal counties. Stormwater infiltration pond systems are approved by the State as an option for retaining stormwater on the developed site; however, the long-term performance of these systems has not been measured or determined. The study was conducted to monitor the hydrology of stormwater infiltration ponds on the North Carolina barrier islands and to develop a model that continuously simulates the performance of these ponds. The hydrology of two operating infiltration ponds systems was evaluated in an 18-month field study. Rainfall, pond stage, and water table elevations at selected locations were monitored continuously. Water table elevations at additional locations were monitored on a biweekly basis. Soil hydraulic conductivities and soil water characteristic relationships were determined at both field sites. The subsurface geology was described at one site and an aquifer pump test was performed to determine aquifer transmissivity and specific yield. Both of the infiltration ponds in the field studies effectively served their primary purpose of retaining on site the stormwater runoff from the first 38 mm (1.5 in) of rainfall. In nearly every case, the pond seepage rate was sufficient to completely draw down the pond within 5 days. The hydrology of the infiltration ponds at the two research sites was very different.

  7. Systematic measurements of whole-body dose distributions for various treatment machines and delivery techniques in radiation therapy

    SciTech Connect (OSTI)

    Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe

    2012-12-15

    Purpose: Contemporary radiotherapy treatment techniques, such as intensity-modulated radiation therapy and volumetric modulated arc therapy, could increase the radiation-induced malignancies because of the increased beam-on time, i.e., number of monitor units needed to deliver the same dose to the target and the larger volume irradiated with low doses. In this study, whole-body dose distributions from typical radiotherapy patient plans using different treatment techniques and therapy machines were measured using the same measurement setup and irradiation intention. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from 6 MV beams were compared in terms of treatment technique (3D-conformal, intensity-modulated radiation therapy, volumetric modulated arc therapy, helical TomoTherapy, stereotactic radiotherapy, hard wedges, and flattening filter-free radiotherapy) and therapy machine (Elekta, Siemens and Varian linear accelerators, Accuray CyberKnife and TomoTherapy). Results: Close to the target, the doses from intensity-modulated treatments (including flattening filter-free) were below the dose from a static treatment plan, whereas the CyberKnife showed a larger dose by a factor of two. Far away from the treatment field, the dose from intensity-modulated treatments showed an increase in dose from stray radiation of about 50% compared to the 3D-conformal treatment. For the flattening filter-free photon beams, the dose from stray radiation far away from the target was slightly lower than the dose from a static treatment. The CyberKnife irradiation and the treatment using hard wedges increased the dose from stray radiation by nearly a factor of three compared to the 3D-conformal treatment. Conclusions: This study showed that the dose outside of the treated volume is influenced by several sources. Therefore, when comparing different treatment techniques, the dose ratios vary with distance to the isocenter. The effective dose outside the treated volume of intensity-modulated treatments with or without flattening filter was 10%-30% larger when compared to 3D-conformal radiotherapy. This dose increase is much lower than the monitor unit scaled effective dose from a static treatment.

  8. Alternating current field measurement (ACFM): A new technique for the NDT of process plant and piping components

    SciTech Connect (OSTI)

    Raine, G.A.; Monahan, C.C.

    1996-12-31

    This paper describes a new electromagnetic-based NDT technology that is suitable for inspecting process plant and pipework fabricated from some of the more advanced materials, in addition to the traditional carbon steels. The name given to this new NDT technique is Alternating Current Field Measurement, or ACFM. ACFM is an extremely versatile NDT tool with a wide range of practical applications. A major advantage of ACFM over conventional NDT systems is that no calibration is required; crack detection and sizing is based on a theoretical interpretation of the measured signals. The technique is non-contacting and can be used on a wide range of electrically conductive materials (e.g., carbon steel, stainless steel, duplex steel, monel, inconel, aluminum, nickel, titanium, carbon reinforced plastics) without the need for extensive surface cleaning or removal of protective coatings. The flaws may be surface, sub-surface or remote face, depending on the material, and the probes can be designed to suppress signals from features that are not cracks (e.g., corrosion, undercuts, heat-affected zones, etc.), thus overcoming many of the problems associated with other electromagnetic systems and minimizing the probability of spurious indications.

  9. 100-NR-2 Apatite Treatability Test: Fall 2010 Tracer Infiltration Test (White Paper)

    SciTech Connect (OSTI)

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Greenwood, William J.; Johnson, Timothy C.; Horner, Jacob A.; Strickland, Christopher E.; Szecsody, James E.; Williams, Mark D.

    2011-04-14

    The primary objectives of the tracer infiltration test were to 1) determine whether field-scale hydraulic properties for the compacted roadbed materials and underlying Hanford fm. sediments comprising the zone of water table fluctuation beneath the site are consistent with estimates based laboratory-scale measurements on core samples and 2) characterize wetting front advancement and distribution of soil moisture achieved for the selected application rate. These primary objectives were met. The test successfully demonstrated that 1) the remaining 2 to 3 ft of compacted roadbed material below the infiltration gallery does not limit infiltration rates to levels that would be expected to eliminate near surface application as a viable amendment delivery approach and 2) the combined aqueous and geophysical monitoring approaches employed at this site, with some operational adjustments based on lessons learned, provides an effective means of assessing wetting front advancement and the distribution of soil moisture achieved for a given solution application. Reasonably good agreement between predicted and observed tracer and moisture front advancement rates was observed. During the first tracer infiltration test, which used a solution application rate of 0.7 cm/hr, tracer arrivals were observed at the water table (10 to 12 ft below the bottom of the infiltration gallery) after approximately 5 days, for an advancement rate of approximately 2 ft/day. This advancement rate is generally consistent with pre-test modeling results that predicted tracer arrival at the water table after approximately 5 days (see Figure 8, bottom left panel). This agreement indicates that hydraulic property values specified in the model for the compacted roadbed materials and underlying Hanford formation sediments, which were based on laboratory-scale measurements, are reasonable estimates of actual field-scale conditions. Additional work is needed to develop a working relationship between resistivity change and the associated change in moisture content so that 4D images of moisture content change can be generated. Results from this field test will be available for any future Ca-citrate-PO4 amendment infiltration tests, which would be designed to evaluate the efficacy of using near surface application of amendments to form apatite mineral phases in the upper portion of the zone of water table fluctuation.

  10. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: I. Impact of Impurities, Measurement Protocols and Applied Corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shinozaki, Kazuma; Zack, Jason W.; Richards, Ryan M.; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-07-22

    The rotating disk electrode (RDE) technique is being extensively used as a screening tool to estimate the activity of novel PEMFC electrocatalysts synthesized in lab-scale (mg) quantities. Discrepancies in measured activity attributable to glassware and electrolyte impurity levels, as well as conditioning, protocols and corrections are prevalent in the literature. Moreover, the electrochemical response to a broad spectrum of commercially sourced perchloric acid and the effect of acid molarity on impurity levels and solution resistance were also assessed. Our findings reveal that an area specific activity (SA) exceeding 2.0 mA/cm2 (20 mV/s, 25°C, 100 kPa, 0.1 M HClO4) for polishedmore » poly-Pt is an indicator of impurity levels that do not impede the accurate measurement of the ORR activity of Pt based catalysts. After exploring various conditioning protocols to approach maximum utilization of the electrochemical area (ECA) and peak ORR activity without introducing catalyst degradation, an investigation of measurement protocols for ECA and ORR activity was conducted. Down-selected protocols were based on the criteria of reproducibility, duration of experiments, impurity effects and magnitude of pseudo-capacitive background correction. In sum, statistical reproducibility of ORR activity for poly-Pt and Pt supported on high surface area carbon was demonstrated.« less

  11. Particle Imaging Velocimetry Technique Development for Laboratory Measurement of Fracture Flow Inside a Pressure Vessel Using Neutron Imaging

    SciTech Connect (OSTI)

    Polsky, Yarom; Bingham, Philip R; Bilheux, Hassina Z; Carmichael, Justin R

    2015-01-01

    This paper will describe recent progress made in developing neutron imaging based particle imaging velocimetry techniques for visualizing and quantifying flow structure through a high pressure flow cell with high temperature capability (up to 350 degrees C). This experimental capability has great potential for improving the understanding of flow through fractured systems in applications such as enhanced geothermal systems (EGS). For example, flow structure measurement can be used to develop and validate single phase flow models used for simulation, experimentally identify critical transition regions and their dependence on fracture features such as surface roughness, and study multiphase fluid behavior within fractured systems. The developed method involves the controlled injection of a high contrast fluid into a water flow stream to produce droplets that can be tracked using neutron radiography. A description of the experimental setup will be provided along with an overview of the algorithms used to automatically track droplets and relate them to the velocity gradient in the flow stream. Experimental results will be reported along with volume of fluids based simulation techniques used to model observed flow.

  12. SIMULATION OF NET INFILTRATION FOR MODERN AND POTENTIAL FUTURE CLIMATES

    SciTech Connect (OSTI)

    J.A. Heveal

    2000-06-16

    This Analysis/Model Report (AMR) describes enhancements made to the infiltration model documented in Flint et al. (1996) and documents an analysis using the enhanced model to generate spatial and temporal distributions over a model domain encompassing the Yucca Mountain site, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone, the average depth below the ground surface (at a given location) from which water is removed by evapotranspiration. The estimates of net infiltration are used for defining the upper boundary condition for the site-scale 3-dimensional Unsaturated-Zone Ground Water Flow and Transport (UZ flow and transport) Model (CRWMS M&O 2000a). The UZ flow and transport model is one of several process models abstracted by the Total System Performance Assessment model to evaluate expected performance of the potential repository at Yucca Mountain, Nevada, in terms of radionuclide transport (CRWMS M&O 1998). The net-infiltration model is important for assessing potential repository-system performance because output from this model provides the upper boundary condition for the UZ flow and transport model that is used to generate flow fields for evaluating potential radionuclide transport through the unsaturated zone. Estimates of net infiltration are provided as raster-based, 2-dimensional grids of spatially distributed, time-averaged rates for three different climate stages estimated as likely conditions for the next 10,000 years beyond the present. Each climate stage is represented using a lower bound, a mean, and an upper bound climate and corresponding net-infiltration scenario for representing uncertainty in the characterization of daily climate conditions for each climate stage, as well as potential climate variability within each climate stage. The set of nine raster grid maps provide spatially detailed representations of the magnitude and distribution of net-infiltration rates that are used to define specified flux upper boundary conditions for the UZ flow and transport model.

  13. A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber

    SciTech Connect (OSTI)

    Candiani, A.; Argyros, A.; Leon-Saval, S. G.; Lwin, R.; Selleri, S.; Pissadakis, S.

    2014-03-17

    We report an in-fiber magnetic field sensor based on magneto-driven optical loss effects, while being implemented in a ferrofluid infiltrated microstructured polymer optical fiber. We demonstrate that magnetic field flux changes up to 2000 gauss can be detected when the magnetic field is applied perpendicular to the fiber axis. In addition, the sensor exhibits high polarization sensitivity for the interrogated wavelengths, providing the possibility of both field flux and direction measurements. The underlying physical and guidance mechanisms of this sensing transduction are further investigated using spectrophotometric, light scattering measurements, and numerical simulations, suggesting photonic Hall effect as the dominant physical, transducing mechanism.

  14. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect (OSTI)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated asœblack boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation’s needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.

  15. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  16. Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moteabbed, Maryam; Niroula, Megh; Raue, Brian A.; Weinstein, Lawrence B.

    2013-08-30

    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has themore » potential to make precise measurements over a broad range in Q2 and scattering angles. We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for < Q2 >=0.206 GeV2 and 0.830 ≤ ε ≤ 0.943. We have demonstrated that the tertiary e± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e+ and e- beams.« less

  17. Demonstration of a novel technique to measure two-photon exchange effects in elastic ep scattering

    SciTech Connect (OSTI)

    Moteabbed, Maryam [Florida Institute of Technology; Niroula, Megh [Old Dominion University; Raue, Brian [Florida International University; Weinstein, Lawrence [Old Dominion University

    2013-08-01

    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. The TPE contributions depend on the sign of the lepton charge in ep scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct ep comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles. We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for ep with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.0270.0050.05 for < Q2 >=0.206 GeV2 and 0.830 ? ? ? 0.943. We have demonstrated that the tertiary e beam generated using this technique provides the opportunity for dramatically improved comparisons of ep scattering, covering a significant range in both Q2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e+ and e- beams.

  18. Measurement/Evaluation Techniques and Nuclear Data Associated with Fission of 239Pu by Fission Spectrum Neutrons

    SciTech Connect (OSTI)

    Baisden, P; Bauge, E; Ferguson, J; Gilliam, D; Granier, T; Jeanloz, R; McMillan, C; Robertson, D; Thompson, P; Verdon, C; Wilkerson, C; Young, P

    2010-03-16

    This Panel was chartered to review and assess new evaluations of work on fission product data, as well as the evaluation process used by the two U.S. nuclear weapons physics laboratories. The work focuses on fission product yields resulting from fission spectrum neutrons incident on plutonium, and includes data from measurements that had not been previously published as well as new or revised fission product cumulative yield data, and related quantities such as Q values and R values. This report documents the Panel's assessment of the work presented by Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Based on the work presented we have seven key observations: (1) Experiments conducted in the 1970s at LANL, some of which were performed in association with a larger, NIST-led, program, have recently been documented. A preliminary assessment of this work, which will be referred to in this document as ILRR-LANL, shows it to be technically sound. (2) LLNL has done a thorough, unbiased review and evaluation of the available literature and is in the process of incorporating the previously unavailable LANL data into its evaluation of key fission product yields. The results of the LLNL effort, which includes a preliminary evaluation of the ILRR-LANL data, have been documented. (3) LANL has also conducted an evaluation of fission product yields for fission spectrum neutrons on plutonium including a meta-analysis of benchmark data as part of a planned upgrade to the ENDF/B compilation. We found that the approach of using meta-analysis provides valuable additional insight for evaluating the sparse data sets involved in this assessment. (4) Both laboratories have provided convincing evidence for energy dependence in the fission product yield of {sup 147}Nd produced from the bombardment of {sup 239}Pu with fission spectrum neutrons over an incident neutron energy range of 0.2 to 1.9 MeV. (5) Consistent, complete, and explicit treatment of both systematic and statistical uncertainties, including correlations, are critical to the assessment of both the experimental measurements (due to variations between experimental techniques, irradiation conditions, calibration procedures, etc.), and the evaluation of those experiments to extract fundamental nuclear data. A clear example of the importance of uncertainty analysis is in the justification for energy-dependent {sup 147}Nd fission product yield, where the magnitude of the effect is comparable to the uncertainties of the individual fission product yield measurements. Both LANL and LLNL are committed to the inclusion of full uncertainty analysis in their evaluations. (6) The Panel reviewed in detail two methods for determining/evaluating fission product yields from which fission assessments can be made: the K factor method and high-resolution gamma spectroscopy (both described more fully in Sections 3 and 4). The panel concluded that fission product yields, and thus fission assessments, derived using either approach are equally valid, provided that the data were obtained from well understood, direct fission measurements and that the key underlying calibrations and/or data are valid for each technique. (7) The Panel found the process of peer review of the two complementary but independent methods to be an extremely useful exercise. Although work is still ongoing and the numbers presented to the Panel may change slightly, both groups are now in much better agreement on not just one, but four key fission product yields. The groups also have a better appreciation of the strengths and weaknesses of each other's methods.

  19. Synthetic Coal Slag Infiltration into Varying Refractory Materials

    SciTech Connect (OSTI)

    Kaneko, Tetsuya K.; Thomas, Hugh; Bennett, James P.; Sridhar, Seetharaman

    2012-10-01

    The infiltrations of synthetic coal slag into 99%Al{sub 2}O{sub 3}, 85%Al{sub 2}O{sub 3}15%SiO{sub 2}, and 90%Cr{sub 2}O{sub 3}10%Al{sub 2}O{sub 3} refractories with a temperature gradient induced along the penetration direction were compared to one another. The infiltrating slag was synthesized with a composition that is representative of an average of the ash contents from U S coal feedstock. Experiments were conducted with a hot-face temperature of 1450C in a CO/CO{sub 2} atmosphere. Minimal penetration was observed in the 90%Cr{sub 2}O{sub 3}10%Al{sub 2}O{sub 3} material because interactions between the refractory and the slag produced a protective layer of FeCr{sub 2}O{sub 4}, which impeded slag flow into the bulk of the refractory. After 5 h, the 99%Al{sub 2}O{sub 3} sample exhibited an average penetration of 12.7 mm whereas the 85%Al{sub 2}O{sub 3}15%SiO{sub 2} sample showed 3.8 mm. Slag infiltrated into the 99%Al{sub 2}O{sub 3} and 85%Al{sub 2}O{sub 3}15%SiO{sub 2} refractory systems by dissolving the respective refractories' matrix materials, which consist of fine Al{sub 2}O{sub 3} particles and an amorphous alumino-silicate phase. Due to enrichment in SiO{sub 2}, a network-former, infiltration into the 85%Al{sub 2}O{sub 3}15%SiO{sub 2} system yielded a higher viscosity slag and hence, a shallower penetration depth. The results suggest that slag infiltration can be limited by interactions with the refractory through the formation of either a solid layer that physically impedes fluid flow or a more viscous slag that retards infiltration.

  20. Application of a transverse phase-space measurement technique for high-brightness, H{sup {minus}} beams to the GTA H{sup {minus}} beam

    SciTech Connect (OSTI)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-05-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations.

  1. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

  2. Measurement of the Top Quark Mass in p anti-p Collisions at s**(1/2) = 1.96-TeV using the Decay Length Technique

    SciTech Connect (OSTI)

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /INFN, Bologna /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-12-01

    We report the first measurement of the top quark mass using the decay length technique in p{bar p} collisions at a center-of-mass energy of 1.96 TeV. This technique uses the measured flight distance of the b hadron to infer the mass of the top quark in lepton plus jets events with missing transverse energy. It relies solely on tracking and avoids the jet energy scale uncertainty that is common to all other methods used so far. We apply our novel method to a 695 pb{sup -1} data sample recorded by the CDF II detector at Fermilab and extract a measurement of m{sub t} = 180.7{sub -13.4}{sup +15.5}(stat.) {+-} 8.6 (syst.) GeV/c{sup 2}. While the uncertainty of this result is larger than that of other measurements, the dominant uncertainties in the decay length technique are uncorrelated with those in other methods. This result can help reduce the overall uncertainty when combined with other existing measurements of the top quark mass.

  3. TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION

    SciTech Connect (OSTI)

    NA

    2004-05-01

    For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration and water storage in the root zone. More significantly, water movement throughout the soil profile is treated according to the bucket model, in which the amount of water that moves down from one layer to the next is equal to the mass of water in excess of field capacity in the upper layer. The development of a numerical model of infiltration involves a number of abstractions and simplifications to represent the complexity of environmental conditions at Yucca Mountain, such as the arid climate, mountain-type topography, heterogeneous soils and fractured rock, and irregular soil-rock interface.

  4. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect (OSTI)

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  5. Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument

    SciTech Connect (OSTI)

    Henzl, Vladimir; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-16

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

  6. Measurements of time-dependent CP asymmetries in B→D*∓π± decays using a partial reconstruction technique

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bahinipati, S.; Trabelsi, K.; Kinoshita, K.; Arinstein, K.; Aulchenko, V.; Aushev, T.; Bakich, A. M.; Balagura, V.; Barberio, E.; Belous, K.; et al

    2011-07-05

    We report results on time-dependent CP asymmetries in B→D*∓π± decays based on a data sample containing 657×10⁶ BB¯ pairs collected with the Belle detector at the KEKB asymmetric-energy e⁺e⁻ collider at the Υ(4S) resonance. We use a partial reconstruction technique, wherein signal B→D*∓π± events are identified using information only from the fast pion from the B decay and the slow pion from the subsequent decay of the D*∓, where the former (latter) corresponds to D*⁺(D*⁻) final states. We obtain CP violation parameters S⁺=+0.061±0.018 (stat)±0.012 (syst) and S⁻=+0.031±0.019 (stat)±0.015 (syst).

  7. A multilevel multiscale mimetic method for an anisotropic infiltration problem

    SciTech Connect (OSTI)

    Lipnikov, Konstantin; Moulton, David; Svyatskiy, Daniil

    2009-01-01

    Modeling of multiphase flow and transport in highly heterogeneous porous media must capture a broad range of coupled spatial and temporal scales. Recently, a hierarchical approach dubbed the Multilevel Multiscale Mimetic (M3) method, was developed to simulate two-phase flow in porous media. The M{sup 3} method is locally mass conserving at all levels in its hierarchy, it supports unstructured polygonal grids and full tensor permeabilities, and it can achieve large coarsening factors. In this work we consider infiltration of water into a two-dimensional layered medium. The grid is aligned with the layers but not the coordinate axes. We demonstrate that with an efficient temporal updating strategy for the coarsening parameters, fine-scale accuracy of prominent features in the flow is maintained by the M{sup 3} method.

  8. LSM-YSZ Cathodes with Reaction-Infiltrated Nanoparticles

    SciTech Connect (OSTI)

    Lu, Chun; Sholklapper, Tal Z.; Jacobson, Craig P.; Visco, StevenJ.; De Jonghe, Lutgard C.

    2006-01-31

    To improve the LSM-YSZ cathode performance of intermediate temperature solid oxide fuel cells (SOFCs), Sm0.6Sr0.4CoO3-sigma (SSC) perovskite nanoparticles are incorporated into the cathodes by a reaction-infiltration process. The SSC particles are {approx}20 to 80nm in diameter, and intimately adhere to the pore walls of the preformed LSM-YSZ cathodes. The SSC particles dramatically enhance single-cell performance with a 97 percent H2+3 percent H2O fuel, between 600 C and 800 C. Consideration of a simplified TPB (triple phase boundary) reaction geometry indicates that the enhancement may be attributed to the high electrocatalytic activity of SSC for electrochemical reduction of oxygen in a region that can be located a small distance away from the strict triple phase boundaries. The implication of this work for developing high-performance electrodes is also discussed.

