Powered by Deep Web Technologies
Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Inertial fusion energy studies in the UK  

E-Print Network [OSTI]

#12;The types of research - Fusion ·Absorption and partition of laser energy ­ effects of laserInertial fusion energy studies in the UK Dr Kate Lancaster #12;Inertial Confinement Fusion #12 burns because the alpha particles produced deposit more energy and make more fusion reactions happen

2

Views on inertial fusion energy development  

Science Journals Connector (OSTI)

A memorial lecture reviews the inertial fusion developments. The issues of the world energy consumption the atmospheric concentration of carbon dioxide and the necessity of an advanced nuclear fission technology are considered. A real world wide collaboration is very important for the inertial confinement fusion program. (AIP)

S. Nakai

1994-01-01T23:59:59.000Z

3

Laser Inertial Fusion Energy Control Systems  

SciTech Connect (OSTI)

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

4

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

5

Critical Science Issues for Direct Drive Inertial Fusion Energy  

Science Journals Connector (OSTI)

There are several topics that require resolution prior to the construction of an Inertial Fusion Energy [IFE] laboratory Engineering Test Facility [ETF ... driver; a practical target injection system that provides

Jill P. Dahlburg; John H. Gardner; Andrew J. Schmitt

1998-09-01T23:59:59.000Z

6

Ch. 37, Inertial Fusion Energy Technology  

SciTech Connect (OSTI)

Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of hydrogen (deuterium and tritium), are derived from water and the metal lithium, a relatively abundant resource. The fuels are virtually inexhaustible and they are available worldwide. Deuterium from one gallon of seawater would provide the equivalent energy of 300 gallons of gasoline, or over a half ton of coal. This energy is released when deuterium and tritium nuclei are fused together to form a helium nucleus and a neutron. The neutron is used to breed tritium from lithium. The energy released is carried by the helium nucleus (3.5 MeV) and the neutron (14 MeV). The energetic helium nucleus heats the fuel, helping to sustain the fusion reaction. Once the helium cools, it is collected and becomes a useful byproduct. A fusion power plant would produce no climate-changing gases.

Moses, E

2010-06-09T23:59:59.000Z

7

LANL | Physics | Inertial Confinement Fusion and High Energy Density  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inertial confinement and high density Inertial confinement and high density plasma physics Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's Inertial Confinement Fusion program is conducted at the National Ignition Facility at Lawrence Livermore National Laboratory, the OMEGA Laser Facility at the University of Rochester, and the Trident Laser Facility at Los Alamos. Within inertial confinement fusion and the high energy density area, Los Alamos specializes in hohlraum energetics, symmetry tuning, warm dense matter physics, and hydrodynamics in ultra-extreme conditions. When complete, this research will enable the exploitation of fusion as an energy resource and will enable advanced research in stockpile stewardship

8

Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for  

E-Print Network [OSTI]

plant design · Delivery soon enough to make a difference to global energy imperatives. · Design basedTimely Delivery of Laser Inertial Fusion Energy Presentation prepared for Town Hall meeting must directly address the end-user requirement for commercial power 3 Plant Primary Criteria (partial

9

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel  

E-Print Network [OSTI]

Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

Abdou, Mohamed

10

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program  

E-Print Network [OSTI]

ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program Stephen O. Dean for an expanded effort on the development of inertial fusion as an energy source is dis- cussed. It is argued that there should be a two-pronged, complementary approach to fusion energy development over the next two to three

11

COST-EFFECTIVE TARGET FABRICATION FOR INERTIAL FUSION ENERGY  

SciTech Connect (OSTI)

A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The IFE target fabrication programs are focusing on methods that will scale to mass production, and working closely with target designers to make material selections that will satisfy a wide range of required and desirable characteristics. Targets produced for current inertial confinement fusion experiments are estimated to cost about $2500 each. Design studies of cost-effective power production from laser and heavy-ion driven IFE have found a cost requirement of about $0.25-0.30 each. While four orders of magnitude cost reduction may seem at first to be nearly impossible, there are many factors that suggest this is achievable. This paper summarizes the paradigm shifts in target fabrication methodologies that will be needed to economically supply targets and presents the results of ''nth-of-a-kind'' plant layouts and concepts for IFE power plant fueling. Our engineering studies estimate the cost of the target supply in a fusion economy, and show that costs are within the range of commercial feasibility for laser-driven and for heavy ion driven IFE.

GOODIN,D.T; NOBILE,A; SCHROEN,D.G; MAXWELL,J.L; RICKMAN,W.S

2004-03-01T23:59:59.000Z

12

Prospects for inertial fusion as an energy source  

SciTech Connect (OSTI)

Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

Hogan, W.J.

1989-06-26T23:59:59.000Z

13

HEAVY ION INERTIAL FUSION  

E-Print Network [OSTI]

in the Tokamak Fusion Test Reactor which will be completedDrivers and Reactors for Inertial Confinement Fusion, K.A.

Keefe, D.

2008-01-01T23:59:59.000Z

14

Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics  

SciTech Connect (OSTI)

The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

Stelmack, Larry

2003-11-17T23:59:59.000Z

15

Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual  

E-Print Network [OSTI]

@sandia.gov) LTD Cavity Recyclable Transmission Line Hohlraum #12;2 Outline · Refurbished Z · Pulsed power fusion 82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z Ray Lemke Strip-line geometry: S ~ Strip Width + AK "equivalent" AK gap d(t) from 1-D simulatio

16

HEAVY ION INERTIAL FUSION  

E-Print Network [OSTI]

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

17

The little bang theoryEnergy from inertial fusion  

Science Journals Connector (OSTI)

Calculations show that it may be possible to ignite small thermonuclear explosions with an ion accelerator or laser. The process involves the implosion of small targets to achieve extreme temperatures and densities. The implosion can be described as a sequence of shock waves followed by adiabatic compression. The strength and timing of the shock waves are important in achieving proper conditions for thermonuclear burn. Other important issues include the uniformity of the converging shock waves and the influence of these shock waves on fluid instabilities. These issues are not fully understood and constitute an important area of research in inertial fusion. In order to produce commercial energy it will be necessary to develop combustion chambers target fabrication factories and efficient drivers (accelerators or lasers). These will be briefly discussed. In particular acoustical phenomena will play an important role in combustion chamber design. [Research performed under the auspices of the U.S. Energy Research and Development Administration under Contract No. W?7405?Eng?48.

Roger O. Bangerter

1980-01-01T23:59:59.000Z

18

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network [OSTI]

provide some operational redundancy. The essential problem for inertial fusion is depositing enough energy

Sharp, W. M.

2011-01-01T23:59:59.000Z

19

Neutron imaging with bubble chambers for inertial confinement fusion.  

E-Print Network [OSTI]

??One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated (more)

Ghilea, Marian Constantin (1973 - ); Meyerhofer, David D.

2011-01-01T23:59:59.000Z

20

Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...  

E-Print Network [OSTI]

, Albuquerque, New Mexico, 87185-1196, USA 2 University of Nevada, Reno, Nevada 89557, USA 3 Lawrence Livermore for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self-emission

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy  

SciTech Connect (OSTI)

LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. (Lawrence Berkeley Lab., CA (United States)); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. (Lawrence Liver

1992-07-01T23:59:59.000Z

22

ILSE: The next step toward a heavy ion induction accelerator for inertial fusion energy  

SciTech Connect (OSTI)

LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ``drive`` inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Fessenden, T.; Bangerter, R.; Berners, D.; Chew, J.; Eylon, S.; Faltens, A.; Fawley, W.; Fong, C.; Fong, M.; Hahn, K.; Henestroza, E.; Judd, D.; Lee, E.; Lionberger, C.; Mukherjee, S.; Peters, C.; Pike, C.; Raymond, G.; Reginato, L.; Rutkowski, H.; Seidl, P.; Smith, L.; Vanecek, D.; Yu, S. [Lawrence Berkeley Lab., CA (United States); Deadrick, F.; Friedman, A.; Griffith, L.; Hewett, D.; Newton, M.; Shay, H. [Lawrence Livermore National Lab., CA (United States)

1992-07-01T23:59:59.000Z

23

Impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect (OSTI)

Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

24

Status of the US program in magneto-inertial fusion  

Science Journals Connector (OSTI)

A status report of the current U.S. program in magneto-inertial fusion (MIF) conducted by the Office of Fusion Energy Sciences (OFES) of the U.S. Department of Energy is given. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. The program is part of the OFES program in high energy density laboratory plasmas (HED-LP).

Y C F Thio

2008-01-01T23:59:59.000Z

25

Pathways to Inertial Fusion Energy Laser Direct Drive  

E-Print Network [OSTI]

(NRL) Smoothing by Spectral Dispersion ­ SSD (LLE) DT ice preheated ablator (lower density) DT ice "Gain" = Fusion power OUT / laser power IN 143/572 = 25% Recirculating power (Nuclear reactions (electricity) Target "Gain" = Fusion power OUT / laser power IN 143/880 = 16% Recirculating power (Nuclear

26

TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

Dunne, A M

2010-11-30T23:59:59.000Z

27

National Research Council AssessmentNational Research Council Assessment --Prospects for Inertial Fusion EnergyProspects for Inertial Fusion Energy  

E-Print Network [OSTI]

engineering Laser systems Beam systems Safety & environment Construction of large-scale energy systems Beam direct drive. Understand underlying high Wall materials and design. Implementation Environment and safety.Understand underlying high energy density (HED) physical processes. Environment and safety. Cost competitiveness. Public

28

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

29

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuteriumtritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 162634, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusionfission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

30

Elise - the next step in development of induction heavy ion drivers for inertial fusion energy  

SciTech Connect (OSTI)

LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S. [and others

1994-11-01T23:59:59.000Z

31

The National Ignition Facility and the Promise of Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

Moses, E I

2010-12-13T23:59:59.000Z

32

Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion  

SciTech Connect (OSTI)

Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

Nuckolls, J.H.

1994-06-01T23:59:59.000Z

33

Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields  

SciTech Connect (OSTI)

An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

Thio, Francis Y.C.

2008-01-01T23:59:59.000Z

34

Scenarios for multi?unit inertial fusion energy plants producing hydrogen fuel  

Science Journals Connector (OSTI)

It is presented an extended summary for a paper describing: a) the motivation of the inertial fusion in general and particularly for the production of the hydrogen fuel powering low?emission vehicles b) the general requirements for fusion electric plants c) a comparative economic analysis concerning the design of drivers and target chambers. (AIP)

B. Grant Logan

1994-01-01T23:59:59.000Z

35

Annular Vortex Generation for Inertial Fusion Energy Beam-Line Protection  

SciTech Connect (OSTI)

The use of swirling annular vortex flow inside beam entrance tubes can protect beam-line structural materials in chambers for heavy-ion inertial fusion energy (IFE) applications. An annular wall jet, or vortex tube, is generated by injecting liquid tangent to the inner surface of a tube wall with both axially and azimuthally directed velocity components. A layer of liquid then lines the beam tube wall, which may improve the effectiveness of neutron shielding, and condenses and removes vaporized coolant that may enter the beam tubes. Vortex tubes have been constructed and tested with a thickness of three-tenths the pipe radius. Analysis of the flow is given, along with experimental examples of vortex tube fluid mechanics and an estimate of the layer thickness, based on simple mass conservation considerations.

Pemberton, Steven J.; Abbott, Ryan P.; Peterson, Per F. [University of California (United States)

2003-05-15T23:59:59.000Z

36

Inertial fusion energy issues of intense heavy ion and laser beams interacting with ionized matter studied at GSI-Darmstadt  

Science Journals Connector (OSTI)

European activities on inertial fusion energy are coordinated by keep in touch activities of the European Fusion Programme coordinated by the European Commission. There is no general inertial fusion program in Europe. Instead, a number of activities relevant to inertial fusion are carried out by university groups and research centers. The Helmholtz-Research Center GSI-Darmstadt (Gesellschaft fr Schwerionenforschung) operates accelerator facilities which provide the highest intensity for heavy ion beams and therefore key issues of ion beam driven fusion can be addressed. In addition to the accelerator facilities, one high-energy laser system is available (nhelix: nanosecond high-energy laser for ion experiments) and another one is under construction (PHELIX: petawatt high-energy laser for ion experiments). The heavy ion synchrotron facility, SIS18 (Schwer-Ionen-Synchrotron 18) recently delivered an intense uranium beam that deposits about 1kJ/g specific energy in solid matter. Using this beam, experiments have been performed where solid Pb- and Ta-targets have been heated to the level of 1eV. Experiments to study interaction mechanism of heavy ion beams with matter have been continued and are reported here.

D.H.H. Hoffmann; A. Blazevic; S. Korostiy; P. Ni; S.A. Pikuz; B. Rethfeld; O. Rosmej; M. Roth; N.A. Tahir; S. Udrea; D. Varentsov; K. Weyrich; B.Yu. Sharkov; Y. Maron

2007-01-01T23:59:59.000Z

37

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

Example of NIF fusion target hohlraum with multiple beamsimilar to those used on NIF. . . . . Overview of LFFHNES Nuclear Energy System NIF National Ignition Facility ODS

Kramer, Kevin James

2010-01-01T23:59:59.000Z

38

Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth  

E-Print Network [OSTI]

Driver Laser h=5-10% Heavy ion Accelerator h=15-40% Z-pinch h~15% Ignition by stagnation of convergent good progress toward achieving fusion ignition and high gain for energy applications We are making good progress toward achievingWe are making good progress toward achieving fusion ignition and high gain

39

Diode-pumped solid-state laser driver experiments for inertial fusion energy applications  

SciTech Connect (OSTI)

Although solid-state lasers have been the primary means by which the physics of inertial confinement fusion (ICF) have been investigated, it was previously thought that solid-state laser technology could not offer adequate efficiencies for an inertial fusion energy (IFE) power plant. Orth and co-workers have recently designed a conceptual IFE power plant, however, with a high efficiency diode-pumped solid-state laser (DPSSL) driver that utilized several recent innovations in laser technology. It was concluded that DPSSLs could offer adequate performance for IFE with reasonable assumptions. This system was based on a novel diode pumped Yb-doped Sr{sub 5}(PO{sub 4}){sub 3}F (Yb:S-FAP) amplifier. Because this is a relatively new gain medium, a project was established to experimentally validate the diode-pumping and extraction dynamics of this system at the smallest reasonable scale. This paper reports on the initial experimental results of this study. We found the pumping dynamics and extraction cross-sections of Yb:S-FAP crystals to be similar to those previously inferred by purely spectroscopic techniques. The saturation fluence for pumping was measured to be 2.2 J/cm{sup 2} using three different methods based on either the spatial, temporal, or energy transmission properties of a Yb:S-FAP rod. The small signal gain implies an emission cross section of 6.0{times}10{sup {minus}20} cm{sup 2}. Up to 1.7 J/cm{sup 3} of stored energy density was achieved in a 6{times}6{times}44 mm{sup 3} Yb:S-FAP amplifier rod. In a free running configuration diode-pumped slope efficiencies up to 43% were observed with output energies up to {approximately}0.5 J per 1 ms pulse from a 3{times}3{times}30 mm{sup 3} rod. When the rod was mounted in a copper block for cooling, 13 W of average power was produced with power supply limited operation at 70 Hz with 500 {mu}s pulses.

Marshall, C.D.; Payne, S.A.; Emanuel, M.E.; Smith, L.K.; Powell, H.T.; Krupke, W.F.

1995-07-11T23:59:59.000Z

40

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA  

E-Print Network [OSTI]

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA Presentation to the Fusion Energy Sciences Advisory Committee Meeting by: Dr. Allan A. Hauer Director, Office of Inertial Confinement Fusion March 1, 2006 #12;2 The US Inertial Fusion Program has 3 principal components · The first

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrodynamic stability theory of double ablation front structures in inertial confinement fusion.  

E-Print Network [OSTI]

??The aim of inertial confinement fusion is the production of energy by the fusion of thermonuclear fuel (deuterium-tritium) enclosed in a spherical target due to (more)

Yez Vico, Carlos

2012-01-01T23:59:59.000Z

42

PLASMA-PHYSICS-21 Heavy ion driven reactor-size double shell inertial fusion targets*  

E-Print Network [OSTI]

Inertial Confinement Fusion (ICF) is considered as an alternative to Magnetic Confinement Fusion to achieve controlled thermonuclear fusion. The main goal is to exploit the energy released from thermonuclear fusion reactions

M. C. Serna Moreno; N. A. Tahir; J. J. Lpez Cela; A. R. Piriz; D. H. H. Hoffmann

43

Stability of shocks relating to the shock ignition inertial fusion energy scheme  

SciTech Connect (OSTI)

Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

Davie, C. J., E-mail: c.davie10@imperial.ac.uk; Bush, I. A.; Evans, R. G. [Imperial College London, London SW7 2AZ (United Kingdom)

2014-08-15T23:59:59.000Z

44

Inertial fusion in the nineties  

SciTech Connect (OSTI)

The 1980s has proven to be an exicting time for the inertial confinement fusion (ICF) program. Major new laser and light-ion drivers have been constructed and have produced some encouraging results. The 1990s will be a crucial time for the ICF program. A decision for proceeding with the next facility is scheduled for the early 1990s. If the decision is positive, planning and construction of this facility will occur. Depending on the time required for design and construction, this next-generation facility could become operational near the turn of the century. 21 refs., 4 figs.

Harris, D.B.; Dudziak, D.J.; Cartwright, D.C.

1987-01-01T23:59:59.000Z

45

Ignition on the National Ignition Facility: A Path Towards Inertial Fusion Energy  

E-Print Network [OSTI]

to Arial 18 pt bold Name here Title or division here Date 00, 2008 LLNL-PRES-407907 #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 2 Two major possibilities for fusion energy #12;NIF-1208-15666.ppt Moses_Fusion Power Associates, 12/03/08 3 The NIF is nearing completion and will be conducting

46

Multishell inertial confinement fusion target  

DOE Patents [OSTI]

A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

1984-01-01T23:59:59.000Z

47

Multishell inertial confinement fusion target  

DOE Patents [OSTI]

A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

1987-01-01T23:59:59.000Z

48

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network [OSTI]

Thermonuclear Experimental Reactor), now being constructed in Caderache, France [5]. In contrast, inertial fusion

Sharp, W. M.

2011-01-01T23:59:59.000Z

49

Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

2008-10-24T23:59:59.000Z

50

Studies of fast electron transport in the problems of inertial fusion energy  

E-Print Network [OSTI]

In the existing natural fusion reactors, stars, the gravityto the construction of the fusion reactor. In the magneticwould be for real fusion reactor conditions. The analysis of

Frolov, Boris K.

2006-01-01T23:59:59.000Z

51

Inertial Fusion Driven by Intense Heavy-Ion Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS * W. M. Sharp # , A. Friedman, D. P. Grote, J. J. Barnard, R. H. Cohen, M. A. Dorf, S. M. Lund, L. J. Perkins, M. R. Terry, LLNL, Livermore, CA, USA B. G. Logan, F. M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, J. W. Kwan, E. P. Lee, S. M. Lidia, P. A. Ni, L. L. Reginato, P. K. Roy, P. A. Seidl, J. H. Takakuwa, J.-L. Vay, W. L. Waldron, LBNL, Berkeley, CA, USA R. C. Davidson, E. P. Gilson, I. D. Kaganovich, H. Qin, E. Startsev, PPPL, Princeton, NJ, USA I. Haber, R. A. Kishek, University of Maryland, College Park, MD, USA A. E. Koniges, NERSC, Berkeley, CA, USA Abstract Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial

52

Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment  

SciTech Connect (OSTI)

Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita Osaka, 565-0871 (Japan); Inubushi, Yuichi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2010-10-15T23:59:59.000Z

53

Princeton Plasma Physics Lab - Inertial confinement fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inertial-confinement-fusion An inertial-confinement-fusion An experimental process that uses lasers to compress plasma to sufficiently high temperatures and densities for fusion to occur. Such experiments are carried out in places such as the National Ignition Facility at the Lawrence Livermore National Laboratory in Livermore, California. en Fusion through the eyes of a veteran science journalist http://www.pppl.gov/news/2013/07/fusion-through-eyes-veteran-science-journalist-1

Author Daniel Clery recently published "A Piece of the Sun," a 320-page narrative of the history of fusion research and the

54

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

55

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

Kramer, Kevin James

2010-01-01T23:59:59.000Z

56

The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants  

SciTech Connect (OSTI)

Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [California Univ., Berkeley, CA (United States)

1996-06-26T23:59:59.000Z

57

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

of Figures Current World Energy Production Broken Down byUnited States and world energy production could be suppliedFigure 1.1: Current World Energy Production Broken Down by

Kramer, Kevin James

2010-01-01T23:59:59.000Z

58

Status of inertial fusion in the United States  

SciTech Connect (OSTI)

This report briefly discusses the concept, progress, and direction of inertial confinement fusion in the United States. (LSP)

Coleman, L.

1991-10-01T23:59:59.000Z

59

Integrated process modeling for the laser inertial fusion Energy (LIFE) generation system  

SciTech Connect (OSTI)

A concept for a new fusion-fission hybrid technology is being developed at Lawrence Livermore National Laboratory. The primary application of this technology is base-load electrical power generation. However, variants of the baseline technology can be used to 'burn' spent nuclear fuel from light water reactors or to perform selective transmutation of problematic fission products. The use of a fusion driver allows very high burn-up of the fission fuel, limited only by the radiation resistance of the fuel form and system structures. As a part of this process, integrated process models have been developed to aid in concept definition. Several models have been developed. A cost scaling model allows quick assessment of design changes or technology improvements on cost of electricity. System design models are being used to better understand system interactions and to do design trade-off and optimization studies. Here we describe the different systems models and present systems analysis results. Different market entry strategies are discussed along with potential benefits to US energy security and nuclear waste disposal. Advanced technology options are evaluated and potential benefits from additional R&D targeted at the different options is quantified.

Meier, W R; Anklam, T M; Erlandson, A C; Miles, R R; Simon, A J; Sawicki, R; Storm, E

2009-10-22T23:59:59.000Z

60

Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report  

SciTech Connect (OSTI)

This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.

Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Office of Inertial Confinement Fusion | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inertial Confinement Fusion | National Nuclear Security Inertial Confinement Fusion | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Inertial Confinement Fusion Office of Inertial Confinement Fusion Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion

62

Studies of fast electron transport in the problems of inertial fusion energy  

E-Print Network [OSTI]

1-3] is Fast Ignition, in which the set of lasers is used tothe original laser fusion design, called Fast Ignition, lookignition pulse to the compressed target core. If a powerful laser

Frolov, Boris K.

2006-01-01T23:59:59.000Z

63

Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy  

SciTech Connect (OSTI)

Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator`s lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement.

Grote, D.P.

1994-11-01T23:59:59.000Z

64

FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications  

E-Print Network [OSTI]

FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion) Understanding and designing inertial confinement fusion (ICF) implosions through radiation- hydrodynamics. To minimize the drive energy for ignition, the imploding shell of DT- fuel needs to be kept as cold

Militzer, Burkhard

65

Damage production and accumulation in SiC structures in inertial and magnetic fusion systems  

E-Print Network [OSTI]

Damage production and accumulation in SiC structures in inertial and magnetic fusion systems M wall in an IFE system is $10% lower than in an MFE system, while gas production and burnup rates magnetic (MFE) and inertial (IFE) confinement fusion systems. Variations in the geometry, neutron energy

Ghoniem, Nasr M.

66

AFRD - Fusion Energy Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

67

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network [OSTI]

HYLIFE-II inertial con?nement fusion reactor design. FusionInertial Con?nement Fusion Reactors. PhD thesis, UniversityInertial Con?nement Fusion Reactor. PhD thesis, University

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

68

Journal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report  

E-Print Network [OSTI]

.2. A Brief History of Heavy Ion Fusion The heavy ion fusion approach to inertial fusion energy (IFEJournal of Fusion Energy, Vol. 13, Nos. 2/3, 1994 Fusion Energy Advisory Committee (FEAC): Panel 7 Report on Inertial Fusion Energy 1 Ronald Davidson,2 Barrett Ripin, Mohamed Abdou, David E. Baldwin

Abdou, Mohamed

69

Inertial-confinement fusion with fast ignition  

Science Journals Connector (OSTI)

...achieve ignition and thermonuclear burn. For a fusion power plant, gains...the ratio of the thermonuclear energy to the initial...released by the thermonuclear burn in unit mass...compressed spherical fusion fuel. Higher gain...

1999-01-01T23:59:59.000Z

70

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...thermal-to-electric conversion efficiency for...in IFE, the energy multiplication factor is typically...thermal-to-electric conversion efficiency ranges...is 7%, the energy multiplication factor is 1.1, and the power conversion efficiency is...