  9. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    DOE Patents [OSTI]

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  10. Expedient Respiratory and Physical Protection: Does a Wet Towel Work to Prevent Chemical Warfare Agent Vapor Infiltration?

    SciTech Connect (OSTI)

    Sorensen, J.H.

    2002-08-30

    The purpose of this paper is to examine the effectiveness of expedient protection strategies to reduce exposure to vapors from chemical warfare agents. This includes an examination of the physical and the psychological effectiveness of measures such as using a wet towel to seal a door jam against the infiltration of chemicals while sheltering in place or to provide expedient respiratory protection. Respiratory protection for civilians has never been considered a viable option for population protection in the CSEPP. Problems of storage, ability to effectively don respirators, and questionable fit have been primary factors in rejecting this option. Expedient respiratory protection seems to offer little benefits for population protection for chemical agent vapors. Furthermore, using wet towels as a vapor barrier at the bottom of a door should be discouraged. The wetted towel provides no vapor filtration and its effectiveness in infiltration reduction is unknown. Taping the bottom of the door will still likely provide greater infiltration reduction and is recommended as the current method for use in sheltering.

  11. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    SciTech Connect (OSTI)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  12. A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques

    SciTech Connect (OSTI)

    Hiranuma, Naruki; Augustin-Bauditz, Stefanie; Bingemer, Heinz; Budke, Carsten; Curtius, J.; Danielczok, Anja; Diehl, K.; Dreischmeier, Katharina; Ebert, Martin; Frank, F.; Hoffmann, Nadine; Kandler, Kondrad; Kiselev, Alexei; Koop, Thomas; Leisner, Thomas; Mohler, Ottmar; Nillius, Bjorn; Peckhaus, Andreas; Rose, Diana; Weinbruch, Stephan; Wex, Heike; Boose, Yvonne; DeMott, Paul J.; Hader, John D.; Hill, Thomas; Kanji, Zamin; Kulkarni, Gourihar R.; Levin, Ezra; McCluskey, Christina; Murakami, Masataka; Murray, Benjamin J.; Niedermeier, Dennis; Petters, Markus D.; O'Sullivan, Daniel; Saito, Atsushi; Schill, Gregory; Tajiri, Takuya; Tolbert, Margaret A.; Welti, Andre; Whale, Thomas; Wright, Timothy; Yamashita, Katsuya

    2015-01-01

    Immersion freezing is the most relevant heterogeneous ice nucleation mechanism 3 through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing 4 number of laboratory experiments utilizing a variety of instruments have examined immersion 5 freezing activity of atmospherically relevant ice nucleating particles (INPs). However, an 6 inter-comparison of these laboratory results is a difficult task because investigators have used 7 different ice nucleation (IN) measurement methods to produce these results. A remaining 8 challenge is to explore the sensitivity and accuracy of these techniques and to understand how 9 the IN results are potentially influenced or biased by experimental parameters associated with 10 these techniques. 11 Within the framework of INUIT (Ice Nucleation research UnIT), we distributed an 12 illite rich sample (illite NX) as a representative surrogate for atmospheric mineral dust 13 particles to investigators to perform immersion freezing experiments using different IN 14 measurement methods and to obtain IN data as a function of particle concentration, 15 temperature (T), cooling rate and nucleation time. Seventeen measurement methods were 16 involved in the data inter-comparison. Experiments with seven instruments started with the 17 test sample pre-suspended in water before cooling, while ten other instruments employed 18 water vapor condensation onto dry-dispersed particles followed by immersion freezing. The 19 resulting comprehensive immersion freezing dataset was evaluated using the ice nucleation 20 active surface-site density (ns) to develop a representative ns(T) spectrum that spans a wide 21 temperature range (-37 C < T < -11 C) and covers nine orders of magnitude in ns. 22 Our inter-comparison results revealed a discrepancy between suspension and dry-23 dispersed particle measurements for this mineral dust. While the agreement was good below ~-24 26 C, the ice nucleation activity, expressed in ns, was smaller for the wet suspended samples 25 and higher for the dry-dispersed aerosol samples between about -26 and -18 C. Only 26 instruments making measurement techniques with wet suspended samples were able to 27 measure ice nucleation above -18 C. A possible explanation for the deviation between -26 28 and -18 C is discussed. In general, the seventeen immersion freezing measurement 29 techniques deviate, within the range of about 7 C in terms of temperature, by three orders of 30 magnitude with respect to ns. In addition, we show evidence that the immersion freezing 31 efficiency (i.e., ns) of illite NX particles is relatively independent on droplet size, particle 32 mass in suspension, particle size and cooling rate during freezing. A strong temperature-33 2 dependence and weak time- and size-dependence of immersion freezing efficiency of illite-34 rich clay mineral particles enabled the ns parameterization solely as a function of temperature. 35 We also characterized the ns(T) spectra, and identified a section with a steep slope between -36 20 C and -27 C, where a large fraction of active sites of our test dust may trigger immersion 37 freezing. This slope was followed by a region with a gentler slope at temperatures below -27 38 C. A multiple exponential distribution fit is expressed as ns(T) = exp(23.82 exp(-exp(0.16 39 (T + 17.49))) + 1.39) based on the specific surface area and ns(T) = exp(25.75 exp(-exp(0.13 40 (T + 17.17))) + 3.34) based on the geometric area (ns and T in m-2 and C, respectively). 41 These new fits, constrained by using an identical reference samples, will help to compare IN 42 measurement methods that are not included in the present study and, thereby, IN data from 43 future IN instruments.

  13. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    SciTech Connect (OSTI)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  14. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells using AFM-Based Electrical Techniques with Nanometer Resolution

    SciTech Connect (OSTI)

    Jiang, C. S.; Heath, J. T.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.

    2011-01-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  15. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  16. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre-weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  17. Cs/sup +/ + Cs/sup +/ charge-transfer and ionization cross-section measurements by a plasma-target technique

    SciTech Connect (OSTI)

    Stalder, K.R.

    1982-05-01

    A Q machine plasma target using cesium was constructed to serve as a target for a beam of Cs/sup +/ ions. The sum of charge transfer and ionization cross sections was determined by measuring the growth of the Cs/sup + +/ component of the beam as a function of the plasma radial line density. The measured cross section varies approximately linearly with energy between 50 and 110 keV. This loss cross section is 0.47 +- .11 x 10/sup -16/ cm/sup 2/ at 110 keV. These results have been compared to the cross section determined by a crossed-beam technique. The agreement between the results of the experiments is good at energies above 75 keV. A discrepancy between the results at lower energies indicated a systematic error in one of the techniques. Theoretical estimates of the cross section recently have begun to agree with the magnitude of the cross section but have not fully explained the energy dependence.

  18. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... We created a small library to record the current state of the energy and time counters and then inserted calls ... MiniDFT energy usage was measured separately for the ...

  19. In situ measurement of interfacial tension of Fe-S and Fe-P liquids under high pressure using X-ray radiography and tomography techniques

    SciTech Connect (OSTI)

    Terasakia, H; Urakawa, S; Funakoshi, K; Nishiyama, N; Wang, Y; Nishida, K; Sakamaki, T; Suzuki, A; Ohtani, E

    2009-09-14

    Interfacial tension is one of the most important properties of the liquid iron alloy that controls the core formation process in the early history of the Earth and planets. In this study, we made high-pressure X-ray radiography and micro-tomography measurements to determine the interfacial tension between liquid iron alloys and silicate melt using the sessile drop method. The measured interfacial tension of liquid Fe-S decreased significantly (802-112 mN/m) with increasing sulphur content (0-40 at%) at 1.5 GPa. In contrast, the phosphorus content of Fe had an almost negligible effect on the interfacial tension of liquid iron. These tendencies in the effects of light elements are consistent with those measured at ambient pressure. Our results suggest that the effect of sulphur content on the interfacial tension of liquid Fe-S (690 mN/m reduction with the addition of 40 at% S) is large compared with the effect of temperature (~273 mN/m reduction with an increase of 200 K). The three-dimensional structure of liquid Fe-S was obtained at ~2 GPa and 1373-1873 K with a high-pressure tomography technique. The Fe-S droplet was quite homogeneous when evaluated in a slice of the three-dimensional image.

  20. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    SciTech Connect (OSTI)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-03-15

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  1. Application of electron stimulated desorption techniques to measure the isotherm and the mean residence time of hydrogen physisorbed on a metal surface

    SciTech Connect (OSTI)

    Arakawa, Ichiro Shimizu, Hideyuki; Kawarabuki, Taku; Yamakawa, Koichiro; Miura, Takashi

    2015-03-15

    Electron stimulated desorption techniques were applied to probe the density of H{sub 2} physisorbed on a cold surface. The adsorption isotherm of H{sub 2} on a copper surface was measured in the equilibrium pressure range between 10{sup ?9} and 10{sup ?4} Pa at surface temperatures of 6.5 and 4.2?K. The mean residence times of H{sub 2} on copper were obtained from the observation of the time development of the surface density in a transitional state approaching equilibrium, and are 50500?s for the coverage between 1 and 0.18 at 4.2?K of the substrate temperature. The adsorption energies of 1.181.27?kJ/mol, and the condensation coefficient of 0.0740.018 were also deduced.

  2. Method for producing melt-infiltrated ceramic composites using formed supports

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Brun, Milivoj Konstantin (Ballston Lake, NY); McGuigan, Henry Charles (Duanesburg, NY)

    2003-01-01

    A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.

  3. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    SciTech Connect (OSTI)

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-09-17

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm2 Pt when measured in 0.1 M HClO4, 20 mV/s, 100 kPa O2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.

  4. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; Pivovar, Bryan S.; Kocha, Shyam S.

    2015-09-17

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm2 Pt when measured in 0.1 M HClO4,more » 20 mV/s, 100 kPa O2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less

  5. Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Physical Properties See Electrical Techniques Electromagnetic techniques utilize EM induction processes to measure one or more electric or magnetic field components resulting...

  6. Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    core velocity fluctuations and the dynamo in a reversed-field pinch * D. J. Den Hartog, †,a) J. T. Chapman, b) D. Craig, G. Fiksel, P. W. Fontana, S. C. Prager, and J. S. Sarff Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 ͑Received 16 November 1998; accepted 20 January 1999͒ Plasma flow velocity fluctuations have been directly measured in the high-temperature magnetically confined plasma in the Madison Symmetric Torus ͑MST͒

  7. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    SciTech Connect (OSTI)

    Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Deiana, Rita; Ferraris, Stefano; Cassiani, Giorgio; Putti, Mario

    2015-02-15

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.

  8. Simulation of Net Infiltration for Present-Day and Potential Future Climates

    SciTech Connect (OSTI)

    D. Levitt

    2004-11-09

    The purpose of this model report is to document the infiltration model used to estimate upper-bound, mean, and lower-bound spatially-distributed average annual net infiltration rates for present-day and potential future climates at Yucca Mountain, Nevada. Net infiltration is the component of infiltrated precipitation, snowmelt, or surface water run-on that has percolated below the zone of evapotranspiration as defined by the depth of the effective root zone. The estimates of net infiltration are primarily used for defining the upper boundary condition for the site-scale three-dimensional unsaturated zone (UZ) model. The UZ flow model is one of several process models abstracted by the total system performance assessment (TSPA) model used to evaluate performance of the repository at Yucca Mountain, Nevada. The net-infiltration model is important for assessing repository-system performance because output from this model provides the upper boundary condition for the UZ flow model used to generate flow fields; water percolating downward from the UZ will be the principal means by which radionuclides are potentially released to the saturated zone (SZ). The SZ is the principal pathway to the biosphere where the reasonably maximally exposed individual (RMEI) is exposed to radionuclides.

  9. Estimation of neutrophil infiltration into hairless guinea pig skin treated with 2,2' -dichlorodiethyl sulfide

    SciTech Connect (OSTI)

    Bongiovanni, R.; Millard, C.B.; Schulz, S.M.; Romano, J.M.

    1993-05-13

    Despite growing acceptance of the hairless guinea pig (HPG) for evaluating sulfur mustard (2,2'dichlorodiethylsulfide, HD) skin injury, there are presently few antivesicant drug assessment endpoints validated in vivo for this model. We measured the activity of myeloperoxidase (MPO) to characterize the dose- and time-dependence of polymorphonuclear leukocyte (PMN) infiltration during development of the HD lesion. Biopsies were obtained from the dorsal thoracic-lumbar area of HGPs at successive 3 hr time intervals for up to 24 hrs following controlled exposure to either 5, 7, 8 or 10 min HD vapor. The presence of PMNs, as judged by MPO levels, peaked at 9 hrs irrespective of total HD vapor dose. The maximum response was a 20-fold increase compared to unexposed control sites at 9 hrs following 10 min HD vapor. This time period coincides with epidermal detachment characterized previously by electron microscopy in the HGP. By 24 hrs post-exposure, the MPO levels subsided markedly (2-fold compared to controls). These results suggest that PMNs participate in the HGP cutaneous inflammatory response following exposure to HD and that MPO may be a useful biological marker for evaluating putative antivesicants.

  10. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R.; Efird, Marty

    2013-05-03

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet-cleanable; anti-biofouling; waterproof; and anti-corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  11. Illumination Sufficiency Survey Techniques: In-situ Measurements of Lighting System Performance and a User Preference Survey for Illuminance in an Off-Grid, African Setting

    SciTech Connect (OSTI)

    Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-08-26

    Efforts to promote rechargeable electric lighting as a replacement for fuel-based light sources in developing countries are typically predicated on the notion that lighting service levels can be maintained or improved while reducing the costs and environmental impacts of existing practices. However, the extremely low incomes of those who depend on fuel-based lighting create a need to balance the hypothetically possible or desirable levels of light with those that are sufficient and affordable. In a pilot study of four night vendors in Kenya, we document a field technique we developed to simultaneously measure the effectiveness of lighting service provided by a lighting system and conduct a survey of lighting service demand by end-users. We took gridded illuminance measurements across each vendor's working and selling area, with users indicating the sufficiency of light at each point. User light sources included a mix of kerosene-fueled hurricane lanterns, pressure lamps, and LED lanterns.We observed illuminance levels ranging from just above zero to 150 lux. The LED systems markedly improved the lighting service levels over those provided by kerosene-fueled hurricane lanterns. Users reported that the minimum acceptable threshold was about 2 lux. The results also indicated that the LED lamps in use by the subjects did not always provide sufficient illumination over the desired retail areas. Our sample size is much too small, however, to reach any conclusions about requirements in the broader population. Given the small number of subjects and very specific type of user, our results should be regarded as indicative rather than conclusive. We recommend replicating the method at larger scales and across a variety of user types and contexts. Policymakers should revisit the subject of recommended illuminance levels regularly as LED technology advances and the price/service balance point evolves.

  12. Measuring temperature-dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and the surfing transform technique

    SciTech Connect (OSTI)

    Uritsky, Vadim M.; Ofman, Leon [Catholic University of America, Washington, D.C. 20064 (United States); Davila, Joseph M.; Viall, Nicholeen M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-20

    A set of co-aligned high-resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling a quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1%. The technique operates with a set of one-dimensional 'surfing' signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency-velocity space that exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square-root dependence predicted for slow mode magneto-acoustic waves which seem to be the dominating wave mode in the loop structures studied. This result extends recent observations by Kiddie et al. to a more general class of fan loop system not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  13. Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates

    SciTech Connect (OSTI)

    Review Panel: Soroosh Sorooshian, Ph.D., Panel Chairperson, University of California, Irvine; Jan M. H. Hendrickx, Ph.D., New Mexico Institute of Mining and Technology; Binayak P. Mohanty, Ph.D., Texas A&M University; Scott W. Tyler, Ph.D., University of Nevada, Reno; Tian-Chyi Jim Yeh, Ph.D., University of Arizona -- ORISE Review Facilitators: Robert S. Turner, Ph.D., Technical Review Group Manager, Oak Ridge Institute for Science and Education; Brian R. Herndon, Project Manager, Oak Ridge Institute for Science and Education; Russ Manning, Technical Writer/Editor, Haselwood Enterprises, Inc.

    2008-08-30

    The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is “to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site ...” (p. 1-1) The expert review panel assembled by ORISE concluded that the model report does not provide a technically credible spatial representation of net infiltration at Yucca Mountain. Specifically, the ORISE Review Panel found that: • A critical lack of site-specific meteorological, surface, and subsurface information prevents verification of (i) the net infiltration estimates, (ii) the uncertainty estimates of parameters caused by their spatial variability, and (iii) the assumptions used by the modelers (ranges and distributions) for the characterization of parameters. The paucity of site-specific data used by the modeling team for model implementation and validation is a major deficiency in this effort. • The model does not incorporate at least one potentially important hydrologic process. Subsurface lateral flow is not accounted for by the model, and the assumption that the effect of subsurface lateral flow is negligible is not adequately justified. This issue is especially critical for the wetter climate periods. This omission may be one reason the model results appear to underestimate net infiltration beneath wash environments and therefore imprecisely represent the spatial variability of net infiltration. • While the model uses assumptions consistently, such as uniform soil depths and a constant vegetation rooting depth, such assumptions may not be appropriate for this net infiltration simulation because they oversimplify a complex landscape and associated hydrologic processes, especially since the model assumptions have not been adequately corroborated by field and laboratory observations at Yucca Mountain.

  14. Simulates the Forced-Flow Chemical Vapor Infiltration in Steady State

    Energy Science and Technology Software Center (OSTI)

    1997-12-12

    GTCVI is a finite volume model for steady-state simulation of forced-flow chemical vapor infiltration in either Cartesian or cylindrical coordinates. The model solves energy and momentum balances simultaneously over a given domain discretized into an array of finite volume elements. The species balances and deposition rates are determined after the energy and momentum balances converge. Density-dependent preform properties are included in the model. Transient average density, backpressure, temperature gradient, and average radial deposition rates canmore » be summarized. Optimal infiltration conditions can be found by varying temperature, flow, and reactant concentration.« less

  15. Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

    SciTech Connect (OSTI)

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2006-11-20

    Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.

  16. Shallow infiltration processes at Yucca Mountain, Nevada: Neutron logging data 1984--1993

    SciTech Connect (OSTI)

    Flint, L.E.; Flint, A.L.

    1995-12-31

    To determine site suitability of Yucca Mountain, Nevada, as a potential high-level radioactive waste repository, a study was devised to characterize net infiltration. This study involves a detailed data set produced from 99 neutron boreholes that consisted of volumetric water-content readings with depth from 1984 through 1993 at Yucca Mountain. Boreholes were drilled with minimal disturbance to the surrounding soil or rock in order to best represent field conditions. Boreholes were located in topographic positions representing infiltration zones identified as ridgetops, sideslopes, terraces, and active channels. Through careful field calibration, neutron moisture logs, collected on a monthly basis and representing most of the areal locations at Yucca Mountain, illustrated that the depth of penetration of seasonal moisture, important for escaping loss to evapotranspiration, was influenced by several factors. It was increased (1) by thin soil cover, especially in locations where thin soil is underlain by fractured bedrock; (2) on ridgetops; and (3) during the winter when evapotranspiration is low and runoff is less frequent. This data set helps to provide a seasonal and areal distribution of changes in volumetric water content with which to assess hydrologic processes contributing to net infiltration.

  17. Shallow infiltration processes at Yucca Mountain, Nevada - neutron logging data 1984-93

    SciTech Connect (OSTI)

    Flint, L.E.; Flint, A.L.

    1995-11-01

    To determine site suitability of Yucca Mountain, Nevada, as a potential high-level radioactive waste repository, a study was devised to characterize net infiltration. This study involves a detailed data set produced from 99 neutron boreholes that consisted of volumetric water-content readings with depth from 1984 through 1993 at Yucca Mountain. Boreholes were drilled with minimal disturbance to the surrounding soil or rock in order to best represent field conditions. Boreholes were located in topographic positions representing infiltration zones identified as ridge-tops, sideslopes, terraces, and active channels. Through careful field calibration, neutron moisture logs, collected on a monthly basis and representing most of the areal locations at Yucca Mountain, illustrated that the depth of penetration of seasonal moisture, important for escaping loss to evapotranspiration, was influenced by several factors. It was increased (1) by thin soil cover, especially in locations where thin soil is underlain by fractured bedrock; (2) on ridgetops; and (3) during the winter when evapotranspiration is low and runoff is less frequent. This data set helps to provide a seasonal and areal distribution of changes in volumetric water content with which to assess hydrologic processes contributing to net infiltration.

  18. Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface

    SciTech Connect (OSTI)

    Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan; Brat, Daniel J.; Shu, Hui-Kuo; Olson, Jeffrey J.

    2011-11-15

    Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resection margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.

  19. The effect of E{sub r} on MSE measurements of q, a new technique for measuring E{sub r}, and a test of the neoclassical electric field

    SciTech Connect (OSTI)

    Zarnstorff, M.C.; Synakowski, E.J.; Levinton, F.M.; Batha, S.H.

    1996-10-01

    Previous analysis of motional-Stark Effect (MSE) data to measure the q-profile ignored contributions from the plasma electric field. The MSE measurements are shown to be sensitive to the electric field and require significant corrections for plasmas with large rotation velocities or pressure gradients. MSE measurements from rotating plasmas on the Tokamak Fusion Test Reactor (TFTR) confirm the significance of these corrections and verify their magnitude. Several attractive configurations are considered for future MSE-based diagnostics for measuring the plasma radial electric field. MSE data from TFTR is analyzed to determine the change in the radial electric field between two plasmas. The measured electric field quantitatively agrees with the predictions of neoclassical theory. These results confirm the utility of a MSE electric field measurement.

  20. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    SciTech Connect (OSTI)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and a correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4 1.4 (stat + ?JES) 1.3 (syst) GeV/c2.

  1. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy ?s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt? pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and amorecorrection to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4 1.4 (stat + ?JES) 1.3 (syst) GeV/c2.less

  2. Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T.

    2011-10-14

    A measurement of the top-quark mass is presented using Tevatron data from proton-antiproton collisions at center-of-mass energy √s = 1.96 TeV collected with the CDF II detector. Events are selected from a sample of candidates for production of tt̄ pairs that decay into the lepton+jets channel. The top-quark mass is measured with an unbinned maximum likelihood method where the event probability density functions are calculated using signal and background matrix elements, as well as a set of parameterized jet-to-parton transfer functions. The likelihood function is maximized with respect to the top-quark mass, the signal fraction in the sample, and amore » correction to the jet energy scale (JES) calibration of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) amounts to an additional in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using the data sample of 578 lepton+jets candidate events, corresponding to 3.2 fb-1 of integrated luminosity, the top-quark mass is measured to be mt = 172.4± 1.4 (stat + ΔJES) ± 1.3 (syst) GeV/c2.« less

  3. Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    SciTech Connect (OSTI)

    Kaszuba, John; Sims, Kenneth

    2014-09-30

    An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

  4. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  5. Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts

    DOE Patents [OSTI]

    Liu, Meilin; Liu, Ze; Liu, Mingfei; Nie, Lifang; Mebane, David Spencer; Wilson, Lane Curtis; Surdoval, Wayne

    2014-08-12

    Solid-oxide fuel cells include an electrolyte and an anode electrically coupled to a first surface of the electrolyte. A cathode is provided, which is electrically coupled to a second surface of the electrolyte. The cathode includes a porous backbone having a porosity in a range from about 20% to about 70%. The porous backbone contains a mixed ionic-electronic conductor (MIEC) of a first material infiltrated with an oxygen-reducing catalyst of a second material different from the first material.

  6. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOE Patents [OSTI]

    Musket, Ronald G. (Danville, CA); Felter, Thomas E. (Livermore, CA)

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  7. Infiltration Effects on Residential Pollutant Concentrations for Continuous and Intermittent Mechanical Ventilation Approaches

    SciTech Connect (OSTI)

    Sherman, Max; Logue, Jennifer; Singer, Brett

    2010-06-01

    The prevailing residential ventilation standard in North America, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 62.2, specifies volumetric airflow requirements as a function of the overall size of the home and the number of bedrooms, assumes a fixed, minimal amount of infiltration, and requires mechanical ventilation to achieve the remainder. The standard allows for infiltration credits and intermittent ventilation patterns that can be shown to provide comparable performance. Whole-house ventilation methods have a substantial effect on time-varying indoor pollutant concentrations. If alternatives specified by Standard 62.2, such as intermittent ventilation, are used, short-term pollutant concentrations could exceed acute health standards even if chronic health standards are met.The authors present a methodology for comparing ASHRAE- and non-ASHRAE-specified ventilation scenarios on relative indoor pollutant concentrations. We use numerical modeling to compare the maximum time-averaged concentrations for acute exposure relevant (1-hour, 8-hour, 24-hour ) and chronic exposure relevant (1-year) time periods for four different ventilation scenarios in six climates with a range of normalized leakage values. The results suggest that long-term concentrations are the most important metric for assessing the effectiveness of whole-house ventilation systems in meeting exposure standards and that, if chronic health exposure standards are met, acute standards will also be met.

  8. Rapid processing of carbon-carbon composites by forced flow-thermal gradient chemical vapor infiltration (FCVI)

    SciTech Connect (OSTI)

    Vaidyaraman, S.; Lackey, W.J.; Agrawal, P.K.; Freeman, G.B.; Langman, M.D.

    1995-10-01

    Carbon fiber-carbon matrix composites were fabricated using the forced flow-thermal gradient chemical vapor infiltration (FCVI) process. Preforms were prepared by stacking 40 layers of plain weave carbon cloth in a graphite holder. The preforms were infiltrated using propylene, propane, and methane. The present work showed that the FCVI process is well suited for fabricating carbon-carbon composites; without optimization of the process, the authors have achieved uniform and thorough densification. Composites with porosities as low as 7% were fabricated in 8--12 h. The highest deposition rate obtained in the present study was {approximately}3 {micro}m/h which is more than an order of magnitude faster than the typical value of 0.1--0.25 {micro}m/h for the isothermal process. It was also found that the use of propylene and propane as reagents resulted in faster infiltration compared to methane.

  9. Diagnostic techniques used in AVLIS

    SciTech Connect (OSTI)

    Heestand, G.M.; Beeler, R.G.

    1992-12-01

    This is the second part of a general overview talk on the atomic vapor laser isotope separation (AVLIS) process. In this presentation the authors will discuss the diagnostic techniques used to measure key parameters in their atomic vapor including densities, temperature, velocities charge exchange rates and background ionization levels. Although these techniques have been extensively applied to their uranium program they do have applicability to other systems. Relevant data demonstrating these techniques will be shown.

  10. Luminescence of CdSe/ZnS quantum dots infiltrated into an opal matrix

    SciTech Connect (OSTI)

    Gruzintsev, A. N. Emelchenko, G. A.; Masalov, V. M.; Yakimov, E. E.; Barthou, C.; Maitre, A.

    2009-02-15

    The effect of the photonic band gap in the photonic crystal, the synthesized SiO{sub 2} opal with embedded CdSe/ZnS quantum dots, on its luminescence in the visible spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra for the infiltrated opal depends on the diameter of the constituent nanospheres and on the angle of recording the signal. The optimal conditions for embedding the CdSe/ZnS quantum dots from the solution into the opal matrix are determined. It is found that, for the opal-CdSe/ZnS nanocomposites, the emission intensity decreases and the luminescence decay time increases in the spatial directions, in which the spectral positions of the photonic band gap and the luminescence peak of the quantum dots coincide.

  11. Photoluminescence of ZnO infiltrated into a three-dimensional photonic crystal

    SciTech Connect (OSTI)

    Gruzintsev, A. N. Emelchenko, G. A.; Masalov, V. M.

    2009-08-15

    The effect of the photonic band gap (stopband) of the photonic crystal, the synthesized SiO{sub 2} opal with embedded zinc oxide, on its luminescence in the violet spectral region is studied. It is shown that the position of the photonic band gap in the luminescence and reflectance spectra of the infiltrated opal depends on the diameter of the constituent nanoglobules, the volume fraction of zinc oxide, and on the signal's acceptance angle. It is found that, for the ZnO-opal nanocomposites, the emission intensity is decreased and the luminescence decay time is increased in the spatial directions, in which the photonic band gap coincides in spectral position with the luminescence peak of zinc oxide. The change in the decay time can be attributed to the change in the local density of photonic states in the photonic band gap.

  12. Stable isotope evidence for limited fluid infiltration of deep crustal rocks from the Ivrea Zone, Italy

    SciTech Connect (OSTI)

    Baker, A.J.

    1988-06-01

    Isotopic and petrologic studies of the Ivrea Zone, a segment of deep-crustal high-grade rocks, suggest that metamorphism did not involve the transfer of large quantities of CO/sub 2/ from mantle to crust. High-grade Ivrea Zone calcites may retain high ..delta../sup 18/O (up to 24 per thousand SMOW), indicating little interaction with externally derived fluid. Graphite isotopic compositions (..delta../sup 13/C = -10 per thousand to -25 per thousand PDB) that do not vary with grade are attributed to mixing between carbonate carbon and biogenic noncarbonate carbon. Calcites from high-grade, carbonate-poor amphibolites have ..delta../sup 13/C of about 1 per thousand PDB and sedimentary, not infiltrative, origins. The general lack of carbon and oxygen isotopic homogenization suggests that fluid interactions may be explained in terms of fluid generated internally to the Ivrea Zone metasedimentary rocks.

  13. Thermal Diffusivity and Specific Heat Measurements of Titanium Potassium Perchlorate Titanium Subhydride Potassium Perchlorate 9013 Glass 7052 Glass SB-14 Glass and C-4000 Muscovite Mica Using the Flash Technique.

    SciTech Connect (OSTI)

    Specht, Paul Elliott; Cooper, Marcia A.

    2015-02-01

    The flash technique was used to measure the thermal diffusivity and specific heat of titanium potassium perchlorate (TKP) ignition powder (33wt% Ti - 67wt% KP) with Ventron sup- plied titanium particles, TKP ignition powder (33wt% Ti - 67wt% KP) with ATK supplied titanium particles, TKP output powder (41wt% Ti - 59wt% KP), and titanium subhydride potassium perchlorate (THKP) (33wt% TiH 1.65 - 67wt% KP) at 25 o C. The influence of density and temperature on the thermal diffusivity and specific heat of TKP with Ventron supplied titanium particles was also investigated. Lastly, the thermal diffusivity and specific heats of 9013 glass, 7052 glass, SB-14 glass, and C-4000 Muscovite mica are presented as a function of temperature up to 300 o C.

  14. Cyclophilin A (CypA) is associated with the inflammatory infiltration and alveolar bone destruction in an experimental periodontitis

    SciTech Connect (OSTI)

    Liu, Lihua; Li, Chengzhang; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079 ; Cai, Cia; Xiang, Junbo; Cao, Zhengguo; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, 237 Luo Yu Road, Hongshan District, Wuhan 430079

    2010-01-01

    Background and objective: CypA is able to regulate inflammatory responses and MMPs production via interaction with its cell surface receptor, EMMPRIN. This study aimed to address the possible association of CypA with pathological inflammation and destruction of periodontal tissues, and whether CypA-EMMPRIN interaction exists in periodontitis. Materials and methods: Experimental periodontitis was induced by ligation according to our previous method. Histological and radiographic examinations were performed. Western blot was used to detect CypA and EMMPRIN expressions in gingival tissues. Immunohistochemistry was applied for CypA, EMMPRIN, MMP-1, MMP-2, MMP-9, as well as cell markers of macrophage, lymphocyte and neutrophil. CypA expression, alveolar bone loss, and inflammatory infiltrations were quantified followed by correlation analyses. Results: Western blot revealed that CypA and EMMRPIN expressions were dramatically elevated in inflamed gingival tissues (ligature group) as compared to healthy gingival tissues (control group). The enhanced CypA and EMMPRIN expressions were highly consistent in cell localization on seriate sections. They were permanently co-localized in infiltrating macrophages and lymphocytes, as well as osteoclasts and osteoblasts in interradicular bone, but rarely expressed by infiltrating neutrophils. MMP-1, MMP-2, and MMP-9 expressions were also sharply increased in inflamed gingiva. MMP-2 and MMP-9 were mainly over-expressed by macrophages, while MMP-1 was over-produced by fibroblasts and infiltrating cells. The number of CypA-positive cells was strongly correlated with the ACJ-AC distance (r = 0.839, p = 0.000), the number of macrophages (r = 0.972, p = 0.000), and the number of lymphocytes (r = 0.951, p = 0.000). Conclusion: CypA is associated with the inflammatory infiltration and alveolar bone destruction of periodontitis. CypA-EMMPRIN interaction may exist in these pathological processes.

  15. Simplified multizone blower door techniques for multifamily buildings. Final report

    SciTech Connect (OSTI)

    1995-09-01

    This research focused on the applicability of (a) two-blower-door and (b) single-blower-door multi-zone pressurization techniques for estimating the air leakage characteristics of New York State multi-family apartment buildings. The research also investigated the magnitude of external leakage area in multi-family buildings and used computer simulations to estimate the effect of decreasing external and internal leakage areas on air infiltration rates. This research investigates whether two blower doors can be used to determine the ELA of the exterior envelope and the ELA of partitions. Two multi-zone versions of the single-blower-door pressurization method are also examined.

  16. Mobility of heavy metals through granitic soils using mini column infiltration test

    SciTech Connect (OSTI)

    Zarime, Nur 'Aishah; Yaacob, W. Z.W.

    2014-09-03

    This study is about the mobility of cadmium through compacted granitic soils. Two granitic soils namely the Broga (BGR) and Kajang (KGR) granitic soils were collected in Selangor, Malaysia. Physical and chemical tests were applied for both granitic soils to determine the physical and chemical properties of soil materials. Physical test results shows granitic soils (BGR and KGR) have high percentage of sand ranging between 54%–63% and 46%–54% respectively, an intermediate and intermediate to high plasticity index as well as high specific gravity ie; 2.50–2.59 and 2.45–2.66 respectively. For chemical test, granitic soils shows acidic pH values ranged from 5.35–5.85 for BGR and pH 5.32–5.54 for KGR. For organic matter, SSA and CEC test, it shows low values ranged from 0.22%–0.34% and 0.39%– 0.50% respectively for organic matter test, 17.96 m{sup 2}/g–21.93 m{sup 2}/g and 25.76 m{sup 2}/g–26.83 m{sup 2}/g respectively for SSA test and 0.79 meq/100g–1.35 meq/100g and 1.31 meq/100g–1.35 meq/100g respectively for CEC test. Mini column infiltration test was conducted to determine the retention of cadmium while flowing through granite soils. This test conducted based on the falling head permeability concepts. Different G-force ranging from 231G to 1442G was used in this test. The breakthrough curves show the concentration of Cd becomes higher with the increasing of G-force for both granitic samples (BGR and KGR). The selectivity sorption for both granites ranked in the following decreasing order of; 231G>519G>923G>1442G. Results demonstrated that granitic soils also have low buffering capacity due to low resist of pH changes.

  17. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    SciTech Connect (OSTI)

    Saito, Kotaro Ono, Kanta; Ueno, Tetsuro; Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira; Harada, Masashi; Keiderling, Uwe

    2015-05-07

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd{sub 2}Fe{sub 14}B grains.

  18. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  19. Robust Technique for Measuring and Simulating Silicon Wafer Quality Characteristics that Enable the Prediction of Solar Cell Electrical Performance of MEMC Silicon Wafer. Cooperative Research and Development Final Report, CRADA Number CRD-11-438

    SciTech Connect (OSTI)

    Sopori, Bhushan

    2015-12-01

    NREL and MEMC Electronic Materials are interested in developing a robust technique for monitoring material quality of mc-Si and mono-Si wafers -- a technique that can provide relevant data to accurately predict the performance of solar cells fabricated on them. Previous work, performed under two TSAs between NREL and MEMC, has established that dislocation clusters are the dominant performance-limiting factor in MEMC mc-Si solar cells. The work under this CRADA will go further in verifying these results on a larger data set, evaluate possibilities of faster method(s) for mapping dislocations in wafers/ingots, understanding dislocation generation during ingot casting, and helping MEMC to have an internal capability for basic characterization that will provide feedback needed for more accurate crystallization simulations. NREL has already developed dislocation mapping technique and developed a basic electronic model (called Network Model) that uses spatial distribution of dislocations to predict the cell performance. In this CRADA work, we will use these techniques to: (i) establish dislocation, grain size, and grain orientation distributions of the entire ingots (through appropriate DOE) and compare these with theoretical models developed by MEMC, (ii) determine concentrations of some relevant impurities in selected wafers, (iii) evaluate potential of using photoluminescence for dislocation mapping and identification of recombination centers, (iv) evaluate use of diode array analysis as a detailed characterization tool, and (v) establish dislocation mapping as a wafer-quality monitoring tool for commercial mc-Si production.

  20. Binary and ternary niobium-base superconductors by the infiltration process

    SciTech Connect (OSTI)

    Pickus, M.R.; Holthius, J.T.; Rosen, M.

    1980-06-01

    This report summarizes the work on high field superconducting materials and processes performed at the Materials and Molecular Research Division of the Lawrence Berkeley Laboratory. Two major interrelated focal points characterize this research. One was the decision to restrict the effort to A-15 compounds because of their superior critical temperatures and critical fields. The inherent brittleness of these compounds along with the requirement for a filamentary morphology led to the second focal point: a heavy reliance on a powder approach for the fabrication of superconducting tapes and wires. There have been exceptions to the use of powder techniques where special circumstances such as the nature of a particular alloy system suggested on alternative approach. The quench-age technique described herein is an example of a non-powder approach. Here the niobium-aluminum system is involved and the methodology is based on the fact that in a certain composition range a solid solution of aluminum in niobium is the stable phase at elevated temperatures (1950/sup 0/C), whereas at lower temperatures (< 1100/sup 0/C) the stable phase is the desired A-15 compound. Additionally, niobium forms deformation twins which were found to be effective sites for the nucleation of the A-15 phase.

  1. Authentication techniques for smart cards

    SciTech Connect (OSTI)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  2. NREL: Measurements and Characterization - About Measurements and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization About Measurements and Characterization Graphic of three intersecting circles depicting the M&C modes of support, collaborative R&D, and technique development. The modes of operation for the M&C group at NREL integrates support, collaborative R&D, and technique development. The Measurements and Characterization (M&C) division at the National Renewable Energy Laboratory and the National Center for Photovoltaics provides characterization support,

  3. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes ... The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Laser ...

  4. Enhancement of second harmonic generation in NaNO{sub 2}-infiltrated opal photonic crystal using structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I. Yurchenko, Stanislav O.

    2014-08-04

    Experimental and numerical results for second harmonic generation (SHG) in photonic crystal (PC) based on NaNO{sub 2}-infiltrated opal matrix are presented. SHG is performed in reflection mode; thus, the direction of the SHG maximum is equal to the angle of mirror reflection. The PC was pumped with femtosecond optical pulses at different angles of incidence, allowing the dependence of the SHG efficiency on the location of the fundamental wavelength toward the PC band gap (BG) to be examined. The most efficient SHG was observed when pumping the BG of the PC. To interpret the experimental results, finite-difference time-domain numerical simulations of the light interaction with the PC were conducted. The observed effect of highly efficient SHG is associated with structural light focusing, and, as a consequence, with strong optical field localization within certain near-surface PC regions. Thus, SHG enhancement based on structural light focusing in PC was demonstrated.

  5. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information...

  6. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  7. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsAerosols

  8. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiometric

  9. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  10. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  11. Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution

    SciTech Connect (OSTI)

    Szecsody, Jim E.

    2006-04-30

    We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 years to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.

  12. Measurement of vibrational, gas, and rotational temperatures of H{sub 2} (X{sup 1} {sigma}{sub g}{sup +}) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    SciTech Connect (OSTI)

    Shakhatov, V.A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H{sub 2} in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2 W/cm{sup 3} have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H{sub 2} CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  13. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsCloud Properties

  14. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsSurface Properties

  15. A Serendipitous, Long-Term Infiltration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Ditch at the Nevada Test Site

    SciTech Connect (OSTI)

    Maxwell, R M; Tompson, A B; Kollet, S J

    2008-11-20

    Underground nuclear weapons testing at the Nevada Test Site introduced numerous radionuclides that may be used to characterize subsurface hydrologic transport processes in arid climates. A sixteen year pumping experiment designed to examine radionuclide migration away from the CAMBRIC nuclear test, conducted in groundwater beneath Frenchman Flat in 1965, gave rise to an unintended second experiment involving radionuclide infiltration through the vadose zone, as induced by seepage of pumping effluents beneath an unlined discharge trench. The combined experiments have been reanalyzed using a detailed, three-dimensional numerical model of transient, variably saturated flow and mass transport, tailored specifically for large scale and efficient calculations. Simulations have been used to estimate radionuclide travel and residence times in various parts of the system for comparison with observations in wells. Model predictions of mass transport were able to clearly demonstrate radionuclide recycling behavior between the ditch and pumping well previously suggested by isotopic age dating information; match travel time estimates for radionuclides moving between the ditch, the water table, and monitoring wells; and provide more realistic ways in which to interpret the pumping well elution curves. Collectively, the results illustrate the utility of integrating detailed numerical modeling with diverse observational data in developing accurate interpretations and forecasts of contaminant migration processes.

  16. Weld braze technique

    DOE Patents [OSTI]

    Kanne, Jr., William R. (Aiken, SC); Kelker, Jr., John W. (North Augusta, SC); Alexander, Robert J. (Aiken, SC)

    1982-01-01

    High-strength metal joints are formed by a combined weld-braze technique. A hollow cylindrical metal member is forced into an undersized counterbore in another metal member with a suitable braze metal disposed along the bottom of the counterbore. Force and current applied to the members in an evacuated chamber results in the concurrent formation of the weld along the sides of the counterbore and a braze along the bottom of the counterbore in one continuous operation.

  17. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  18. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  19. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  20. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  1. Measurement and fitting techniques for the assessment of material...

    Office of Scientific and Technical Information (OSTI)

    ATTENUATION; DIAGRAMS; DIFFRACTION; LEAST SQUARE FIT; NONLINEAR PROBLEMS; PIEZOELECTRICITY; RAYLEIGH WAVES; WAVE PROPAGATION Word Cloud More Like This Full Text Journal ...

  2. Ion source sample preparation techniques for carbon-14 AMS measurements

    SciTech Connect (OSTI)

    Balsley, D.R.; Farwell, G.W.; Grootes, P.M.; Schmidt, F.H.

    1987-01-01

    Methods for preparing solid graphite, and other types of carbon samples possessing good geometrical characteristics and producing large beams are described. Amorphous carbon, or graphite powder, is encapsulated in tantalum, compressed to approx.14 kilobars, and heated in vacuum to approx.2500/sup 0/C. The end of the capsule is cut off, exposing a smooth and hard graphite surface which provides excellent emittance in a reflection-type sputter source. The powder is prepared from CO/sub 2/ by the hydrogen-iron powder catalyzation method. Silver-carbon mixtures with good geometrical properties can also be prepared with our press. 6 refs., 4 figs.

  3. A technique for measuring compressive properties of single microballoo...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  4. Measurement of surface tension and viscosity by open capillary techniques

    DOE Patents [OSTI]

    Rye,Robert R. , Yost,Frederick G.

    1998-01-01

    An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

  5. Application of electron stimulated desorption techniques to measure...

    Office of Scientific and Technical Information (OSTI)

    the isotherm and the mean residence time of hydrogen physisorbed on a metal surface ... the isotherm and the mean residence time of hydrogen physisorbed on a metal surface ...

  6. A new technique to measure tunneling barrier height in solid...

    Office of Scientific and Technical Information (OSTI)

    Authors: Mason, Thomas A 1 ; Dattelbaum, Andrew M 1 ; Mara, Nathan A 1 ; Kaschner, George C 1 ; Johnson, Oliver K 2 ; Seegmiller, Daniel 2 ; Fullwood, David T 2 + ...

  7. Use of automatic vehicle identification techniques for measuring...

    Office of Scientific and Technical Information (OSTI)

    an integral part of traffic control and motorist information systems. Good traffic performance information is also needed to optimize system control functions, detect congestion ...