1999-01-01T23:59:59.000Z

71

Fast ignition of inertial confinement fusion targets  

SciTech Connect (OSTI)

Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2013-01-15T23:59:59.000Z

72

Inertial confinement fusion method producing line source radiation fluence  

DOE Patents [OSTI]

An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

Rose, Ronald P. (Peters Township, Washington County, PA)

1984-01-01T23:59:59.000Z

73

Inertial confinement fusion | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

74

Tutorial on the Physics of Inertial Confinement Fusion for energy applications  

E-Print Network [OSTI]

thermal input nuclear output Physics E E QQ == The Physics or Thermonuclear Q The Physics Q determines plasma common definition of "burning plasmas" The Physics or Thermonuclear Q #12;The Target Gain "G) Dense shell Useful kinetic energy #12;Ignition takes place in the "hot spot." The thermonuclear

75

Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics  

E-Print Network [OSTI]

-ray spectroscopy Main laser drive Rayleigh­Taylor and Bell­Plesset growth DT gas Fusion burn/ignition HotDirect-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition 20th IAEA Fusion Energy Conference Vilamoura, Portugal 1­6 November 2004

76

Species separation in inertial confinement fusion fuels  

SciTech Connect (OSTI)

It is shown by means of multi-fluid particle-in-cell simulations that convergence of the spherical shock wave that propagates through the inner gas of inertial confinement fusion-relevant experiments is accompanied by a separation of deuterium (D) and tritium (T) ions across the shock front. Deuterons run ahead of the tritons due to their lower mass and higher charge-to-mass ratio and can reach the center several tens of picoseconds before the tritons. The rising edge of the DD and TT fusion rate is also temporally separated by the same amount, which should be an observable in experiments and would be a direct proof of the 'stratification conjecture' on the shock front [Amendt et al., Phys. Plasmas 18, 056308 (2011)]. Moreover, dephasing of the D and T shock components in terms of density and temperature leads to a degradation of the DT fusion yield as the converging shock first rebounds from the fuel center (shock yield). For the parameters of this study, the second peak in the fusion yield (compression yield) is strongly dependent on the choice of the flux limiter.

Bellei, C.; Amendt, P. A.; Wilks, S. C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Haines, M. G. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Casey, D. T. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Welch, D. R. [Voss Scientic, Albuquerque, New Mexico 87108 (United States)

2013-01-15T23:59:59.000Z

77

Progress in inertial fusion at LLNL  

SciTech Connect (OSTI)

Experiments at LLNL using the 10 TW Novette laser have led to significantly increased understanding of laser/plasma coupling. Tests using 1.06 ..mu..m, 0.53 ..mu..m and 0.26 ..mu..m light have shown increased light absorption, increased efficiency of conversion to x-rays, and decreased production of suprathermal electrons as the wavelength of the incident light decreases. The data indicate that stimulated Raman scattering is the source of the excessive hot electrons and that the effect can be controlled by the proper selection of laser frequency and target material. The control of these effects has led to achievement of higher inertial fusion target compressions and to production of the first laboratory x-ray laser.

Storm, E.

1985-04-15T23:59:59.000Z

78

Inertial confinement fusion. Quarterly report, July--September 1993: Volume 3, No. 4  

SciTech Connect (OSTI)

This report discusses the following research: Diode-pumped solid- state-laser driver for inertial fusion energy power plants; Longitudinal beam dynamics in heavy ion fusion accelerators; Design of the ion sources for heavy ion fusion; Measurement of electron density in laser-produced plasma with a soft x-ray moire deflectometer; and Analysis of weakly nonlinear three-dimensional Rayleigh-Taylor instability growth.

Sacks, R.A.; Murphy, P.W.; Schleich, D.P. [eds.

1993-12-31T23:59:59.000Z

79

Laser Fusion Energy The High Average Power  

E-Print Network [OSTI]

Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

80

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility  

Science Journals Connector (OSTI)

Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of ?120250??MJ may be possible with laser drive energies of 11.6MJ, while gains of ?50 may still be achievable at only ?0.2??MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G?126E??(MJ)0.510. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

L. J. Perkins; R. Betti; K. N. LaFortune; W. H. Williams

2009-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Harmonic conversion of large-aperture 1.05-?m laser beams for inertial-confinement fusion research  

Science Journals Connector (OSTI)

To provide high-energy, high-power beams at short wavelengths for inertial-confinement fusion experiments, we routinely convert the 1.05-?m output of the Nova,...

Wegner, P J; Henesian, M A; Speck, D R; Bibeau, C; Ehrlich, R B; Laumann, C W; Lawson, J K; Weiland, T L

1992-01-01T23:59:59.000Z

82

Inertial Confinement Fusion: Quarterly report, April-June 1996  

SciTech Connect (OSTI)

The lead article, `Ion-beam propagation in a low-density reactor chamber for heavy-ion inertial fusion` (p. 89), explores the ability of heavy-ion beams to be adequately transported and focused in an IFE reactor. The next article, `Efficient production and applications of 2- to 10-keV x rays by laser-heated underdense radiators` (p. 96), explores the ability of the NIF to produce sufficient high-energy x rays for diagnostic backlighting, target preheating, or uniform irradiation of large test objects for Nuclear Weapons Effects Testing. For capsule implosion experiments, the increasing energies and distances involved in the NIF compared to Nova require the development of new diagnostics methods. The article `Fusion reaction-rate measurements--Nova and NIF` (p. 115) first reviews the use of time-resolved neutron measurements on Nova to monitor fusion burn histories and then explores the limitations of that technique, principally Doppler broadening, for the proposed NIF. It also explores the use of gamma rays on Nova, thereby providing a proof-of-principle for using gamma rays for monitoring fusion burn histories on the NIF. The articles `The energetics of gas-filled hohlraums` (p. 110) and `Measurements of laser- speckle-induced perturbations in laser-driven foils` (p. 123) report measurements on Nova of two important aspects of implosion experiments. The first characterizes the amount of energy lost from a hohlraum by stimulated Brillouin and Raman scattering as a function of gas fill and laser-beam uniformity. The second of these articles shows that the growth of density nonuniformities implanted on smooth capsule surfaces by laser speckle can be correlated with the effects of physical surface roughness. The article `Laser-tissue interaction modeling with the LATIS computer program` (p. 103) explores the use of modeling to enhance the effectiveness--maximize desired effects and minimize collateral damage--of lasers for medical purposes.

Correll, D.

1996-06-01T23:59:59.000Z

83

Fusion energy  

SciTech Connect (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-02T23:59:59.000Z

84

Fusion energy  

ScienceCinema (OSTI)

Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

Baylor, Larry

2014-05-23T23:59:59.000Z

85

Inertial confinement fusion based on the ion-bubble trigger  

SciTech Connect (OSTI)

Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

Jafari, S., E-mail: SJafari@guilan.ac.ir; Nilkar, M.; Ghasemizad, A. [Department of Physics, University of Guilan, Rasht 41335-1914 (Iran, Islamic Republic of); Mehdian, H. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, Tehran 15614 (Iran, Islamic Republic of)

2014-10-15T23:59:59.000Z

86

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

E-Print Network [OSTI]

Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D[superscript 3]He protons) are routinely measured from indirectly driven inertial-confinement fusion ...

Li, C. K.

87

Peter A. Norreys Professor of Inertial Fusion Science,  

E-Print Network [OSTI]

Campaign · "Science of Ignition on the NIF" Workshop · Central Laser Facility / ORION #12;Universities experimental checks #12;$4 Billion US National Ignition Facility 2009 Laser system completed 2010 National Leader Central Laser Facility, Rutherford Appleton Laboratory Inertial Fusion Plasmas #12;Thanks

88

Laser Inertial Fusion-based Energy (LIFE) - Developing Manufacturing Technology for low cost and high volume fusion fuel is critical to our future energy needs  

Science Journals Connector (OSTI)

At the heart of the LIFE power plant is a fuel capsule containing a tiny amount of solid deuterium-tritium (DT) which is compressed to high density by lasers, and then a short-pulse laser beam delivers energy to ...

K. Carlisle; R. R. Miles

2010-01-01T23:59:59.000Z

89

Cost of electricity difference for direct and indirect drive targets for inertial fusion energy using a diode pumped solid state laser driver  

Science Journals Connector (OSTI)

A detailed systems analysis code has been used to compare the projected cost of electricity (COE) for inertial fusion energy for direct drive (DD) and indirect drive (ID) target scenarios, based on a diode pumped solid state laser driver with Yb:S-FAP (Yb doped Sr5(PO4)3F) gain media. Previously published target gain curves which resulted in a target gain at the optimal DD operating point that is 30% higher than that for the ID scenario have been used. This gain advantage for DD is offset by a requirement for improved beam smoothing, which was obtained via smoothing by spectral dispersion (SSD) with a 1THz bandwidth at 349nm. Such a large SSD bandwidth has a number of effects on laser performance, including greater risk of optics damage from non-linear effects, lowered harmonic conversion efficiency, altered extraction parameters and higher front-end costs. The non-linear effects, which contribute to optical component damage by amplification of intensity non-uniformities, were parameterized through a constraint on the maximum allowable Bintegral (i.e. the total average phase retardation due to the non-linear indices of all materials traversed by the beam). If we constrain B to be no larger than 1.8rad, which is the presently accepted safe value based on observations in single shot glass laser facilities, the COEs for DD and ID are predicted to be the same within the uncertainties. If technology permits the B limit to be raised, the optimized COE for DD is predicted to decrease relative to that for ID.

C.D. Orth

2002-01-01T23:59:59.000Z

90

Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets  

Science Journals Connector (OSTI)

By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

P. Gauthier; F. Chaland; L. Masse

2004-11-11T23:59:59.000Z

91

Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.  

SciTech Connect (OSTI)

Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.

Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

2007-01-01T23:59:59.000Z

92

Compression and combustion of non-cryogenic targets with a solid thermonuclear fuel for inertial fusion  

SciTech Connect (OSTI)

Variants of a target with a solid thermonuclear fuel in the form of deuterium-tritium hydrides of light metals for an inertial fusion have been proposed. The laser-pulse-induced compression of non-cryogenic targets, as well as ignition and combustion of such targets, has been examined. The numerical calculations show that, despite a decrease in the caloric content of the fuel and an increase in the energy losses on intrinsic radiation in the target containing deuterium-tritium hydrides of light metals as compared to the target containing deuterium-tritium ice, the non-cryogenic target can ensure the fusion gain sufficient for its use in the energy cycle of a thermonuclear power plant based on the inertial plasma confinement method.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sherman, V. E. [St. Petersburg State Polytechnic University (Russian Federation)

2013-04-15T23:59:59.000Z

93

Inertial Confinement Fusion with Light Ion Beams  

Science Journals Connector (OSTI)

...plasma can be formed without significant contribution of the ion thermal velocity to the beam divergence. The large ionization energy...3. P. L. Dreike, C. Eichenberger, S. Humphries, R. Sudan, J. Appi. Phys. 47, 85 (1986). 4. J. D. Lindi and...

J. PACE VANDEVENDER; DONALD L. COOK

1986-05-16T23:59:59.000Z

94

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network [OSTI]

a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons and certify the stockpile without nuclear testing. The National Ignition Facility (NIF) extends HEDP under extreme conditions that approach the high energy density (HED) environments found in a nuclear

95

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network [OSTI]

, and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability models that are used to assess and certify the stockpile without nuclear testing. The National Ignition that approach the high-energy density (HED) environments found in a nuclear explosion. Virtually all

96

Fusion Energy  

Science Journals Connector (OSTI)

Nuclear fusion was discovered in 1932, which is earlier ... than 400 fission power plants are operated to provide base load of electricity worldwide now. In contrast, nuclear fusion was used for a hydrogen bomb i...

Prof. Hiroshi Yamada

2012-01-01T23:59:59.000Z

97

Interplanetary space transport using inertial fusion propulsion  

SciTech Connect (OSTI)

In this paper, we indicate how the great advantages that ICF offers for interplanetary propulsion can be accomplished with the VISTA spacecraft concept. The performance of VISTA is expected to surpass that from other realistic technologies for Mars missions if the energy gain achievable for ICF targets is above several hundred. Based on the good performance expected from the U. S. National Ignition Facility (NIF), the requirements for VISTA should be well within the realm of possibility if creative target concepts such as the fast ignitor can be developed. We also indicate that a 6000-ton VISTA can visit any planet in the solar system and return to Earth in about 7 years or less without any significant physiological hazards to astronauts. In concept, VISTA provides such short-duration missions, especially to Mars, that the hazards from cosmic radiation and zero gravity can be reduced to insignificant levels. VISTA therefore represents a significant step forward for space-propulsion concepts.

Orth, C.D.

1998-04-20T23:59:59.000Z

98

THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION  

E-Print Network [OSTI]

1 THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION of the best methods in inertial confinement fusion (ICF) is the concept of central spark ignition, consisting of two distinct regions named as hot and cold regions and formed by hydro-dynamical implosion of fuel

Boyer, Edmond

99

A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF  

E-Print Network [OSTI]

A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)a) Rev. Sci. Instrum. 83, 10D919 (2012); 10.1063/1.4742926 Neutron spectrometry--An essential tool for diagnosing

100

Initial experiments on the shock-ignition inertial confinement fusion concepta...  

E-Print Network [OSTI]

ignition is a concept for direct-drive laser inertial confinement fusion ICF Refs. 1­3 that was recently for conven- tional ignition to occur. Then a strong shock wave launched at the end of the laser pulseInitial experiments on the shock-ignition inertial confinement fusion concepta... W. Theobald,1,b R

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1996-06-01T23:59:59.000Z

102

Inertial confinement fusion research and development studies. Final report, October 1979-August 1980  

SciTech Connect (OSTI)

These Inertial Confinement Fusion (ICF) research and development studies were selected for structural, thermal, and vacuum pumping analyses in support of the High Yield Lithium Injection Fusion Energy (HYLIFE) concept development. An additional task provided an outlined program plan for an ICF Engineering Test Facility, using the HYLIFE concept as a model, although the plan is generally applicable to other ICF concepts. The HYLIFE is one promising type of ICF concept which features a falling array of liquid lithium jets. These jets surround the fusion reaction to protect the first structural wall (FSW) of the vacuum chamber by absorbing the fusion energy, and to act as the tritium breeder. The fusion energy source is a deuterium-tritium pellet injected into the chamber every second and driven by laser or heavy ion beams. The studies performed by Grumman have considered the capabilities of specific HYLIFE features to meet life requirements and the requirement to recover to preshot conditions prior to each subsequent shot. The components under investigation were the FSW which restrains the outward motion of the liquid lithium, the nozzle plate which forms the falling jet array, the graphite shield which is in direct top view of the fusion pellet, and the vacuum pumping system. The FSW studies included structural analysis, and definition of an experimental program to validate computer codes describing lithium motion and the resulting impact on the wall.

Bullis, R.; Finkelman, M.; Leng, J.; Luzzi, T.; Ojalvo, I.; Powell, E.; Sedgley, D.

1980-08-01T23:59:59.000Z

103

Fusion Energy Sciences Network Requirements  

E-Print Network [OSTI]

Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

Dart, Eli

2014-01-01T23:59:59.000Z

104

Inertial Confinement Fusion Ignition and High Yield Campaign  

E-Print Network [OSTI]

to redirect High Average Power Lasers to be synergistic with NIF ignition and other defense missions #12 · Predicted gains (fusion energy produced/laser energy input) have increased · Direct drive ignition shows) Project has begun · Will add two high-energy petawatt lasers for OMEGA for advanced backlighting and fast-ignition

105

Advances in inertial confinement fusion at the National Ignition Facility (NIF)  

Science Journals Connector (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratorytemperatures over 100 million K, densities of 1000g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Edward I. Moses

2010-01-01T23:59:59.000Z

106

Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Moses, E

2009-10-15T23:59:59.000Z

107

Multiple-beam laserplasma interactions in inertial confinement fusion  

SciTech Connect (OSTI)

The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

Myatt, J. F., E-mail: jmya@lle.rochester.edu; Zhang, J.; Maximov, A. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States); Hinkel, D. E.; Michel, P.; Moody, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2014-05-15T23:59:59.000Z

108

Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums  

SciTech Connect (OSTI)

We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T{sub RAD}=300 eV and a symmetric implosion to a 100 {mu}m diameter hot core.

Glenzer, S. H.; MacGowan, B. J.; Meezan, N. B.; Adams, P. A.; Alfonso, J. B.; Alger, E. T.; Alherz, Z.; Alvarez, L. F.; Alvarez, S. S.; Amick, P. V.; Andersson, K. S.; Andrews, S. D.; Antonini, G. J.; Arnold, P. A.; Atkinson, D. P.; Auyang, L.; Azevedo, S. G.; Balaoing, B. N. M.; Baltz, J. A.; Barbosa, F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-02-25T23:59:59.000Z

109

Driving high-gain shock-ignited inertial confinement fusion targets by green laser light  

SciTech Connect (OSTI)

Standard direct-drive inertial confinement fusion requires UV light irradiation in order to achieve ignition at total laser energy of the order of 1 MJ. The shock-ignition approach opens up the possibility of igniting fusion targets using green light by reducing the implosion velocity and laser-driven ablation pressure. An analytical model is derived, allowing to rescale UV-driven targets to green light. Gain in the range 100-200 is obtained for total laser energy in the range 1.5-3 MJ. With respect to the original UV design, the rescaled targets are less sensitive to irradiation asymmetries and hydrodynamic instabilities, while operating in the same laser-plasma interaction regime.

Atzeni, Stefano; Marocchino, Alberto; Schiavi, Angelo [Dipartimento SBAI, Universita di Roma 'La Sapienza' and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy)

2012-09-15T23:59:59.000Z

110

Proton emission imaging of the nuclear burn in inertial confinement fusion experiments  

E-Print Network [OSTI]

A proton core imaging system has been developed and extensively used for measuring the nuclear burn regions of inertial confinement fusion implosions. These imaging cameras, mounted to the 60-beam OMEGA laser facility, use ...

DeCiantis, Joseph Loreto

2005-01-01T23:59:59.000Z

111

KrF laser path to high gain ICF (inertial confinement fusion) laboratory microfusion facility  

SciTech Connect (OSTI)

The krypton-fluoride laser has many desirable features for inertial confinement fusion. Because it is a gas laser capable of operation with high efficiency, it is the only known laser candidate capable of meeting the driver requirements for inertial fusion energy (IFE) production. Los Alamos National Laboratory has defined a program plan to develop KrF lasers for IFE production. This plan develops the KrF laser and demonstrates the target performance in single-pulse facilities. A 100-kJ Laser Target Test Facility (LTTF) is proposed as the next step, to be followed by a 3 to 10-MJ Laboratory Microfusion Facility (LMF). The LTTF will resolve many target physics issues and accurately define the driver energy required for the LMF. It is also proposed that the technology development for IFE, such as the high-efficiency, high-reliability, repetitively pulsed driver, the reactor, mass production of targets, and the mechanism of injecting targets be developed in parallel with the single-pulse facilities. 11 refs., 4 figs.

Harris, D.B.; Sullivan, J.A.; Figueiro, J.F.; Cartwright, D.C.; McDonald, T.E.; Hauer, A.A.; Coggeshall, S.V.; Younger, S.M.

1990-01-01T23:59:59.000Z

112

Basic hydrodynamics of RichtmyerMeshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions  

Science Journals Connector (OSTI)

...phase of inertial confinement fusion implosionsPhys. Plasmas 9...adiabat shaping in inertial fusion, implosions:the relaxation...Solodov2007Shock ignition of thermonuclear fuel with high areal densityPhys...1998Direct-drive laser fusion:status and prospectsPhys...

2010-01-01T23:59:59.000Z

113

Production and measurement of engineered surfaces for inertial confinement fusion research  

SciTech Connect (OSTI)

Inertial Confinement Fusion uses the optical energy from a very high power laser to implode spherical capsules that contain a fuel mixture of deuterium and tritium. The capsules are made of either Beryllium, plastic, or glass and range from 0.1 mm to 2 mm in diameter. As a capsule implodes, thereby compressing the fuel to reach nuclear fusion conditions, it achieves temperatures of millions of degrees Centigrade and very high pressures. In this state, the capsule materials act like fluids and often a low density fluidic material will push on a higher density material which can be a very unstable condition depending upon the smoothness of the interface between the two materials. This unstable condition is called a hydrodynamic instabillity which results in the mixing of the two materials. If the mixing occurs between the fuel and a non-fuel material, it can stop the fusion reaction just like adding significant amounts of water to gasoline can stop the operation of an automobile. Another region in the capsule where surface roughness can cause capsule performance degradation is at a joint. For instance, many capsules are made of hemispheres that are joined together. If the joint surfaces are too rough, then there will an effective reduction in density at the joint. This density reduction can cause a non-uniform implosion which will reduce the fusion energy coming out of the capsule.

Day, Robert D [Los Alamos National Laboratory; Hatch, Douglas J [Los Alamos National Laboratory; Rivera, Gerald [Los Alamos National Laboratory

2011-01-19T23:59:59.000Z

114

Pre-Amplifier Module for Laser Inertial Confinement Fusion  

SciTech Connect (OSTI)

The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

Heebner, J E; Bowers, M W

2008-02-06T23:59:59.000Z

115

Inertial fusion program, January 1-June 30, 1979  

SciTech Connect (OSTI)

Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

Skoberne, F. (comp.)

1981-06-01T23:59:59.000Z

116

Formation of carbon allotrope aerosol by colliding plasmas in an inertial fusion reactor  

Science Journals Connector (OSTI)

Along with repeated implosions, the interior of an inertial fusion target chamber is exposed to short pulses of high-energy x-ray, unburned DT-fuel particles, He-ash and pellet debris. As a result, chamber wall materials are subjected to ablation, emitting particles in the plasma state. Ablated particles will either be re-deposited elsewhere or collide with each other, perhaps in the centre-of-symmetry region of the chamber volume. Colliding ablation plasma particles can lead to the formation of clusters to grow into aerosol, possibly floating thereafter, which can deteriorate the subsequent implosion performance via laser scattering, etc. In a laboratory-scale YAG laser setup, the formation of nano-scale aerosol has been demonstrated in vacuum at irradiation power densities of the orders of 10810Wcm?2 at 10Hz, each 6ns long, simulating the high-repetition rate inertial fusion reactor situation. Interestingly, carbon aerosol formation has been observed in the form of fullerene onion, nano- and micro-tubes when laser-ablated plasma plumes of carbon collide with each other. In contrast, colliding plasma plumes of metals tend to generate aerosol in the form of droplets under identical laser irradiation conditions. An atomic and molecular reaction model is proposed to interpret the process of carbon allotrope aerosol formation.

Y. Hirooka; H. Sato; K. Ishihara; T. Yabuuchi; K.A. Tanaka

2014-01-01T23:59:59.000Z

117

Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency  

SciTech Connect (OSTI)

Issues with coupling efficiency, beam illumination symmetry and Rayleigh Taylor (RT) instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX ICF target physics code shows the ion range increasing four-fold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16 to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

Logan, B. Grant; Logan, B. Grant; Perkins, L.J.; Barnard, J.J.

2007-06-25T23:59:59.000Z

118

INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS  

E-Print Network [OSTI]

Tritium can be bred in a fusion reactor by capturing fusionchamber. Whereas magnetic-fusion reactors typically combineProjected MFE reactors have a toroidal fusion-power core

Sharp, W. M.

2011-01-01T23:59:59.000Z

119

Change in Inertial Confinement Fusion Implosions upon Using an Ab Initio Multiphase DT Equation of State  

Science Journals Connector (OSTI)

Improving the description of the equation of state (EOS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an inertial confinement fusion target [S.?X. Hu et al., Phys. Rev. Lett. 104, 235003 (2010)]. Here we use an advanced multiphase EOS, based on abinitio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EOS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3ns) in the shock timing of the implosion.

L. Caillabet; B. Canaud; G. Salin; S. Mazevet; P. Loubeyre

2011-09-08T23:59:59.000Z

120

Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science  

SciTech Connect (OSTI)

Compact wedge-range-filter proton spectrometers cover proton energies {approx}3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D{sup 3}He protons in D{sup 3}He implosions, secondary D{sup 3}He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

Seguin, F. H.; Sinenian, N.; Rosenberg, M.; Zylstra, A.; Manuel, M. J.-E.; Sio, H.; Waugh, C.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sangster, T. C.; Roberts, S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fusion Energy Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

122

Fusion Energy Sciences Jobs  

Office of Science (SC) Website

Title: Administrative Support Specialist 15 DE SC HQ 013
Office: Fusion Energy Sciences
URL:

123

To: ! Members of the National Academy of Sciences Committee on the Prospects for Inertial Confinement Fusion Energy Systems, and the Panel  

E-Print Network [OSTI]

, retired, former head of the laser fusion program at the Naval Research Laboratory Date: ! December 9, 2011 Koonin, it was told to assume that the NIF (National Ignition Facility) would reach ignition. Over the past year, Dr. Koonin periodically reviewed the progress towards ignition at the NIF. In his

124

E-Print Network 3.0 - accelerator fusion research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plasma Physics and Fusion 48 Inertial fusion energy studies in the UK Summary: 12;The types of research - Fusion Absorption and partition of laser energy - effects of...