  8. Cell Phone Detection Techniques

    SciTech Connect (OSTI)

    Pratt, Richard M.; Bunch, Kyle J.; Puzycki, David J.; Slaugh, Ryan W.; Good, Morris S.; McMakin, Douglas L.

    2007-10-01

    A team composed of Rick Pratt, Dave Puczyki, Kyle Bunch, Ryan Slaugh, Morris Good, and Doug McMakin teamed together to attempt to exploit cellular telephone features and detect if a person was carrying a cellular telephone into a Limited Area. The cell phones electromagnetic properties were measured, analyzed, and tested in over 10 different ways to determine if an exploitable signature exists. The method that appears to have the most potential for success without adding an external tag is to measure the RF spectrum, not in the cell phone band, but between 240 and 400MHz. Figures 1- 7 show the detected signal levels from cell phones from three different manufacturers.

  9. Structural power flow measurement

    SciTech Connect (OSTI)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  10. Development of laser-based resonance ionization techniques for 81-Kr and 85-Kr measurements in the geosciences, II. December 1, 1994 through December 31, 2000 reporting period. Final technical report for Grant No. DE-FG05-95ER14497

    SciTech Connect (OSTI)

    Thonnard, Norbert; McKay, Larry D.; Labotka, Theodore C.

    2001-02-05

    A facility for measurement of rare Kr-81 and Kr-85 isotope concentration in hydrogeologic samples, and isotopic composition of minute quantities of krypton and xenon from extraterrestrial samples, was established, requiring refinement of an emerging mass spectrometric-based analytical technique and securing of laboratory space and equipment. The analytical process consists of (1) collecting a groundwater sample, (2) degassing the water, (3) separating Kr from the recovered gases, (4&5) two isotopic enrichments to reduce interfering isotopes by E9, and (6) detecting the rare krypton isotope in a unique time-of-flight mass spectrometer detecting as few as 100 Kr atoms. All equipment is installed and operating, with only some additional adjustment and testing of the last step (6, above) remaining to be completed. Collaborations have been established with a number of researchers and organizations world wide, and both groundwater and extraterrestrial samples have been collected. Completion of analyses awaits full operation of step 6.

  11. Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  12. Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities StratigraphicStructural: Structural geology-...

  13. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  14. Survey of data compression techniques

    SciTech Connect (OSTI)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM's design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  15. Survey of data compression techniques

    SciTech Connect (OSTI)

    Gryder, R.; Hake, K.

    1991-09-01

    PM-AIM must provide to customers in a timely fashion information about Army acquisitions. This paper discusses ways that PM-AIM can reduce the volume of data that must be transmitted between sites. Although this paper primarily discusses techniques of data compression, it also briefly discusses other options for meeting the PM-AIM requirements. The options available to PM-AIM, in addition to hardware and software data compression, include less-frequent updates, distribution of partial updates, distributed data base design, and intelligent network design. Any option that enhances the performance of the PM-AIM network is worthy of consideration. The recommendations of this paper apply to the PM-AIM project in three phases: the current phase, the target phase, and the objective phase. Each recommendation will be identified as (1) appropriate for the current phase, (2) considered for implementation during the target phase, or (3) a feature that should be part of the objective phase of PM-AIM`s design. The current phase includes only those measures that can be taken with the installed leased lines. The target phase includes those measures that can be taken in transferring the traffic from the leased lines to the DSNET environment with minimal changes in the current design. The objective phase includes all the things that should be done as a matter of course. The objective phase for PM-AIM appears to be a distributed data base with data for each site stored locally and all sites having access to all data.

  16. Testing the effectiveness of mobile home weatherization measures in a controlled environment: The SERI CMFERT (Collaborative Manufactured Buildings Facility for Energy Research and Training) Project

    SciTech Connect (OSTI)

    Judkoff, R.D.; Hancock, C.E.; Franconi, E.

    1990-03-01

    For several years the Solar Energy Research Institute has been testing the effectiveness of mobile home weatherization measures, with the support of the US DOE Office of State and Local Assistance Programs Weatherization Assistance Program, the DOE Office of Buildings and Community Systems, the seven states within the federal Weatherization Region 7, the Colorado Division of Housing, and the DOE Denver Support Office. During the winter of 1988--89, several weatherization measures were thermally tested on three mobile homes under controlled conditions inside a large environmental enclosure. The effects of each weatherization measure on conduction losses, infiltration losses, and combined furnace and duct-delivered heat efficiency were monitored. The retrofit options included air sealing, duct repair, furnace tune-up, interior storm panels, floor insulation, and roof insulation. The study demonstrated that cost-effective heating energy savings of about 20% to 50% are possible if weatherization techniques adapted to the special construction details in mobile homes are applied. 24 refs., 18 figs., 9 tabs.

  17. Soil Analysis using the semi-parametric NAA technique

    SciTech Connect (OSTI)

    Zamboni, C. B.; Silveira, M. A. G.; Medina, N. H.

    2007-10-26

    The semi-parametric Neutron Activation Analysis technique, using Au as a flux monitor, was applied to measure element concentrations of Br, Ca, Cl, K, Mn and Na for soil characterization. The results were compared with those using the Instrumental Neutron Activation Analysis technique and they found to be compatible. The viability, advantages, and limitations of using these two analytic methodologies are discussed.

  18. Gravity Techniques | Open Energy Information

    Open Energy Info (EERE)

    in density, such as at fault contacts. 2 Gravity techniques are also applied towards reservoir monitoring for subsidence and mass gain or loss within a geothermal reservoir...

  19. Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    in-situ within the well, downhole techniques are capable of accurately constraining these reservoir parameters relative to depth.2 Gaining an understanding of these reservoir...

  20. techniques | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  1. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  2. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  3. Viscosity Meaurement Technique for Metal Fuels

    SciTech Connect (OSTI)

    Ban, Heng; Kennedy, Rory

    2015-02-09

    Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.

  4. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  5. Form:ExplorationTechnique | Open Energy Information

    Open Energy Info (EERE)

    Exploration Technique below. If the technique already exists, you will be able to edit its information. AddEdit Technique Retrieved from "http:en.openei.orgw...

  6. ARM - Measurement -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurements ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Categories Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments UV-MFRSR : Ultraviolet

  7. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetotelluric Techniques page? For detailed...

  8. Bunch length measurements using synchrotron ligth monitor

    SciTech Connect (OSTI)

    Ahmad, Mahmoud; Tiefenback, Michael G.

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  9. Measurement Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins 2016 Joseph F. Keithley Award for Advances in Measurement Science October 15, 2015 Honors to Albert Migliori, developer of resonant ultrasound spectroscopy LOS ALAMOS, N.M., Oct. 15, 2015-Los Alamos National Laboratory physicist Albert Migliori, having led the development of a powerful tool for important measurements in condensed matter physics including superconductivity, is being given the Joseph F. Keithley Award For Advances in Measurement Science, the top instrumentation prize of the

  10. Neutron capture strategy and technique developments for GNEP

    SciTech Connect (OSTI)

    Couture, Aaron Joseph

    2008-01-01

    The initial three years of neutron capture measurements have been very successful in providing data for the Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership (AFCI/GNEP) program. Now that the most straightforward measurements have been completed, additional technical challenges face future measurements. In particular, techniques are needed to perform measurements that exhibit at least one of three major problems -- large fission:capture ratios, large capture:capture ratios, and high intrinsic activity samples. This paper will set forward a plan for attacking these technical challenges and moving forward with future measurements.

  11. A technique for synthesizing metal tritide standards

    SciTech Connect (OSTI)

    Bach, H. T.; Allen, T. H.; Hill, D. D.; Martinez, P. T.; Schwarz, R. B.; Paglieri, S. N.; Wermer, J. R.

    2008-07-15

    Before surplus plutonium pits can be decommissioned and converted into metal oxides to be used as reactor fuels, residual tritium must be reduced to an acceptable level. We have developed two analytical methods involving melting and acid dissolution, combined with liquid scintillation counting as a quantitative and sensitive technique for measuring residual tritium in Pu metal. The detection limit, linearity, and reproducibility of these analytical methods must be validated with a series of metal tritide standards. Since there are no commercially available metal tritide standards, we have developed a technique for their synthesis. The synthesis of these low-level metal tritide standards is accomplished by charging cerium powder with a known amount of tritium to form a master cerium tritide alloy and then by aliquoting from this master alloy and diluting with pure cerium powder to form a series of standards with different tritium concentrations. The major difficulty in synthesizing these standards is that the samples contain extremely low levels of tritium, which span over three decades of concentrations. The synthesis technique and initial data obtained for cerium hydride samples will be presented. (authors)

  12. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery ... SPEC Humidity Diode Laser Hygrometer (DLH) NASA Turbulence AIMMS-20 SPEC Cloud Properties ...

  13. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Instrument Sponsor Aircraft State PositionVelocity @ 10Hz Trimble DSM(tm) AAF PitchRollAzimuth Trimble Advanced Navigation System (TANS)10Hz AAF...

  14. Multi-scale Shock Technique

    Energy Science and Technology Software Center (OSTI)

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore » waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  15. Retrospective dosimetry using EPR and TL techniques: a status report

    SciTech Connect (OSTI)

    Haskell, E.H.

    1996-12-31

    Methods of retrospective dosimetry, including luminescence and electron paramagnetic resonance spectroscopy (EPR), rely on measurement of accident dose absorbed by naturally occurring materials - ceramics in the case of both thermoluminescence (TL) and optically stimulated luminescence (OSL) and organic materials and bio- minerals in the case of EPR. Each of these methods relies on measurement of radiation defects resulting from accidental exposure. Since defects also result from natural sources of radiation over the lifetime of a sample, analysis is usually restricted to materials for which the natural dose may be determined and subtracted from the measured cumulative dose. Luminescence dating techniques rely heavily on an accurate assessment of cumulative dose from natural radiation sources, and dating research has provided us with the bulk of our knowledge in this area. Virtually all of the work on natural dose determination can be directly applied to retrospective techniques. With EPR techniques the cumulative dose from diagnostic x- rays is also of importance.

  16. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    SciTech Connect (OSTI)

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  17. Electrochemical characteristics of samaria-doped ceria infiltrated strontium-doped LaMnO3 cathodes with varied thickness for yttria-stabilized zirconia electrolytes

    SciTech Connect (OSTI)

    Dong Ding; Mingyang Gonga; Chunchuan Xu; Nicholas Baxter; Yihong Li; John Zondlo; Kirk Gerdes; Xingbo Liu

    2010-11-09

    Samaria-doped ceria (SDC) infiltrated into strontium-doped LaMnO3 (LSM) cathodes with varied cathode thickness on yttria-stabilized zirconia (YSZ) were investigated via symmetrical cell, half cell, and full cell configurations. The results of the symmetrical cells showed that the interfacial polarization resistance (RP) decreased with increasing electrode thickness up to?30#2;m, and further increases in the thickness of the cathode did not cause significant variation of electrode performance. At 800 ?C, the minimum RP was around 0.05#2;cm2. The impedance spectra indicated that three main electrochemical processes existed, possibly corresponding to the oxygen ion incorporation, surface diffusion of oxygen species and oxygen adsorption and dissociation. The DC polarization on the half cells and characterization of the full cells also demonstrated a similar correlation between the electrode performance and the electrode thickness. The peak power densities of the single cells with the 10, 30, and 50-#2;m thick electrodes were 0.63, 1.16 and 1.11Wcm?2, respectively. The exchange current densities under moderate polarization are calculated and possible rate-determining steps are discussed.

  18. MEASURING PROJECTOR

    DOE Patents [OSTI]

    Franck, J.V.; Broadhead, P.S.; Skiff, E.W.

    1959-07-14

    A semiautomatic measuring projector particularly adapted for measurement of the coordinates of photographic images of particle tracks as prcduced in a bubble or cloud chamber is presented. A viewing screen aids the operator in selecting a particle track for measurement. After approximate manual alignment, an image scanning system coupled to a servo control provides automatic exact alignment of a track image with a reference point. The apparatus can follow along a track with a continuous motion while recording coordinate data at various selected points along the track. The coordinate data is recorded on punched cards for subsequent computer calculation of particle trajectory, momentum, etc.

  19. Measuring Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Activity SI Units and Prefixes Conversions Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Procedure Demonstration Measurement Activity: How Much Is Present? The size or weight of a container or shipment does not indicate how much radioactivity is in it. The amount of radioactivity in a quantity of material can be determined by noting how many curies of the material are present. This information should be found on labels and/or shipping

  20. Data mining and visualization techniques

    DOE Patents [OSTI]

    Wong, Pak Chung; Whitney, Paul; Thomas, Jim

    2004-03-23

    Disclosed are association rule identification and visualization methods, systems, and apparatus. An association rule in data mining is an implication of the form X.fwdarw.Y where X is a set of antecedent items and Y is the consequent item. A unique visualization technique that provides multiple antecedent, consequent, confidence, and support information is disclosed to facilitate better presentation of large quantities of complex association rules.

  1. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Technique Subcategories This category has only the following subcategory. G + Geochemical Data Analysis (2 categories) 4 pages Pages in category "Geochemical...

  2. Category:Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole...

  3. Category:Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Seismic Techniques page? For detailed information on Seismic...

  4. Category:Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on...

  5. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  6. Category:Magnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetic Techniques page? For detailed information on Magnetic...

  7. Hyperspectral Remote Sensing Techniques For Locating Geothermal...

    Open Energy Info (EERE)

    Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For...

  8. Category:Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Resistivity Survey E Electrical Techniques Electromagnetic Techniques R Radiometrics S Self Potential T Telluric Survey Retrieved from "http:en.openei.orgw...

  9. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration ...

  10. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015 09:37 A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials

  11. Techniques for Automated Performance Analysis

    SciTech Connect (OSTI)

    Marcus, Ryan C.

    2014-09-02

    The performance of a particular HPC code depends on a multitude of variables, including compiler selection, optimization flags, OpenMP pool size, file system load, memory usage, MPI configuration, etc. As a result of this complexity, current predictive models have limited applicability, especially at scale. We present a formulation of scientific codes, nodes, and clusters that reduces complex performance analysis to well-known mathematical techniques. Building accurate predictive models and enhancing our understanding of scientific codes at scale is an important step towards exascale computing.

  12. Report of the working group on precision measurements - measurements of the W boson mass and width.

    SciTech Connect (OSTI)

    Brock, R.; Erler, J.; Kim, Y.-K.; Marciano, W.; Ashmanskas, W.; Baur, U.; Ellison, J.; Lancaster, M.; Nodulman, L.; Rha, J.; Waters, D.; Womersley, J.

    2000-11-29

    We discuss the prospects for measuring the W mass and width in Run II. The basic techniques used to measure M{sub W} are described and the statistical, theoretical and detector-related uncertainties are discussed in detail. Alternative methods of measuring the W mass at the Tevatron and the prospects for M{sub W} measurements at other colliders are also described.

  13. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect (OSTI)

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  14. Nondestructive Evaluation of Thick Concrete Using Advanced Signal Processing Techniques

    SciTech Connect (OSTI)

    Clayton, Dwight A; Barker, Alan M; Santos-Villalobos, Hector J; Albright, Austin P; Hoegh, Kyle; Khazanovich, Lev

    2015-09-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years [1]. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations.

  15. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  16. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.; Martinez, M.J.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time of solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.

  17. Impedance Measurement Box

    ScienceCinema (OSTI)

    Christophersen, Jon

    2013-05-28

    Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

  18. A Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrino-Induced Charged-Current Neutral Pion Production by Robert H. Nelson B.S., University of California, Santa Barbara, 2003 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2010 This thesis entitled: A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production written by Robert H. Nelson has been approved for the Department of Physics

  19. Available Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments on the Twin Otter Available Measurement Instrument PI or Group Total aerosol number concentration Condensation Particle Counters (CPC) Up to 3 CIRPAS Aerosol/cloud size distribution d=0.1 - 2.5 µm d=0.8 - 80 µm Passive Cavity Aerosol Spectrometer Probe (PCASP) Cloud Aerosol and Precipitation Spectrometer (CAPS) CIRPAS Aerosol/cloud size distribution d=2.5 - 50 µm Forward Scattering Spectrometer Probe (FSSP) CIRPAS Cloud liquid water content Gerber PVM Johnson probe on CAPS CIRPAS

  20. Repositioning of Covered Stents: The Grip Technique

    SciTech Connect (OSTI)

    Kirby, John Martin; Guo Xiaofeng; Midia, Mehran

    2011-06-15

    Introduction: Retrieval and repositioning of a stent deployed beyond its intended target region may be a difficult technical challenge. Materials and Methods: A balloon-mounted snare technique, a variant of the coaxial loop snare technique, is described. Results: The technique is described for the repositioning of a covered transjugular intrahepatic portosystemic shunt stent and a covered biliary stent. Conclusion: The balloon-mounted snare technique is a useful technique for retrieval of migrated stents.

  1. Subranging technique using superconducting technology

    DOE Patents [OSTI]

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  2. A Measuring

    Office of Scientific and Technical Information (OSTI)

    Measuring Dopamine Release in the Human Brain with PET N.D. Volkow", J.S. Fowle?, G.-J. Wang, J. Loganb, 'Medical and behemistry Departments Brookhaven National Laboratory, Upton, New York, NY 11973 'Department of Psychiatry, State University of New York at Stony Brook, Stony Brook, New York 11794-8101 INTRODUCTION The dopamine system is involved in the regulation of brain regions that subserve motor, cognitive and motivational behaviors [1,2,3]. Disruptions of dopamine @A) function have

  3. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement

    Office of Scientific and Technical Information (OSTI)

    Techniques (Conference) | SciTech Connect Conference: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques Citation Details In-Document Search Title: Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a

  4. Photonic Doppler Velocimetry Multiplexing Techniques: Evaluation of Photonic Techniques

    SciTech Connect (OSTI)

    Edward Daykin

    2012-05-24

    This poster reports progress related to photonic technologies. Specifically, the authors developed diagnostic system architecture for a Multiplexed Photonic Doppler Velocimetry (MPDV) that incorporates frequency and time-division multiplexing into existing PDV methodology to provide increased channel count. Current MPDV design increases number of data records per digitizer channel 8x, and also operates as a laser-safe (Class 3a) system. Further, they applied heterodyne interferometry to allow for direction-of-travel determination and enable high-velocity measurements (>10 km/s) via optical downshifting. They also leveraged commercially available, inexpensive and robust components originally developed for telecom applications. Proposed MPDV architectures employ only commercially available, fiber-coupled hardware.

  5. Nonperturbative measurement of the local magnetic field using...

    Office of Scientific and Technical Information (OSTI)

    Title: Nonperturbative measurement of the local magnetic field using pulsed polarimetry for fusion reactor conditions (invited) A novel diagnostic technique for the remote and ...

  6. Shell trajectory measurements from direct-drive implosion experiments...

    Office of Scientific and Technical Information (OSTI)

    A technique to measure the shell trajectory in direct-drive inertial confinement fusion ... Subject: 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ABLATION; EMISSION; ...

  7. EERE's Usability and Analysis Techniques Guidebook

    Broader source: Energy.gov [DOE]

    For more information on the usability techniques associated with the templates, see EERE's Usability and Analysis Techniques Guidebook, which is a collection of best practices for creating and running different kinds of user-centered design projects.

  8. VLBI FOR GRAVITY PROBE B. IV. A NEW ASTROMETRIC ANALYSIS TECHNIQUE AND A COMPARISON WITH RESULTS FROM OTHER TECHNIQUES

    SciTech Connect (OSTI)

    Lebach, D. E.; Ratner, M. I.; Shapiro, I. I.; Bartel, N.; Bietenholz, M. F.; Lederman, J. I.; Ransom, R. R.; Campbell, R. M.; Gordon, D.

    2012-07-01

    When very long baseline interferometry (VLBI) observations are used to determine the position or motion of a radio source relative to reference sources nearby on the sky, the astrometric information is usually obtained via (1) phase-referenced maps or (2) parametric model fits to measured fringe phases or multiband delays. In this paper, we describe a 'merged' analysis technique which combines some of the most important advantages of these other two approaches. In particular, our merged technique combines the superior model-correction capabilities of parametric model fits with the ability of phase-referenced maps to yield astrometric measurements of sources that are too weak to be used in parametric model fits. We compare the results from this merged technique with the results from phase-referenced maps and from parametric model fits in the analysis of astrometric VLBI observations of the radio-bright star IM Pegasi (HR 8703) and the radio source B2252+172 nearby on the sky. In these studies we use central-core components of radio sources 3C 454.3 and B2250+194 as our positional references. We obtain astrometric results for IM Peg with our merged technique even when the source is too weak to be used in parametric model fits, and we find that our merged technique yields astrometric results superior to the phase-referenced mapping technique. We used our merged technique to estimate the proper motion and other astrometric parameters of IM Peg in support of the NASA/Stanford Gravity Probe B mission.

  9. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective measures process

  10. Measurements of the Top Quark Pair Production Cross Section in Lepton + Jets Final States using a Topological Multivariate Technique as well as Lifetime b-Tagging in Proton - Anti-proton Collisions at s**(1/2)=1.96 TeV with the D0 Detector at the Tevatron

    SciTech Connect (OSTI)

    Golling, Tobias F

    2005-01-01

    Two alternative measurements of the t{bar t} production cross section at {radical}s = 1.96 TeV in proton-antiproton collisions in the lepton+jets channel are presented. The t{bar t} production cross section is extracted by combining the kinematic event information in a multivariate discriminant. The measurement yields {sigma}{sub p{bar p} {yields} t{bar t} + x} = 5.13{sub -1.57}{sup +1.76}(stat){sub -1.10}{sup +0.96}(syst) {+-} 0.33 (lumi) pb in the muon+jets channel, using 229.1 pb{sup -1}, and in the combination with the electron+jets channel 226.3 pb{sup -1} {sigma}{sub p{bar p} {yields} t{bar t} + x} = 6.60{sub -1.28}{sup +1.37}(stat){sub -1.11}{sup +1.25}(syst) {+-} 0.43 (lumi) pb. The second measurement presented reconstructs explicitly secondary vertices to d lifetime b-tagging. The measurement combines the muon+jets and the electron+jets channel, using 158.4 pb{sup -1} and 168.8 pb{sup -1}, respectively: {sigma}{sub p{bar p} {yields} t{bar t} + x} = 8.24{sub -1.25}{sup +1.34}(stat){sub -1.63}{sup +1.89}(syst) {+-} 0.54 (lumi) pb.

  11. Feasibility Studies on Disturbance Feedforward Techniques to Improve Wind Turbine Load Mitigation Performance: January 2009 -- January 2010

    SciTech Connect (OSTI)

    Laks, J.H.; Dunne, F.; Pao, L. Y.

    2010-12-01

    This study investigates disturbance feedforward and preview control to better understand the best possible improvement in load mitigation using advanced wind measurement techniques.

  12. Application of nondestructive assay techniques in Kazakstan

    SciTech Connect (OSTI)

    Sprinkle, J.K. Jr.; Butler, G.; Collins, M.

    1997-11-01

    As Kazakstan has transitioned from being part of the Soviet Union to a nonweapons state (Treaty of Nonproliferation of Nuclear Weapons [NPT] signatory) under International Atomic Energy Agency (IAEA) inspections, significant changes have been required. Some of these changes have occurred in nuclear material protection, control, and accounting at the four nuclear facility sites in the Republic of Kazakstan. Specifically, the Republic of Kazakstan has changed from relying primarily on a subset of physical protection methods to a graded safeguards approach using a balance of material control, material accounting, and physical protection. Once more intensive material control and accounting procedures and systems are in place, a necessary step is to supply the accounting systems with measured values of high quality. This need can be met with destructive and nondestructive methods. Material control systems can also use qualitative nondestructive assay information as input. This paper will discuss the nondestructive assay techniques and systems the US Department of Energy (DOE) is providing to Kazakstan under both DOE programs and the Cooperative Threat Reduction Act as part of the nuclear material control and accounting upgrades at four facilities in Kazakstan. 4 refs., 6 figs.

  13. NDA safeguards techniques for LMFBR assemblies

    SciTech Connect (OSTI)

    Persiani, P.J.; Gundy, M.L.

    1982-08-01

    The significant safeguards concerns for liquid-metal fast breeder reactors (LMFBRs), and for the LMFBR fuel handling systems are the accountability, surveillance, and identification of fuel and blanket assemblies. The introduction of fuel assemblies with a high content of Pu into the receiving and shipping areas of the LMFBR fuel cycle does allow a more direct near-real-time assay profile of the disposition of Pu. Isotope correlations and neutron assay methods have been investigated and implemented for determining plutonium and burnup in fresh and spent LMFBR fuel assemblies. The methods are based on active and passive neutron coincidence counting (NCC) techniques. Preliminary studies on neutron yield rates from the spontaneous fission of plutonium and curium isotopes have indicated that the NCC system is a most effective measure in the verification of nuclear material flow in assembly form for the entire reactor fuel handling cycle, i.e., from the fresh- to the spent-fuel stage. A consequence of the high plutonium concentration level throughout the fuel irradiation period in an LMFBR, is that the spontaneous fission neutron yield from the 242-curium and 244-curium does not dominate the spontaneous fission neutron yield from the plutonium isotopes in the spent fuel stage.

  14. Materials characterisation with the associated particle technique

    SciTech Connect (OSTI)

    Perot, Bertrand; Carasco, Cedric; Deyglun, Clement; Eleon, Cyrille; Mariani, Alain; Ma, Jean-Luc

    2012-07-01

    Since the last past years, the Nuclear Measurement Laboratory of CEA Cadarache, France, together with Partners from European and National projects, has been studying the application of fast neutron interrogation with the Associated Particle Technique for material identification in different areas of homeland and maritime security, and for the characterisation of the materials constituting radioactive waste. Fast 14 MeV neutrons are produced from the H-3(H-2,n)alpha fusion reaction in a sealed tube neutron generator embedding an alpha detector. The alpha particle is used to tag neutron direction and emission time, thus allowing the electronic selection of neutron-induced gamma spectra in the voxels of interest. Gamma rays emitted by tagged neutron interactions on the present nuclei (C, O, N, Fe, Al, Si, Cl, etc.) are recorded with spectroscopic detectors and analysed to determine elemental proportions, thus allowing material identification. Investigations have been conducted for the detection of explosives, illicit drugs and contraband materials in cargo containers, for the inspection of objects lying on the sea floor suspected to contain explosives like mines, bombs, torpedoes, etc., for the recognition of an improvised chemical device, and for material identification in radioactive waste packages. Recently the detection of special nuclear materials is being investigated using time correlation analysis between induced fission particles, instead of gamma-ray spectroscopy. The paper presents an overview of these studies and last results. (authors)

  15. Optical techniques for determining dynamic material properties

    SciTech Connect (OSTI)

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  16. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials that self-assemble spontaneously form nanostructures down to the molecular scale, which would revolutionize

  17. Lidar techniques for chemical and aerosol air pollution studies

    SciTech Connect (OSTI)

    Hardesty, R.M.

    1993-12-31

    At the Wave Propagation Laboratory (WPL), lidar methods are being applied in several areas of air pollution research. Differential absorption lidar (DIAL) systems for measuring ozone, ethylene, and other pollutants have been recently developed. The ozone instrument profiles ozone concentration in the boundary layer and lower troposphere to study sources, sinks, and transport of ozone. A goal is to combine DIAL and Doppler lidar techniques for measurement of the vertical fluxes of ozone and other pollutants. Doppler lidars have been also used at WPL to study visibility reduction caused by aerosol pollutants at the Grand Canyon, and to investigate dispersion of hazardous emissions near the Rocky Flats nuclear plant.

  18. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Department of Energy Framework for Technology Deployment Programs 2007 Impact Evaluation Framework for Technology Deployment Programs 2007 Impact Evaluation Framework for Technology Deployment Programs: An approach for quantifying retrospective energy savings, clean energy advances, and market effects. PDF icon Impact Evaluation Framework for Technology Deployment Programs More Documents & Publications Impact Evaluation Framework for Technology Deployment Programs: An Overview and

  19. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. In this project, researchers at the National Renewable Energy Laboratory (NREL) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, the team tested the part load performance of four residential dehumidifiers in NRELs Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  20. Corrective Measures Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corrective Measures Process Corrective Measures Process We follow a stringent corrective measures process for legacy cleanup. August 1, 2013 Corrective measures process Corrective...

  1. Category:Data Techniques | Open Energy Information

    Open Energy Info (EERE)

    1 pages G Geographic Information System 1 pages Geothermal Literature Review 1 pages Pages in category "Data Techniques" The following 4 pages are in...

  2. Category:Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    3 subcategories, out of 3 total. A Airborne Electromagnetic Survey 1 pages G + Ground Electromagnetic Techniques (2 categories) 3 pages S Self Potential...

  3. Internal Labeling Technique Tracks Nanoparticle Transport - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Internal Labeling Technique Tracks Nanoparticle Transport Oak Ridge National Laboratory Contact ORNL ...

  4. Eddy current technique for predicting burst pressure

    DOE Patents [OSTI]

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  5. Footprinting Technique Gives ALS Users New Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    left: Research Scientist Sayan Gupta, Beamline 5.3.1 Scientist Rich Celestre, and BCSB Head Corie Ralston. XFP, a powerful technique for the study of macromolecular structures...

  6. Airborne electromagnetic surveys as a reconnaissance technique...

    Open Energy Info (EERE)

    it was thought that a shallow exploration technique would not be effective. Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems...

  7. Transportation Techniques LLC | Open Energy Information

    Open Energy Info (EERE)

    Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

  8. Active Load Control Techniques for Wind Turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Load Control Techniques for Wind Turbines Scott J. Johnson and C. P. "Case" van Dam Department of Mechanical and Aeronautical Engineering University of California One ...

  9. EERE's Usability and Analysis Techniques Guidebook | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    see EERE's Usability and Analysis Techniques Guidebook, which is a collection of best practices for creating and running different kinds of user-centered design projects. ...

  10. Tomographic inversion techniques incorporating physical constraints...

    Office of Scientific and Technical Information (OSTI)

    In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often ...

  11. Promising technique improves hydrogen production of affordable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Materialscientist, Wikipedia) (click image to enlarge) Promising technique improves hydrogen production of affordable alternative to platinum By Angela Hardin * October 26, 2015...

  12. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect (OSTI)

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing parameters. These contributing factors need to be recognized and a means to control them or separate their contributions will be required to obtain the desired information.

  13. Measurement of intergranular attack in stainless steel using ultrasonic energy

    DOE Patents [OSTI]

    Mott, Gerry; Attaar, Mustan; Rishel, Rick D.

    1989-08-08

    Ultrasonic test methods are used to measure the depth of intergranular attack (IGA) in a stainless steel specimen. The ultrasonic test methods include a pitch-catch surface wave technique and a through-wall pulse-echo technique. When used in combination, these techniques can establish the extent of IGA on both the front and back surfaces of a stainless steel specimen from measurements made on only one surface.

  14. Improved analysis techniques for cylindrical and spherical double probes

    SciTech Connect (OSTI)

    Beal, Brian; Brown, Daniel; Bromaghim, Daron; Johnson, Lee; Blakely, Joseph

    2012-07-15

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T{sub i}/T{sub e} Much-Less-Than 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 Multiplication-Sign 10{sup 12}-1 Multiplication-Sign 10{sup 17} m{sup -3} and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%/-34% in density and +/-30% in electron temperature.

  15. Opto-electrokinetic manipulation technique for highperformance

    SciTech Connect (OSTI)

    Kwon, Jae-Sung [Purdue University; Ravindranath, Sandeep [Purdue University; Kumar, Aloke [ORNL; Irudayaraj, Joseph [Purdue University; Wereley, Steven T. [Purdue University

    2012-01-01

    This communication first demonstrates bio-compatibility of a recently developed opto-electrokinetic manipulation technique, using microorganisms. Aggregation, patterning, translation, trapping and size-based separation of microorganisms performed with the technique firmly establishes its usefulness for development of a high-performance on-chip bioassay system.

  16. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect (OSTI)

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  17. Waterflood surveillance techniques; A reservoir management approach

    SciTech Connect (OSTI)

    Thakur, G.C. )

    1991-10-01

    The reservoir management aspects of waterflooding span the time before the start of waterflood to the time when the secondary recovery either is uneconomic or is changed to an enhanced recovery. This paper reviews waterflood techniques and reports on surveillance techniques in the management of waterflooding of oil wells.

  18. Tomographic inversion techniques incorporating physical constraints for

    Office of Scientific and Technical Information (OSTI)

    line integrated spectroscopy in stellarators and tokamaks (Journal Article) | SciTech Connect Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks Citation Details In-Document Search Title: Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaks Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks

  19. Robot-assisted torque measurement

    SciTech Connect (OSTI)

    Lembke, J.R.

    1986-03-01

    An Intelledex 605T robot was used to evaluate the feasibility of automating the measurement of rotary solenoid torque, with the goal of improving productivity. The solenoid chosen for the evaluation is expected to be produced in relatively large quantities for several programs. A new measurement concept was devised, in which the robot connects the solenoid shaft to a torque sensor, rotates the solenoid housing, and correlates rotational data with digitized torque measurements. Prototype tooling was designed and fabricated, and the measurement concept was evaluated in comparison with the manual method which is presently used. The automatic robot-based measurement system was shown to yield results that are in good agreement with manual measurements. The technique automatically performs all necessary operations once the solenoids have been placed into a part loading fixture, with a cycle time significantly reduced from the manual method. Manual interpretation of chart data is not required, because the results are digitized. The system can compare the measured torque to specification limits and can provide a printed report of acceptance or rejection. 12 figs.

  20. Towards Effective Clustering Techniques for the Analysis of Electric Power Grids

    SciTech Connect (OSTI)

    Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh; Wang, Shaobu; Mackey, Patrick S.; Hines, Paul; Huang, Zhenyu

    2013-11-30

    Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques on two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.

  1. Adaptive array technique for differential-phase reflectometry in QUEST

    SciTech Connect (OSTI)

    Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  2. Engine control techniques to account for fuel effects (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Engine control techniques to account for fuel effects Citation Details In-Document Search Title: Engine control techniques to account for fuel effects A technique for ...

  3. Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques

    SciTech Connect (OSTI)

    Miller, Karen A.

    2012-05-02

    Nondestructive assay (NDA) measurements of uranium cylinders play an important role in helping the International Atomic Energy Agency (IAEA) safeguard uranium enrichment plants. Traditionally, these measurements have consisted of a scale or load cell to determine the mass of UF{sub 6} in the cylinder combined with a gamma-ray measurement of the 186 keV peak from {sup 235}U to determine enrichment. More recently, Los Alamos National Laboratory (LANL) and Pacific Northwest National Laboratory (PNNL) have developed systems that exploit the passive neutron signal from UF{sub 6} to determine uranium mass and/or enrichment. These include the Uranium Cylinder Assay System (UCAS), the Passive Neutron Enrichment Meter (PNEM), and the Hybrid Enrichment Verification Array (HEVA). The purpose of this report is to provide the IAEA with new ideas on technologies that may or may not be under active development but could be useful for UF{sub 6} cylinder assay. To begin, we have included two feasibility studies of active interrogation techniques. There is a long history of active interrogation in the field of nuclear safeguards, especially for uranium assay. Both of the active techniques provide a direct measure of {sup 235}U content. The first is an active neutron method based on the existing PNEM design that uses a correlated {sup 252}Cf interrogation source. This technique shows great promise for UF{sub 6} cylinder assay and is based on advanced technology that could be implemented in the field in the near term. The second active technique is nuclear resonance fluorescence (NRF). In the NRF technique, a bremsstrahlung photon beam could be used to illuminate the cylinder, and high-resolution gamma-ray detectors would detect the characteristic de-excitation photons. The results of the feasibility study show that under certain measurement geometries, NRF is impractical for UF6 cylinder assay, but the 'grazing transmission' and 'secant transmission' geometries have more potential for this application and should be assessed quantitatively. The next set of techniques leverage scintillator detectors that are sensitive to both neutron and gamma radiation. The first is the BC-523A capture-gated organic liquid scintillator. The detector response from several different neutron energies has been characterized and is included in the study. The BC-523A has not yet been tested with UF{sub 6} cylinders, but the application appears to be well suited for this technology. The second detector type is a relatively new inorganic scintillator called CLYC. CLYC provides a complementary detection approach to the HEVA and PNEM systems that could be used to determine uranium enrichment in UF{sub 6} cylinders. In this section, the conceptual idea for an integrated CLYC-HEVA/PNEM system is explored that could yield more precision and robustness against systemic uncertainties than any one of the systems by itself. This is followed by a feasibility study on using alpha-particle-induced reaction gamma-rays as a way to estimate {sup 234}U abundance in UF{sub 6}. Until now, there has been no readily available estimate of the strength of these reaction gamma-rays. Thick target yields of the chief reaction gammas are computed and show that they are too weak for practical safeguards applications. In special circumstances where long count times are permissible, the 1,275 keV F({alpha},x{gamma}) is observable. Its strength could help verify an operator declaration provided other knowledge is available (especially the age). The other F({alpha},x{gamma}) lines are concealed by the dominant uranium line spectrum and associated continuum. Finally, the last section provides several ideas for electromagnetic and acoustic nondestructive evaluation (NDE) techniques. These can be used to measure cylinder wall thickness, which is a source of systematic uncertainty for gamma-ray-based NDA techniques; characterize the UF{sub 6} filling profile inside the cylinder, which is a source of systematic uncertainty for neutron-based NDA techniques; locate hidden objects inside the cylinder; and provide a unique identification of cylinders. Acoustic and electromagnetic NDE techniques are complementary to NDA measurements, and may improve the accuracy and continuity of knowledge of UF{sub 6} measurements of interest to the IAEA. As concepts and approaches for enrichment plant safeguards continue to evolve to meet modern challenges, the conceptual ideas explored in this report, along with more traditional techniques, help define the toolkit of technologies available for UF{sub 6} cylinder assay. Whether the application is an unattended cylinder verification station or an on-site inspection, the basic building blocks can be tailored to provide the best solution given competing constraints such as size and weight limitations, required precision, mechanical complexity, cost, stability, robustness, etc.

  4. NREL: Measurements and Characterization - Measurement Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Process For devices that come to the National Renewable Energy Laboratory (NREL) for performance measurement, we typically follow a procedure that ensures quality measurement and follow-up. After logging in the device based on information from a cover letter or request form, we measure its area, which is crucial for determining its efficiency. We then obtain its spectral responsivity. For cells, we measure the spectral responsivity with one of two systems. For modules, however,

  5. Aerodynamic force measurement on a large-scale model in a short duration test facility

    SciTech Connect (OSTI)

    Tanno, H.; Kodera, M.; Komuro, T.; Sato, K.; Takahasi, M.; Itoh, K.

    2005-03-01

    A force measurement technique has been developed for large-scale aerodynamic models with a short test time. The technique is based on direct acceleration measurements, with miniature accelerometers mounted on a test model suspended by wires. Measuring acceleration at two different locations, the technique can eliminate oscillations from natural vibration of the model. The technique was used for drag force measurements on a 3 m long supersonic combustor model in the HIEST free-piston driven shock tunnel. A time resolution of 350 {mu}s is guaranteed during measurements, whose resolution is enough for ms order test time in HIEST. To evaluate measurement reliability and accuracy, measured values were compared with results from a three-dimensional Navier-Stokes numerical simulation. The difference between measured values and numerical simulation values was less than 5%. We conclude that this measurement technique is sufficiently reliable for measuring aerodynamic force within test durations of 1 ms.

  6. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect (OSTI)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  7. ARM - Measurement - Snow depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Snow depth Snow depth measured at the surface Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  8. ARM - Measurement - Hydrometeor size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a hydrometeor, measured directly or derived from other measurements. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  9. Internal Benchmarking Outreach and Data Collection Techniques

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 11, 2013 and dealing with internal benchmarking outreach and data collection techniques.

  10. Category:Field Techniques | Open Energy Information

    Open Energy Info (EERE)

    Sampling Field Techniques H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http:en.openei.orgwindex.php?titleCategory:FieldTechniq...

  11. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  12. New technique images nanoparticles in solution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technique images nanoparticles in solution Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) A technique called SINGLE uses in situ transmission electron microscopy imaging of platinum nanocrystals freely rotating in a graphene liquid cell to determine the 3-D structures of individual colloidal nanoparticles. (Image: Berkeley Lab) More » Nanotubes that

  13. Data Capture Technique for High Speed Signaling

    DOE Patents [OSTI]

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  14. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  15. A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving and

    Office of Scientific and Technical Information (OSTI)

    Measuring Nano-Meter Roughness and Sub-Micron Flatness (Technical Report) | SciTech Connect Technical Report: A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving and Measuring Nano-Meter Roughness and Sub-Micron Flatness Citation Details In-Document Search Title: A Lapping Technique for Metallic, Alpha-Phase, Plutonium: Achieving and Measuring Nano-Meter Roughness and Sub-Micron Flatness Authors: Wall, M A ; Blobaum, K J Publication Date: 2014-03-31 OSTI Identifier: 1136178

  16. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  17. LOCO with Constraints and Improved Fitting Technique

    SciTech Connect (OSTI)

    Huang, Xiaobiao; Safranek, James; Portmann, Greg; /LBL, Berkeley

    2009-06-18

    LOCO has been a powerful beam-based diagnostics and optics control method for storage rings and synchrotrons worldwide ever since it was established at NSLS by J. Safranek. This method measures the orbit response matrix and optionally the dispersion function of the machine. The data are then fitted to a lattice model by adjusting parameters such as quadrupole and skew quadrupole strengths in the model, BPM gains and rolls, corrector gains and rolls of the measurement system. Any abnormality of the machine that affects the machine optics can then be identified. The resulting lattice model is equivalent to the real machine lattice as seen by the BPMs. Since there are usually two or more BPMs per betatron period in modern circular accelerators, the model is often a very accurate representation of the real machine. According to the fitting result, one can correct the machine lattice to the design lattice by changing the quadrupole and skew quadrupole strengths. LOCO is so important that it is routinely performed at many electron storage rings to guarantee machine performance, especially after the Matlab-based LOCO code became available. However, for some machines, LOCO is not easy to carry out. In some cases, LOCO fitting converges to an unrealistic solution with large changes to the quadrupole strengths {Delta}K. The quadrupole gradient changes can be so large that the resulting lattice model fails to find a closed orbit and subsequent iterations become impossible. In cases when LOCO converges, the solution can have {Delta}K that is larger than realistic and often along with a spurious zigzag pattern between adjacent quadrupoles. This degeneracy behavior of LOCO is due to the correlation between the fitting parameters - usually between neighboring quadrupoles. The fitting scheme is therefore less restrictive over certain patterns of changes to these quadrupoles with which the correlated quadrupoles fight each other and the net effect is very inefficient {chi}{sup 2} reduction, i.e., small {chi}{sup 2} reduction with large changes of {Delta}K. Under effects of random noise, the fitting solution tends to crawl toward these patterns and ends up with unrealistically large {Delta}K. Such a solution is not very useful in optics correction because after the solution is dialed in, the quadrupoles will not respond as predicted by the lattice model due to magnet hysteresis. We will show that adding constraints to the fitting parameters is an effective way to combat this problem of LOCO. In fact, it improves optics calibration precision even for machines that don't show severe degeneracy behavior. LOCO fitting is essentially to solve a nonlinear least square problem with an iterative approach. The linear least square technique is applied in each iteration to move the solution toward the minimum. This approach is commonly referred to as the Gauss-Newton method. By using singular value decomposition (SVD) to invert the Jacobian matrix, this method has generally been very successful for LOCO. However, this method is based on a linear expansion of the residual vector over the fitting parameters which is valid only when the starting solution is sufficiently close to the real minimum. The fitting algorithm can have difficulties to converge when the initial guess is too far off. For example, it's possible for the {chi}{sup 2} merit function to increase after an iteration instead of decrease. This situation can be improved by using more robust nonlinear least square fitting algorithms, such as the Levenberg-Marquardt method. We will discuss the degeneracy problem in section 2 and then show how the constrained fitting can help in section 3. The application of Levenberg-Marquadt method to LOCO is shown in section 4. A summary is given in section 5.