125

Progress in laboratory high gain ICF (inertial confinement fusion): Prospects for the future  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10/sup 14/ W/cm/sup 2/, an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm/sup 3/ and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs.

Storm, E.; Lindl, J.D.; Campbell, E.M.; Bernat, T.P.; Coleman, L.W.; Emmett, J.L.; Hogan, W.J.; Hunt, J.T.; Krupke, W.F.; Lowdermilk, W.H.

1988-01-01T23:59:59.000Z

126

Fusion Energy Sciences Program Mission  

E-Print Network [OSTI]

Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion power has the long-range potential to serve as an abundant and clean source of energy and recommends

127

Engineering design of the Nova Laser Facility for inertial-confinement fusion  

SciTech Connect (OSTI)

The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility.

Simmons, W W; Godwin, R O; Hurley, C A; Wallerstein, E. P.; Whitham, K.; Murray, J. E.; Bliss, E. S.; Ozarski, R. G.; Summers, M. A.; Rienecker, F.; Gritton, D. G.; Holloway, F. W.; Suski, G. J.; Severyn, J. R.

1982-01-25T23:59:59.000Z

128

Basics of Inertial Confinement Fusion NIF and Photon Science Directorate Chief Scientist  

E-Print Network [OSTI]

for ignition on the Nova and Omega laser · Final steps on the path to ignition - the National Ignition Campaign/Centurion Why do we believe that ignition will work on NIF? #12;Advances in laser performance, precision) MAGNETIC FIELD ELECTRON NUCLEUS + - SUN #12;The extreme conditions required for inertial fusion ignition

129

Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments  

SciTech Connect (OSTI)

Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

Guler, N.; Volegov, P.; Danly, C. R.; Grim, G. P.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

130

Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams  

Science Journals Connector (OSTI)

A hemispherical conically guided indirectly driven inertial confinement fusion capsule has been considered. The fast ignition of the precompressed capsule driven by one or two laser-accelerated proton beams has been numerically investigated. The energy distribution of the protons is Gaussian with a mean energy of 12 MeV and a full width at half maximum of 1 MeV . A new scheme that uses two laser-accelerated proton beams is proposed. It is found that the energy deposition of 1 kJ provided by a first proton beam generates a low-density cylindrical channel and launches a forward shock. A second proton beam delayed by a few tens of ps and driving the energy of 6 kJ crosses the low-density channel and heats the dense shocked region where the ignition of the deuterium-tritium nuclear fuel is achieved. For the considered capsule this new two-beam configuration reduces the ignition energy threshold to 7 kJ .

Mauro Temporal

2006-01-01T23:59:59.000Z

131

Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion  

Science Journals Connector (OSTI)

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.?A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10T axial magnetic field is heated by Z beamlet, a 2.5kJ, 1TW laser, and magnetically imploded by a 19MA, 100ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70??km/s, the fuel reaches a stagnation temperature of approximately 3keV, with Te?Ti, and produces up to 21012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120???m over a 6mm height and lasting approximately 2ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2??mg/cm2.

M.?R. Gomez et al.

2014-10-06T23:59:59.000Z

132

D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmasa)  

Science Journals Connector (OSTI)

A new deuterium-tritium (D-T)fusion gamma-to-neutron branching ratio [3H(d ?)5He/3H(d n)4He] value of (4.2??2.0)??10?5 was recently reported by this group [Y. Kim et al. Phys. Rev. C (submitted)]. This measurement conducted at the OMEGA laser facility located at the University of Rochester was made for the first time using inertial confinement fusion(ICF)plasmas. Neutron-induced backgrounds are significantly reduced in these experiments as compared to traditional beam-target accelerator-based experiments due to the short pulse nature of ICF implosions and the use of gas Cherenkov ?-ray detectors with fast temporal responses and inherent energy thresholds. It is expected that this ICF-based measurement will help resolve the large and long-standing inconsistencies in previously reported accelerator-based values which vary by a factor of approximately 30. The reported value at ICF conditions was determined by averaging the results of two methods: (1) a direct measurement of ICFD-T ?-ray and neutron emissions using absolutely calibrated detectors and (2) a separate cross-calibration against the better known D-3He gamma-to-proton branching ratio [3He(d ??)5Li/3He(d p)4He]. Here we include a detailed explanation of these results and introduce as a corroborative method an in-situ ?-ray detectorcalibration using neutron-induced ?-rays. Also by extending the established techniques to two additional series of implosions with significantly different ion temperatures we test the branching ratio dependence on ion temperature. The data show a D-T branching ratio is nearly constant over the temperature range 29?keV. These studies motivate further investigation into the 5He and 5Li systems resulting from D-T and D-3He fusion respectively and result in improved ICF ?-ray reaction history diagnosis at the National Ignition Facility.

Y. Kim; J. M. Mack; H. W. Herrmann; C. S. Young; G. M. Hale; S. Caldwell; N. M. Hoffman; S. C. Evans; T. J. Sedillo; A. McEvoy; J. Langenbrunner; H. H. Hsu; M. A. Huff; S. Batha; C. J. Horsfield; M. S. Rubery; W. J. Garbett; W. Stoeffl; E. Grafil; L. Bernstein; J. A. Church; D. B. Sayre; M. J. Rosenberg; C. Waugh; H. G. Rinderknecht; M. Gatu Johnson; A. B. Zylstra; J. A. Frenje; D. T. Casey; R. D. Petrasso; E. Kirk Miller; V. Yu Glebov; C. Stoeckl; T. C. Sangster

2012-01-01T23:59:59.000Z

133

Progress in inertial fusion research at the Los Alamos Scientific Laboratory. Paper No. IAEA-CN-38/B-2  

SciTech Connect (OSTI)

The Los Alamos Scientific Laboratory Inertial Confinement Fusion Program is reviewed. Experiments using the Helios CO/sub 2/ laser system delivering up to 6 kJ on target are described. Because breakeven energy estimates for laser drivers of 1 ..mu..m and above have risen and there is a need for CO/sub 2/ experiments in the tens-of-kilojoule regime as soon as practical, a first phase of Antares construction is now directed toward completion of two of the six original modules in 1983. These modules are designed to deliver 40 kJ of CO/sub 2/ laser light on target.

Perkins, R.B.

1980-01-01T23:59:59.000Z

134

Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility  

SciTech Connect (OSTI)

We investigate yield degradation due to applied low mode P2 and P4 asymmetries in layered inertial confinement fusion implosions. This study has been performed with a large database of >600 2D simulations. We show that low mode radiation induced drive asymmetries can result in significant deviation between the core hot spot shape and the fuel ?R shape at peak compression. In addition, we show that significant residual kinetic energy at peak compression can be induced by these low mode asymmetries. We have developed a metric, which is a function of the hot spot shape, fuel ?R shape, and residual kinetic energy at peak compression, that is well correlated to yield degradation due to low mode shape perturbations. It is shown that the ?R shape and residual kinetic energy cannot, in general, be recovered by inducing counter asymmetries to make the hot core emission symmetric. In addition, we show that the yield degradation due to low mode asymmetries is well correlated to measurements of time dependent shape throughout the entire implosion, including early time shock symmetry and inflight fuel symmetry.

Kritcher, A. L.; Town, R.; Bradley, D.; Clark, D.; Spears, B.; Jones, O.; Haan, S.; Springer, P. T.; Lindl, J.; Callahan, D.; Edwards, M. J.; Landen, O. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Scott, R. H. H. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)] [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)

2014-04-15T23:59:59.000Z

135

ITER Fusion Energy  

ScienceCinema (OSTI)

ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

Dr. Norbert Holtkamp

2010-01-08T23:59:59.000Z

136

Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility  

SciTech Connect (OSTI)

Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

Spears, Brian K., E-mail: spears9@llnl.gov; Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)] [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Knauer, J. [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)] [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)

2014-04-15T23:59:59.000Z

137

Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility  

SciTech Connect (OSTI)

For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-02-15T23:59:59.000Z

138

Suggested Path to Develop Inertial Fusion Energy  

E-Print Network [OSTI]

and tested on small scale · We believe this particular Phase I effort could be completed in about 3 years upgrades. "18 kJ" FTF Amplifier · Similar current pulse · Diode voltage 8oo kV · Aperture width 100 cm

139

Inertial Confinement Fusion quarterly report, October--December 1994. Volume 5, No. 1  

SciTech Connect (OSTI)

The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included in this issue include: system description and initial performance results for beamlet, design and performance of the beamlet amplifiers and optical switch, beamlet pulse-generation and wavefront-control system, large-aperture, high- damage-threshold optics for beamlet, beamlet pulsed power system, beamlet laser diagnostics, and beam propagation and frequency conversion modeling for the beamlet laser.

NONE

1995-09-01T23:59:59.000Z

140

THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION  

E-Print Network [OSTI]

tion of fusion could provide the world with an energy sourcefusion power is to provide an inex haustible source of energy

Herrmannsfeldt, W.b.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion  

SciTech Connect (OSTI)

The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

Jiang, Shaoen; Jing, Longfei, E-mail: scmyking-2008@163.com; Ding, Yongkun [Laser Fusion Research Center, China Academy Engineering Physics, Mianyang 621900 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510006 (China)

2014-10-15T23:59:59.000Z

142

Real viscosity effects in inertial confinement fusion target deuteriumtritium micro-implosions  

SciTech Connect (OSTI)

We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ?40??m diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3}?g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20?keV) central temperature but severely reduced central density (<200?g/cm{sup 3}), while the elliptical shells evidence p?=?2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

Mason, R. J., E-mail: rodmason01@msn.com; Kirkpatrick, R. C.; Faehl, R. J. [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)] [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)

2014-02-15T23:59:59.000Z

143

Developing high brightness beams for heavy ion driven inertial fusion  

SciTech Connect (OSTI)

Heavy ion fusion (HIF) drivers require large currents and bright beams. In this paper we review the two different approaches for building HIF injectors and the corresponding ion source requirements. The traditional approach uses large aperture, low current density ion sources, resulting in a very large injector system. A more recent conceptual approach merges high current density mini-beamlets into a large current beam in order to significantly reduce the size of the injector. Experiments are being prepared to demonstrate the feasibility of this new approach.

Kwan, J.W.; Ahle, L.A.; Anders, A.; Bieniosek, F.M.; Chacon-Golcher, E.; Grote, D.P.; Henestroza, E.; Leung, K.N.; Molvik, A.W.

2001-08-29T23:59:59.000Z

144

The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas  

SciTech Connect (OSTI)

Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2?10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 61000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.0610 T) could result in a factor of 2500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

Srinivasan, Bhuvana; Tang, Xian-Zhu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-05-15T23:59:59.000Z

145

LIFE: The Case for Early Commercialization of Fusion Energy  

SciTech Connect (OSTI)

This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

Anklam, T; Simon, A J; Powers, S; Meier, W R

2010-11-30T23:59:59.000Z

146

Plasma Jet Driven Magneto-Inertial Fusion (PJMIF)  

E-Print Network [OSTI]

Exploratory experiments using refurbished 50 J CO2 lasers and PIC modeling are ongoing (UC, Davis and LANL PJMIF burn configuration at peak target compression with energy gain > 10 Operated by Los Alamos National Security, LLC for NNSA magnetized DT target plasma liner Target at peak compression o nDT ~ 5

147

Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors  

E-Print Network [OSTI]

to reliably estimate energy expenditure (EE). Direct calorimetry [5] measures the heat produced by human bodyTowards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors Bozidara Cvetkovi´c1 human energy expenditure during sport and normal daily ac- tivities. The paper presents technical

Lu?trek, Mitja

148

A Concept Exploration Program in Fast Ignition Inertial Fusion Final Report  

SciTech Connect (OSTI)

The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in 2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in 5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

Stephens, Richarad Burnite [General Atomics] [General Atomics; Freeman, Richard R. [The Ohio State University] [The Ohio State University; Van Woekom, L. D. [The Ohio State University] [The Ohio State University; Key, M. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; MacKinnon, Andrew J. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics] [General Atomics

2014-02-27T23:59:59.000Z

149

Adjoint-Based Implicit Uncertainty Analysis for Figures of Merit in a Laser Inertial Fusion Engine  

SciTech Connect (OSTI)

A primary purpose of computational models is to inform design decisions and, in order to make those decisions reliably, the confidence in the results of such models must be estimated. Monte Carlo neutron transport models are common tools for reactor designers. These types of models contain several sources of uncertainty that propagate onto the model predictions. Two uncertainties worthy of note are (1) experimental and evaluation uncertainties of nuclear data that inform all neutron transport models and (2) statistical counting precision, which all results of a Monte Carlo codes contain. Adjoint-based implicit uncertainty analyses allow for the consideration of any number of uncertain input quantities and their effects upon the confidence of figures of merit with only a handful of forward and adjoint transport calculations. When considering a rich set of uncertain inputs, adjoint-based methods remain hundreds of times more computationally efficient than Direct Monte-Carlo methods. The LIFE (Laser Inertial Fusion Energy) engine is a concept being developed at Lawrence Livermore National Laboratory. Various options exist for the LIFE blanket, depending on the mission of the design. The depleted uranium hybrid LIFE blanket design strives to close the fission fuel cycle without enrichment or reprocessing, while simultaneously achieving high discharge burnups with reduced proliferation concerns. Neutron transport results that are central to the operation of the design are tritium production for fusion fuel, fission of fissile isotopes for energy multiplication, and production of fissile isotopes for sustained power. In previous work, explicit cross-sectional uncertainty analyses were performed for reaction rates related to the figures of merit for the depleted uranium hybrid LIFE blanket. Counting precision was also quantified for both the figures of merit themselves and the cross-sectional uncertainty estimates to gauge the validity of the analysis. All cross-sectional uncertainties were small (0.1-0.8%), bounded counting uncertainties, and were precise with regard to counting precision. Adjoint/importance distributions were generated for the same reaction rates. The current work leverages those adjoint distributions to transition from explicit sensitivities, in which the neutron flux is constrained, to implicit sensitivities, in which the neutron flux responds to input perturbations. This treatment vastly expands the set of data that contribute to uncertainties to produce larger, more physically accurate uncertainty estimates.

Seifried, J E; Fratoni, M; Kramer, K J; Latkowski, J F; Peterson, P F; Powers, J J; Taylor, J M

2010-12-03T23:59:59.000Z

150

Liquid Vortex Shielding for Fusion Energy Applications  

SciTech Connect (OSTI)

Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

2005-05-15T23:59:59.000Z

151

Ion beam requirements for fast ignition of inertial fusion targets  

E-Print Network [OSTI]

Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects such as ion beam divergence not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point have been analysed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

Honrubia, J J

2015-01-01T23:59:59.000Z

152

Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion  

SciTech Connect (OSTI)

A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

2012-08-16T23:59:59.000Z

153

Low radioactive and hybrid fusion A path to clean energy  

Science Journals Connector (OSTI)

Abstract Aneutronic/low radioactive fuel is the way to clean and cheap energy of the future. An alternative scheme using compact toroids field-reversed configuration or spheromak may be applied for the reactor based on any magnetic confinement system. Even more, any fusion concept, including hybrid magneto-inertial fusion might use advantages of D3He fuel. Advanced fuel, including helium-3 based fusion plasma and alternative systems are reviewed. Different schemes of reactors, near-term technology and non-electric applications are discussed.

Sergei V. Ryzhkov

2015-01-01T23:59:59.000Z

154

Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement  

SciTech Connect (OSTI)

Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C. [and others

1996-12-31T23:59:59.000Z

155

Fusion Energy Sciences Network Requirements  

E-Print Network [OSTI]

Division, and the Office of Fusion Energy Sciences. This isEnergy Sciences, DOE Office of Science Energy SciencesDepartment of Energy, Office of Science, Office of Advanced

Dart, Eli

2014-01-01T23:59:59.000Z

156

Fast track to fusion energy  

Science Journals Connector (OSTI)

... Nuclear fusion powers our Sun, the stars and ... powers our Sun, the stars and thermonuclear weapons, so what's stopping it being used as an energy source? The answer ...

Michael H. Key

2001-08-23T23:59:59.000Z

157

Use of Organometallic Polymers for Pre-Heat Shields for Targets in Inertial-Confinement Nuclear Fusion  

Science Journals Connector (OSTI)

Nuclear fusion, the energy process operating in the sun ... radioactive wastes associated with nuclear fission. Harnessing nuclear fusion, however, has proven to be a...

John E. Sheats; Fred Hessel; Louis Tsarouhas

1985-01-01T23:59:59.000Z

158

Magnetized Target Fusion (MTF) (a.k.a. Magneto-Inertial Fusion)  

E-Print Network [OSTI]

.g., Atlas $50M). The low cost and size of experimental facilities should significantly reduce fusion TEMPERATURE (eV) IONDENSITY(/cm)3 1016 1014 1018 1020 1022 1024 1026 103 104 105 Facility Cost($) = 1 TEMPERATURE (eV) 104 105 Facility Cost($) B=5 MG Operation at an intermediate density leads to reduced

159

Investigation of methods for fabricating, characterizing, and transporting cryogenic inertial-confinement-fusion tartets  

SciTech Connect (OSTI)

The objective of this work is to investigate methods for fabricating, characterizing and transporting cryogenic inertial confinement fusion targets on a continuous basis. A microprocessor-based data acquisition system has been built that converts a complete target image to digital data, which are then analyzed by automated software procedures. The low temperatures required to freeze the hydrogen isotopes contained in a target is provided by a cryogenic cold chamber capable of attaining 15 K. A new method for target manipulation and positioning is studied that employs molecular gas beams to levitate a target and an electrostatic quadrupole structure to provide for its lateral containment. Since the electrostatic target-positioning scheme requires that the targets be charged, preliminary investigation has been carried out for a target-charging mechanism based on ion-bombardment.

Fanning, J.J.; Kim, K.

1981-01-01T23:59:59.000Z

160

Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF  

E-Print Network [OSTI]

The complex nature of inertial confinement fusion (ICF) experiments results in a very large number of experimental parameters that are only known with limited reliability. These parameters, combined with the myriad physical models that govern target evolution, make the reliable extraction of physics from experimental campaigns very difficult. We develop an inference method that allows all important experimental parameters, and previous knowledge, to be taken into account when investigating underlying microphysics models. The result is framed as a modified $\\chi^{2}$ analysis which is easy to implement in existing analyses, and quite portable. We present a first application to a recent convergent ablator experiment performed at the NIF, and investigate the effect of variations in all physical dimensions of the target (very difficult to do using other methods). We show that for well characterised targets in which dimensions vary at the 0.5% level there is little effect, but 3% variations change the results of i...

Gaffney, Jim A; Sonnad, Vijay; Libby, Stephen B

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Interactive tools designed to study mix in inertial confinement fusion implosions  

SciTech Connect (OSTI)

Graphical user interface tools have been built in IDL to study mix in inertial confinement fusion (ICF) implosion cores. FLAME (Fall-Line Analysis Mix Evaluator), a code which investigates yield degradation due to mix , was designed to post-process 1D hydrodynamic simulation output by implementing a variety of mix models. Three of these mix models are based on the physics of the fall-line. In addition, mixing data from other sources can be incorporated into the yield degradation analysis. Two independent tools called HAME (Haan Analysis Mix Evaluator) and YAME (Youngs Analysis Mix Evaluator) were developed to calculate the spatial extent of the mix region according to the Haan saturation model and Youngs' phenomenological model, respectively. FLAME facilitates a direct comparison to experimental data. The FLAME, HAME, and YAME interfaces are user-friendly, flexible, and platform-independent.

Welser-sherrill, Leslie [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Wilson, Doug C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

162

Dynamic response of materials on subnanosecond time scales, and beryllium properties for inertial confinement fusion  

SciTech Connect (OSTI)

During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from {approx}1 to 200 GPa in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1 TPa.

Swift, Damian C.; Tierney, Thomas E.; Luo Shengnian; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan; Greenfield, Scott R.; Koskelo, Aaron C.; McClellan, Kenneth J.; Lorenzana, Hector E.; Kalantar, Daniel; Remington, Bruce A.; Peralta, Pedro; Loomis, Eric [Los Alamos National Laboratory, MS E526, Los Alamos, New Mexico 87545 (United States); Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Arizona State University, Tempe, Arizona 85287 (United States)

2005-05-15T23:59:59.000Z

163

Realization of Fusion Energy: An alternative fusion roadmap  

E-Print Network [OSTI]

Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

164

Path toward fusion energy  

SciTech Connect (OSTI)

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

165

Fusion Energy Research Presentation to  

E-Print Network [OSTI]

, other ICCs 14-MeV neutron source Base fusion power technologies Base Plasma Support technologies Decision point DEMO Volumetric neutron source Theory & Simulation ICC ETR DEMO #12;Advanced Computing, Bioremediation Fusion Energy CombustionMaterials #12;#12;Microwave Imaging Reflectometry Laboratory tests

166

Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas  

SciTech Connect (OSTI)

High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P.; Schneider, M.; Widmann, K. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sanchez del Rio, M. [European Synchrotron Radiation Facility, BP 220, 38043-Grenoble Cedex (France); Zhang, L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

2012-10-15T23:59:59.000Z

167

Plasmawall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials  

Science Journals Connector (OSTI)

Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJm?2 and implant more than 1018particlesm?2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments.This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.

J Alvarez Ruiz; A Rivera; K Mima; D Garoz; R Gonzalez-Arrabal; N Gordillo; J Fuchs; K Tanaka; I Fernndez; F Briones; J Perlado

2012-01-01T23:59:59.000Z

168

An improved method for measuring the absolute DD neutron yield and calibrating neutron time-of-flight detectors in inertial confinement fusion experiments  

E-Print Network [OSTI]

Since the establishment of nuclear physics in the early 1900's and the development of the hydrogen bomb in the 1950's, inertial confinement fusion (ICF) has been an important field in physics. Funded largely though the ...

Waugh, C. (Caleb Joseph)

2014-01-01T23:59:59.000Z

169

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility  

SciTech Connect (OSTI)

The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6??10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2014-05-15T23:59:59.000Z

170

Technical risks and R and D requirements for inertial confinement fusion. Volume 2. Final report  

SciTech Connect (OSTI)

If the technology breakthroughs and/or inventions identified in this preliminary analysis occur in a timely manner, an aggressive R and D program may allow commercial demonstration of confinement fusion within 30 years. Using an innovative interview methodology analysts have mapped out near-term and long-term R and D requirements for ICF to become a viable energy source.

McCarville, T.J.; Gordon, J.D.; Salem, S.L.; Maniscalco, J.A.; Berwald, D.H.; Sicherman, A.; Kulkarni, R.B.; Cherdack, R.N.; Lee, K.C.

1985-02-01T23:59:59.000Z

171

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility  

SciTech Connect (OSTI)

In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

Town, R. P. J., E-mail: town2@llnl.gov; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Dppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-05-15T23:59:59.000Z

172

Drift compression and final focus systems for heavy ion inertial fusion  

E-Print Network [OSTI]

heavy ion beam driven fusion reactor study. Technical Reportheavy ion beam driven fusion reactor study. Technical Reportion beams of a pellet fusion reactor by quadrupole doublets.

de Hoon, M.J.L.

2001-01-01T23:59:59.000Z

173

Ion beam fusion  

Science Journals Connector (OSTI)

...that converts the fusion and blanket energy into...target gain G is the thermonuclear energy produced by the...Most concep- tual fusion power plants have a...and the International Thermonuclear Experimental Reactor...situation, the inertial fusion com- munity in the...