  18. Graphene-based terahertz photodetector by noise thermometry technique

    SciTech Connect (OSTI)

    Wang, Ming-Jye; Wang, Ji-Wun; Wang, Chun-Lun; Chiang, Yen-Yu; Chang, Hsian-Hong

    2014-01-20

    We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 46?GHz span has been achieved.

  19. Optical Measurement Technology For Aluminium Extrusions

    SciTech Connect (OSTI)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd

    2007-04-07

    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shape distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented.

  20. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect (OSTI)

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  1. Micro-fabrication Techniques for Target Components

    SciTech Connect (OSTI)

    Miles, R; Hamilton, J; Crawford, J; Ratti, S; Trevino, J; Graff, T; Stockton, C; Harvey, C

    2008-06-10

    Micro-fabrication techniques, derived from the semi-conductor industry, can be used to make a variety of useful mechanical components for targets. A selection of these components including supporting cooling arms for prototype cryogenic inertial confinement fusion targets, stepped and graded density targets for materials dynamics experiments are described. Micro-fabrication enables cost-effective, simultaneous fabrication of multiple high-precision components with complex geometries. Micro-fabrication techniques such as thin-film deposition, photo-lithographic patterning and etch processes normally used in the semi-conductor manufacture industry, can be exploited to make useful mechanical target components. Micro-fabrication processes have in recent years been used to create a number of micro-electro-mechanical systems (MEMS) components such as pressure sensors, accelerometers, ink jet printer heads, microfluidics platforms and the like. These techniques consist primarily of deposition of thin films of material, photo-lithographic patterning and etching processes performed sequentially to produce three dimensional structures using essentially planar processes. While the planar technology can be limiting in terms of the possible geometries of the final product, advantages of using these techniques include the ability to make multiple complex structures simultaneously and cost-effectively. Target components fabricated using these techniques include the supporting cooling arms for cryogenic prototype fusion ignition targets, stepped targets for equation-of-state experiments, and graded density reservoirs for material strength experiments.

  2. Intermediate hearth repair technique at Thyssen Stahl AG

    SciTech Connect (OSTI)

    Kowalski, W.; Bachhofen, H.J.; Ruether, P.; Ballewski, T.

    1996-12-31

    Nowadays various techniques for the fastest possible intermediate repair and/or emplacement of refractory materials above the tuyere level allow a significant extension of furnace campaign life. The latter are hence now exclusively determined by the service life of the hearth. The improvement of hearth monitoring and the estimation of residual brick strength of the refractory lining on the basis of temperature measurements in the hearth enable the location of individual zones of premature wear. These measurement methods, which were developed by Thyssen Stahl AG, aid the decision to undertake selective repair of the hearth. Three areas of repair are differentiated: taphole zone; hearth wall, localized; and hearth wall, extensive. This hearth repair method is described in this report using the example of hearth refurbishing blast furnace 8, Hamborn.

  3. Optical sensor for measuring American Lobster vitality

    SciTech Connect (OSTI)

    Tomassetti, Brian R. A.; Vetelino, John F.

    2011-06-10

    The vitality of the American Lobster (Homarus americanus) is correlated to the total hemolymph protein (THP) in lobster hemolymph (blood). The standard technique for determining lobster vitality is to draw blood from a lobster and measure THP with a refractometer. This technique is invasive and endangers the lobster's health since blood must be drawn from the lobster. In the present work an optical sensor is developed to measure a lobster's vitality in vivo. It is comprised of a broadband light source, a monochromator, a fiber optic reflection probe, a spectrometer and a computer. This sensor measures protein concentrations by exciting a lobster with 280 nm and 334 nm wavelength light sources and measuring the corresponding absorbance peaks for THP and the fluorescence peak for hemocyanin (Hc), the majority protein in hemolymph. In this work several lobsters are tested. For each lobster, absorbance and fluorescence peaks are measured using the sensor and compared to protein concentrations measured using a refractometer. It is found that the shell thickness and muscle density, which correspond directly to protein concentration and the molting stage of the lobster have a significant effect on the absorbance and fluorescence measurements. It is also found that within specific molting stages, such as pre-molt and post-molt, protein concentration measured with a refractometer correlates linearly to absorbance and fluorescence measurements with the optical sensor.

  4. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    SciTech Connect (OSTI)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  5. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    SciTech Connect (OSTI)

    Erskine, D J; Smith, R F; Bolme, C; Celliers, P; Collins, G

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISAR optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.

  6. Measurement of Hydrogen Absorption in Ternary Alloys with Volumetric (Sieverts Loop) Techniques

    SciTech Connect (OSTI)

    Aceves, S.

    2015-10-26

    The Sieverts loop is an inexpensive, robust and reliable methodology for calculating hydrogen absorption in materials [1]. In this approach, we start by storing a sample of the material being tested in the volume Vcell (Figure 1) and initiate the process by producing a high vacuum in the system while the material sample is heated to eliminate (most of) the hydrogen and other impurities previously absorbed. The system typically operates isothermally, with the volume Vref at ambient temperature and the sample at a temperature of interest – high enough to liquefy the alloy for the current application to nuclear fusion.

  7. Technique to quantitatively measure magnetic properties of thin structures at <10 NM spatial resolution

    DOE Patents [OSTI]

    Bajt, Sasa

    2003-07-08

    A highly sensitive and high resolution magnetic microscope images magnetic properties quantitatively. Imaging is done with a modified transmission electron microscope that allows imaging of the sample in a zero magnetic field. Two images from closely spaced planes, one in focus and one slightly out of focus, are sufficient to calculate the absolute values of the phase change imparted to the electrons, and hence obtain the magnetization vector field distribution.

  8. Proposal of an Arc Detection Technique Based on RF Measurements for the ITER ICRF Antenna

    SciTech Connect (OSTI)

    Huygen, S.; Dumortier, P.; Durodie, F.; Messiaen, A.; Vervier, M.; Vrancken, M.

    2011-12-23

    RF arc detection is a key operational and safety issue for the ICRF system on ITER. Indeed the high voltages inside the antenna put it at risk of arcing, which could cause substantial damage. This paper describes the various possibilities explored by circuit simulation and the strategy now considered to protect the ITER ICRF antenna from RF arcs.

  9. Development of a Test Technique to Determine the Thermal Conductivity of

    Office of Scientific and Technical Information (OSTI)

    Large Refractory Ceramic Test Specimens (Journal Article) | SciTech Connect Journal Article: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens Citation Details In-Document Search Title: Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement

  10. Novel nuclear magnetic resonance techniques for studying biological molecules

    SciTech Connect (OSTI)

    Laws, David D.

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of {alpha}-helical and {beta}-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly {beta}-sheet.

  11. A TOMOGRAPHIC TECHNIQUE FOR MAGNETIZED BEAM MATCHING.

    SciTech Connect (OSTI)

    MONTAG,C.ET AL.

    2004-07-05

    To maintain low electron beam temperatures in the proposed RHIC electron cooler, careful matching of the magnetized beam from the source to the cooler solenoid is mandatory. We propose a tomographic technique to diagnose matching conditions. First simulation results will be presented.

  12. What Eco-Driving Techniques Do You Use on the Road? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eco-Driving Techniques Do You Use on the Road? What Eco-Driving Techniques Do You Use on the Road? July 22, 2010 - 7:30am Addthis On Tuesday, you read about eco-driving and how it can improve fuel economy and reduce your greenhouse gas emissions. Simple measures such as observing the speed limit, planning your trips, and keeping your tires properly inflated can make a big difference in your savings. What eco-driving techniques do you use on the road? Each Thursday, you have the chance to share

  13. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect (OSTI)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  14. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Electromagnetic Soundings At Kilauea East Rift Geothermal Area (KELLER, Et...

  15. Pulse measurement apparatus and method

    DOE Patents [OSTI]

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  16. New Real-Time Quantum Efficiency Measurement System: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Egaas, B.; Pinegar, S.; Stradins, P.

    2008-05-01

    This paper describes a newly developed technique for measuring the quantum eficiiency in solar cells in real-time using a unique, electronically controlled, full-spectrum light source.

  17. ARM - Measurement - Vertical velocity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems DL : Doppler Lidar ECOR : Eddy Correlation Flux Measurement System KAZR : Ka ARM Zenith Radar...

  18. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  20. ARM - Measurement - Atmospheric turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System KASACR : Ka-Band Scanning ARM Cloud Radar SODAR : Mini Sound Detection and Ranging RWP...

  1. Measuring Energy Achievements

    Broader source: Energy.gov [DOE]

    This presentation covers types of energy measurements essential to industrial facilities and discusses the benefits of metrics. ArcelorMittal provides examples from their experience measuring energy achievements.

  2. Climate Measurement & Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ...

  3. ARM - Measurement - Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send Measurement : Nitrogen All gaseous compounds of nitrogen including N2, N2O, and NOx. Categories Atmospheric State Instruments The above measurement is considered...

  4. ARM - Measurement - Ozone Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Ozone Concentration The atmospheric concentration or volume mixing ratio (mole fraction) of Ozone Categories Atmospheric State Instruments The above measurement is...

  5. Coordinate Measuring Machine Pit Artifact Inspection Procedure

    SciTech Connect (OSTI)

    Montano, Joshua D.

    2012-07-31

    The goal of this document is to outline a procedure for dimensional measurement of Los Alamos National Laboratory's CMM Pit Artifact. This procedure will be used by the Manufacturing Practice's Inspection Technology Subgroup of the Interagency Manufacturing Operations Group and Joint Operations Weapon Operations Group (IMOG/JOWOG 39) round robin participants. The intent is to assess the state of industry within the Nuclear Weapons Complex for measurements made on this type of part and find which current measurement strategies and techniques produce the best results.

  6. Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities

    SciTech Connect (OSTI)

    Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

    2010-11-30

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

  7. Dual-sensor technique for characterization of carrier lifetime decay transients in semiconductors

    SciTech Connect (OSTI)

    Ahrenkiel, R. K.; Johnston, S. W.; Kuciauskas, D.; Tynan, Jerry

    2014-12-07

    This work addresses the frequent discrepancy between transient photoconductive (PC) decay and transient photoluminescence (PL) decay. With this dual- sensor technique, one measures the transient PC and PL decay simultaneously with the same incident light pulse, removing injection-level uncertainty. Photoconductive decay measures the transient photoconductivity, ??(t). PCD senses carriers released from shallow traps as well as the photo-generated electron-hole pairs. In addition, variations in carrier mobility with injection level (and time) contribute to the decay time. PL decay senses only electron-hole recombination via photon emission. Theory and experiment will show that the time dependence of the two techniques can be quite different at high injection.

  8. Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer

    Office of Scientific and Technical Information (OSTI)

    Implantation Technique (Journal Article) | SciTech Connect Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer Implantation Technique Citation Details In-Document Search Title: Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer Implantation Technique The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer

  9. Measurement of thermal conductivity in proton irradiated silicon (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Measurement of thermal conductivity in proton irradiated silicon Citation Details In-Document Search Title: Measurement of thermal conductivity in proton irradiated silicon We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques

  10. Shear wave transducer for stress measurements in boreholes

    DOE Patents [OSTI]

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  11. A novel technique for measurement of thermal rate constants and temperature dependences of dissociative recombination: CO{sub 2}{sup +}, CF{sub 3}{sup +}, N{sub 2}O{sup +}, C{sub 7}H{sub 8}{sup +}, C{sub 7}H{sub 7}{sup +}, C{sub 6}H{sub 6}{sup +}, C{sub 6}H{sub 5}{sup +}, C{sub 5}H{sub 6}{sup +}, C{sub 4}H{sub 4}{sup +}, and C{sub 3}H{sub 3}{sup +}

    SciTech Connect (OSTI)

    Fournier, Joseph A.; Shuman, Nicholas S.; Melko, Joshua J.; Ard, Shaun G.; Viggiano, Albert A.

    2013-04-21

    A novel technique using a flowing afterglow-Langmuir probe apparatus for measurement of temperature dependences of rate constants for dissociative recombination (DR) is presented. Low ({approx}10{sup 11} cm{sup -3}) concentrations of a neutral precursor are added to a noble gas/electron afterglow plasma thermalized at 300-500 K. Charge exchange yields one or many cation species, each of which may undergo DR. Relative ion concentrations are monitored at a fixed reaction time while the initial plasma density is varied between 10{sup 9} and 10{sup 10} cm{sup -3}. Modeling of the decrease in concentration of each cation relative to the non-recombining noble gas cation yields the rate constant for DR. The technique is applied to several species (O{sub 2}{sup +}, CO{sub 2}{sup +}, CF{sub 3}{sup +}, N{sub 2}O{sup +}) with previously determined 300 K values, showing excellent agreement. The measurements of those species are extended to 500 K, with good agreement to literature values where they exist. Measurements are also made for a range of C{sub n}H{sub m}{sup +} (C{sub 7}H{sub 7}{sup +}, C{sub 7}H{sub 8}{sup +}, C{sub 5}H{sub 6}{sup +}, C{sub 4}H{sub 4}{sup +}, C{sub 6}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, and C{sub 6}H{sub 6}{sup +}) derived from benzene and toluene neutral precursors. C{sub n}H{sub m}{sup +} DR rate constants vary from 8-12 Multiplication-Sign 10{sup -7} cm{sup 3} s{sup -1} at 300 K with temperature dependences of approximately T{sup -0.7}. Where prior measurements exist these results are in agreement, with the exception of C{sub 3}H{sub 3}{sup +} where the present results disagree with a previously reported flat temperature dependence.

  12. Techniques and guidelines for streamlining NEPA

    SciTech Connect (OSTI)

    Dickerman, J.A.; Tolbert, V.R.; Richmond, A.A.; Salk, M.S. )

    1993-01-01

    Five ideas for streamlining both the NEPA process and documents are explored for preparers of NEPA documents. Techniques and guidelines that implement these ideas will be provided as effective worksheets, pithy guidelines, flowcharts, and examples. The five streamlining ideas and the techniques or guidelines to achieve them are: (1) emphasize early planning through concise definition of project scope, purpose, need, and proposed action; determine need for compliance with applicable environmental requirements. (2) develop effective worksheets that include purpose, need, and proposed action; issue analysis; alternatives; environmental consequences; and NEPA checklist. (3) use information services/databases to integrate information services and identify existing databases. (4) maximize use of tables and graphs for analysis of alternatives; assumptions used (bounding analyses); environmental consequences. (5) create inviting documents with clear, concise writing; summarize in text; supporting data in appendices; and inviting visual layouts.

  13. Active load control techniques for wind turbines.

    SciTech Connect (OSTI)

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  14. Plasma filtering techniques for nuclear waste remediation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed overmore » a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.« less

  15. Plasma filtering techniques for nuclear waste remediation

    SciTech Connect (OSTI)

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    The economical viability of nuclear waste cleanup e orts could, in some cases, be put at risk due to the difficulties faced in handling unknown and complex feedstocks. Plasma filtering, which operates on dissociated elements, offers advantages over chemical techniques for the processing of such wastes. In this context, the economic feasibility of plasma mass filtering for nuclear waste pretreatment before ultimate disposal is analyzed. Results indicate similar costs for chemical and plasma solid-waste pretreatment per unit mass of waste, but suggest significant savings potential as a result of a superior waste mass minimization. This performance improvement is observed over a large range of waste chemical compositions, representative of legacy waste's heterogeneity. Although smaller, additional savings arise from the absence of a secondary liquid waste stream, as typically produced by chemical techniques.

  16. Scalable Performance Measurement and Analysis

    SciTech Connect (OSTI)

    Gamblin, T

    2009-10-27

    Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.

  17. Radiochemical technique for intensification of underexposed autoradiographs

    SciTech Connect (OSTI)

    Owunwanne, A.

    1984-04-01

    A radiochemical technique has been used to recover images of underexposed and developed autoradiographs. The underexposed image was radioactivated in a solution of (/sup 35/S)thiourea, air-dried, and reexposed to Kodak NMC film which was developed and processed in a Kodak X-Omat processor. Features which were not discernible in the underexposed autoradiographs were well distinguished in the intensified autoradiograph.

  18. Multithreaded Global Address Space Communication Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multithreaded Global Address Space Communication Techniques for Gyrokinetic Fusion Applications on Ultra-Scale Platforms Robert Preissl Lawrence Berkeley National Laboratory Berkeley, CA, USA 94720 rpreissl@lbl.gov Nathan Wichmann CRAY Inc. St. Paul, MN, USA, 55101 wichmann@cray.com Bill Long CRAY Inc. St. Paul, MN, USA, 55101 longb@cray.com John Shalf Lawrence Berkeley National Laboratory Berkeley, CA, USA 94720 jshalf@lbl.gov Stephane Ethier Princeton Plasma Physics Laboratory Princeton, NJ,

  19. New characterization techniques for LSST sensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nomerotski, A.

    2015-06-18

    Fully depleted, thick CCDs with extended infra-red response have become the sensor of choice for modern sky surveys. The charge transport effects in the silicon and associated astrometric distortions could make mapping between the sky coordinates and sensor coordinates non-trivial, and limit the ultimate precision achievable with these sensors. Two new characterization techniques for the CCDs, which both could probe these issues, are discussed: x-ray flat fielding and imaging of pinhole arrays.

  20. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  1. A Radiographic Technique With Heavy Ion Microbeams

    SciTech Connect (OSTI)

    Muscio, J.; Somacal, H.; Burlon, A. A.; Debray, M. E.; Valda, A. A.; Kreiner, A. J.; Kesque, J. M.; Minsky, D. M.

    2007-02-12

    In this work, we introduce a new technique to perform densitometric and multielemental analysis of samples at the same time using a simple detector with heavy ion micro-beams. It consists in the simultaneous analysis of X-rays induced in the sample and in a secondary target arranged behind the specimen. The X-rays originated in the secondary target are attenuated when crossing the specimen producing a radiographic image with a monochromatic source.

  2. Balanced pressure techniques applied to geothermal drilling

    SciTech Connect (OSTI)

    Dareing, D.W.

    1981-08-01

    The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

  3. Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Techniques for Drivers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Techniques for Drivers to Conserve

  4. Shell trajectory measurements from direct-drive implosion experiments

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Shell trajectory measurements from direct-drive implosion experiments Citation Details In-Document Search Title: Shell trajectory measurements from direct-drive implosion experiments A technique to measure the shell trajectory in direct-drive inertial confinement fusion implosions is presented. The x-ray self emission of the target is measured with an x-ray framing camera. Optimized filtering limits the x-ray emission from the corona plasma, isolating a

  5. MEASURING THE MASS DISTRIBUTION IN GALAXY CLUSTERS

    SciTech Connect (OSTI)

    Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J.; Serra, Ana Laura E-mail: diaferio@ph.unito.it E-mail: serra@to.infn.it

    2013-02-10

    Cluster mass profiles are tests of models of structure formation. Only two current observational methods of determining the mass profile, gravitational lensing, and the caustic technique are independent of the assumption of dynamical equilibrium. Both techniques enable the determination of the extended mass profile at radii beyond the virial radius. For 19 clusters, we compare the mass profile based on the caustic technique with weak lensing measurements taken from the literature. This comparison offers a test of systematic issues in both techniques. Around the virial radius, the two methods of mass estimation agree to within {approx}30%, consistent with the expected errors in the individual techniques. At small radii, the caustic technique overestimates the mass as expected from numerical simulations. The ratio between the lensing profile and the caustic mass profile at these radii suggests that the weak lensing profiles are a good representation of the true mass profile. At radii larger than the virial radius, the extrapolated Navarro, Frenk and White fit to the lensing mass profile exceeds the caustic mass profile. Contamination of the lensing profile by unrelated structures within the lensing kernel may be an issue in some cases; we highlight the clusters MS0906+11 and A750, superposed along the line of sight, to illustrate the potential seriousness of contamination of the weak lensing signal by these unrelated structures.

  6. Apparatus and method for optical pulse measurement

    DOE Patents [OSTI]

    Trebino, Rick P.; Tsang, Thomas; Fittinghoff, David N.; Sweetser, John N.; Krumbuegel, Marco A.

    1999-12-28

    Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through i) use of phase-matched transient grating beam geometry to maximize interaction length, and ii) use of interface-enhanced third-harmonic generation.

  7. Advanced InSAR Techniques for Geothermal Exploration and Production...

    Open Energy Info (EERE)

    how these techniques are being used for different stages of geothermal exploration and management. In both cases, multiple advanced InSAR techniques were used to quantify...

  8. Category:Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Active Seismic Techniques page? For detailed information...

  9. Category:Passive Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Passive Seismic Techniques page? For detailed...

  10. Category:Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Formation Testing Techniques page? For detailed...

  11. Category:Open-Hole Techniques | Open Energy Information

    Open Energy Info (EERE)

    Open-Hole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Open-Hole Techniques page? For detailed information on...

  12. Category:Electromagnetic Profiling Techniques | Open Energy Informatio...

    Open Energy Info (EERE)

    Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For...

  13. Category:Data and Modeling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Data and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data and Modeling Techniques page? For detailed...

  14. Category:Remote Sensing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Remote Sensing Techniques page? For detailed information...

  15. Category:Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Electromagnetic Techniques page? For...

  16. " A Heterodyne Laser-induced Fluorescence Technique to Determine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Heterodyne Laser-induced Fluorescence Technique to Determine Simultaneously the Bulk ... molecule velocity distribution using a heterodyne laser induced fluorescence technique. ...

  17. Sub-Cell Resolution Techniques for Multi-Material Electromagnetics...

    Office of Scientific and Technical Information (OSTI)

    Sub-Cell Resolution Techniques for Multi-Material Electromagnetics in Two and Three Dimensions. Citation Details In-Document Search Title: Sub-Cell Resolution Techniques for ...

  18. Geothermal Exploration Techniques a Case Study. Final Report...

    Open Energy Info (EERE)

    Techniques a Case Study. Final Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Exploration Techniques a Case Study. Final Report...

  19. Moore Foundation Funds ALS Researchers for Promising New Technique...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moore Foundation Funds ALS Researchers for Promising New Technique for Studying Materials Moore Foundation Funds ALS Researchers for Promising New Technique for Studying Materials...