1999-01-01T23:59:59.000Z

174

Moderate-convergence inertial confinement fusion implosions in tetrahedral hohlraums at Omega  

SciTech Connect (OSTI)

A highly uniform thermal x-radiation field for indirect-drive inertial confinement fusion implosions may be obtained by irradiating a four-hole, tetrahedral geometry, spherical hohlraum with all 60 Omega laser beams. Implosion studies and calculations [J. M. Wallace et al., Phys. Rev. Lett. 82, 3807 (1999)] indicate a drive uniformity comparable to that expected for the National Ignition Facility [J. A. Painser et al., Laser Focus World 30, 75 (1994)]. With 60 beams distributed over the cavity wall, tetrahedral hohlraums have a natural insensitivity to power balance and pointing errors. Standard, smooth Nova capsules imploded with this drive indicate that moderate convergence-ratio implosions, Cr{approx}18, have measured-neutron yield to calculated-clean-one-dimensional-neutronyield ratios similar to those previously investigated using the comparatively poor drive uniformity of Nova cylindrical hohlraums. This may indicate that a nonsymmetry-related neutron yield degradation mechanism, e.g., hydrodynamic mixing of cold, dense ablator material with the hot-spot region or some combination of nonsymmetry effects, is dominating in this Cr regime. (c) 2000 American Institute of Physics.

Bennett, G. R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Wallace, J. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Murphy, T. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Chrien, R. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Delamater, N. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Gobby, P. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Hauer, A. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Klare, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Oertel, J. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States); Watt, R. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)] (and others) [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0001 (United States)

2000-06-01T23:59:59.000Z

175

The LLNL (Lawrence Livermore National Laboratory) ICF (Inertial Confinement Fusion) Program: Progress toward ignition in the Laboratory  

SciTech Connect (OSTI)

The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 {mu}m) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade.

Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann

1990-10-02T23:59:59.000Z

176

Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion  

SciTech Connect (OSTI)

The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides for an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration of megagauss magnetic field compression by a small array of full scale macrons. In addition the physics of the compression of an FRC to fusion conditions will be undertaken with a smaller scale MFL. The timescale for testing will be rapidly accelerated by taking advantage of other facilities at MSNW where the target FRC will be created and translated inside the MFL just prior to implosion of the MFL. Experimental success would establish the concept at the â??proof of principleâ? level and the following phase III effort would focus on the full development of the concept into a fusion gain device. Successful operation would lead to several benefits in various fields. It would have application to high energy density physics, as well as nuclear waste transmutation and alternate fission fuel cycles. The smaller scale device could find immediate application as an intense source of neutrons for diagnostic imaging and non-invasive object interrogation.

Slough, John

2011-12-10T23:59:59.000Z

177

Fusion Electricity A roadmap to the realisation of fusion energy  

E-Print Network [OSTI]

Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

178

How does Casimir energy fall? III. Inertial forces on vacuum energy.  

E-Print Network [OSTI]

How does Casimir energy fall? III. Inertial forces on vacuum energy. K V Shajesh, Kimball A Milton, Prachi Parashar and Jeffrey A Wagner Oklahoma Center for High Energy Physics and Homer L. Dodge@nhn.ou.edu Date: 7 November 2007 Abstract. We have recently demonstrated that Casimir energy due to parallel

Milton, Kim

179

Current state, problems, and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma  

Science Journals Connector (OSTI)

Magneto-inertial fusion (MIF) is an original technique of inertial thermonuclear fusion, where spherical and cylindrical gas or plasma...

S. V. Ryzhkov

2014-05-01T23:59:59.000Z

180

Basic hydrodynamics of RichtmyerMeshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions  

Science Journals Connector (OSTI)

...one-dimensional time history of the CH foil acceleration...al. 1999). The price paid for high uniformity...hohlraum is its low energy efficiency: only...ignition, fusion energy gain and, eventually, fusion energy production on NIF in the USA, LMJ in France...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants  

E-Print Network [OSTI]

advanced protection concept for NIF. Fusion Technology, 30(near-target experiments in NIF. Fusion Technology, 34(3):vered ?rst-wall systems for NIF. Fusion Technology, 34(3):

Debonnel, Christophe Sylvain

2006-01-01T23:59:59.000Z

182

THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION  

E-Print Network [OSTI]

BEAMS QF A P.ELLET FUSION REACTOR BY.fiUADRUPOLJ"DOUBLETS,prefer much smaller fusion reactors. In view of the evidencecertain that soie pure fusion reactor scenarios exist with

Herrmannsfeldt, W.b.

2010-01-01T23:59:59.000Z

183

High Current Ion Sources and Injectors for Heavy Ion Fusion  

E-Print Network [OSTI]

on Heavy Ion Inertial Fusion; Fusion Engineering and Design,Ion Inertial Fusion, Princeton, New Jersey, Sept. 6-9, 1995; in Fusion EngineeringIon Inertial Fusion, Princeton, New Jersey, Sept. 6-9, 1995; in Fusion Engineering

Kwan, Joe W.

2005-01-01T23:59:59.000Z

184

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

185

Single crystal growth and formation of defects in deuterium-tritium layers for inertial confinement nuclear fusion  

SciTech Connect (OSTI)

We identify vapor-etched grain boundary grooves on the solid-vapor interface as the main source of surface roughness in the deuterium-tritium (D-T) fuel layers, which are solidified and then cooled. Current inertial confinement fusion target designs impose stringent limits to the cross-sectional area and total volume of these grooves. Formation of these grain boundaries occurs over time scales of hours as the dislocation network anneals and is inevitable in a plastically deformed material. Therefore, either cooling on a much shorter time scale or a technique that requires no cooling after solidification should be used to minimize the roughness.

Chernov, A. A.; Kozioziemski, B. J.; Koch, J. A.; Atherton, L. J.; Johnson, M. A.; Hamza, A. V.; Kucheyev, S. O.; Lugten, J. B.; Mapoles, E. A.; Moody, J. D.; Salmonson, J. D.; Sater, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue Livermore, California 94551 (United States)

2009-02-09T23:59:59.000Z

186

Single Crystal Growth and Formation of Defects in Deuterium-Tritium Ice Layers for Inertial Confinement Fusion  

SciTech Connect (OSTI)

We identify vapor-etched grain boundary grooves on the solid-vapor interface as the main source of surface roughness in the Deuterium-Tritium (D-T) fuel layers which are solidified and then cooled. Current inertial confinement fusion target designs impose stringent limits to the cross sectional area and total volume of these grooves. Formation of these grain boundaries occurs over timescales of hours as the dislocation network anneals, and is inevitable in a plastically deformed material. Therefore, either cooling on a much shorter time scale or a technique that requires no cooling after solidification should be used to minimize the fuel layer surface roughness.

Chernov, A A; Kozioziemski, B J; Koch, J A; Atherton, L J; Johnson, M A; Hamza, A V; Kucheyev, S O; Lugten, J B; Mapoles, E A; Moody, J D; Salmonson, J D; Sater, J D

2008-09-05T23:59:59.000Z

187

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century  

E-Print Network [OSTI]

Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos FerreiraInstituto SuperiorSuperior TTéécnicocnico,, LisboaLisboa, Portugal, Portugal 20th International Atomic Energy Agency, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy

188

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network [OSTI]

in Heavy Ion Fusion Science, Magnetic Fusion Energy, andin Heavy Ion Fusion Science, Magnetic Fusion Energy, and

Kwan, J.W.

2008-01-01T23:59:59.000Z

189

The Path to Magnetic Fusion Energy  

SciTech Connect (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL) [PPPL

2011-05-04T23:59:59.000Z

190

EPRI Fusion Energy Assessment July 19, 2011  

E-Print Network [OSTI]

Building Blocks Come in Two Types Major Integration Facilities · Nuclear (e.g., ITER, Demo, Fusion NuclearEPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck Department of Engineering Physics University of Wisconsin-Madison #12;US MFE PROGRAM CAN MOVE TO A FUSION

191

Fusion Energy Sciences Network Requirements  

E-Print Network [OSTI]

Network Research) C.S. Chang, PPPL (Fusion Simulations) EliGreenwald, MIT PSFC (Alcator C-Mod) Paul Henderson, PPPL (PPPL Networking) Steve Jardin, PPPL (Fusion Simulations)

Dart, Eli

2014-01-01T23:59:59.000Z

192

Fusion Energy Sciences Network Requirements  

E-Print Network [OSTI]

the worlds first reactor-scale fusion device in Cadarache,vital to fusion research, as the newest reactors are those

Dart, Eli

2014-01-01T23:59:59.000Z

193

JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER  

E-Print Network [OSTI]

Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergyJJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges without green house gashouse gas #12;JJ, IAP Cambridge January 20103 3 D + T + He ++ n U235 n n Neutrons

194

Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences  

E-Print Network [OSTI]

. Benefits Total world energy consumption has increased by more than 50% during the past 25 years, and given,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public LawScience/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile

195

Fusion Engineering and Design 81 (2006) 16391645 Thermo-mechanical analysis of a micro-engineered  

E-Print Network [OSTI]

Fusion Engineering and Design 81 (2006) 1639­1645 Thermo-mechanical analysis of a micro laser (HAPL) program goal is to develop a laser inertial fusion reactor using a solid first wall (FW). The FW of the inertial fusion energy (IFE) chamber is exposed to high energy photon, particle

Ghoniem, Nasr M.

196

Status of target physics for inertial confinement fusion: Report on the review at DOE Headquarters, Germantown, MD on November 14--17, 1988  

SciTech Connect (OSTI)

A four day review to assess the status of target physics of inertial confinement fusion was held at US Department of Energy (DOE) Headquarters on November 14--17, 1988. This review completes the current series of reviews of the inertial fusion program elements to assess the status of the data base for a decision to proceed with the proposed Laboratory Microfusion Facility (LMF) that is being planned. In addition to target physics, the program elements that have been reviewed previously include the driver technology development for KrF and solid-state lasers, and the light-on beam pulsed power system. This series of reviews was undertaken for internal DOE assessment in anticipation of the ICF program review mandated by the Congress in 1988 to be completed in 1990 to assess the significance and implications of the progress that has been realized in the laboratory and the underground Halite/Centurion experiments. For this target physics review, both the direct and the indirect drive approaches were considered. The principal issues addressed in this review were: Is the present target physics data base adequate for a decision to proceed with design and construction of LMF now as opposed to continue planning activities at this time What specific additional target physics data are desirable to reduce the risk for a DOE decision to construct an LMF What is the role for continuation of Halite/Centurion experiments What priority should be given to the direct drive approach Are the program elements optimally structured to resolve the critical issues for an LMF decision Specific findings relating to these five issues are summarized in the following.

Not Available

1990-03-09T23:59:59.000Z

197

Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions  

E-Print Network [OSTI]

Measurements of the D(d,p)T (dd) and T(t,2n)[superscript 4]He (tt) reaction yields have been compared with those of the D(t,n)[superscript 4]He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement ...

Casey, Daniel Thomas

198

A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and R are determined in thin-shell inertial-confinement-fusion  

E-Print Network [OSTI]

Energetics, University of Rochester, Rochester, New York 14623, USA 3 Lawrence Livermore National Laboratory neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF Rev, Livermore, California 94550, USA 4 General Atomics, San Diego, California 92186, USA (Received 5 June 2014

199

Recycling issues facing target and RTL materials of inertial fusion designs L. El-Guebaly, P. Wilson, M. Sawan, D. Henderson, A. Varuttamaseni,  

E-Print Network [OSTI]

1 Recycling issues facing target and RTL materials of inertial fusion designs L. El-Guebaly, P power plants have explored the potential of recycling the target and recyclable transmission line (RTL a comprehensive recycling assessment was performed on both machines with an exact pulse history. Our results offer

200

Fusion for Energy: A new European organization for the development of fusion energy  

Science Journals Connector (OSTI)

The European Joint Undertaking for ITER and the Development of Fusion Energy or (Fusion for Energy of F4E for short) is a new organisation that has been established with the main objective of providing Europe's contribution to the ITER International Organisation (IO) as its Domestic Agency. Fusion for Energy is also the Implementing Agency for the Broader Approach projects being carried out with Japan and, in the longer term, will prepare a programme for the construction of demonstration fusion reactors (DEMO). The threefold mission of Fusion for Energy is consistent with the fast track strategy for the realisation of fusion energy. This paper aims to provide an overview of the current status of Fusion for Energy and highlight some of the opportunities available for research organisations and industry to participate.

Didier Gambier

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Direct drive heavy-ion-beam inertial fusion at high coupling efficiency  

E-Print Network [OSTI]

M J of fusion yield. This NIF capsule design ab- sorbs 200capsules the size of the NIF capsule with heavy-ion beams (designs emerge, and, if the NIF's ignition campaign is also

Logan, B.G.

2008-01-01T23:59:59.000Z

202

Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency  

E-Print Network [OSTI]

of fusion yield [16]. This NIF capsule design absorbs 200 kJcapsules the size of the NIF capsule with heavy ion beams (designs emerge, and, i f the NIF's ignition campaign is also

Logan, B. Grant

2008-01-01T23:59:59.000Z

203

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network [OSTI]

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R?LE DE L'?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

Najmabadi, Farrokh

204

ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE  

E-Print Network [OSTI]

discuss scenarios for fusion energy deployment in the energy market. 1.2. The strategic role of fusion1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R? LE DE L'?NERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one

205

Fusion energy | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy energy Subscribe to RSS - Fusion energy The energy released when two atomic nuclei fuse together. This process powers the sun and stars. Read more Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Researchers led by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have won highly competitive allocations of time on two of the world's fastest supercomputers. The increased awards are designed to advance the development of nuclear fusion as a clean and abundant source of energy for generating electricity. Read more about Two PPPL-led teams win increased supercomputing time to study conditions inside fusion plasmas Two PPPL-led teams win increased supercomputing time to study conditions

206

Measurements of the T(t,2n)He4 Neutron Spectrum at Low Reactant Energies from Inertial Confinement Implosions  

Science Journals Connector (OSTI)

Measurements of the neutron spectrum from the T(t,2n)He4 (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.) energies. In contrast to accelerator experiments at higher c.m. energies (above 100keV), these results indicate a negligible n+He5 reaction channel at a c.m. energy of 23keV.

D. T. Casey; J. A. Frenje; M. Gatu Johnson; M. J.-E. Manuel; N. Sinenian; A. B. Zylstra; F. H. Sguin; C. K. Li; R. D. Petrasso; V. Yu Glebov; P. B. Radha; D. D. Meyerhofer; T. C. Sangster; D. P. McNabb; P. A. Amendt; R. N. Boyd; S. P. Hatchett; S. Quaglioni; J. R. Rygg; I. J. Thompson; A. D. Bacher; H. W. Herrmann; Y. H. Kim

2012-07-10T23:59:59.000Z

207

Chamber wall response to target implosion in inertial fusion reactors: new and critical assessments,  

E-Print Network [OSTI]

, A. Hassanein 1, V. Morozov Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA. The mass loss in the form Presented at the Sixth International Symposium on Fusion Nuclear Technology by the University of Chicago as Operator of Argonne National Laboratory (`Argonne') under Contract No. W-31-109-ENG

Harilal, S. S.

208

Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion  

SciTech Connect (OSTI)

From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

Armijo, Julien

2006-10-01T23:59:59.000Z

209

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

Science Journals Connector (OSTI)

Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7MeV D3He protons) are routinely measured from indirectly driven inertial-confinement fusion (ICF) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking and consistent feature of these images is that the fluence of protons leaving the ICF target in the direction of the hohlraum's laser entrance holes (LEHs) is very nonuniform spatially, in contrast to the very uniform fluence of protons leaving through the hohlraum equator. In addition, the measured nonuniformities are unpredictable, and vary greatly from shot to shot. These observations were made separately at the times of shock flash and of compression burn, indicating that the asymmetry persists even at ~0.52.5ns after the laser has turned off. These phenomena have also been observed in experiments on the OMEGA laser facility with energy-scaled hohlraums, suggesting that the underlying physics is similar. Comprehensive data sets provide compelling evidence that the nonuniformities result from proton deflections due to strong spontaneous electromagnetic fields around the hohlraum LEHs. Although it has not yet been possible to uniquely determine whether the fields are magnetic (B) or electric (E), preliminary analysis indicates that the strength is ~1MG if B fields or ~109Vcm?1 if E fields. These measurements provide important physics insight into the ongoing ignition experiments at the NIF. Understanding the generation, evolution, interaction and dissipation of the self-generated fields may help to answer many physics questions, such as why the electron temperatures measured in the LEH region are anomalously large, and may help to validate hydrodynamic models of plasma dynamics prior to plasma stagnation in the center of the hohlraum.

C K Li; A B Zylstra; J A Frenje; F H Sguin; N Sinenian; R D Petrasso; P A Amendt; R Bionta; S Friedrich; G W Collins; E Dewald; T Dppner; S H Glenzer; D G Hicks; O L Landen; J D Kilkenny; A J Mackinnon; N Meezan; J Ralph; J R Rygg; J Kline; G Kyrala

2013-01-01T23:59:59.000Z

210

Fusion Energy Sciences Network Requirements  

E-Print Network [OSTI]

program to achieve ignition, to provide laser facility timeIgnition Facility National Institute for Fusion Science National LaserIgnition Facility (NIF). In support of the OMEGA Laser

Dart, Eli

2014-01-01T23:59:59.000Z

211

A 1.54 K detachable cold?sample transfer system: Application to inertially confined fusion with spin?polarized hydrogen fuels  

Science Journals Connector (OSTI)

A compact cold?transfer apparatus for engaging and retrieving samples at liquid?helium temperatures (1.54 K) maintaining the samples at such temperatures for periods of hours and subsequently inserting them in diverse apparatuses followed by disengagement is described. The properties of several thermal radiation?insulating shrouds necessary for very low sample temperatures are presented. The immediate intended application is transportable target shells containing highly spin?polarized deuterons in solid HD or D2 for inertially confined fusion experiments. The system is also valuable for unpolarized high?density fusion fuels as well as for other applications which are discussed.

N. Alexander; J. Barden; Q. Fan; A. Honig

1991-01-01T23:59:59.000Z

212

Alternative pathways to fusion energy (focus on Department of Energy  

E-Print Network [OSTI]

Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

213

Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1  

SciTech Connect (OSTI)

This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

Dixit, S.N. [ed.

1992-12-31T23:59:59.000Z

214

Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion  

SciTech Connect (OSTI)

The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 34 is found over a wide range of fast electron divergence half-angles.

Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

2013-06-15T23:59:59.000Z

215

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

216

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates  

E-Print Network [OSTI]

HIV-1 Fusion Peptide Decreases Bending Energy and Promotes Curved Fusion Intermediates Stephanie in human immunodeficiency virus (HIV) infection is fusion between the viral envelope and the T x-ray scattering is that the bending modulus KC is greatly reduced upon addition of the HIV fusion

Nagle, John F.

217

Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion S. P. Regan, J. A. Delettrez, V. N. Goncharov, F. J. Marshall, J. M. Soures, V. A. Smalyuk, P. B. Radha, B. Yaakobi,  

E-Print Network [OSTI]

Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion S. P. Regan, J 87545, USA J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Se´guin Plasma Science and Fusion Center May 2004) The mixing of cold, high-density shell plasma with the low-density, hot spot plasma

218

Computational study of laser imprint mitigation in foam-buffered inertial confinement fusion targets  

SciTech Connect (OSTI)

Recent experiments have shown that low density foam layers can significantly mitigate the perturbing effects of beam nonuniformities affecting the acceleration of thin shells. This problem is studied parametrically with two-dimensional LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion {bold 2}, 51 (1975)]. Foam-buffered targets are employed, consisting typically of 250 {Angstrom} of gold, and 50 {mu}m of 50mg/cm{sup 3} C{sub 10}H{sub 8}O{sub 4} foam attached to a 10 {mu}m foil. In simulation these were characteristically exposed to 1.2 ns, flat-topped green light pulses at 1.4{times}10{sup 14}W/cm{sup 2} intensity, bearing 30 {mu}m lateral perturbations of up to 60{percent} variation in intensity. Without the buffer layers the foils were severely disrupted by 1 ns. With buffering only minimal distortion was manifest at 3 ns. The smoothing is shown to derive principally from the high thermal conductivity of the heated foam. The simulation results imply that (1) the foam thickness should exceed the disturbance wavelength; (2) intensities exceeding 5{times}10{sup 13}W/cm{sup 2} are needed for assured stability beyond 2 ns; (3) longer foams at lower densities are needed for effective mitigation with shorter wavelength light; (4) the gold layer hastens conversion of the structured foam to a uniform plasma. {copyright} {ital 1998 American Institute of Physics.}

Mason, R.J.; Kopp, R.A.; Vu, H.X.; Wilson, D.C.; Goldman, S.R.; Watt, R.G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dunne, M. [Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR (United Kingdom)] [Atomic Weapons Establishment, Aldermaston, Reading, RG7 4PR (United Kingdom); Willi, O. [The Blackett Laboratory, Imperial College of Science and Technology, London SW72BZ (United Kingdom)] [The Blackett Laboratory, Imperial College of Science and Technology, London SW72BZ (United Kingdom)

1998-01-01T23:59:59.000Z

219

THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION  

E-Print Network [OSTI]

1978 ]) e E HO- HIGH THERMONUCLEAR ENERGY GAINS HJT.H A. LQNfive "boilers'*, in which the thermonuclear pellet has been

Herrmannsfeldt, W.b.

2010-01-01T23:59:59.000Z

220

Fast ignition of inertial fusion targets by laser-driven carbon beams  

E-Print Network [OSTI]

Two-dimensional simulations of ion beam driven fast ignition are presented. Ignition energies of protons with Maxwellian spectrum and carbon ions with quasi-monoenergetic and Maxwellian energy distributions are evaluated. The effect of the coronal plasma surrounding the compressed Deuterium-Tritium is studied for three different fuel density distributions. It is found that quasi- monoenergetic ions have better coupling with the compressed Deuterium-Tritium and substantially lower ignition energies. Comparison of quasi-monoenergetic carbon ions and relativistic electrons as ignitor beams shows similar laser energy requirements, provided that a laser to quasi-monoenergetic carbon ion conversion efficiency around 10% can be achieved.

Honrubia, J J; Temporal, M; Hegelich, B M; Meyer-ter-Vehn, J

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences  

E-Print Network [OSTI]

, while creating manageable waste and little risk to public safety and health. Making fusion energy a part control a burning plasma that shares the characteris- tic intensity and power of the sun? · How can we use capable of producing a self-sustain- ing fusion reaction, called a "burning plasma." It is the next

222

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy  

E-Print Network [OSTI]

http://science.energy.gov/fes Establishing the scien.fic basis for fusion energy and plasma science goals · Office of Science role regarding fusion energy: establish university engagement and leadership. Fusion materials science will be an increasing

223

Design of an electronic charged particle spectrometer to measure S R< on inertial fusion experiments  

E-Print Network [OSTI]

G permanent magnet, this instrument will uniquely determine particle identities and measure particle energies on the Omega Upgrade are actively underway. Using seven 512 512 charge coupled devices CCDs and a 7.5 k

224

Fusion Engineering and Design 41 (1998) 393400 Economic goals and requirements for competitive fusion energy  

E-Print Network [OSTI]

fusion energy Ronald L. Miller Fusion Energy Research Program, Uni6ersity of California, San Diego, La Jolla, CA 92093-0417, USA Abstract Future economic competitiveness, coupled to and constrained market-penetration context and also influence the near-term funding climate for fusion R&D. With concept

California at San Diego, University of

225

Chapter 6 - The fusion - hydrogen energy system  

Science Journals Connector (OSTI)

Publisher Summary This chapter shows that the combination of fusion generation combined with hydrogen distribution will provide a system capable of virtually eliminating the negative impact on the environment from the use of energy by humanity. It addition, implementation of the energy system will provide techniques and tools that can ameliorate environmental problems unrelated to energy use. The nations that implement the FusionHydrogen energy system will experience a powerful surge of growth as companies, new and old, compete to product the supporting equipment. The Fusionhydrogen energy system will provide the means for dramatically reducing all forms of soil, water, and air pollution resulting from the extraction and use of fossil fuels. Hydrogen fuel use will stop the addition of carbon dioxide to the atmosphere and the attendant warming of the earth. It will stop atmospheric pollution by materials responsible for acid rain. It will also provide a reliable energy source with an inconsequential potential for generation of new types of pollution. The hydrogen energy carrier can be easily transported throughout the world without damage to the environment. It provides a safe and highly reliable energy distribution system for use by all the sectors of the economy.

Laurence O. Williams

2002-01-01T23:59:59.000Z

226

Muon-Catalyzed Nuclear Fusion for Energy Production  

Science Journals Connector (OSTI)

The physics of muon-catalyzed fusion is summarized and discussed in the perspective of energy production.