  20. Piecewise moments method: Generalized Lanczos technique for nuclear...

    Office of Scientific and Technical Information (OSTI)

    Lanczos technique for nuclear response surfaces Citation Details In-Document Search Title: Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces For ...

  1. "PBS NEWSHOUR" covers new technique that may make solar panel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    covers new technique that may make solar panel production less expensive "PBS NEWSHOUR" covers new technique that may make solar panel production less expensive Scientists have ...

  2. High-Throughput/Combinatorial Techniques in Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D (presentation) High-ThroughputCombinatorial Techniques in Hydrogen Storage Materials R&D (presentation)...

  3. High Througput Combinatorial Techniques in Hydrogen Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop High Througput Combinatorial Techniques in Hydrogen Storage Materials R&D Workshop Summary of the...

  4. USE OF ADVANCED DATA PROCESSING TECHNIQUES IN THE IMAGING OF...

    Open Energy Info (EERE)

    Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The nonlinear optimization technique is used to obtain high resolution velocity...

  5. Jiaozuo Coal Group Hejing Technique Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiaozuo Coal Group Hejing Technique Co Ltd Jump to: navigation, search Name: Jiaozuo Coal Group Hejing Technique Co Ltd Place: Jiaozuo, Henan Province, China Zip: 454002 Product: A...

  6. Property:ExplorationParentTechnique | Open Energy Information

    Open Energy Info (EERE)

    orationParentTechnique Property Type Page Description parent technique for organization tree Retrieved from "http:en.openei.orgwindex.php?titleProperty:ExplorationParentTechni...

  7. Program Evaluation and Review Technique Operational Review Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Evaluation and Review Technique Operational Review Meeting 2016 Program Evaluation and Review Technique Operational Review Meeting 2016 February 23, 2016 9:00AM PST to...

  8. NREL: Measurements and Characterization - Device Performance Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Device Performance Measurement The National Renewable Energy Laboratory is the premier U.S. Department of Energy (DOE) research laboratory for testing performance of commercial, developmental, and research photovoltaic (PV) devices. We measure the performance PV cells and modules of any size or technology with respect to standard reporting conditions-defined as a reference temperature (25°C), total irradiance (1000 W/m2), andspectral irradiance distribution (IEC standard 60904-3, ASTM standard

  9. A novel approach to Hugoniot measurements utilizing transparent crystals

    SciTech Connect (OSTI)

    Fratanduono, D. E.; Eggert, J. H.; Akin, M. C.; Chau, R.; Holmes, N. C.

    2013-01-01

    A new absolute equation of state measurement technique is described and demonstrated measuring the shock state and the refractive index of MgO up to 226GPa. This technique utilizes steady shock waves and the high-pressure transparency of MgO under dynamic shock compression and release. Hugoniot measurements performed using this technique are consistent with the previous measurements. A linear dependence of the shocked refractive index and density is observed up to 226GPa, over a magnitude greater in pressure that previous studies. The transparency of MgO along the principal Hugoniot is higher than any other material reported to date. We observe a significant change in the refractive index of MgO as the Hugoniot elastic limit is exceeded due to the transition from uniaxial to hydrostatic strain. Measurements of the elastic-plastic two-wave structure in MgO indicate a nucleation time for plastic deformation.

  10. Thermal techniques for characterizing magma body geometries ...

    Open Energy Info (EERE)

    agreement with several independent geophysical measurements. Authors Hardee, H.C. ; Larson and D.W. Published Journal Geothermics, 111980 DOI http:dx.doi.org10.1016...

  11. Remote Sensing Techniques | Open Energy Information

    Open Energy Info (EERE)

    LiDAR). In thermal imaging where detectors are measuring heat, it is best to fly when the ground vs. air temperature gradient or contrast is highest. Cooler months are thus better...

  12. Nondestructive assay (NDA) techniques and procedures

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    Report No. 4 is precursory to Report No. 5 {open_quotes}Determination of the Quantity and Locations of the Pu Currently Retained in the Cimarron Fuel Plant Systems{close_quotes} which will be presented upon completion of the decontamination of the Cimarron Plutonium Fuel Fabrication Facility. This report presents the Non-Destructive Assay (NDA) procedures which were developed and used by Sequoyah Fuels Corporation (successor to Kerr-McGee Nuclear Corporation) to measure equipment hold-up of plutonium materials for inventory purposes during operation of the plant. These procedures are also used to measure plutonium contamination on the equipment removed from the Material Balance Areas (MBA`s) during final decontamination. Report No. 5 will compare the measurements taken during this final decontamination period to previous inventory hold-up measurements, the date will be statistically analyzed, and a long-term assessment of the performance of the NDA equipment will be described.

  13. Temperature Measurements in the Magnetic Measurement Facility

    SciTech Connect (OSTI)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the undulators to {+-}0.01 C. This note describes the temperature measurement system under construction.

  14. Vadose Zone Characterization Techniques Developed by EMSP Research

    SciTech Connect (OSTI)

    Guillen, Donna P.

    2003-02-24

    This paper discusses research contributions made by Environmental Management Science Program (EMSP) research in the area of geophysical characterization of the subsurface. The goal of these EMSP research projects is to develop combined high-resolution measurement and interpretation packages that provide accurate, timely information needed to characterize the vadose zone. Various types of geophysical imaging techniques can be used to characterize the shallow subsurface. Since individual geophysical characterization tools all have specific limitations, many different techniques are being explored to provide more widespread applicability over a range of hydrogeologic settings. A combination of laboratory, field, theoretical, and computational studies are necessary to develop our understanding of how contaminants move through the vadose zone. This entails field tests with field-hardened systems, packaging and calibration of instrumentation, data processing and analysis algorithms, forward and inverse modeling, and so forth. DOE sites are seeking to team with EMSP researchers to leverage the basic science research investment and apply these advances to address subsurface contamination issues that plague many U.S. Department of Energy (DOE) sites.

  15. On combining Laplacian and optimization-based mesh smoothing techniques

    SciTech Connect (OSTI)

    Freitag, L.A.

    1997-07-01

    Local mesh smoothing algorithms have been shown to be effective in repairing distorted elements in automatically generated meshes. The simplest such algorithm is Laplacian smoothing, which moves grid points to the geometric center of incident vertices. Unfortunately, this method operates heuristically and can create invalid meshes or elements of worse quality than those contained in the original mesh. In contrast, optimization-based methods are designed to maximize some measure of mesh quality and are very effective at eliminating extremal angles in the mesh. These improvements come at a higher computational cost, however. In this article the author proposes three smoothing techniques that combine a smart variant of Laplacian smoothing with an optimization-based approach. Several numerical experiments are performed that compare the mesh quality and computational cost for each of the methods in two and three dimensions. The author finds that the combined approaches are very cost effective and yield high-quality meshes.

  16. Perimeter safeguards techniques for uranium-enrichment plants

    SciTech Connect (OSTI)

    Fehlau, P.E.; Chamber, W.H.

    1981-09-01

    In 1972, a working group of the International Atomic Energy Agency identified a goal to develop and evaluate perimeter safeguards for uranium isotope enrichment plants. As part of the United State's response to that goal, Los Alamos Detection and Verification personnel studied gamma-ray and neutron emissions from uranium hexafluoride. They developed instruments that use the emissions to verify uranium enrichment and to monitor perimeter personnel and shipping portals. Unattended perimeter monitors and hand-held verification instruments were evaluated in field measurements and, when possible, were loaned to enrichment facilities for trials. None of the seven package monitoring techniques that were investigated proved entirely satisfactory for an unattended monitor. They either revealed proprietary information about centrifuge design or were subject to interference by shielding materials that could be present in a package. Further evaluation in a centrifuge facility may help in developing an acceptable attended package monitor. 34 figures, 9 tables.

  17. Ambient temperature modelling with soft computing techniques

    SciTech Connect (OSTI)

    Bertini, Ilaria; Ceravolo, Francesco; Citterio, Marco; Di Pietra, Biagio; Margiotta, Francesca; Pizzuti, Stefano; Puglisi, Giovanni; De Felice, Matteo

    2010-07-15

    This paper proposes a hybrid approach based on soft computing techniques in order to estimate monthly and daily ambient temperature. Indeed, we combine the back-propagation (BP) algorithm and the simple Genetic Algorithm (GA) in order to effectively train artificial neural networks (ANN) in such a way that the BP algorithm initialises a few individuals of the GA's population. Experiments concerned monthly temperature estimation of unknown places and daily temperature estimation for thermal load computation. Results have shown remarkable improvements in accuracy compared to traditional methods. (author)

  18. Technique for fast and efficient hierarchical clustering

    DOE Patents [OSTI]

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  19. Measuring ultrashort pulses using frequency-resolved optical gating

    SciTech Connect (OSTI)

    Trebino, R.

    1993-12-01

    The purpose of this program is the development of techniques for the measurement of ultrafast events important in gas-phase combustion chemistry. Specifically, goals of this program include the development of fundamental concepts and spectroscopic techniques that will augment the information currently available with ultrafast laser techniques. Of equal importance is the development of technology for ultrafast spectroscopy. For example, methods for the production and measurement of ultrashort pulses at wavelengths important for these studies is an important goal. Because the specific vibrational motion excited in a molecule depends sensitively on the intensity, I(t), and the phase, {psi}(t), of the ultrashort pulse used to excite the motion, it is critical to measure both of these quantities for an individual pulse. Unfortunately, this has remained an unsolved problem for many years. Fortunately, this year, the authors present a technique that achieves this goal.

  20. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect (OSTI)

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  1. Simultaneous ballistic deficit immunity and resilience to parallel noise sources: A new pulse shaping technique

    SciTech Connect (OSTI)

    Fabris, Lorenzo; Becker, John A.; Goulding, Frederick S.; Madden, Norman W.

    2000-10-11

    A new and different time variant pulse processing system has been developed based on a simple CR-RC filter and two analog switches. The new pulse processing technique combines both ballistic deficit immunity and resilience to parallel noise without a significant compromise to the low energy resolution, generally considered a mutually exclusive requirement. The filter is realized by combining two different pulse-shaping techniques. One of the techniques creates a low rate of curvature at the pulse peak, which reduces ballistic deficit, while the second technique increases the tolerance to low frequency noise by modifying the noise history. Several experimental measurements are presented, including tests on a co-planar grid CdZnTe detector. Improvements on both the resolution and line shape are shown for the 662 keV line of 137Cs.

  2. ARM - Measurement - Ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ozone Ozone measurements are given in Dobson units and are integers with 3...

  3. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  4. ARM - Measurement - Lightning stroke

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsLightning stroke ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement :...

  5. Benchmarking Outreach and Data Collection Techniques for External Portfolios

    Broader source: Energy.gov [DOE]

    This presentation contains information on Benchmarking Outreach and Data Collection Techniques for External Portfolios.

  6. Fresh nuclear fuel measurements at Ukrainian nuclear power plants

    SciTech Connect (OSTI)

    Kuzminski, Jozef; Ewing, Tom; Dickman, Debbie; Gavrilyuk, Victor; Drapey, Sergey; Kirischuk, Vladimir; Strilchuk, Nikolay

    2009-01-01

    In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

  7. In situ measurement of low-Z material coating thickness on high...

    Office of Scientific and Technical Information (OSTI)

    an sup 241Am source can be used to measure the thickness of a Li coating on Mo tiles ... This technique could be used to measure any thin, low-Z material coating (up to 1 mg...

  8. Transient data acquisition techniques under EDS

    SciTech Connect (OSTI)

    Telford, S.

    1985-06-01

    This paper is the first of a series which describes the Enrichment Diagnostic System (EDS) developed for the MARS project at Lawrence Livermore National Laboratory. Although EDS was developed for use on AVLIS, the functional requirements, overall design, and specific techniques are applicable to any experimental data acquisition system involving large quantities of transient data. In particular this paper will discuss the techniques and equipment used to do the data acquisition. Included are what types of hardware are used and how that hardware (CAMAC, digital oscilloscopes) is interfaced to the HP computers. In this discussion the author will address the problems encountered and the solutions used, as well as the performance of the instrument/computer interfaces. The second topic the author will discuss is how the acquired data is associated to graphics and analysis portions of EDS through efficient real time data bases. This discussion will include how the acquired data is folded into the overall structure of EDS providing the user immediate access to raw and analyzed data. By example you will see how easily a new diagnostic can be added to the EDS structure without modifying the other parts of the system. 8 figs.

  9. ARM - Measurement - Soil characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Soil characteristics Includes available water capacity, bulk density, permeability, porosity, rock fragment classification, rock fragment volume, percent clay,...

  10. Impedance Measurement Box

    Energy Science and Technology Software Center (OSTI)

    2014-11-20

    The IMB 50V software provides functionality for design of impedance measurement tests or sequences of tests, execution of these tests or sequences, processing measured responses and displaying and saving of the results. The software consists of a Graphical User Interface that allows configuration of measurement parameters and test sequencing, a core engine that controls test sequencing, execution of measurements, processing and storage of results and a hardware/software data acquisition interface with the IMB hardware system.

  11. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan -

  12. Electrolyte measurement device and measurement procedure

    DOE Patents [OSTI]

    Cooper, Kevin R.; Scribner, Louie L.

    2010-01-26

    A method and apparatus for measuring the through-thickness resistance or conductance of a thin electrolyte is provided. The method and apparatus includes positioning a first source electrode on a first side of an electrolyte to be tested, positioning a second source electrode on a second side of the electrolyte, positioning a first sense electrode on the second side of the electrolyte, and positioning a second sense electrode on the first side of the electrolyte. current is then passed between the first and second source electrodes and the voltage between the first and second sense electrodes is measured.

  13. Infiltration and Seepage Through Fractured Welded Tuff

    SciTech Connect (OSTI)

    T.A. Ghezzehei; P.F. Dobson; J.A. Rodriguez; P.J. Cook

    2006-06-20

    The Nopal I mine in Pena Blanca, Chihuahua, Mexico, contains a uranium ore deposit within fractured tuff. Previous mining activities exposed a level ground surface 8 m above an excavated mining adit. In this paper, we report results of ongoing research to understand and model percolation through the fractured tuff and seepage into a mined adit both of which are important processes for the performance of the proposed nuclear waste repository at Yucca Mountain. Travel of water plumes was modeled using one-dimensional numerical and analytical approaches. Most of the hydrologic properly estimates were calculated from mean fracture apertures and fracture density. Based on the modeling results, we presented constraints for the arrival time and temporal pattern of seepage at the adit.

  14. Cermets from molten metal infiltration processing

    DOE Patents [OSTI]

    Landingham, Richard L.

    2013-09-10

    New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.

  15. Cermets from molten metal infiltration processing

    DOE Patents [OSTI]

    Landingham, Richard Lee

    2012-09-18

    New cermets with improved properties and applications are provided. These new cermets have lower density and/or higher hardness than B4C cermet. By incorporating other new ceramics into B4C powders or as a substitute for B4C, lower densities and/or higher hardness cermets result. The ceramic powders have much finer particle size than those previously used which significantly reduces grain size of the cermet microstructure and improves the cermet properties.

  16. Infiltration in ASHRAE's Residential Ventilation Standards (Journal...

    Office of Scientific and Technical Information (OSTI)

    Ventilation Standards The purpose of ventilation is to dilute or remove indoor contaminants that an occupant could be exposed to. It can be provided by mechanical or natural...

  17. Sequential Infiltration Synthesis Advances Lithography (IN-10...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    practical applications of DSA by dramatically improving both the etch resistance and differential etch resistance of block copolymer films. Technology Marketing Summary...

  18. Reduce Air Infiltration in Furnaces; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secondary parameters that affect the amount of air leakage include these: * The furnace firing rate * The flue gas velocity through the stack or the stack cross-section area * The ...

  19. Coordinate measuring system

    DOE Patents [OSTI]

    Carlisle, Keith (Discovery Bay, CA)

    2003-04-08

    An apparatus and method is utilized to measure relative rigid body motion between two bodies by measuring linear motion in the principal axis and linear motion in an orthogonal axis. From such measurements it is possible to obtain displacement, departure from straightness, and angular displacement from the principal axis of a rigid body.

  20. Current measurement apparatus

    DOE Patents [OSTI]

    Umans, Stephen D.

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  1. Spectroscopic absorption measurements of an iron plasma

    SciTech Connect (OSTI)

    Springer, P.T.; Fields, D.J.; Wilson, B.G.; Nash, J.K.; Goldstein, W.H.; Iglesias, C.A.; Rogers, F.J.; Swenson, J.K.; Chen, M.H.; Bar-Shalom, A.; Stewart, R.E. Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190 )

    1992-12-28

    The first quantitative measurement of photoabsorption in the region determining the Rosseland and Planck mean opacities is obtained for a well-characterized, radiatively heated iron plasma using new techniques and instrumentation. The plasma density and temperature are simultaneously constrained with high accuracy, allowing unambiguous comparisons with opacity models used in modeling radiative transfer in equilibrium astrophysical and laboratory plasmas. The experimental Rosseland and Planck group means are constrained to an accuracy of 15%.

  2. Development of advanced strain diagnostic techniques for reactor environments.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

  3. Emerging Techniques for Field Device Security

    SciTech Connect (OSTI)

    Schwartz, Moses; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a system will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.

  4. Emerging Techniques for Field Device Security

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, Moses; Bechtel Corp.; Mulder, John; Chavez, Adrian R.; Allan, Benjamin A.

    2014-11-01

    Critical infrastructure, such as electrical power plants and oil refineries, rely on embedded devices to control essential processes. State of the art security is unable to detect attacks on these devices at the hardware or firmware level. We provide an overview of the hardware used in industrial control system field devices, look at how these devices have been attacked, and discuss techniques and new technologies that may be used to secure them. We follow three themes: (1) Inspectability, the capability for an external arbiter to monitor the internal state of a device. (2) Trustworthiness, the degree to which a systemmore » will continue to function correctly despite disruption, error, or attack. (3) Diversity, the use of adaptive systems and complexity to make attacks more difficult by reducing the feasible attack surface.« less

  5. Delayed gamma technique for fissile material assay

    SciTech Connect (OSTI)

    Mozin, Vladimir; Tobin, Stephen; Vujie, Jasmina; Hunt, Alan

    2010-01-01

    Research sponsored by the Next Generation Safeguards Initiative are investigating several non-destructive assay techniques for the quantification of fissile plutonium mass in spent nuclear fuel assemblies. AppHcation of the delayed gamma signatures is investigated in this context. The objective of the research is to assess whether the delayed gamma assay instrument can provide sufficient sensitivity, isotope specificity and accuracy as required in nuclear material safeguards. This effort includes theoretical and experimental components for the optimal combination of interrogation parameters. A new modeling algorithm offering a high level of detail was developed specifically for this purpose and was validated in series of benchmark experiments. Preliminary modeling of the delayed gamma response from spent fuel assemblies was accomplished offering a future direction for the design process.

  6. Techniques for determining physical zones of influence

    DOE Patents [OSTI]

    Hamann, Hendrik F; Lopez-Marrero, Vanessa

    2013-11-26

    Techniques for analyzing flow of a quantity in a given domain are provided. In one aspect, a method for modeling regions in a domain affected by a flow of a quantity is provided which includes the following steps. A physical representation of the domain is provided. A grid that contains a plurality of grid-points in the domain is created. Sources are identified in the domain. Given a vector field that defines a direction of flow of the quantity within the domain, a boundary value problem is defined for each of one or more of the sources identified in the domain. Each of the boundary value problems is solved numerically to obtain a solution for the boundary value problems at each of the grid-points. The boundary problem solutions are post-processed to model the regions affected by the flow of the quantity on the physical representation of the domain.

  7. Technique for ship/wake detection

    DOE Patents [OSTI]

    Roskovensky, John K.

    2012-05-01

    An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

  8. Techniques for Intravascular Foreign Body Retrieval

    SciTech Connect (OSTI)

    Woodhouse, Joe B.; Uberoi, Raman

    2013-08-01

    As endovascular therapies increase in frequency, the incidence of lost or embolized foreign bodies is increasing. The presence of an intravascular foreign body (IFB) is well recognized to have the potential to cause serious complications. IFB can embolize and impact critical sites such as the heart, with subsequent significant morbidity or mortality. Intravascular foreign bodies most commonly result from embolized central line fragments, but they can originate from many sources, both iatrogenic and noniatrogenic. The percutaneous approach in removing an IFB is widely perceived as the best way to retrieve endovascular foreign bodies. This minimally invasive approach has a high success rate with a low associated morbidity, and it avoids the complications related to open surgical approaches. We examined the characteristics, causes, and incidence of endovascular embolizations and reviewed the various described techniques that have been used to facilitate subsequent explantation of such materials.

  9. Custody transfer measurements for LNG/LPG

    SciTech Connect (OSTI)

    Williams, R.A.

    1984-04-01

    The buying, selling, and transportation of Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) requires the use of sophisticated measurement systems for accurate determination of the total quantity and energy content for custody transfer reporting and safe cargo handling of these cryogenic products. These systems must meet strict safety standards for operation in a hazardous environment and, at the same time, provide accurate, reliable information for the storage, transfer, and data reporting required for both operational and financial accounting purposes. A brief discussion of LNG and LPG characteristics and detailed description of these special measurement techniques are given in this presentation.

  10. Measuring and Understanding Memory Bandwidth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring and Understanding Memory Bandwidth Measuring and Understanding Memory Bandwidth Measuring Bandwidth Usage Measuring memory bandwidth is a good way of understanding how...

  11. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect (OSTI)

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  12. Measured Performance of Residential Dehumidifiers Under Cyclic Operation

    SciTech Connect (OSTI)

    Winkler, J.; Christensen, D.; Tomerlin, J.

    2014-01-01

    Residential construction practices are progressing toward higher levels of energy efficiency. A proven strategy to save energy is to simultaneously increase building insulation levels and reduce outdoor air infiltration. Tight homes require intentional mechanical ventilation to ensure healthy indoor air. Overall, this strategy results in a shift in the mix of latent and sensible space conditioning loads, requiring proportionally more moisture to be removed compared to standard homes. There is currently not sufficient information available at a wide enough range of operating points to design dehumidification systems for high performance homes in hot-humid climates. The only industry information available on dehumidifier moisture removal and energy consumption are performance ratings conducted at a single test condition, which does not provide a full representation of dehumidifier operation under real-world conditions. Winkler et al. (2011) developed steady state performance maps to predict dehumidifier performance at a variety of indoor conditions. However, installed heating, ventilating, and air-conditioning (HVAC) equipment rarely operates at steady state. Part load performance testing of residential dehumidifiers is not mandated by current test standards. Therefore, we tested the part load performance of four residential dehumidifiers in the National Renewable Energy Laboratory's (NREL) Advanced HVAC Systems Laboratory . The part load efficiency of each dehumidifier was measured under 13 cycling scenarios, and combined with NREL field data to develop part load fraction (PLF) performance curves under realistic cycling scenarios.

  13. Low background counting techniques at SNOLAB

    SciTech Connect (OSTI)

    Lawson, Ian; Cleveland, Bruce [SNOLAB, 1039 Regional Rd 24, Lively, ON P3Y 1N2 (Canada)] [SNOLAB, 1039 Regional Rd 24, Lively, ON P3Y 1N2 (Canada)

    2013-08-08

    Many of the experiments currently searching for dark matter, studying properties of neutrinos or searching for neutrinoless double beta decay require very low levels of radioactive backgrounds both in their own construction materials and in the surrounding environment. These low background levels are required so that the experiments can achieve the required sensitivities for their searches. SNOLAB has several facilities which are used to directly measure these radioactive backgrounds. This proceedings will describe SNOLAB's High Purity Germanium Detectors, one of which has been in continuous use for the past seven years measuring materials for many experiments in operation or under construction at SNOLAB. A description of the characterisation of SNOLAB's new germanium well detector will be presented. In addition, brief descriptions of SNOLAB's alpha-beta and electrostatic counters will be presented and a description of SNOLAB's future low background counting laboratory will be given.

  14. Evaluation of accountability measurements

    SciTech Connect (OSTI)

    Cacic, C.G.

    1988-01-01

    The New Brunswick Laboratory (NBL) is programmatically responsible to the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) for providing independent review and evaluation of accountability measurement technology in DOE nuclear facilities. This function is addressed in part through the NBL Safegaurds Measurement Evaluation (SME) Program. The SME Program utilizes both on-site review of measurement methods along with material-specific measurement evaluation studies to provide information concerning the adequacy of subject accountability measurements. This paper reviews SME Program activities for the 1986-87 time period, with emphasis on noted improvements in measurement capabilities. Continued evolution of the SME Program to respond to changing safeguards concerns is discussed.

  15. ARM - CLASIC Measurement Platforms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms Related Links CLASIC Home AAF Home ARM Data Discovery Browse Data Post-Campaign CLASIC/CHAPS Special Session at AGU Annual Meeting, December 15-19 CLASIC Workshop, March 26-27 Data Sets Deployment Resources Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract Science Questions Science and Implementation Plan (pdf) Measurement Platforms (pdf) CLASIC-Land

  16. Current measuring system

    DOE Patents [OSTI]

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  17. Current measuring system

    DOE Patents [OSTI]

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  18. Measuring Arithmetic Intensity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » For Users » Application Performance » Measuring Arithmetic Intensity Measuring Arithmetic Intensity Arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte ratio (F/B). This application note provides a methodology for determining arithmetic intensity using Intel's Software Development

  19. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Aerosols, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  20. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-08-08

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICSmore » can provide pro#12;file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi#12;ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.« less

  1. Tomographic inversion techniques incorporating physical constraints for line integrated spectroscopy in stellarators and tokamaksa)

    SciTech Connect (OSTI)

    Pablant, N. A.; Bell, R. E.; Bitter, M.; Delgado-Aparicio, L.; Hill, K. W.; Lazerson, S.; Morita, S.

    2014-11-01

    Accurate tomographic inversion is important for diagnostic systems on stellarators and tokamaks which rely on measurements of line integrated emission spectra. A tomographic inversion technique based on spline optimization with enforcement of constraints is described that can produce unique and physically relevant inversions even in situations with noisy or incomplete input data. This inversion technique is routinely used in the analysis of data from the x-ray imaging crystal spectrometer (XICS) installed at LHD. The XICS diagnostic records a 1D image of line integrated emission spectra from impurities in the plasma. Through the use of Doppler spectroscopy and tomographic inversion, XICS can provide pro#12;file measurements of the local emissivity, temperature and plasma flow. Tomographic inversion requires the assumption that these measured quantities are flux surface functions, and that a known plasma equilibrium reconstruction is available. In the case of low signal levels or partial spatial coverage of the plasma cross-section, standard inversion techniques utilizing matrix inversion and linear-regularization often cannot produce unique and physically relevant solutions. The addition of physical constraints, such as parameter ranges, derivative directions, and boundary conditions, allow for unique solutions to be reliably found. The constrained inversion technique described here utilizes a modifi#12;ed Levenberg-Marquardt optimization scheme, which introduces a condition avoidance mechanism by selective reduction of search directions. The constrained inversion technique also allows for the addition of more complicated parameter dependencies, for example geometrical dependence of the emissivity due to asymmetries in the plasma density arising from fast rotation. The accuracy of this constrained inversion technique is discussed, with an emphasis on its applicability to systems with limited plasma coverage.

  2. MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING

    Office of Scientific and Technical Information (OSTI)

    THE VARIABILITY-LUMINOSITY RELATION (Journal Article) | SciTech Connect MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION Citation Details In-Document Search Title: MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities

  3. A Collection of Complex Permittivity and Permeability Measurements

    SciTech Connect (OSTI)

    Barry, W.; Byrd, J.; Johnson, J.; Smithwick, J.

    1993-02-01

    We present the results of measurements of the complex permittivity and permeability over a frequency range of 0.1-5.1 GHz for a range of microwave absorbing materials used in a variety of accelerator applications. We also describe the automated measurement technique which uses swept-frequency S-parameter measurements made on a strip transmission line device loaded with the material under test.

  4. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  5. ARM - Measurement - Ice nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Ice nuclei Small particles around which ice particles form. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  6. ARM - Measurement - Hydrometeor types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into such microphysical classes as rain, snow, graupel, and hail. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  7. ARM - Measurement - Hydrometeor phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Hydrometeor phase Hydrometeor phase such as liquid ice or mixed phase Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  8. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  9. ARM - Measurement - Hydrometeor image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from which one can derive characteristics such as size and shape. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  10. ARM - Measurement - Radar reflectivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upon the size, shape, aspect, and dielectric properties of that target. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  11. Guidelines for Performance Measurement

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-06-30

    Federal agencies, states, businesses, and foreign governments are increasingly relying on performance measurement information to help chart progress in increasingly frugal times. No cancellations.

  12. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Soil Measurement from the SGP SWATS : Soil Water and Temperature System SEBS : Surface Energy Balance System External Instruments ECMWFDIAG : European Centre for Medium Range...

  13. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  14. Aerial Measuring System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20

    To establish policy for the Department of Energy's (DOE) Aerial Measuring System (AMS) Program. This directive does not cancel another directive. Canceled by DOE O 153.1.

  15. Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Measurements - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power ...

  16. Measuring axial pump thrust

    DOE Patents [OSTI]

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  17. Sandia Motion Measurement Processor

    Energy Science and Technology Software Center (OSTI)

    2003-03-01

    SANDIA-MMP is used to estimate the motion of the belly and wing pods of an aircraft given various indirect in-flight measurements.

  18. ARM - Measurements and Platforms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements & Platforms Contacts News News & Press Fact Sheets Images ARM flickr...

  19. ARM - Measurement - Surface albedo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments MFR : Multifilter Radiometer MFRSR :...

  20. An intercomparison of aircraft instrumentation for tropospheric measurements of sulfur dioxide

    SciTech Connect (OSTI)

    Gregory, G.L.; Davis, D.D.; Beltz, N.; Bandy, A.R.; Ferek, R.J.; Thornton, D.C. [NASA, Langely Research Center, Hampton, VA (United States)]|[Georgia Institute of Technology, Atlanta, GA (United States)]|[J.W. Goethe Univ., Frankfurt (Germany)]|[Drexel Univ., Philadelphia, PA (United States)]|[Univ. of Washington, Seattle, WA (United States)

    1993-12-01

    As part of the NASA Tropospheric Chemistry Program, a series of field intercomparisons have been conducted to evaluate the state-of-the art for measuring key tropospheric species. One of the objectives of the third intercomparison campaign in this series, Chemical Instrumentation Test and Evaluation 3 (CITE 3), was to evaluate instrumentation for making reliable tropospheric aircraft measurements of sulfur dioxide, dimethyl sulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide. This paper reports the results of the intercomparisons of five sulfur dioxide measurement methods ranging from filter techniques, in which samples collected in flight are returned to the laboratory for analyses (chemiluminescent or ion chromatographic), to near real-time, in-flight measurements via gas chromatographic, mass spectrometric, and chemiluminescent techniques. All techniques showed some tendency to track sizeable changes in ambient SO2 such as those associated with altitude changes. For SO2 mixing ratios in the range of 200 pptv to a few ppbv, agreement among the techniques varies from about 30% to several orders of magnitude, depending upon the pair of measurements intercompared. For SO2 mixing ratios less than 200 pptv, measurements from the techniques are uncorrelated. In general, observed differences in the measurement of standards do not account for the flight results. The CITE 3 results do not unambiguously identify one or more of the measurement techniques as providing valid or invalid SO2 measurements, but identify the range of `potential` uncertainty in SO2 measurements reported by currently available instrumentation and as measured under realistic aircraft environments.

  1. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect (OSTI)

    Hussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universitt Mnchen, D-85748 Garching, Germany and Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany)

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  2. Foil cycling technique for the VESUVIO spectrometer operating in the resonance detector configuration

    SciTech Connect (OSTI)

    Schooneveld, E. M.; Mayers, J.; Rhodes, N. J.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.

    2006-09-15

    This article reports a novel experimental technique, namely, the foil cycling technique, developed on the VESUVIO spectrometer (ISIS spallation source) operating in the resonance detector configuration. It is shown that with a proper use of two foils of the same neutron absorbing material it is possible, in a double energy analysis process, to narrow the width of the instrumental resolution of a spectrometer operating in the resonance detector configuration and to achieve an effective subtraction of the neutron and gamma backgrounds. Preliminary experimental results, obtained from deep inelastic neutron scattering measurements on lead, zirconium hydride, and deuterium chloride samples, are presented.

  3. Expansion techniques for collisionless stellar dynamical simulations

    SciTech Connect (OSTI)

    Meiron, Yohai; Li, Baile; Holley-Bockelmann, Kelly; Spurzem, Rainer

    2014-09-10

    We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ?0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.

  4. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  5. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M. (Albuquerque, NM); Sloan, George R. (Albuquerque, NM); Spalding, Richard E. (Albuquerque, NM)

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  6. Technique for etching monolayer and multilayer materials

    DOE Patents [OSTI]

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  7. Monitoring DNAPL pumping using integrated geophysical techniques

    SciTech Connect (OSTI)

    Newmark, R.L.; Daily, W.D.; Kyle, K.R.; Ramirez, A.L.

    1996-11-01

    The removal of DNAPL during pumping has been monitored using integrated in situ geophysical techniques. At Hill Air Force Base in Utah, a free-product DNAPL plume (consisting predominantly of TCE) is pooled in water-wet soil on a thick clay aquitard. Groundwater pumping at Operable Unit 2 (OU 2) began in 1994; to date, nearly 30,000 gallons of DNAPL have been recovered from the site. From September, 1994 through September, 1995, changes in the basin during DNAPL pumping were monitored using an integrated geophysical system. Fiber optic sensors and neutron logs verify the presence of DNAPL in the vicinity of three boreholes which form a cross section from the perimeter of the basin to its center. Cross borehole electrical resistance tomography (ERT) images the changes in formation electrical properties due to the removal of DNAPL, extending the understanding of DNAPL removal between the boreholes. During pumping, electrical resistivities decreased; we suggest that these decreases are directly caused by the reduction in DNAPL. During ground water pumping, water with relatively low resistivity replaces some of the DNAPL pockets as the highly insulating DNAPL is removed. The results suggest that, as DNAPL is pumped from a nearby well, product slowly drains along the top of an aquitard and into the pump well, where it collects.

  8. APPLIED PHYTO-REMEDIATION TECHNIQUES USING HALOPHYTES FOR OIL AND BRINE SPILL SCARS

    SciTech Connect (OSTI)

    M.L. Korphage; Bruce G. Langhus; Scott Campbell

    2003-03-01

    Produced salt water from historical oil and gas production was often managed with inadequate care and unfortunate consequences. In Kansas, the production practices in the 1930's and 1940's--before statewide anti-pollution laws--were such that fluids were often produced to surface impoundments where the oil would segregate from the salt water. The oil was pumped off the pits and the salt water was able to infiltrate into the subsurface soil zones and underlying bedrock. Over the years, oil producing practices were changed so that segregation of fluids was accomplished in steel tanks and salt water was isolated from the natural environment. But before that could happen, significant areas of the state were scarred by salt water. These areas are now in need of economical remediation. Remediation of salt scarred land can be facilitated with soil amendments, land management, and selection of appropriate salt tolerant plants. Current research on the salt scars around the old Leon Waterflood, in Butler County, Kansas show the relative efficiency of remediation options. Based upon these research findings, it is possible to recommend cost efficient remediation techniques for slight, medium, and heavy salt water damaged soil. Slight salt damage includes soils with Electrical Conductivity (EC) values of 4.0 mS/cm or less. Operators can treat these soils with sufficient amounts of gypsum, install irrigation systems, and till the soil. Appropriate plants can be introduced via transplants or seeded. Medium salt damage includes soils with EC values between 4.0 and 16 mS/cm. Operators will add amendments of gypsum, till the soil, and arrange for irrigation. Some particularly salt tolerant plants can be added but most planting ought to be reserved until the second season of remediation. Severe salt damage includes soil with EC values in excess of 16 mS/cm. Operators will add at least part of the gypsum required, till the soil, and arrange for irrigation. The following seasons more gypsum will be added and as the soil EC is reduced, plants can be introduced. If rapid remediation is required, a sufficient volume of topsoil, or sand, or manure can be added to dilute the local salinity, the bulk amendments tilled into the surface with added gypsum, and appropriate plants added. In this case, irrigation will be particularly important. The expense of the more rapid remediation will be much higher.

  9. Viscosity measuring using microcantilevers

    DOE Patents [OSTI]

    Oden, Patrick Ian

    2001-01-01

    A method for the measurement of the viscosity of a fluid uses a micromachined cantilever mounted on a moveable base. As the base is rastered while in contact with the fluid, the deflection of the cantilever is measured and the viscosity determined by comparison with standards.

  10. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  11. ALS Technique Gives Novel View of Lithium Battery Dendrite Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Novel View of Lithium Battery Dendrite Growth ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Thursday, 24 April 2014 09:46 Lithium-ion ...

  12. Midcontinent well operators learn advantages of coiled-tubing techniques

    SciTech Connect (OSTI)

    Lyle, D.

    1995-07-01

    From well cleanup to velocity strings to squeeze jobs, more Midcontinent operators are adding coiled-tubing methods to their oilfield techniques. The advantages of these techniques are discussed.

  13. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a newer technique called infrared scattering-scanning near-field optical microscopy (IR s-SNOM) and an older tried-and-true technique called Fourier transform infrared...

  14. Acceleration of matrix element computations for precision measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brandt, O.; Gutierrez, G.; Wang, M. H.L.S.; Ye, Z.

    2015-03-01

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of themorematrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.less

  15. Acceleration of matrix element computations for precision measurements

    SciTech Connect (OSTI)

    Brandt, Oleg; Gutierrez, Gaston; Wang, M. H.L.S.; Ye, Zhenyu

    2014-11-25

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. We then utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  16. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and nanoengineering techniques such as nanostructuring, thin film deposition, and nanoparticle infiltration. Methodologies for quantitative structuralchemical...

  17. Benchmarking Outreach and Data Collection Techniques for External Portfolios

    Broader source: Energy.gov [DOE]

    This document contains the transcript for the Benchmarking Outreach and Data Collection Techniques webinar, held on April 25, 2013.

  18. Tools and techniques for failure analysis and qualification of MEMS.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Tools and techniques for failure analysis and qualification of MEMS. Citation Details In-Document Search Title: Tools and techniques for failure analysis and qualification of MEMS. Many of the tools and techniques used to evaluate and characterize ICs can be applied to MEMS technology. In this paper we discuss various tools and techniques used to provide structural, chemical, and electrical analysis and how these data aid in qualifying MEMS technologies.

  19. Thermal conductivity measurements of Summit polycrystalline silicon.

    SciTech Connect (OSTI)

    Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

    2006-11-01

    A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

  20. Red mud characterization using nuclear analytical techniques

    SciTech Connect (OSTI)

    Obhodas, J.; Sudac, D.; Matjacic, L.; Valkovic, V.

    2011-07-01

    Red mud is a toxic waste left as a byproduct in aluminum production Bayer process. Since it contains significant concentrations of other chemical elements interesting for industry, including REE, it is also potential secondary ore source. Recent events in some countries have shown that red mud presents a serious environmental hazard if not properly stored. The subject of our study is the red mud from an ex-aluminum plant in Obrovac, Croatia, left from processing of bauxite mined during late 70's and early 80's at the eastern Adriatic coast and since than stored in open concrete basins for more than 30 years. We have used energy dispersive x-ray fluorescence analysis (both tube and radioactive source excitation), fast neutron activation analysis and passive gamma spectrometry to identify a number of elements present in the red mud, their concentration levels and radioactivity in the red mud. The high concentrations of Al, Si, Ca, Ti and Fe have been measured. Chemical elements Sc, Cr, Mn, Co, Ni, Cu, Zn, Ga, As, Se, Br, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Pb, Th and U were found in lower concentrations. No significant levels of radioactivity have been measured. (authors)

  1. Recent Advances and New Techniques in Visualization of Ultra-short Relativistic Electron Bunches

    SciTech Connect (OSTI)

    Xiang, Dao; /SLAC

    2012-06-05

    Ultrashort electron bunches with rms length of {approx} 1 femtosecond (fs) can be used to generate ultrashort x-ray pulses in FELs that may open up many new regimes in ultrafast sciences. It is also envisioned that ultrashort electron bunches may excite {approx}TeV/m wake fields for plasma wake field acceleration and high field physics studies. Recent success of using 20 pC electron beam to drive an x-ray FEL at LCLS has stimulated world-wide interests in using low charge beam (1 {approx} 20 pC) to generate ultrashort x-ray pulses (0.1 fs {approx} 10 fs) in FELs. Accurate measurement of the length (preferably the temporal profile) of the ultrashort electron bunch is essential for understanding the physics associated with the bunch compression and transportation. However, the shorter and shorter electron bunch greatly challenges the present beam diagnostic methods. In this paper we review the recent advances in the measurement of ultra-short electron bunches. We will focus on several techniques and their variants that provide the state-of-the-art temporal resolution. Methods to further improve the resolution of these techniques and the promise to break the 1 fs time barrier is discussed. We review recent advances in the measurement of ultrashort relativistic electron bunches. We will focus on several techniques and their variants that are capable of breaking the femtosecond time barrier in measurements of ultrashort bunches. Techniques for measuring beam longitudinal phase space as well as the x-ray pulse shape in an x-ray FEL are also discussed.

  2. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  3. CIRCUITS FOR CURRENT MEASUREMENTS

    DOE Patents [OSTI]

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  4. Measurement and control of optical nonlinearities of importance to glass laser fusion systems

    SciTech Connect (OSTI)

    Kurnit, N.A.; Shimada, T.; Sorem, M.S.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.; James, D.F.V.; Milonni, P.W.

    1996-12-31

    Results of a number of studies carried out at Los Alamos, both experimental and theoretical, of nonlinear optical phenomena important to the design of the National Ignition Facility are summarized. These include measurements of nonlinear index coefficients, Raman scattering in atmospheric oxygen, and theoretical studies of harmonic conversion. The measurements were made by two different techniques in order to increase confidence in the results. One method was an application of a recently-developed technique for measuring the amplitude and phase of an ultrashort pulse by Frequency-Resolved Optical Gating (FROG). The other utilized a modified version of the Z-scan technique that measures beam distortion introduced by scanning a sample through the focus of a beam. The measurements by both techniques for fused silica were consistent with the lower range of previously measured values, indicating that it should not be necessary to further expand the beam size in the NIF to stay below the self-focusing threshold.

  5. Calibrating and training of neutron based NSA techniques with less SNM standards

    SciTech Connect (OSTI)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S; Freeman, Corey R; Newell, Matthew R

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Monte Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the Agency due to the lack of appropriate SNM standards. This paper will address the effect of reduced access to SNM for calibration and training of neutron NDA applications along with the advantages and disadvantages of some solutions that do not use standards, such as the Monte Carlo techniques and the NPS.

  6. Measuring Strong Nanostructures

    ScienceCinema (OSTI)

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  7. ARM - Measurement - Hydrometeor Geometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geometry ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Hydrometeor Geometry...

  8. ARM - Measurement - Backscattered radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane ...

  9. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption andor ...

  10. ARM - Measurement - Aerosol extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol extinction The removal of radiant energy from an incident beam by the process of aerosol absorption ...

  11. ARM - Measurement - Aerosol absorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The...

  12. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories...

  13. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories...

  14. ARM - Measurement - Advective tendency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Advective tendency The large-scale advective tendency of temperature and moisture...

  15. ARM - Measurement - Isotope ratio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Isotope ratio Ratio of stable isotope concentrations. Categories Atmospheric...

  16. ARM - Measurement - Convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Convection Vertical motion within the atmosphere due to thermal instability, with...

  17. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv T(1 + rvepsilon), where rv is...

  18. ARM - Measurement - Actinic flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Actinic flux The quantity of light in the atmosphere available to molecules at a...

  19. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol image Images of aerosols from which one can derive characteristics such...

  20. In situ measurement system

    DOE Patents [OSTI]

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.