S. Eliezer

1987-01-01T23:59:59.000Z

227

The Path to Magnetic Fusion Energy  

E-Print Network [OSTI]

1 The Path to Magnetic Fusion Energy: Crossing the Next Frontier Rob Goldston, Jon Menard with contributions from J. Brooks, R. Doerner, D. Gates, J. Harris, G.-Y. Fu, N. Gorelenkov, R. Kaita, S. Kaye, M. Kotschenreuther, G. Kramer, H. Kugel, R. Maingi, R. Majeski, C. Neumeyer, R. Nygren, M. Ono, D. Ruzic, S. Sabbagh

Princeton Plasma Physics Laboratory

228

Discovery Research in Magnetic Fusion Energy  

E-Print Network [OSTI]

magnetic tori? � Fundamental study � Confinement science, heating, sustainment, heat flux to boundariesDiscovery Research in Magnetic Fusion Energy or "How we learn about magnetic containment the shape of the magnetic field � What can we learn by changing magnetic topology? Examples... � Stellarator

Mauel, Michael E.

229

Spectrometry of charged particles from inertial-confinement-fusion F. H. Seguin,a)  

E-Print Network [OSTI]

capsules with D2 , D3 He, DT, or DTH fuel in a shell of plastic, glass, or D2 ice, we now routinely make to neutrons, these reactions produce charged particles whose numbers and energy spectra are di- rectly related

230

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network [OSTI]

19 8 Magnetic Fusion Energy Science (MFES) Case 2017 8 Magnetic Fusion Energy Science (MFES) Case and NERSC Senior Science Advisor Magnetic Fusion

Gerber, Richard

2014-01-01T23:59:59.000Z

231

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network [OSTI]

General Plasma Science Magnetic Fusion Energy Magneticfor Fusion Energy Sciences Magnetic Fusion Plasma from the crosscutting science of magnetic reconnection and

Gerber, Richard

2012-01-01T23:59:59.000Z

232

High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)  

SciTech Connect (OSTI)

The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Casey, D. T.; Gatu-Johnson, M. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Gardner, S. [Constellation Energy Nuclear Group, Ontario, New York 14519 (United States)

2012-10-15T23:59:59.000Z

233

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnetic Confinement Fusion Magnetic Confinement Fusion FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Fusion by Magnetic Confinement The image above is an artistic rendering of a tokamak, a donut-shaped magnetic vacuum chamber in which wispy vapors of fusion fuel are

234

The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy  

E-Print Network [OSTI]

-consistent power plant design for a multi- beam induction linac, final focus and chamber propagationThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan Director Heavy-Ion Fusion Virtual National Laboratory Presented to FESAC Workshop on Development Paths

235

How low-energy fusion can occur  

E-Print Network [OSTI]

Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-11-03T23:59:59.000Z

236

Military in clash over US nuclear fusion research  

Science Journals Connector (OSTI)

... the appropriate strategy for pursuing one of the most promising paths towards a commercially-viable nuclear fusion energy programme - namely the use of inertial confinement techniques, which would harness the ...

1979-10-11T23:59:59.000Z

237

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our Sun Our Sun FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Sun Runs on Fusion Energy How the sun looks through x-ray eyes! Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of Earth

238

Design, fabrication and measurement of a novel cooling arm for fusion energy source  

E-Print Network [OSTI]

The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the MEMS technologies are employed to fabricate the micro-size cooling arm structure with high vertical sidewall. Finally, the mechanical test of cooling arm is taken, and the result can meet the requirement of positioning TMP assembly.

Shui-Dong Jiang; Jing-Quan Liu; Jia-Bin Mei; Bin Yang; Chun-Sheng Yang

2012-07-05T23:59:59.000Z

239

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

240

U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Signs U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction News Featured Articles Science Headlines 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.21.06 U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion Energy Project to Begin Construction Print Text Size: A A A Subscribe FeedbackShare Page Large-Scale, Clean Fusion Energy Project to Begin Construction November 21, 2006 PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program  

E-Print Network [OSTI]

, Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

Abdou, Mohamed

242

Status of Research on Fusion Energy and Plasma Turbulence  

E-Print Network [OSTI]

1020 6 X 1030 R (m) ~ 108 1 10-4 E (sec) > 1013 2 10-10 Three Types of Fusion PowerThree TypesStatus of Research on Fusion Energy and Plasma Turbulence Candy, Waltz (General Atomics) Greg://www.cmpd.umd.edu & Plasma Microturbulence Project http://fusion.gat.com/theory/pmp (General Atomics, U. Maryland, LLNL, PPPL

Hammett, Greg

243

tTOURflAL DE PHYSIQUE Colloque C7, suppliment au n07, Tome 40, J u i l l e t 1979, page C7-775 DIAGNOSTICSPROGRAM FOR A MAGNETICALLY INSULATED ION DIODE FOR INERTIAL CONFINEMENT FUSION  

E-Print Network [OSTI]

, Albuquerque, flew Mexico, 87185. Inertial confinement fusion (ICF) schemes 2 require an ion power density of 1 the focused proton and carbon beam profiles via induced atomic excitation and thermal emission from targets exposure times of less than five nanoseconds. The resulting electron images were transported along a 2 k

Paris-Sud XI, Université de

244

Scientists discuss progress toward magnetic fusion energy at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientists discuss progress toward magnetic fusion energy at 2013 AAAS annual meeting February 21, 2013 Tweet Widget Google Plus One Share on Facebook Scientists participating in...

245

Fusion Energy Greg Hammett & Russell Kulsred Princeton University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

246

International Atomic Energy Agency holds conference on fusion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Atomic Energy Agency holds conference on fusion roadmap By John Greenwald November 8, 2012 Tweet Widget Google Plus One Share on Facebook Hutch Neilson, third from...

247

Liquid Metal MHD Energy Conversion in Fusion Reactors  

Science Journals Connector (OSTI)

Innovative Concepts for Power Conversion / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

L. Blumenau; H. Branover; A. El-Boher; E Spero; S. Sukoriansky; G. Talmage; E. Greenspan

248

A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)  

SciTech Connect (OSTI)

A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

Nelson, A. J.; Cooper, G. W. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

2012-10-15T23:59:59.000Z

249

IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 51 (2009) 014005 (9pp) doi:10.1088/0741-3335/51/1/014005  

E-Print Network [OSTI]

IOP PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 51 (2009) 014005 to inertial fusion [1] concerns the propagation and energy deposition of a fast electron beam in strongly change produced in the target material by the shock wave. While the initially cold solid target

Strathclyde, University of

250

Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility  

SciTech Connect (OSTI)

Experiments were performed to develop a platform for the simultaneous measurement of mix and its effects on fusion burn. Two polar direct drive implosions of all-plastic capsules were conducted for the first time on the National Ignition Facility (NIF). To measure implosion trajectory and symmetry, area image backlighting of these capsules was also employed for the first time on NIF, an advance over previous 1-D slit imaging experiments, providing detailed symmetry data of the capsules as they imploded. The implosion trajectory and low-mode asymmetry seen in the resultant radiographs agreed with pre-shot predictions even though the 700 kJ drive energy produced laser beam intensities exceeding laser-plasma instability thresholds. Post-shot simulations indicate that the capsule yield was reduced by a factor of two compared to pre-shot predictions owing to as-shot laser drive asymmetries. The pre-shot predictions of bang time agreed within 200 ps with the experimental results. The second shot incorporated a narrow groove encircling the equator of the capsule. A predicted yield reduction factor of three was not observed.

Schmitt, Mark J.; Bradley, Paul A.; Cobble, James A.; Fincke, James R.; Hakel, Peter; Hsu, Scott C.; Krasheninnikova, Natalia S.; Kyrala, George A.; Magelssen, Glenn R.; Montgomery, David S.; Murphy, Thomas J.; Obrey, Kimberly A.; Shah, Rahul C.; Tregillis, Ian L.; Baumgaertel, Jessica A.; Wysocki, Frederick J.; Batha, Steven H. [Los Alamos National Laboratory, MS F699, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, MS F699, Los Alamos, New Mexico 87545 (United States); Stephen Craxton, R.; McKenty, Patrick W. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States); Fitzsimmons, Paul [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)] [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); and others

2013-05-15T23:59:59.000Z

251

Improved Magnetic Fusion Energy Economics via Massive Resistive Electromagnets  

SciTech Connect (OSTI)

Abandoning superconductors for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum conductor material operating at "room temperature" (300 K) can reduce the capital cost per unit fusion power and simplify plant operations. By increasing unit size well beyond that of present magnetic fusion energy conceptual designs using superconducting electromagnets, the recirculating power fraction needed to operate resistive electromagnets can be made as close to zero as needed for economy without requiring superconductors. Other advantages of larger fusion plant size, such as very long inductively driven pulses, may also help reduce the cost per unit fusion power.

Woolley, R.D.

1998-08-19T23:59:59.000Z

252

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

253

Fusion Energy: Visions of the Future  

E-Print Network [OSTI]

worldwide · X-ray/neutron applications · US teams at KSU, NSTec 2009: LPP Focus Fusion-1 lab begins

254

Fusion Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion Energy Fusion Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fusion Energy Bookmark and Share Since 1995, Argonne has had primary responsibility for the development of new design rules regarding various components in a fusion reactor, particularly those subject to irradiation embrittlement. During 1998, Argonne issued the final draft of the structural design criteria for in-vessel components in the International Thermonuclear Reactor (ITER).

255

Fusion Engineering and Design 23 (1993)251-297 251 North-Holland  

E-Print Network [OSTI]

Fusion Engineering and Design 23 (1993)251-297 251 North-Holland Critical technical issues and evaluation and comparison studies for inertial fusion energy reactors M.A. Abdou a, A.Y. Ying a, M.S. Tillack, Redondo Beach, California, USA d Formerly of KMS Fusion Inc., Ann Arbor, Michigan, USA Submitted 30 July

Ghoniem, Nasr M.

256

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH  

E-Print Network [OSTI]

SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH RESTORE FUNDING FOR THE DOMESTIC FUSION PROGRAM AND MAINTAIN OUR COMMITMENT TO ITER the goals of the U.S. fusion program. To realize the promise of participation in ITER, cultivate future

257

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

258

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home> Student and Teacher Resources > For Introductory Students Home> Student and Teacher Resources > For Introductory Students FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Guide to Fusion Education Resources for Introductory Physics Students This is a compilation of online and offline education resources for

259

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

260

Vintage DOE: What is Fusion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vintage DOE: What is Fusion Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs As our team works to build our new website and new content features over the coming months, we're also reviewing the Department's video archives. In the below piece, a narrator ask people on the street "what is fusion?" and then, around the 2-minute mark, kicks off a nice introduction to fusion science. It's worth a watch if you could use a brush up on the basic science, or if you'd just enjoy a reminder of what Americans were wearing a couple decades ago. With much research and development, scientists at the Department of Energy have done a great deal to advance our knowledge of fusion since the time

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

World population and energy demand growth: the potential role of fusion energy in an efficient world  

Science Journals Connector (OSTI)

...growth: the potential role of fusion energy in an efficient world...fossil-replacement value in 2050. Fusion energy can, then, have a role...2) the deployment of all types of energy source to meet the...nuclear power, both fission and fusion, can play a very important...

1999-01-01T23:59:59.000Z

262

The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass  

E-Print Network [OSTI]

We establish a general relation between the canonical energy-momentum tensor of Lagrangian dynamics and the tensor that acts as the source of the gravitational field in Einstein's equations, and we show that there is a discrepancy between these tensors when there are direct nonminimal couplings between matter and the Riemann tensor. Despite this discrepancy, we give a general proof of the exact equality of the gravitational and inertial masses for any arbitrary system of matter and gravitational fields, even in the presence of nonminimal second-derivative couplings and-or linear or nonlinear second-derivative terms of any kind in the Lagrangian. The gravitational mass is defined by the asymptotic Newtonian potential at large distance from the system, and the inertial mass is defined by the volume integral of the energy density determined from the canonical energy-momentum tensor. In the Brans-Dicke scalar field theory, we establish that the nonminimal coupling and long range of the scalar field leads to an inequality between the gravitational and inertial masses, and we derive an exact formula for this inequality and confirm that it is approximately proportional to the gravitational self-energy (the Nordvedt effect), but with a constant of proportionality different from what is claimed in the published literature in calculations based on the PPN scheme. Similar inequalities of gravitational and inertial masses are expected to occur in other scalar and vector theories.

Hans C. Ohanian

2013-02-28T23:59:59.000Z

263

Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures  

E-Print Network [OSTI]

Anomalies in Thermonuclear Fuel Mixtures Peter Amendt, O. L. Landen, and H. F. Robey Lawrence Livermore National Laboratory, Livermore, California 94551, USA C. K. Li and R. D. Petrasso Plasma Science and Fusion performance in general, and upcoming igni- tion tuning campaigns on the National Ignition Facility (NIF) [4

264

Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat  

E-Print Network [OSTI]

Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have is well advanced through the International Thermonuclear Experimental Reactor (ITER) programme, which has

265

Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures  

E-Print Network [OSTI]

Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high in excess of 100 million degrees, much higher than in the Sun. The hot hydrogen gas (known as a `plasma

266

HOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items  

E-Print Network [OSTI]

the domestic fusion energy sciences program. Given the tremendous potential of fusion energy to provide a longHOUSE ENERGY AND WATER DEVELOPMENT SUBCOMMITTEE ACTION on FY 2009 Budget for fusion related items of a Continuing Resolution this year. ____________________________ "FUSION ENERGY SCIENCES The Committee

267

Laser fusion experiment yields record energy at NIF | National Nuclear  

National Nuclear Security Administration (NNSA)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

268

Laser fusion experiment yields record energy at NIF | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser fusion experiment yields record energy at NIF | National Nuclear Laser fusion experiment yields record energy at NIF | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Laser fusion experiment yields record energy at NIF Laser fusion experiment yields record energy at NIF Posted By Office of Public Affairs Lawrence Livermore's National Ignition Facility (NIF) recently focused all

269

An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility  

SciTech Connect (OSTI)

A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure RayleighTaylor and RichtmyerMeshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a low-foot drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

2014-07-15T23:59:59.000Z

270

US ITER - Why Fusion?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US Fusion Research Sites US Fusion Research Sites DOE Office of Science: US Fusion Energy Sciences Program Fusion Power Associates General Atomics DIIII-D National Fusion Facility...

271

Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. I: Experiment  

SciTech Connect (OSTI)

Properties of an aerosol substance with a high power density in the interelectrode space of a nano- second vacuum discharge are studied. The possibilities of emission and/or trapping of fast ions and hard X-rays by ensembles of clusters and microparticles are analyzed. The possibility of simultaneous partial trapping (diffusion) of X-rays and complete trapping of fast ions by a cluster ensemble is demonstrated experimentally. Due to such trapping, the aerosol ensemble transforms into a 'dusty' microreactor that can be used to investigate a certain class of nuclear processes, including collisional DD microfusion. Operating regimes of such a microreactor and their reproducibility were studied. On the whole, the generation efficiency of hard X-rays and neutrons in the proposed vacuum discharge with a hollow cathode can be higher by two orders of magnitude than that in a system 'high-power laser pulse-cluster cloud.' Multiply repeated nuclear fusion accompanied by pulsating DD neutron emission was reproducibly detected in experiment. Ion acceleration mechanisms in the interelectrode space and the fundamental role of the virtual cathode in observed nuclear fusion processes are discussed.

Kurilenkov, Yu. K. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Skowronek, M. [Universite Pierre et Marie Curie, Laboratoire des Plasmas Denses (France)

2010-12-15T23:59:59.000Z

272

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network [OSTI]

damage in fusion reactors is tritium retention. a reliable fusion energy reactor, small-?scale reactor components and ultimately the development of high-? performance, radiation resistant materials for advanced nuclear fission and fusion

Gerber, Richard

2014-01-01T23:59:59.000Z

273

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

outlook, October 2007. 1.1 [3] Peak oil wikipedia, the freeen.wikipedia.org/wiki/Peak_oil#cite_note-mkinghubbert1956-0.

Kramer, Kevin James

2010-01-01T23:59:59.000Z

274

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

DT Deuterium-Tritium DU Depleted Uranium FIMA Fission ofengine loaded with depleted uranium. In Proc. PHYSOR 2010,fuel layer comprised of depleted uranium contained in

Kramer, Kevin James

2010-01-01T23:59:59.000Z

275

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

W. Williams. Laser design basis for the national ignitionof lasers to create the conditions required for ignition and350-nm laser light with a central hot spot ignition (HSI)

Kramer, Kevin James

2010-01-01T23:59:59.000Z

276

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

properly treat the Doppler effect [45]. Similarly, thermalscattering and Doppler broadening effects. The depletion

Kramer, Kevin James

2010-01-01T23:59:59.000Z

277

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network [OSTI]

the HTTR project. Nuclear Engineering and Design, 233:163measurements. Nuclear Engineering Design, 33(92), [87] L.R.in Engineering - Nuclear Engineering in the Graduate

Kramer, Kevin James

2010-01-01T23:59:59.000Z

278

Engineering ELSEVIER Fusion Engineering and Design 29 (1995) 3-17  

E-Print Network [OSTI]

fusion target. The laser which will drive the target to ignition will deliver 1.8 MJ of 0.35 pm light of the National Ignition Facility to the development of inertial fusion energy M. Tobin `, G. Logan a, T. Diaz De Department of Energy is proposing to construct the National Ignition Facility (NIF) to embark on a program

Abdou, Mohamed

279

Fusion dynamics of symmetric systems near barrier energies  

E-Print Network [OSTI]

The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

Zhao-Qing Feng; Gen-Ming Jin

2009-09-06T23:59:59.000Z

280

U.S. Signs International Fusion Energy Agreement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Signs International Fusion Energy Agreement Signs International Fusion Energy Agreement U.S. Signs International Fusion Energy Agreement November 21, 2006 - 9:25am Addthis Large-Scale, Clean Fusion Energy Project to Begin Construction PARIS, FRANCE - Representing the United States, Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), today joined counterparts from China, the European Union, India, Japan, the Republic of Korea and the Russian Federation to sign an agreement to build the international fusion energy project known as ITER. "The energy that powers the stars is moving closer to becoming a new source of energy for the Earth through the technology represented by ITER," U.S. Secretary of Energy Samuel W. Bodman said. "The ITER Members represent over

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma  

SciTech Connect (OSTI)

A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2014-11-15T23:59:59.000Z

282

American Fusion News | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Fusion News American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment February 15, 2012 General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement See All Massachusetts Institute of Technology (MIT) April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a Pedestal September 21, 2012 MASSACHUSETTS INSTITUTUE OF TECHNOLOGY See All National Ignition Facility February 22, 2013 Summary of Assessment of Prospects for Inertial Fusion Energy February 16, 2012 National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes

283

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020 (12pp) doi:10.1088/0029-5515/49/9/095020  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 095020, which assumes the anisotropic energetic particle distribution function accelerated by ICRH as input

Zonca, Fulvio

284

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion input of converging driver beams. Requirements and key issues related to target injection and tracking

Najmabadi, Farrokh

285

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 412418 doi:10.1088/0029-5515/46/4/002  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion to reach high values of Q (the ratio between fusion power and input power) can be carried out in existing

Zonca, Fulvio

286

A Fusion Development Facility on the Critical Path to Fusion Energy  

SciTech Connect (OSTI)

A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF's nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

Chan, V. S. [General Atomics, San Diego; Stambaugh, R [General Atomics, San Diego

2011-01-01T23:59:59.000Z

287

A fusion development facility on the critical path to fusion energy  

SciTech Connect (OSTI)

A fusion development facility (FDF) based on the tokamak approach with normal conducting magnetic field coils is presented. FDF is envisioned as a facility with the dual objective of carrying forward advanced tokamak (AT) physics and enabling the development of fusion energy applications. AT physics enables the design of a compact steady-state machine of moderate gain that can provide the neutron fluence required for FDF s nuclear science development objective. A compact device offers a uniquely viable path for research and development in closing the fusion fuel cycle because of the demand to consume only a moderate quantity of the limited supply of tritium fuel before the technology is in hand for breeding tritium.

Chan, Dr. Vincent [General Atomics; Canik, John [ORNL; Peng, Yueng Kay Martin [ORNL

2011-01-01T23:59:59.000Z

288

Accelerator development for heavy ion fusion  

SciTech Connect (OSTI)

Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition.

Talbert, W.L. Jr.; Sawyer, G.A.

1980-01-01T23:59:59.000Z

289

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) S254S265 PII: S0029-5515(04)88685-X  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion is a target that has been compressed and heated to fusion conditions by the energy input of the driver been compressed and heated to fusion conditions by the energy input of the driver beams. A target

Tillack, Mark

290

Fusion: A necessary component of US energy policy  

SciTech Connect (OSTI)

US energy policy must ensure that its security, its economy, or its world leadership in technology development are not compromised by failure to meet the nation's electrical energy needs. Increased concerns over the greenhouse effect from fossil-fuel combustion mean that US energy policy must consider how electrical energy dependence on oil and coal can be lessened by conservation, renewable energy sources, and advanced energy options (nuclear fission, solar energy, and thermonuclear fusion). In determining how US energy policy is to respond to these issues, it will be necessary to consider what role each of the three advanced energy options might play, and to determine how these options can complement one another. This paper reviews and comments on the principal US studies and legislation that have addressed fusion since 1980, and then suggests a research, development, and demonstration program that is consistent with the conclusions of those prior authorities and that will allow us to determine how fusion technology can fit into a US energy policy that takes a balanced, long term view of US needs. 17 refs.

Correll, D.L. Jr.

1989-01-11T23:59:59.000Z

291

Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields  

SciTech Connect (OSTI)

We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20100 T (potentially attainable using present experimental methods) that compress to greater than 4 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2013-07-15T23:59:59.000Z

292

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network [OSTI]

Fusion Energy Sciences: Target 2017 4 Meeting Background and Structure In support of its mission to provide

Gerber, Richard

2014-01-01T23:59:59.000Z

293

Solar Energy without Neutrinos: Fusion Catalysis by Quarks  

Science Journals Connector (OSTI)

... some features of fusion catalysis by quarks and the consequences relating to release of stellar energy. In particular, the recent non-observation8 of ... . In particular, the recent non-observation8 of solar neutrinos which rules out9-12 the carbon cycle as the main mechanism for ...

L. MARSHALL LIBBY; F. J. THOMAS

1969-06-28T23:59:59.000Z

294

Fusion Energy An Industry-Led Initiative  

E-Print Network [OSTI]

- Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

295

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network [OSTI]

provide more guidance and support. Large Scale Computing and Storage Requirements for Fusion Energy provide much-needed additional resources there remains a need to employ codes Large Scale Computing and Storage Requirements for Fusion Energy provide large gains with little application porting effort. Large Scale Computing and Storage Requirements for Fusion Energy

Gerber, Richard

2012-01-01T23:59:59.000Z

296

Journal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion  

E-Print Network [OSTI]

Office of Fusion Energy (OFE). One might take as a reasonable assumption that first generation fusionJournal of Fusion Energy, VoL 4, Nos. 2/3, 1985 Panel Discussion Technology Research energy program. Based on the new program plan, the parameters are a broad scientific and technology

Abdou, Mohamed

297

The Fusion Energy Program: The Role of TPX and Alternate Concepts  

E-Print Network [OSTI]

The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

298

Fusion Policy Advisory Committee (FPAC)  

SciTech Connect (OSTI)

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

299

Stauts of the Laser Inertial Fusion Energy (LIFE) Hohlraum Point Design  

SciTech Connect (OSTI)

Progress on the hohlraum point design for the LIFE engine is described. New features in the original design [Amendt et al., Fus. Sci. Technol. 60, 49 (2011)] are incorporated that address the imperatives of low target cost, high manufacturing throughput, efficient and prompt material recycling, an ability for near-term testing of key target design uncertainties on the National Ignition Facility, and robustness to target chamber environment and injection insults. To this end, the novel use of Pb hohlraums and aerogel-supported liquid DT fuel loading within a high-density-carbon (HDC) ablator is implemented in the hohlraum point design.

Amendt, P; Dunne, M; Ho, D; Lasinski, B; Meeker, D; Ross, J S

2012-04-10T23:59:59.000Z

300

MagnetoInertial Fusion Description  

E-Print Network [OSTI]

2009). The key point here is that breakeven-class MIF driver facilities, which already exist (e.g., ATLAS or Z/Z-Beamlet), cost US$200M compared to the multi-US$B ITER and NIF. For this reason alone, MIF introduced seed magnetic fields into the center of targets at the OMEGA laser facility, and compressed those

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Laser Inertial Fusion-based  

E-Print Network [OSTI]

injection are manageable · DT ice preheat of 100 mK is deemed acceptable (and conservative): --Target% of decomposition temperature · Several options for reducing target injection risk: --Higher velocities / shorter

302

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network [OSTI]

the Office of Science started as the Magnetic Fusion EnergyRequirements and Science Process All U.S. magnetic fusionMagnetic Fusion Energy Program 11 MIT Plasma Science &

Dart, Eli

2008-01-01T23:59:59.000Z

303

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network [OSTI]

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

304

Condensed hydrogen for thermonuclear fusion  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2010-11-15T23:59:59.000Z

305

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 (8pp) doi:10.1088/0029-5515/50/1/014003  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014003 Nuclear Fusion Institute, RRC 'Kurchatov Institute', Moscow, Russia Received 8 June 2009, accepted, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues

306

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy  

E-Print Network [OSTI]

January 25, 2008/ARR 1 Heat and Mass Transfer in Fusion Energy Applications: from the "Very Cold, CA January 25, 2008 #12;January 25, 2008/ARR 2 Unique Set of Conditions Associated with Fusion · Realization of fusion energy imposes considerable challenges in the areas of engineering, physics and material

Raffray, A. René

307

Multi-University Research to Advance Discovery Fusion Energy Science using a  

E-Print Network [OSTI]

Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

308

Peak Oil and Fusion Energy Development  

Science Journals Connector (OSTI)

If industrial civilization does not figure out how to survive and thrive without cheap fossil energy, then technological civilization will be a short blip in the history of our species. A child born in 1990, if s...

Chang Shuk Kim

2008-01-01T23:59:59.000Z

309

Low-energy fusion caused by an interference  

E-Print Network [OSTI]

Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

B. Ivlev

2012-07-05T23:59:59.000Z

310

THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER  

E-Print Network [OSTI]

and component scale phenomena. FNST testing in fusion facilities prior to DEMO can be classified into three conducting magnets. 1. Introduction: Fusion has great potential to be a sustainable energy source. There are five pillar

Abdou, Mohamed

311

Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop  

SciTech Connect (OSTI)

The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

Seidl, P.A.; Barnard, J.J.

2011-04-29T23:59:59.000Z

312

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

313

Finding Fusion  

Science Journals Connector (OSTI)

Finding Fusion ... Study of these reactions will advance understanding of the workings of stars and giant planets, fusion energy, and nuclear weapon stockpiles. ...

JYLLIAN KEMSLEY

2012-09-10T23:59:59.000Z

314

Designing Radiation Resistance in Materials for Fusion Energy  

SciTech Connect (OSTI)

Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

2014-01-01T23:59:59.000Z

315

Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Programs » FES Home Programs » FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) News & Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: sc.fes@science.doe.gov More Information » Fusion Energy Sciences Plasma science forms the basis for research that is needed to establish our ability to harness the power of the stars in order to generate fusion energy on earth. The research required for fusion energy's success is intimately tied to rich scientific questions about some of nature's most extreme environments, inside and outside of stars, and has practical

316

Women @ Energy: Debra Callahan | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Debra Callahan Debra Callahan Women @ Energy: Debra Callahan March 11, 2013 - 5:28pm Addthis Women @ Energy: Debra Callahan Debbie Callahan is a group leader for Inertial Confinement Fusion Target Design at Lawrence Livermore National Lab (LLNL). Debbie Callahan is a group leader for Inertial Confinement Fusion Target Design at Lawrence Livermore National Lab (LLNL). Women @ Energy: Debra Callahan Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Debbie Callahan is a group leader for Inertial Confinement Fusion Target Design at Lawrence Livermore National Lab (LLNL). She came to LLNL as a graduate student and received her PhD from University of California, Davis in 1993. Debbie has been part of the team working on the National

317

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 Introduction to Panel Discussions  

E-Print Network [OSTI]

Journul of Fusion Energy. Yo/. 5. No. 2. 1986 -- Introduction to Panel Discussions Whither Fusion Research? Robert L. Hirsch' . An unnamed former fusion program director retired and felt he needed some friend appeared before the major monk for his annual two words, which were, " Room cold." The monk nodded

318

Fusion Lecture Summary Eugene S. Evans  

E-Print Network [OSTI]

March 31, 2010 2 / 15 #12;National Ignition Facility (NIF) location: Lawrence Livermore National. Evans (2010) Fusion Lecture Summary March 31, 2010 1 / 15 #12;Outline 1 Overview of NIF Specifications Timeline Goals 2 Inertial Confinement Fusion (ICF) 3 Science at NIF 4 Fusion and the Future Laser Inertial

Budker, Dmitry

319

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13821392 PII: S0029-5515(02)55646-5  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion of alpha parameters, along with the qMHD profiles and MHD equilibria are being used as inputs to codes

Budny, Robert

320

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 075024 (10pp) doi:10.1088/0029-5515/49/7/075024  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 075024 from classical NB deposition as input give rise to strong EPM activity, resulting in relaxed EP radial

Zonca, Fulvio

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 10911100 PII: S0029-5515(03)67571-X  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion at low values of B. The RMF drive sustains particles as well as flux, and resistive input powers can

Washington at Seattle, University of

322

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 (3pp) doi:10.1088/0029-5515/53/4/042001  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 53 (2013) 042001 this analysis. Plasma shot probe etc data input to WBC includes exposure times, and per canonical shot Te, Ne

Harilal, S. S.

323

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 44 (2004) L1L4 PII: S0029-5515(04)72941-5  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion­2 MHz) (the uncertainty is due to the error bar of the kinetic input profiles). This result has been

Vlad, Gregorio

324

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) 15881597 doi:10.1088/0029-5515/47/11/022  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) 1588 of the LH power input. These results are directly relevant to the investigation of trapped alpha particle

Zonca, Fulvio

325

Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion  

E-Print Network [OSTI]

100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

Heiz, Ulrich

326

Efficient laser acceleration of proton beams for intense sources of low energy neutrinos  

SciTech Connect (OSTI)

The existence of highly efficient ion acceleration regimes in collective laser-plasma interactions opens up the possibility to develop high-energy-physics (HEP) facilities in conjunction with projects for inertial confined nuclear fusion (ICF) and neutron spallation sources.

Pegoraro, F. [Department of Physics, University of Pisa, Pisa (Italy); CNISM, Pisa (Italy); Bulanov, S. V.; Esirkepov, T. Zh.; Tajima, T. [Advanced Photon Research Centre, JAEA, Kizu, Kyoto (Japan); Migliozzi, P. [INFN, Sez. di Napoli, Naples (Italy); Terranova, F. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy)

2006-04-07T23:59:59.000Z

327

On the nuclear interaction. Potential, binding energy and fusion reaction  

E-Print Network [OSTI]

The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

I. Casinos

2008-05-22T23:59:59.000Z

328

Beryllium pressure vessels for creep tests in magnetic fusion energy  

SciTech Connect (OSTI)

Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available.

Neef, W.S.

1990-07-20T23:59:59.000Z

329

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

SciTech Connect (OSTI)

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

330

Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion  

E-Print Network [OSTI]

for heavy-ion inertial fusion, Fusion Engineering and DesignIon Fusion * by Lionel Robert Prost Doctor of Philosophy in Nuclear Engineering

Prost, Lionel Robert

2007-01-01T23:59:59.000Z

331

Paths to Magne,c Fusion Energy (nature ignores budget austerity)  

E-Print Network [OSTI]

Base Research Program Plasma confinement Materials science/engineering 2020 to fusion energy present DIII-D NSTX CMOD Plasma confinement research program #12

332

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

333

The Nuclear Fusion Award  

Science Journals Connector (OSTI)

The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 63544 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 45161 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L258 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 51220 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 27784 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 8298 Berk H.L. et al 2006 Explanation of the JET n = 0 chirping mode Nucl. Fusion 46 S88897 Urano H. et al 2006 Confinement degradation with beta for ELMy HH-mode plasmas in JT-60U tokamak Nucl. Fusion 46 7817 Izzo V.A. et al 2006 A numerical investigation of the effects of impurity penetration depth on disruption mitigation by massive high-pressure gas jet Nucl. Fusion 46 5417 Inagaki S. et al 2006 Comparison of transient electron heat transport in LHD helical and JT-60U tokamak plasmas Nucl. Fusion 46 13341 Watanabe T.-H. et al 2006 Velocityspace structures of distribution function in toroidal ion temperature gradient turbulence Nucl. Fusion 46 2432 2010 Nuclear Fusion Award nominees For the 2010 award, the papers published in the 2007 volume were assessed and the following papers were nominated, all of which are magnetic confinement experiments and theory. Rice J.E. et al 2007 Inter-machine comparison of intrinsic toroidal rotation in tokamaks Nucl. Fusion 47 161824 Lipschultz B. et al 2007 Plasmasurface interaction, scrape-off layer and divertor physics: implications for ITER Nucl. Fusion 47 1189205 Loarer T. et al 2007 Gas balance and fuel retention in fusion devices Nucl. Fusion 47 111220 Garcia O.E et al 2007 Fluctuations and transport in the TCV scrape-off layer Nucl. Fusion 47 66776 Zonca F. et al 2007 Electron fishbones: theory and experimental evidence Nucl. Fusion 47 158897 Maggi C.F. et al 2007 Characteristics of the H-mode pedestal in improved confinement scenarios in ASDEX Upgrade, DIII-D, JET and JT-60U Nucl. Fusion 47 53551 Yoshida M. et al 2007 Momentum transport and plasma rotation profile in toroidal direction in JT-60U L-mode plasmas Nucl. Fusion 47 85663 Zohm H. et al 2007 Control of MHD instabilities by ECCD: ASDEX Upgrade results and implications for ITER Nucl. Fusion 47 22832 Snyder P.B. et al 2007 Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation Nucl. Fusion 47 9618 Urano H. et al 2007 H-mode pedestal structure in the v

M. Kikuchi

2011-01-01T23:59:59.000Z

334

Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research  

E-Print Network [OSTI]

mp288 Magnetic Fusion Energy Materials High Energy Densitymaterials science, experimental validation enabled by targeted validation platforms, and high energymaterials needed to support a burning plasma environment; Pursue scientific opportunities and grand challenges in high energy

Gerber, Richard

2012-01-01T23:59:59.000Z

335

Inertial Lubrication Theory N. O. Rojas,1  

E-Print Network [OSTI]

Inertial Lubrication Theory N. O. Rojas,1 M. Argentina,1 E. Cerda,2 and E. Tirapegui3 1 Universite on the boundary conditions enforced, the energy input and the specific Reynolds number of the fluid motion. Here input of energy. We derive the minimal set of equations containing inertial effects in this strongly

Argentina, Mederic

336

Progress and prospect of laser thermonuclear fusion  

Science Journals Connector (OSTI)

Report presented at the International Seminar on Present Status and Future Plan of Inertial Confinement Fusion, Tokyo, Japan, 26 November 1992.

N G Basov

1993-01-01T23:59:59.000Z

337

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 45 (2005) 685693 doi:10.1088/0029-5515/45/7/018  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 1 Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche di Frascati, C.P. 65-00044 Frascati, Rome, Italy 2 Institute of Plasma Physics and Laser Microfusion, PO Box 49, PL-00-908, Warsaw, Poland Received

Vlad, Gregorio

338

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006  

E-Print Network [OSTI]

, it is expected that the laser fusion ignition will be demonstrated in the next few years. If this does indeed to solve the energy problem. The laser implosion for the fusion ignition and burn was opened up and simulations, it is now expected that laser fusion ignition will be demonstrated by the NIF (National Ignition

339

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 012002 (7pp) doi:10.1088/0029-5515/54/1/012002  

E-Print Network [OSTI]

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 012002 (7pp) doi:10 loads and particle bombardment is a key issue for the nuclear fusion community. Currently high current.1088/0029-5515/54/1/012002 LETTER Experimental simulation of materials degradation of plasma-facing components using lasers N. Farid

Harilal, S. S.

340

Role of nuclear fusion in future energy systems and the environment under future uncertainties  

Science Journals Connector (OSTI)

Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 20502060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO2 concentration constraint.

Koji Tokimatsu; Junichi Fujino; Satoshi Konishi; Yuichi Ogawa; Kenji Yamaji

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Exploring Fusion at Extreme Sub-Barrier Energies with Weakly Bound Nuclei  

SciTech Connect (OSTI)

Results of measurement of residues formed in fusion of {sup 6}Li with {sup 198}Pt in the energy range of 0.68fusion excitation function and the derived average angular momenta do not indicate a change of slope at deep sub-barrier energies, contrary to recent observations. The present results for a system with weakly bound projectile confront the current understanding of the fusion hindrance at these low energies, underlying the role of internal reorganization on the dynamical path towards fusion.

Shrivastava, A. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); GANIL, CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Navin, A.; Lemasson, A.; Rejmund, M. [GANIL, CEA/DSM-CNRS/IN2P3, Boulevard Henri Becquerel, BP 55027, F-14076 Caen Cedex 5 (France); Ramachandran, K.; Chatterjee, A.; Kailas, S.; Mahata, K.; Rout, P. C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nanal, V.; Pillay, R. G. [DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India); Hagino, K. [Department of Physics, Tohuku University, Sendai 980-8578 (Japan); Ichikawa, T. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Bhattacharyya, S. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Parkar, V. V. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); DNAP, Tata Institute of Fundamental Research, Mumbai 400005 (India)

2009-12-04T23:59:59.000Z

342

Laser fusion experiment yields record energy at Lawrence Livermore's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 For immediate release: 08/26/2013 | NR-13-08-04 High Resolution Image All NIF experiments are controlled and orchestrated by the integrated computer control system in the facility's control room. It consists of 950 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. Laser fusion experiment yields record energy at Lawrence Livermore's National Ignition Facility Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. LIVERMORE, Calif. -- In the early morning hours of Aug.13, Lawrence

343

1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle  

E-Print Network [OSTI]

1 1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle transport in D-T plasmas) is a central issue in fusion reactor de- velopment. Important effects dependent on fp transport-7 are concerned with fp wall bombardment and focus on two types of charged, high-energy fp losses from

Hively, Lee M.

344

Alternative approaches: concept improvements in magnetic fusion research  

Science Journals Connector (OSTI)

...providing a driver for inertial fusion. Keywords: stellarator...tricity generation using magnetic fusion. These are (a) pressing...e.g. the International Thermonuclear Experimen- tal Reactor (ITER...generation and/or for other fusion applications like testing prototype...

1999-01-01T23:59:59.000Z

345

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

E-Print Network [OSTI]

Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA 3 Los Alamos National Laboratory, Los Alamos, NM) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking

346

fusion  

National Nuclear Security Administration (NNSA)

7%2A en ICF Facilities http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicffacilities

347

Quantifying high-frequency wind energy-flux into near-inertial motions in the Southeast Pacific  

Science Journals Connector (OSTI)

Wind-forced internal waves close to the inertial frequency are ubiquitous throughout the worlds oceans, but observational constraints on their global energetics and impact on subsur-face mixing remain scarce. We report on velocity measurements ...

Byron F. Kilbourne; James B. Girton

348

NIF-0205-10331 Clean Energy  

E-Print Network [OSTI]

Ignition Facility NIF is based on 1960's -- 1990's laser technology NIF-0205-10177-r1 -L1 01EIM/cld P8475P result in a low rep rate, low efficiency laser fusion driver #12;The National Ignition Facility IFE laser Ignition Facility P8435NIF-0105-10154-r2 31EIM/sb Magnetic Fusion Energy Inertial Fusion Energy Biggest

349

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 of nuclear energy in the form of nuclear fission were established with the nuclear powered submarine Research and Energy®, 48 Oakland Street, Princeton, NJ 08540, USA E-mail: dmeade@pppl.gov Received 6 August

350

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

SciTech Connect (OSTI)

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

351

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 of these papers can be found in issue 3 2010 of Nuclear Fusion http://iopscience.iop.org/0029-5515/50/3/039901. b) in the energy range 0.5�1 MeV. The total power input will be in the 30�40 MW range under different plasma

Vlad, Gregorio

352

Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies  

E-Print Network [OSTI]

Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

2011-06-10T23:59:59.000Z

353

TWO IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION F u s i o n Physics of a Fundamental Energy Source C o n f i n e m e n t Q u a l i t y , n τ ( m - 3 s ) 1970-75 1990s 1975-80 1980s Ion Temperature (K) 10 21 10 20 10 19 10 18 10 17 10 6 10 7 10 8 10 9 Inertial Magnetic Expected reactor regime Expected reactor regime Useful Nuclear Masses (The electron's mass is 0.000549 u.) Label Species Mass (u*) n ( 1 n) neutron 1.008665 p ( 1 H) proton 1.007276 D ( 2 H) deuteron 2.013553 T ( 3 H) triton 3.015500 3 He helium-3 3.014932 α ( 4 He) helium-4 4.001505 * 1 u = 1.66054 x 10 -27 kg = 931.466 MeV/c 2 Nuclear Mass (u) B i n d i n g E n e r g y P e r N u c l e o n ( M e V ) 1 200 150 100 50 10 0 5 62 Ni Fusion Reactions Release Energy Fission Reactions Release Energy EXPERIMENTAL RESULTS IN FUSION RESEARCH Fusion requires high tempera- ture plasmas confined long enough at high density

354

Current state of magnetic-fusion energy research  

SciTech Connect (OSTI)

With the improved understanding of plasma physics, progress is being made on several approaches to magnetic confinement for controlled thermonuclear fusion.

Johnson, J.L.; Weimer, K.E.

1983-02-01T23:59:59.000Z

355

Magnetic Fusion Energy Research: A Summary of Accomplishments  

DOE R&D Accomplishments [OSTI]

Some of the more important contributions of the research program needed to establish the scientific and technical base for fusion power production are discussed. (MOW)

1986-12-00T23:59:59.000Z

356

The Fusion Advanced Studies Torus (FAST): a proposal for an ITER satellite facility in support of the development of fusion energy  

E-Print Network [OSTI]

and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

Zonca, Fulvio

357

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 982988 PII: S0029-5515(03)66862-6  

E-Print Network [OSTI]

. For the out-shifted, shaped plasma, ripple loss of high energy ions during neutral beam injection (NBIINSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion is analysed. PACS numbers: 52.55.Fa, 52.55.Wq, 52.25.Fi 1. Introduction The construction of HL-2A [1

Budny, Robert

358

23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC  

SciTech Connect (OSTI)

An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

Richard J. Hawryluk

2011-01-05T23:59:59.000Z

359

White Paper on Magnetic Fusion Energy Priorities by Paul M. Bellan, Professor of Applied Physics, Caltech  

E-Print Network [OSTI]

White Paper on Magnetic Fusion Energy Priorities by Paul M. Bellan, Professor of Applied Physics, Caltech It is important to make ITER work (surpass fusion breakeven) and it is equally important for ITER there will be problems with plasmawall interactions or materials. There are many possible types of problems or there may

360

Fusion Energy Division annual progress report period ending December 31, 1986  

SciTech Connect (OSTI)

This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fusionfission hybrids for nuclear waste transmutation: A synergistic step between Gen-IV fission and fusion reactors  

Science Journals Connector (OSTI)

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusionfission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280kg of actinide wastes per year and produces 3000MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusionfission hybrids and Generation-IV reactors.

T.A. Mehlhorn; B.B. Cipiti; C.L. Olson; G.E. Rochau

2008-01-01T23:59:59.000Z

362

Fusion-fission hybrids for nuclear waste transmutation : a synergistic step between Gen-IV fission and fusion reactors.  

SciTech Connect (OSTI)

Energy demand and GDP per capita are strongly correlated, while public concern over the role of energy in climate change is growing. Nuclear power plants produce 16% of world electricity demands without greenhouse gases. Generation-IV advanced nuclear energy systems are being designed to be safe and economical. Minimizing the handling and storage of nuclear waste is important. NIF and ITER are bringing sustainable fusion energy closer, but a significant gap in fusion technology development remains. Fusion-fission hybrids could be a synergistic step to a pure fusion economy and act as a technology bridge. We discuss how a pulsed power-driven Z-pinch hybrid system producing only 20 MW of fusion yield can drive a sub-critical transuranic blanket that transmutes 1280 kg of actinide wastes per year and produces 3000 MW. These results are applicable to other inertial and magnetic fusion energy systems. A hybrid system could be introduced somewhat sooner because of the modest fusion yield requirements and can provide both a safe alternative to fast reactors for nuclear waste transmutation and a maturation path for fusion technology. The development and demonstration of advanced materials that withstand high-temperature, high-irradiation environments is a fundamental technology issue that is common to both fusion-fission hybrids and Generation-IV reactors.

Olson, Craig Lee; Mehlhorn, Thomas Alan; Cipiti, Benjamin B.; Rochau, Gary Eugene

2007-09-01T23:59:59.000Z

363

Fusion Cross-Section Measurements with Deuterons of Low Energy  

Science Journals Connector (OSTI)

5 December 1961 research-article Fusion Cross-Section Measurements with Deuterons...theory and to calculations of the rate of thermonuclear reactions. Until now reliable values...cross-sections. The method of measuring the fusion cross-sections made use of an intense...

1961-01-01T23:59:59.000Z

364

A TUTORIAL ON IGNITION AND GAIN FOR SMALL FUSION TARGETS  

SciTech Connect (OSTI)

Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, NM 087545 (United States)

2009-07-26T23:59:59.000Z

365

Nuclear Fusion  

Science Journals Connector (OSTI)

Although not yet developed at the commercial stage, nuclear fusion technology is still being considered as a ... used in nuclear warfare. Since research in nuclear fusion for the production of energy started abou...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

366

Nuclear Fusion as an Energy Option for the 21st Century  

Science Journals Connector (OSTI)

For more than 50 years, controlled nuclear fusion has been promised as a safe, clean...Bethe 1939). Yet, after several decades of work by researchers in several countries, producing more energy than is invested i...

Julio E Herrera-Velzquez

2007-01-01T23:59:59.000Z

367

January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research  

E-Print Network [OSTI]

14, 2014 MIT PSFC IAP Seminar Series 9 Units to measure energy and power "Joule" or "J" is a unit of Energy "Watt" or "W" is a unit of power Power is energy used per second 1 Watt = Your 60 Watt light bulbJanuary 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research Prospects

368

Fusion cross sections for the Be9+Sn124 reaction at energies near the Coulomb barrier  

Science Journals Connector (OSTI)

The complete and incomplete fusion cross sections for Be9+Sn124 reaction have been deduced using the online ?-ray measurement technique. Complete fusion at energies above the Coulomb barrier was found to be suppressed by ~28% compared to the coupled-channels calculations and is in agreement with the systematics of L. R. Gasques et al. [Phys. Rev. C 79, 034605 (2009)]. Study of the projectile dependence for fusion on a Sn124 target shows that, for Be9 nuclei, the enhancement at below-barrier energies is substantial compared to that of tightly bound nuclei.

V. V. Parkar, R. Palit, Sushil K. Sharma, B. S. Naidu, S. Santra, P. K. Joshi, P. K. Rath, K. Mahata, K. Ramachandran, T. Trivedi, and A. Raghav

2010-11-03T23:59:59.000Z

369

Muon catalysis for energy production by nuclear fusion  

Science Journals Connector (OSTI)

... mesic molecular ion (dt?-)+. It takes a short time tf for an exothermic nuclear fusion reaction d + t 4 He-hn to occur. When the probability is tdt, ...

Yu. V. Petrov

1980-06-12T23:59:59.000Z

370

The National Ignition Facility and Laser Fusion Energy  

Science Journals Connector (OSTI)

This talk provides an update of the NIC on the National Ignition Facility at the Lawrence Livermore National Laboratory and the roadmap to demonstrate laser fusion as a viable source...

Moses, E I

371

Congress and the Fusion Energy Sciences Program: A Historical Analysis  

Science Journals Connector (OSTI)

This report reviews and analyzes the 42-year history of congressional deliberations over funding of the magnetic fusion research and development (R&D) program. That analysis provides the basis for an assessment a...

Richard E. Rowberg

1999-03-01T23:59:59.000Z

372

A Plan for the Deveiopment of Magnetic Fusion Energy  

E-Print Network [OSTI]

and to enable the US to benefitfromits commercialization. Executive Summary Fusionenergy should be a long, controlof plasma-wall interactions, tritium processing, developmentof low basisforfusion commercialization. 4. Constructa fusion power demonstrationfacility (DEMO)in the US,which would

373

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 46 (2006) 1723 doi:10.1088/0029-5515/46/1/002  

E-Print Network [OSTI]

INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion of the flux at points on the plasma boundary, which are used as input to a shape control algorithm known physics, since realistic solutions to the plasma force balance can be used as inputs to feedback loops

Princeton Plasma Physics Laboratory

374

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10.1088/0029-5515/54/2/023004  

E-Print Network [OSTI]

| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 023004 (9pp) doi:10 Tatyana Sizyuk and Ahmed Hassanein Center for Materials under Extreme Environment, School of Nuclear for publication 17 December 2013 Published 21 January 2014 Abstract The plasma shielding effect is a well

Harilal, S. S.

375

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 125009 (8pp) doi:10.1088/0029-5515/49/12/125009  

E-Print Network [OSTI]

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 125009 of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic surface [29]. GTC simulations of a small amplitude GAM recover the analytic linear dispersion relation

Lin, Zhihong

376

Fusion-A Potential Power Source  

Science Journals Connector (OSTI)

Fusion-A Potential Power Source ... Nuclear energy, fusion reactions, magnetic confinement, and tokamaks. ...

Torkil H. Jensen

1994-01-01T23:59:59.000Z

377

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say  

E-Print Network [OSTI]

TabletopAccelerator Breaks`Cold Fusion'Jinx ButWon'tYield Energy,Physicists Say A crystal with a strange property is at the heart of a clever method for inducing nuclear fusion in a tabletop-sized device-rays for medical therapies. Although the field of room-temperature fusion is littered with scandals and dubious

378

Multimodal options for materials research to advance the basis for fusion energy in the ITER era  

Science Journals Connector (OSTI)

Well-coordinated international fusion materials research on multiple fundamental feasibility issues can serve an important role during the next ten years. Due to differences in national timelines and fusion device concepts, a parallel-track (multimodal) approach is currently being used for developing fusion energy. An overview is given of the current state-of-the-art of major candidate materials systems for next-step fusion reactors, including a summary of existing knowledge regarding operating temperature and neutron irradiation fluence limits due to high-temperature strength and radiation damage considerations, coolant compatibility information, and current industrial manufacturing capabilities. There are two inter-related overarching objectives of fusion materials research to be performed in the next decade: (1) understanding materials science phenomena in the demanding DT fusion energy environment, and (2) application of this knowledge to develop and qualify materials to provide the basis for next-step facility construction authorization by funding agencies and public safety licensing authorities. The critical issues and prospects for development of high-performance fusion materials are discussed along with recent research results and planned activities of the international materials research community.

S.J. Zinkle; A. Mslang; T. Muroga; H. Tanigawa

2013-01-01T23:59:59.000Z

379

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network [OSTI]

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

2014-07-22T23:59:59.000Z

380

Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei  

SciTech Connect (OSTI)

The Skyrme energy-density functional approach has been extended to study massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parametrized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with Z{sub 1}Z{sub 2}<1200. For the massive fusion reactions, for example, the {sup 238}U-induced reactions and {sup 48}Ca+{sup 208}Pb, the capture excitation functions have been reproduced remarkably well. The influence of structure effects in the reaction partners on the capture cross sections is studied with our parametrized barrier distribution. By comparing the reactions induced by double-magic nucleus {sup 48}Ca and by {sup 32}S and {sup 35}Cl, the ''threshold-like'' behavior in the capture excitation function for {sup 48}Ca-induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with {sup 36}S, {sup 37}Cl, {sup 48}Ca, and {sup 50}Ti bombarding {sup 248}Cm, {sup 247,249}Bk, {sup 250,252,254}Cf, and {sup 252,254}Es, as well as the reactions leading to the same compound nucleus with Z=120 and N=182, are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

Wang Ning; Scheid, Werner [Institute for Theoretical Physics at Justus-Liebig-University, D-35392 Giessen (Germany); Wu Xizhen; Liu Min [China Institute of Atomic Energy, Beijing 102413 (China); Li Zhuxia [China Institute of Atomic Energy, Beijing 102413 (China); Institute of Theoretical Physics, Chinese Academic of Science, Beijing 100080 (China); Nuclear Theory Center of National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China)

2006-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier  

E-Print Network [OSTI]

The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

2007-02-16T23:59:59.000Z

382

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...of activation products with long half-lives means that some fusion reactor structural...grow for a time in some regions while remaining steady or falling in others. For example...an-nual use of coal, oil, natural gas, hydropower, nuclear fission,, geothermal...

John P. Holdren

1978-04-14T23:59:59.000Z

383

Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets  

E-Print Network [OSTI]

for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum maintenance cost To put the capital cost issue into perspective, consider the following comparison, which incorporate niobium, a rare and expensive material compared to copper or aluminum. In addition to the direct

384

NIF achieves record laser energy in pursuit of fusion ignition | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

385

Fusion Energy Division annual progress report period ending December 31, 1983  

SciTech Connect (OSTI)

The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

Not Available

1984-09-01T23:59:59.000Z

386

Scientific Issues and Gaps for High-Performance Steady-State Burning-Plasmas Fusion Innovation Research and Energy  

E-Print Network [OSTI]

Innovation Research and Energy Princeton, NJ 08540 Introduction Fusion energy is a potential energy source for an electricity producing power plant. Recently, the FESAC Priorities, Gaps and Opportunities Panel identified, and extracting plasma exhaust power) Theme C ­ Harnessing the Power of Fusion (extracting neutron power, breeding

387

Fusion Power  

Science Journals Connector (OSTI)

...present cost of coal, on a per-unit-of-energy basis. Nuclear fusion is nuclear combustion, the process that heats the sun and...enough for the release of fusion energy to exceed the heat input; and third, convert the energy released to useful form...

R. F. Post

1971-01-01T23:59:59.000Z

388

Fusion of light proton-rich exotic nuclei at near-barrier energies  

E-Print Network [OSTI]

We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

2002-02-08T23:59:59.000Z

389

Proliferation risks of magnetic fusion energy: clandestine production, covert production and breakout  

Science Journals Connector (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to weapon-usable materials can be divided into three main categories: (1) clandestine production of weapon-usable material in an undeclared facility, (2) covert production of such material in a declared facility and (3) use of a declared facility in a breakout scenario, in which a state begins production of fissile material without concealing the effort. In this paper, we address each of these categories of risks from fusion. For each case, we find that the proliferation risk from fusion systems can be much lower than the equivalent risk from fission systems, if the fusion system is designed to accommodate appropriate safeguards.

A. Glaser; R.J. Goldston

2012-01-01T23:59:59.000Z

390

Can the future world energy system be free of nuclear fusion?  

Science Journals Connector (OSTI)

The available information on the dynamics of world population growth as well as global statistical data on today's energy production, consumption and distribution are presented. Natural restrictions on the modern world's fossil combustion energy system are discussed along with possible climatic and biospherical impacts for its part. Alternative energy sources capable of replacing the existing energy system are considered and prospects for controllable nuclear fusion are discussed.

Sergei V Putvinskii

1998-01-01T23:59:59.000Z

391

Fusion Energy Sciences Advisory Committee (FESAC) Homepage | U.S. DOE  

Office of Science (SC) Website

FESAC Home FESAC Home Fusion Energy Sciences Advisory Committee (FESAC) FESAC Home Meetings Members Charges/Reports Charter .pdf file (140KB) FES Committees of Visitors FES Home Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences Advisory Committee (FESAC) has been Chartered .pdf file (140KB) pursuant to Section 14(a)(2)(A) of the Federal Advisory Committee Act Public Law 92-463, and Section 101-6.1015, title 41 Code of Federal Regulations. The committee provides independent advice to the Director of the Office of Science on complex scientific and technological issues that arise in the planning, implementation, and management of the fusion energy sciences program. The current charter is in effect until August 2015. Committee Members .pdf file (28KB) are drawn from universities, national

392

A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.  

SciTech Connect (OSTI)

There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was first developed and then applied to the axial neutron time of flight detectors at the ZFacility mentioned above. First, MCNPPoliMi was used to model relevant portions of the facility between the source and the detector locations. To obtain useful statistics, variance reduction was utilized. Then, the resulting collision output table produced by MCNPPoliMi was further analyzed by a MATLAB postprocessing code. This converted the energy deposited by neutron and photon interactions in the plastic scintillator (i.e., nTOF detector) into light output, in units of MeVee%D1%84 (electron equivalent) vs time. The time response of the detector was then folded into the signal via another MATLAB code. The simulated response was then compared with experimental data and shown to be in good agreement. To address the issue of neutron scattering, an %E2%80%9CIdeal Case,%E2%80%9D (i.e., a plastic scintillator was placed at the same distance from the source for each detector location) with no structural components in the problem. This was done to produce as %E2%80%9Cpure%E2%80%9D a neutron signal as possible. The simulated waveform from this %E2%80%9CIdeal Case%E2%80%9D was then compared with the simulated data from the %E2%80%9CFull Scale%E2%80%9D geometry (i.e., the detector at the same location, but with all the structural materials now included). The %E2%80%9CIdeal Case%E2%80%9D was subtracted from the %E2%80%9CFull Scale%E2%80%9D geometry case, and this was determined to be the contribution due to scattering. The time response was deconvolved out of the empirical data, and the contribution due to scattering was then subtracted out of it. A transformation was then made from dN/dt to dN/dE to obtain neutron spectra at two different detector locations.

Nelson, Alan J. [University of New Mexico, Albuquerque, NM; Cooper, Gary Wayne [University of New Mexico, Albuquerque, NM; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

2013-09-01T23:59:59.000Z

393

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network [OSTI]

of routing tree establishment, transmission energy planninglarge gap of energy between the single-hop tree and theThe routing tree ?nding and the transmission energy planning

Huang, Yi

2010-01-01T23:59:59.000Z

394

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

E-Print Network [OSTI]

plasmas for thermonuclear fusion. Because of the Thermonuclear Research (CTR) and the National Magnetic Fusion

Gerber, Richard

2014-01-01T23:59:59.000Z

395

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect (OSTI)

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

396

JOURNAL DE PHYSIQUE Colloque C7, supplkment au no 7, Tome 40, Juillet 1979,page C7-97 Progress of laser fusion at Lawrence Livermore Laboratory  

E-Print Network [OSTI]

futur nous rtserve d'obstacles majeurs pour obtenir les densites ntcessaires pour une reac- tion. - Inertial confinement fusion is the present and future source of energy in our universe. Derivatives, such as solar, geothermal, wind, and biomass are proposed as future substitutes for possible fuel sources. All

Boyer, Edmond

397

Journal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel on a Burning Plasma Program  

E-Print Network [OSTI]

- ence, although it is not designed to be the sole burning plasma facility in the world.Fusion energy methods of energy production, are strong reasons to pursue fusion energy now. vened for this purposeJournal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel

Najmabadi, Farrokh

398

Fusion Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

FES User Facilities FES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Fusion Energy Sciences program supports the operation of the following national scientific user facilities: DIII-D Tokamak Facility: External link DIII-D, located at General Atomics in San Diego, California, is the largest magnetic fusion facility in the U.S. and is operated as a DOE national user facility. DIII-D has been a major contributor to the world fusion program

399

Inertial Confinement Fusion | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

advanced science and technology portfolio, the Office of ICF is working to produce thermonuclear burn conditions in the laboratory, to develop laboratory capabilities that will...

400

Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier  

E-Print Network [OSTI]

Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

2008-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy.gov » Energy Blog Energy.gov » Energy Blog Energy Blog RSS December 27, 2013 Both! The National Ignition Facility (NIF) is a large research device located at Lawrence Livermore National Laboratory. The NIF uses powerful lasers to heat and compress hydrogen fuel to the point where nuclear fusion reactions take place. It is currently the largest and most energetic inertial confinement fusion device in the world. Researchers use the NIF to ensure the safety of nuclear weapons, explore the potential of fusion as a safe energy source, and understand how the universe was created. In this photo, NIF Team members Bruno Van Wonterghem (left), Jim Nally (pointing) and Rod Saunders watch through a newly installed viewing window, which allows the NIF team and visitors to see inside the chamber while it is vacuum-sealed for experiments.

402

Uniformity of fuel target implosion in Heavy Ion Fusion  

E-Print Network [OSTI]

In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

2015-01-01T23:59:59.000Z

403

Specially Conditioned EM Fields to Reduce Nuclear Fusion Input Energy Needs  

Science Journals Connector (OSTI)

Ordinary electromagnetic (EM) fields possess relatively simple \\{U1gauge\\} symmetry, and their angular momentum is analogous to that of spin1 particles whose likecharges attract and unlike charges repel. This manifests in coulomb repulsion between free electrons or ions and coulomb attraction between free electrons and ions. By contrast, angular momentum of SU(2) fields that describe the shortrange Weak Nuclear Force in atomic nuclei is analogous to that of spin2 particles whose likecharges attract. So, free ions that enter such small SU(2) field regions attract each other until their separation becomes so small that their fusion occurs. In this respect, Barrett has derived EM fields with the same SU(2) gauge symmetry and spin2 angular momentum as SU(2) matter fields in atomic nuclei. It is conceivable, therefore, that SU(2) EM fields might cause fuel ions inside nuclear fusion reactors to attract (rather than repel) each other. This paper, therefore, explores the possibility of SU(2) EM fields reducing the electrical compression energies these SU(2) EM fields must exert on fuel ions before fusion of the ions by the SU(2) matter fields of the weak nuclear force then occurs. A specific conditioning of U(1) EM field energy into SU(2) EM field energy was selected; a given type of fusion was assumed; and preliminary, parametric estimates of input electrical energy reductions were made.

H. David Froning Jr.; Terence W. Barrett; George H. Miley

2012-01-01T23:59:59.000Z

404

Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic Plan for Commercialization  

E-Print Network [OSTI]

1 Fusion Energy for Power Production: Status Assessment, Identification of Challenges and Strategic in the Technical Assessment Committee (TAC) and 4) EPRI being the Program Manager for the project. Establish Plan for Commercialization March 2011 Phase I. Status Assessment and Identification of Challenges

405

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

406

Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks  

E-Print Network [OSTI]

energy cost of consensus estimation with that of progressive estimation under the same sensor constellation and

Huang, Yi

2010-01-01T23:59:59.000Z

407

Complete Fusion of Weakly Bound Cluster-Type Nuclei at Near Barrier Energies  

E-Print Network [OSTI]

We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.

M. S. Hussein; P. R. S. Gomes; J. Lubian; R. Linares; L. F. Canto

2013-03-19T23:59:59.000Z

408

Complete Fusion of Weakly Bound Cluster-Type Nuclei at Near Barrier Energies  

E-Print Network [OSTI]

We consider the influence of breakup channels on the complete fusion of weakly bound cluster-type systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the Dynamic Polarization Potential approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of $^7$Li followed by the breakup of $^6$Li.

Hussein, M S; Lubian, J; Linares, R; Canto, L F

2013-01-01T23:59:59.000Z

409

Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions  

E-Print Network [OSTI]

Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD), the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is ...

Wen, Kai; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui

2014-01-01T23:59:59.000Z

410

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Picture of Z Machine Z machine contributes to clean-energy technologies The importance of Z in solving the world's energy challenges is directly connected to its fusion potential. Inertial confinement fusion for peaceful production of electricity has always been of interest to Sandia's pulsed power sciences. But today, in light of growing concern about the health of our planet and considering our escalating energy needs, the development of fusion technology is especially promising for several reasons First, the fuel needed for fusion is virtually limitless - deuterium, an isotope of hydrogen, is abundant in seawater; tritium is bred in the fusion power plant process. Half a bathtub full of seawater in a fusion reaction could produce as much energy as 40 train cars of coal.

411

Life Pure Fusion Target Designs: Status and Prospects  

SciTech Connect (OSTI)

Analysis and radiation-hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant are presented. The required laser energy driver is 2.2 MJ at a 0.351-{mu}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for near-term experimental resolution of the key physics uncertainties on the National Ignition Facility.

Amendt, P; Dunne, M; Ho, D; Lindl, J

2011-10-20T23:59:59.000Z

412

Multiple beam induction accelerators for heavy ion fusion  

Science Journals Connector (OSTI)

Abstract Induction accelerators are appealing for heavy-ion driven inertial fusion energy (HIF) because of their high efficiency and their demonstrated capability to accelerate high beam current (?10kA in some applications). For the HIF application, accomplishments and challenges are summarized. HIF research and development has demonstrated the production of single ion beams with the required emittance, current, and energy suitable for injection into an induction linear accelerator. Driver scale beams have been transported in quadrupole channels of the order of 10% of the number of quadrupoles of a driver. We review the design and operation of induction accelerators and the relevant aspects of their use as drivers for HIF. We describe intermediate research steps that would provide the basis for a heavy-ion research facility capable of heating matter to fusion relevant temperatures and densities, and also to test and demonstrate an accelerator architecture that scales well to a fusion power plant.

Peter A. Seidl; John J. Barnard; Andris Faltens; Alex Friedman; William L. Waldron

2014-01-01T23:59:59.000Z

413

Fusion scientists gear up to learn how to harness plasma energy | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Living on the edge Living on the edge Fusion scientists gear up to learn how to harness plasma energy By Kitta MacPherson March 30, 2011 Tweet Widget Facebook Like Google Plus One Researchers working on an advanced experimental fusion machine are readying experiments that will investigate a host of scientific puzzles, including how heat escapes as hot magnetized plasma, and what materials are best for handling intense plasma powers. Scientists conducting research on the National Spherical Torus Experiment (NSTX) at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have mapped out a list of experiments to start in July and run for eight months. The experimental machine is designed to deepen understanding of how plasmas can be mined for energy. A major topic of investigation by scientists for the coming round of

414

Thermal Performance of Deep-Burn Fusion-Fission Hybrid Waste in a Repository  

SciTech Connect (OSTI)

The Laser Inertial Confinement Fusion Fission Energy (LIFE) Engine [1] combines a neutron-rich but energy-poor inertial fusion system with an energy-rich but neutron-poor subcritical fission blanket. Because approximately 80% of the LIFE Engine energy is produced from fission, the requirements for laser efficiency and fusion target performance are relaxed, compared to a pure-fusion system, and hence a LIFE Engine prototype can be based on target performance in the first few years of operation of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). Similarly, because of the copious fusion neutrons, the fission blanket can be run in a subcritical, driven, mode, without the need for control rods or other sophisticated reactivity control systems. Further, because the fission blanket is inherently subcritical, fission fuels that can be used in LIFE Engine designs include thorium, depleted uranium, natural uranium, spent light water reactor fuel, highly enriched uranium, and plutonium. Neither enrichment nor reprocessing is required for the LIFE Engine fuel cycle, and burnups to 99% fraction of initial metal atoms (FIMA) being fissioned are envisioned. This paper discusses initial calculations of the thermal behavior of spent LIFE fuel following completion of operation in the LIFE Engine [2]. The three time periods of interest for thermal calculations are during interim storage (probably at the LIFE Engine site), during the preclosure operational period of a geologic repository, and after closure of the repository.

Blink, J A; Chipman, V; Farmer, J; Shaw, H; Zhao, P

2008-11-25T23:59:59.000Z

415

Journal of Fusion Energy, Vol. /1, No.2, 1992 Pilot Plant: An Affordable Step Toward Fusion Power  

E-Print Network [OSTI]

that fusion be an option for this market, since the other major alternatives (coal, fission, and solar) could, but unique, uni- versity-national laboratory-electric utility-industry part- nership. It is also a U the first opportunity for utilities and industry to playa lead role in defining and designing a fusion

416

Inertial separator as a sediment control device  

SciTech Connect (OSTI)

The focus of this research was to address the feasibility of employing an inertial separator as a sediment control device on surface mined lands. A mathematical model has been developed to predict the sediment capture efficiency of this device on a particle size basis, and under alternative design construction conditions. The predicted performance of the inertial separator has been analyzed for a 10 year-24 hour storm generated from a contour mining operation in the Appalachian coal region. The inertial separator is designed to replace a sediment basin as the primary sediment control device. It is designed to be transported on one flat bed truck and could be modularized to facilitate a rapid installation. It has the advantages of relocation and reuse from one site to another, no moving parts, no energy requirements, simple construction, etc. The inertial separator is designed to reduce the problems common to sedimentation processes. The system uses the inertia of settling particles in accelerating flow to enhance separation, reduce short circuiting, and increase particle detention time (with a resultant increase in flocculation potential). A detailed design example is presented to indicate the expected sediment trap efficiency of the inertial separator for a sediment generated from a typical mining operation. Sediment and hydrologic inputs were determined using the SEDIMOT II model. Also, preliminary construction specifications are detailed.

Sterling, H.J.; Warner, R.C.

1984-12-01T23:59:59.000Z

417

Fusion Energy in Context: Its Fitness for the Long Term  

Science Journals Connector (OSTI)

...pel-let equal to the laser energy incident on the...handle tens of thousands of laser pulses of dev-astating...instru-mentation and control technology, ener-gy...neces-sary (20). In the laser approach, convert-ing...solar-thermal-electric conver-sion, wind, hydropower, and combus-tion...

John P. Holdren

1978-04-14T23:59:59.000Z

418

First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions  

E-Print Network [OSTI]

A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with [superscript 3]He gas. These ...

Amendt, P.

419

Dynamic Instruction Fusion  

E-Print Network [OSTI]

and energy efficient register file (Transient Register File) tightly coupled to the Fusion ALU in order to provide

Lee, Ian

2012-01-01T23:59:59.000Z

420

The Future of Nuclear Energy: Facts and Fiction Chapter IV: Energy from Breeder Reactors and from Fusion?  

E-Print Network [OSTI]

The accumulated knowledge and the prospects for commercial energy production from fission breeder and fusion reactors are analyzed in this report. The publicly available data from past experimental breeder reactors indicate that a large number of unsolved technological problems exist and that the amount of "created" fissile material, either from the U238 --> Pu239 or from the Th232 --> U233 cycle, is still far below the breeder requirements and optimistic theoretical expectations. Thus huge efforts, including many basic research questions with an uncertain outcome, are needed before a large commercial breeder prototype can be designed. Even if such efforts are undertaken by the technologically most advanced countries, it will take several decades before such a prototype can be constructed. We conclude therefore, that ideas about near-future commercial fission breeder reactors are nothing but wishful thinking. We further conclude that, no matter how far into the future we may look, nuclear fusion as an energy ...

Dittmar, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cluster-impact fusion  

Science Journals Connector (OSTI)

We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

P. M. Echenique; J. R. Manson; R. H. Ritchie

1990-03-19T23:59:59.000Z

422

Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017  

SciTech Connect (OSTI)

The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In March 2013, NERSC, DOE?s Office of Advanced Scientific Computing Research (ASCR) and DOE?s Office of Fusion Energy Sciences (FES) held a review to characterize High Performance Computing (HPC) and storage requirements for FES research through 2017. This report is the result.

Gerber, Richard

2014-05-02T23:59:59.000Z

423

Magnetic Confinement Fusion Science Status and Challenges  

E-Print Network [OSTI]

Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic ·Control plasma disruptions ·Develop new magnetic configurations ·Control the plasma-wall interaction

424

Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as  

E-Print Network [OSTI]

scientific breakeven." E. Moses, Status of the NIF Project, Lawrence Livermore National Laboratory Report: "Laser fusion experiments, facilities, and diagnostics at Lawrence Livermore National Laboratory", by H of 1 defines scientific breakeven. (This is therefore a Livermore definition!) The recent National

425

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents [OSTI]

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

426

Fusion reactor systems  

Science Journals Connector (OSTI)

In this review we consider deuterium-tritium (D-T) fusion reactors based on four different plasma-confinement and heating approaches: the tokamak, the theta-pinch, the magnetic-mirror, and the laser-pellet system. We begin with a discussion of the dynamics of reacting plasmas and basic considerations of reactor power balance. The essential plasma physical aspects of each system are summarized, and the main characteristics of the corresponding conceptual power plants are described. In tokamak reactors the plasma densities are about 1020 m-3, and the ? values (ratio of plasma pressure to confining magnetic pressure) are approximately 5%. Plasma burning times are of the order of 100-1000 sec. Large superconducting dc magnets furnish the toroidal magnetic field, and 2-m thick blankets and shields prevent heat deposition in the superconductor. Radially diffusing plasma is diverted away from the first wall by means of null singularities in the poloidal (or transverse) component of the confining magnetic field. The toroidal theta-pinch reactor has a much smaller minor diameter and a much larger major diameter, and operates on a 10-sec cycle with 0.1-sec burning pulses. It utilizes shock heating from high-voltage sources and adabatic-compression heating powered by low-voltage, pulsed cryogenic magnetic or inertial energy stores, outside the reactor core. The plasma has a density of about 1022 m-3 and ? values of nearly unity. In the power balance of the reactor, direct-conversion energy obtained by expansion of the burning high-? plasma against the containing magnetic field is an important factor. No divertor is necessary since neutral-gas flow cools and replaces the "spent" plasma between pulses. The open-ended mirror reactor uses both thermal conversion of neutron energy and direct conversion of end-loss plasma energy to dc electrical power. A fraction of this direct-convertor power is then fed back to the ioninjection system to sustain the reaction and maintain the plasma. The average ion energy is 600 keV, plasma diameter 6 m, and the plasma beta 85%. The power levels of the three magnetic-confinement devices are in the 500-2000 MWe range, with the exception of the mirror reactor, for which the output is approximately 200 MWe. In Laser-Pellet reactors, frozen D-T pellets are ignited in a cavity which absorbs the electromagnetic, charged particle, and neutron energy from the fusion reaction. The confinement is "inertial," since the fusion reaction occurs during the disassembly of the heated pellet. A pellet-cavity unit would produce about 200 MWt in pulses with a repetition rate of the order of 10 sec-1. Such units could be clustered to give power plants with outputs in the range of 1000 MWe.

F. L. Ribe

1975-01-01T23:59:59.000Z

427

E-Print Network 3.0 - advanced fusion material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 5 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

428

E-Print Network 3.0 - advanced deuterium fusion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics and Fusion 2 Fusion Energy Program Presentation to Summary: International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced Materials......

429

The physics of antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

The possibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either D or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. We conclude that the financial and energy investments needed to produce such amounts of antiprotons would confine applications of antimatter triggered thermonuclear devices to the military domain.

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

1987-01-01T23:59:59.000Z

430

Long-range correlation studies at the SPS energies in MC model with string fusion  

E-Print Network [OSTI]

Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated the long-range correlation functions and correlation coefficients between multiplicities and transverse momentum at several energies for different colliding systems and obtained predictions for the experiment.

Vladimir Kovalenko; Vladimir Vechernin

2015-02-05T23:59:59.000Z

431

2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science and Technology, Vol.64, No.2, August 2013,  

E-Print Network [OSTI]

© 2013 UNITED KINGDOM ATOMIC ENERGY AUTHORITY The following article appeared in Fusion Science on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012 Pulsed DEMO design of energy storage issues, and fatigue life improvements in Nb3Sn CICC superconductors. I. BACKGROUND In 2011

432

Fusion News: 2002  

Science Journals Connector (OSTI)

This paper summarizes key news events in the development of fusion energy. Highlights include status of ITER negotiations, FESAC studies, NIF construction and fusion-related legislation. Also included are summ...

Stephen O. Dean

2003-03-01T23:59:59.000Z

433

Cryogenic Target Handling, Transfer and Positioning System for the Laser Mgajoule  

Science Journals Connector (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

D. Brisset; V. Lamaison; G. Paquignon; J. P. Prin; E. Bouleau; D. Chatain; J. Manzagol

434

Chapter 7 - Fusion  

Science Journals Connector (OSTI)

Abstract This chapter briefly introduces the topic of fusing light nuclei such as deuterium (D) and tritium (T) together to release binding energy. Characteristics of a plasma in which thermonuclear fusion is carried out are described. Fusion reaction cross sections are graphed for the most promising reactions including D-D and D-T. The ignition temperature for fusion is shown as the cross over point between energy produced by fusion and radiation losses due to mechanisms such as bremsstrahlung.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

435

Discretionary Allocation Request | Argonne Leadership Computing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Engineering, Aerodynamics Engineering, Fluid-Structure Interaction Engineering, Fluids and Turbulence Fusion Energy, Inertial Fusion Fusion Energy, Magnetic...

436

Long-range correlation studies at the SPS energies in MC model with string fusion  

E-Print Network [OSTI]

Studies of the ultrarelativistic collisions of hadrons and nuclei at different centrality and energy enable to explore the QCD phase diagram in a wide range of temperature and baryon density. Long-range correlation studies are considered as a tool, sensitive to the observation of phase transition and the critical point. In the present work, a Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions is applied to heavy and light ion collisions at the cms energy range from a few up to several hundred GeV per nucleon. The model describes the nuclear collisions at the partonic level through interaction of color dipoles and takes into account the effects of string fusion, which can be considered as an alternative to relativistic hydrodynamics way of describing the collective phenomena in heavy-ion collisions. The implementing of both the string fusion and the finite rapidity length of strings allowed to consider the particle production at non-zero baryochemical potential. We calculated th...

Kovalenko, Vladimir

2015-01-01T23:59:59.000Z

437

First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions  

E-Print Network [OSTI]

. Wilks,2 A. Greenwood,4 and A. Nikroo4 1 Plasma Science and Fusion Center, Massachusetts Institute, California 94550, USA 3 Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3 He gas

438

To be presented at the Eighth Topical Meeting on Technology of Fusion Energy, Salt Lake City, UT,October 9-13, 1988.  

E-Print Network [OSTI]

To be presented at the Eighth Topical Meeting on Technology of Fusion Energy, Salt Lake City, UT fc rt,^ O U. S. Government purposes. *Work supported by the Department of Energy, Office of Fusion few microns (2 2 microns) to avoid sticking problems on the cold surfaces of the heat exchanger

Harilal, S. S.

439

G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 -21 October 2006 -Chengdu, China -paper TH/P6-4 1 Particle Simulation Analysis of  

E-Print Network [OSTI]

G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 - 21 October 2006 - Chengdu, China - paper TH Agency, Naka, Ibaraki 311-0193, Japan #12;G. Vlad et al. 21st IAEA Fusion Energy Conference, 16 - 21 an interpretation of the observed phenomenology based on nonlinear particle simulations. #12;G. Vlad et al. 21st

Vlad, Gregorio

440

Bemerkungen zur "kalten Fusion"  

E-Print Network [OSTI]

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bemerkungen zur "kalten Fusion"  

E-Print Network [OSTI]

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

442

Global climatology of near-inertial current characteristics from Lagrangian observations  

E-Print Network [OSTI]

in the deep-ocean are tides and wind-stress fluctuations. The global energy flux to the deep- ocean mixing- inertial current amplitude at 15m depth is $10 cm s?1 corresponding to mixed-layer inertial energies/NCEP blended wind product is too energetic in the tropics and not enough at high latitudes. These discrepancies

443

Direct-Drive Inerital Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition  

SciTech Connect (OSTI)

Significant theoretical and experimental progress continues to be made at the University of Rocheter's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion enery power plant.

McCrory, R.L.; Regan, S.P.; Loucks, S.J.; Meyerhofer, D.D.; Skupsky, S.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Edgell, D.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Igumenshchev, I.V.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Marciante, J.; Marozas, J.A.; Marshall, F.J.; Maximov, A.V.; McKenty, P.W.; Myatt, J.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J.D.

2005-10-07T23:59:59.000Z

444

Presented by Information Fusion  

E-Print Network [OSTI]

Presented by Information Fusion: Science and Engineering of Combining Information from Multiple's Office of Science #12;2 Managed by UT-Battelle for the U.S. Department of Energy Rao_InfoFusion_SC10 Information Fusion at ORNL � ORNL Instrumental in formulating and fostering this multi-disciplinary area

445

Dynamics of Fusion in Plasmas  

Science Journals Connector (OSTI)

......gaining energy from nuclear fusion reactions using different...energy is by means of nuclear fusion reactions. Such reactions...from time to time some nuclear fusion occurs and energy is...more energy output than input, the and/or must......

A. Bonasera

2004-02-01T23:59:59.000Z

446

Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program  

SciTech Connect (OSTI)

This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

Siemon, R.E. (comp.)

1981-03-01T23:59:59.000Z

447

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

448

Antimatter induced fusion and thermonuclear explosions  

E-Print Network [OSTI]

The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. In the second part, the technologies for producing antiprotons with high energy accelerator systems and the means for manipulating and storing microgram amounts of antihydrogen are examined. While there seems to be no theoretical obstacles to the production of 10^{18} antiprotons per day (the amount required for triggering one thermonuclear bomb), the construction of such a plant involves several techniques which are between 3 and 4 orders of magnitude away from present day technology.

Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

1987-01-01T23:59:59.000Z

449

Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009  

SciTech Connect (OSTI)

Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

None

2009-06-08T23:59:59.000Z

450

World population and energy demand growth: the potential role of fusion energy in an efficient world  

Science Journals Connector (OSTI)

...substantial amounts of nuclear and solar energy to meet their long-term needs...substantial amounts of nuclear and solar energy to meet their long-term needs...use must be made of nuclear and solar energies. Both sources have the advantage...

1999-01-01T23:59:59.000Z

451

Cryogenic DT and D2 targets for inertial confinement fusiona... T. C. Sangster,b  

E-Print Network [OSTI]

designs for ignition--capsules directly il- luminated by the laser direct drive3 and capsules driven. Smalyuk, J. M. Soures, C. Stoeckl, and B. Yaakobi Laboratory for Laser Energetics, University of Rochester 26 April 2007 Ignition target designs for inertial confinement fusion on the National Ignition

452

Paths to fusion energy The next 30 years, the next 10 years  

E-Print Network [OSTI]

Facility ITER Demonstra9on Power Plant Base Research Program Plasma confinement Plasma confinement research program #12;Issues for a fusion roadmap · Trade

453

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S727S734 doi:10.1088/0029-5515/47/10/S20  

E-Print Network [OSTI]

in the recent years of fusion plasma physics research. The resonant excitations of SAW modes in toroidal plasmas

Zonca, Fulvio

454

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network [OSTI]

MIT (Fusion Alcator C-Mod) Paul Henderson, PPPL (Fusion PPPLNetworking, PPPL) Daniel Hitchcock, DOE/SC/ASCR (ASCR

Dart, Eli

2008-01-01T23:59:59.000Z

455

Laser Fusion: The Uncertain Road to Ignition  

Science Journals Connector (OSTI)

In early 2014, the U.S. National Ignition Facility announced that it had achieved a fusion reaction that produced net positive energy. Fusion scientists have applauded that...

Rose, Melinda

2014-01-01T23:59:59.000Z

456

IEEE thirteenth symposium on fusion engineering  

SciTech Connect (OSTI)

This report contains papers of the following topics on fusion engineering: magnet engineering; blanket engineering; electric power control; plasma engineering; vacuum systems and vessels; diagnostic systems; controls, instrumentation, and data acquisition; heating and current drive; next generation devices; health and safety; magnet materials and insulation; quality assurance and reliability; electrical generators; divertors and plasma-facing components; power systems; tritium; and inertial confinement fusion. These papers have been procedure and cataloged separately. (LSP)

Lubell, M.S.; Nestor, M.B.; Vaughan, S.F. (eds.)

1989-01-01T23:59:59.000Z

457

IEEE thirteenth symposium on fusion engineering  

SciTech Connect (OSTI)

This report contains papers of the following topics on fusion engineering: magnetic engineering; blanket engineering; plasma engineering; vacuum systems and vessels; controls, instrumentation, and data acquisition; heating and current drive; health and safety; magnet materials and insulation; quality assurance and reliability; electrical generators; divertors and plasma-facing components; power systems; tritium; inertial confinement fusion; plasma fueling; cryogenics; commercial reactors; shielding; and design and performance. (LSP)

Lubell, M.S.; Nestor, M.B.; Vaughan, S.F. (eds.)

1989-01-01T23:59:59.000Z

458

Annual Report of the EURATOM/CCFE Fusion Programme 2010/11 1 Executive Summary  

E-Print Network [OSTI]

types of "magnetic bottle", in particular stellarators. In a very different approach, "inertial fusionAnnual Report of the EURATOM/CCFE Fusion Programme 2010/11 1 Executive Summary 1.1 OVERVIEW This report describes the work of the EURATOM/CCFE fusion Association from April 2010 to March 2011. Research

459

ROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL REACTOR  

E-Print Network [OSTI]

Rle de lnergie de fusion dans la production nergtique du 21 e sicle et stratgie de dveloppement avec le racteur thermonuclaire international ITER

Kikuchi Mitsuru

460

Fusion Power Associates 34th Annual Meeting  

E-Print Network [OSTI]

for Inertial Confinement Fusion R. Betti and D. D. Meyerhofer Departments of Mechanical Engineering and Physics us to do that? Betti et al Phys. Plasmas 17, 058102 (2010) Chang et al, Phys. Rev. Lett 104, 135002 (2010) Zhou-Betti, Phys. Plasmas 15, 102707 (2008) Can't do it Can't do it #12;Increasing the IFAR

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Inertial measurement unit using rotatable MEMS sensors  

DOE Patents [OSTI]

A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

Kohler, Stewart M. (Albuquerque, NM); Allen, James J. (Albuquerque, NM)

2007-05-01T23:59:59.000Z

462

Generalized Nonlinear Balance Criteria and Inertial Stability  

Science Journals Connector (OSTI)

The connections between the concept of nonlinear balance and the classical criterion of inertial stability are explored in the context of historical work on this subject. New analytic results are derived establishing that ellipticity and inertial ...

John A. Knox

1997-04-01T23:59:59.000Z

463

Low-Energy Fusion-Fission Dynamics of Heavy Nuclear Systems  

SciTech Connect (OSTI)

A new approach is proposed for a unified description of strongly coupled deep-inelastic (DI) scattering, fusion, fission, and quasi-fission (QF) processes of heavy ion collisions. A unified driving-potential and a unified set of dynamic Langevin-type equations of motion are used in this approach. This makes it possible to perform a full (continuous) time analysis of the evolution of heavy nuclear systems, starting from the approaching stage, moving up to the formation of the compound nucleus or emerging into two final fragments. The calculated mass, charge, energy and angular distributions of the reaction products agree well with the corresponding experimental data for heavy and superheavy nuclear systems. Collisions of very heavy nuclei (such as 238U+248Cm) are investigated as an alternative way for production of superheavy elements. Large charge and mass transfer was found in these reactions due to the inverse (anti-symmetrizing) quasi-fission process leading to formation of surviving superheavy long-lived neutron-rich nuclei.

Zagrebaev, Valery [Flerov Laboratory of Nuclear Reaction, JINR, Dubna, 141980, Moscow region (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.W. Goethe-Universitaet, Frankfurt (Germany)

2006-08-14T23:59:59.000Z

464

Breakthrough: Neutron Science for the Fusion Mission  

SciTech Connect (OSTI)

How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

McGreevy, Robert

2012-04-24T23:59:59.000Z

465

Cold fusion lab dies, but fusion research goes on  

Science Journals Connector (OSTI)

Cold fusion lab dies, but fusion research goes on ... that deuterium nuclei can fuse at or near room temperature inside a metal lattice to produce useful energy, is an idea that refuses to die, despite its rejection by mainstream scientists. ...

1991-07-01T23:59:59.000Z

466

Stochastic semi-classical description of fusion at near-barrier energies  

SciTech Connect (OSTI)

Fusion reactions of heavy ions are investigated by employing a simple stochastic semi-classical model, which includes coupling between the relative motion and low frequency collective surface modes of colliding ions similarly to the quantal coupled-channels description. The quantal effect enters into the calculation through the initial zero-point fluctuations of the surface vibrations. A good agreement with results of coupled-channels calculations as well as experimental data is obtained for fusion cross sections of Ni isotopes. The internal excitations in nonfusing events as well as the fusion time are investigated.

Ayik, Sakir [Physics Department, Tennessee Technological University, Cookville, Tennessee 38505 (United States); Yilmaz, Bulent [Physics Department, Ankara University, TR-06100 Ankara (Turkey); Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France); Lacroix, Denis [Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

2010-03-15T23:59:59.000Z

467

Fire-protection research for energy technology: FY 80 year-end report. [For fusion energy experiments and other energy research  

SciTech Connect (OSTI)

This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

1981-05-26T23:59:59.000Z

468

Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion V. A. Smalyuk, R. Betti,* J. A. Delettrez, V. Yu. Glebov, D. D. Meyerhofer,* P. B. Radha, S. P. Regan, T. C. Sangster,  

E-Print Network [OSTI]

with overlapped laser beams. To ignite DT fuel on the National Ignition Facility (NIF) [2] with a laser energy. Sangster, J. Sanz, W. Seka, C. Stoeckl, and B. Yaakobi Laboratory for Laser Energetics, University-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators

469

PPPL to launch major upgrade of key fusion energy test facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the next stage of its mission to chart an attractive course for the development of nuclear fusion as a clean, safe and abundant fuel for generating electricity. The project will...

470

Fusion Energy Sciences Priorities Over the Next 1020 years C. E. Kessel, PPPL  

E-Print Network [OSTI]

of ITER, and the subsequent pursuit of a demonstration power plant (DEMO). The US fusion program has, simply because we have virtually no experimental database on which to design, construct and operate

471

Radiative energy exhaust by sputtered and seeded impurities in fusion reactor  

Science Journals Connector (OSTI)

The combine effect of the seeded and sputtered impurities on the power load to the divertor plate and operation of fusion reactor is investigated in the paper. Since the ... temperature). The steady states of ITE...

R. Stankiewicz

2006-10-01T23:59:59.000Z

472

Fusion-energy reaction 3H(d,?)n at low energies  

Science Journals Connector (OSTI)

We have extended our past measurements of the H2(t,?)n reaction near the low-energy (3/2)+ resonance by measuring eight more data points over the lab deuteron energy range 80116 keV. This was accomplished by bombarding a tritium gas target with deuterons, in contrast to the previous measurements in which a deuterium gas target was bombarded with tritons. The present data are accurate to 1.6%. The results of including the present data in a simple two-channel, two-level, R-matrix analysis and also in a large three-channel, multilevel, R-matrix analysis are presented. The resonance is characterized by giving the S-matrix poles from the R-matrix analyses. Of interest is the discovery that both analyses give two resonance poles on different (unphysical) Riemann sheets, one of them being a so-called shadow pole. This is the first experimental observation of a shadow pole in nuclear and particle physics. Maxwellian reactivities up to a plasma temperature of 20 keV are presented.

Ronald E. Brown; Nelson Jarmie; G. M. Hale

1987-06-01T23:59:59.000Z

473

Vlasov simulations of kinetic enhancement of Raman backscatter in laser fusion plasmas  

E-Print Network [OSTI]

Stimulated Raman scattering (SRS) is studied in plasmas relevant to inertial confinement fusion (ICF). The Eulerian Vlasov-Maxwell code ELVIS was developed and run for this purpose. Plasma waves are heavily Landau damped ...

Strozzi, D. J. (David J.)

2006-01-01T23:59:59.000Z

474

Workshop on Accelerators for Heavy Ion Fusion Summary Report of the Workshop  

E-Print Network [OSTI]

Ion Inertial Fusion: Accelerator and Target Considerations,i.e. , injector/source, accelerator and target/chamber that10:20am - 11am "The RF accelerator approach to HIF" - P.

Seidl, P.A.

2013-01-01T23:59:59.000Z

475

Reviving Cold Fusion  

Science Journals Connector (OSTI)

Reviving Cold Fusion ... In March 1989, electrochemists B. Stanley Pons and Martin Fleischmann announced at a press conference at the University of Utah that they had tamed the power of nuclear fusion in a benchtop electrolysis experiment. ... The discovery of cold fusion, as it came to be called, held the promise of endless amounts of pollution-free energy being generated from the natural deuterium in water. ...

STEPHEN K. RITTER

2012-05-14T23:59:59.000Z

476

Effects of nuclear forces in muon-catalyzed fusion: Nonadiabatic treatment of energy shifts and fusion rates for S states of td?  

Science Journals Connector (OSTI)

The positions and widths of the J=0 energy levels of the td? molecular ion have been computed including the effects of strong nuclear interaction on the td? wave function. The applied formalism incorporates the strong force into the nonadiabatic treatment of td? by means of a nuclear surface boundary condition derived from the latest R-matrix parametrization of nuclear scattering data. Accurate basis-set expansions of the td? wave functions have been used, including basis functions containing inverse powers of the t-d distance. Relative to the results of adiabatic calculations employing the same nuclear input, the computed energy shifts and widths are reduced by 4% and 8% for the ground and excited states, respectively. Our results are qualitatively consistent with the results of recent nonadiabatic optical potential calculations. The fusion rates derived from our calculations, 1.251012 and 1.051012 s-1 for the ground and excited states, respectively, are about 15% larger than those given by the standard formula that factorizes the nuclear and molecular effects.

K. Szalewicz; B. Jeziorski; A. Scrinzi; X. Zhao; R. Moszynski; W. Kolos; P. Froelich; H. J. Monkhorst; A. Velenik

1990-10-01T23:59:59.000Z

477

FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008  

E-Print Network [OSTI]

to build a demonstration fusion reactor following successfulthe worlds first reactor scale fusion device located infull-scale reactor modeling for the U.S. fusion program and

Dart, Eli

2008-01-01T23:59:59.000Z

478

Stimulated scattering in laser driven fusion and high energy density physics experiments  

SciTech Connect (OSTI)

In laser driven fusion and high energy density physics experiments, one often encounters a k?{sub D} range of 0.15?

Yin, L., E-mail: lyin@lanl.gov; Albright, B. J.; Rose, H. A.; Montgomery, D. S.; Kline, J. L.; Finnegan, S. M.; Bergen, B.; Bowers, K. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kirkwood, R. K.; Milovich, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-09-15T23:59:59.000Z

479

Splenogonadal Fusion  

Science Journals Connector (OSTI)

Splenogonadal fusion is a very rare congenital malformation. It is characterized by fusion of the spleen and gonad. The first case of splenogonadal fusion was described by Bostroem in 1883. There are two types: c...

Ahmed H. Al-Salem

2014-01-01T23:59:59.000Z

480

Type Fusion  

Science Journals Connector (OSTI)

Fusion is an indispensable tool in the arsenal ... Less well-known, but equally valuable is type fusion, which states conditions for fusing an application ... algebra. We provide a novel proof of type fusion base...

Ralf Hinze

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "inertial fusion energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fusion utility in the Knudsen layer  

SciTech Connect (OSTI)

In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

Davidovits, Seth; Fisch, Nathaniel J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544 (United States)

2014-09-15T23:59:59.000Z

482

A Virtualized Computing Platform For Fusion Control Systems  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. 2,500 servers, 400 network devices and 700 terabytes of networked attached storage provide the foundation for NIF's Integrated Computer Control System (ICCS) and Experimental Data Archive. This talk discusses the rationale & benefits for server virtualization in the context of an operational experimental facility, the requirements discovery process used by the NIF teams to establish evaluation criteria for virtualization alternatives, the processes and procedures defined to enable virtualization of servers in a timeframe that did not delay the execution of experimental campaigns and the lessons the NIF teams learned along the way. The virtualization architecture ultimately selected for ICCS is based on the Open Source Xen computing platform and 802.1Q open networking standards. The specific server and network configurations needed to ensure performance and high availability of the control system infrastructure will be discussed.

Frazier, T; Adams, P; Fisher, J; Talbot, A

2011-03-18T23:59:59.000Z

483

The National Ignition Facility: enabling fusion ignition for the 21st century  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, when completed in 2008, will contain a 192-beam, 1.8?MJ, 500?TW, ultraviolet laser system together with a 10?m diameter target chamber and room for 100 diagnostics. NIF is housed in a 26?000?m2 environmentally controlled building and is the world's largest and most energetic laser experimental system. NIF provides a scientific centre for the study of inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures and pressures approaching 108?K and 1011?bar, respectively, conditions that exist naturally only in the interior of stars and planets. NIF is currently configured with four laser beams activated in late 2002. These beams are being regularly used for laser performance and physics experiments, and to date nearly 250 system shots have been conducted. NIF's laser beams have generated 106?kJ in 23?ns pulses of infrared light and over 16?kJ in 3.5?ns pulses at the third harmonic (351?nm). A number of target experimental systems are being commissioned in support of experimental campaigns. This paper provides a detailed look at the NIF laser systems, laser and optical performance, and results from laser commissioning shots. We also discuss NIF's high-energy density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

George H. Miller; Edward I. Moses; Craig R. Wuest

2004-01-01T23:59:59.000Z

484

Score Fusion and Decision Fusion  

Science Journals Connector (OSTI)

Score fusion is a paradigm, which calculates similarity scores ... then combines the two scores according to a fusion formula, e.g., the overall score ... mean of the two modality scores. Decision fusion is a par...

2009-01-01T23:59:59.000Z

485

Focus on Fusion...  

Science Journals Connector (OSTI)

Focus on Fusion... ... As 1957 ended, the British press set off a thermonuclear uproar, blasted the U. S. Atomic Energy Commission for assertedly withholding information on British breakthroughs in controlled thermonuclear reactions. ... However, last year did see a breakthrough of sorts as thermonuclear information managed to clear the secrecy hurdle at last; by fall, fusion research was completely declassified. ...

1959-01-05T23:59:59.000Z

486

Fusion of Polarized Deuterons  

Science Journals Connector (OSTI)

The nuclear physics aspects of the d-d reactions initiated by low-energy polarized deuterons are discussed. It is shown that the use of polarized deuterons does not suppress the fusion of deuterons with deuterons and hence does not suppress neutron production. Therefore a recently proposed "neutron-free" d-He3 fusion reactor is unlikely to work.

H. M. Hofmann and D. Fick

1984-06-04T23:59:59.000Z

487