Sample records for inertial fusion energy

  1. LBNL perspective on inertial fusion energy

    E-Print Network [OSTI]

    Bangerter, Roger O.

    1995-01-01T23:59:59.000Z

    LBNL Perspective on Inertial Fusion Energy Roger Bangerter1990) and the last Fusion Energy Advisory Committee (1993)year 2005, the Inertial Fusion Energy Program must grow to

  2. Progress in heavy ion drivers inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    ION DRIVEN INERTIAL FUSION ENERGY: FROM SCALED EXPERIMENTSThe promise of inertial fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focus

  3. Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual

    E-Print Network [OSTI]

    82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z-pinch;10 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z-pinch IFE Linear1 Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual Meeting and Symposium December 4

  4. Laser Inertial Fusion Energy Control Systems

    SciTech Connect (OSTI)

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18T23:59:59.000Z

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  5. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01T23:59:59.000Z

    PHYSICS AND INERTIAL FUSION ENERGY J. J. Barnard 1 , J.dense matter and inertial fusion energy related beam-targetas drivers for inertial fusion energy (IFE), for their high

  6. Report of the FESAC Inertial Fusion Energy Review Panel

    SciTech Connect (OSTI)

    Sheffield, J.; Abdou, M.; Briggs, R. [and others

    1996-12-01T23:59:59.000Z

    This article is a response to the Office of Energy Research of the US DOE from the Fusion Energy Advisory Committee on a review of the Inertial Fusion Energy Program. This response was solicited in response to one of the suggestions made as part of the advisory report `A Restructured Fusion Energy Sciences Program` submitted to the US DOE in early 1996. The charge directed that the committee provide an assessment of the content of an inertial fusion energy program that advances the scientific elements of the program and is consistent with the Fusion Energy Sciences Program, and budget projections over the next several years.

  7. U.S. Heavy Ion Beam Science towards inertial fusion energy

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    Science towards Inertial Fusion Energy B.G. Logan 1), D.activities for inertial fusion energy at Lawrence LivermoreIon Fusion in the U.S. Fusion Energy Sciences Program [25].

  8. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01T23:59:59.000Z

    A. Moses, “Inertial fusion energy target output and chamberA. J. Schmitt, et al. , “Fusion energy research with lasers,o?s for inertial fusion energy power plants,” presented at

  9. Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    participation in the of the Fusion Energy Sciences Program of the Office of International Thermonuclear ReactorJournal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review. S. Department of Energy Fusion Energy Advisory Committee (FEAC) review of its Inertial Fusion Energy

  10. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect (OSTI)

    Meier, W.R.; Logan, G.

    1996-06-11T23:59:59.000Z

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  11. Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmasa...

    E-Print Network [OSTI]

    Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion more energy and the backlight must be bright enough to overwhelm the plasma self

  12. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-Laser Inertial Fusion-based Energy 2.1 Potentialaspects of magnetic fusion energy, September 1989. 1.1.3.2 [

  13. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30T23:59:59.000Z

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  14. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    E-Print Network [OSTI]

    1998-01-01T23:59:59.000Z

    C. L . Olson, J. Fusion Energy 1, 309 (1982). "FilamentationHeavy Ion Driven Inertial Fusion Energy January 30, 1998 W.Agency Sixteenth I A E A Fusion Energy Conference (Montreal,

  15. Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

  16. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01T23:59:59.000Z

    MATTER AND INERTIAL FUSION ENERGY APPLICATIONS ON NDCX-II Byof Science, Office of Fusion Energy Sciences, of the U.S.matter and inertial fusion energy applications on NDCX-II J.

  17. Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Ion beam heated target simulations for warm dense matter physics and inertial fusion energy$ J Keywords: Ion beam heating Warm dense matter Inertial fusion energy targets Hydrodynamic simulation a b fusion energy-related beam-target coupling. Simulations of various target materials (including solids

  18. Fusion Energy Advisory Committee (FEAC): Panel 7 report on Inertial Fusion Energy

    SciTech Connect (OSTI)

    Davidson, R.; Ripin, B.; Abdou, M.; Baldwin, D.E.; Commisso, R.; Dean, S.O.; Herrmannsfeldt, W.; Lee, E.; Lindl, J.; McCrory, R. [Princeton Univ., NJ (United States)] [and others

    1994-09-01T23:59:59.000Z

    The charge to FEAC Panel 7 on inertial fusion energy (IFE) is encompassed in the four articles of correspondence. To briefly summarize, the scope of the panel`s review and analysis adhered to the following guidelines. (1) Consistent with previous recommendations by the Fusion Policy Advisory Committee (FPAC) and the National Academy of Science (NAS) panel on inertial fusion, the principal focus of FEAC Panel 7`s review and planning activities for next-generation experimental facilities in IFE was limited to heavy ions. (2) The panel considered the three budget cases: $5M, $10M, and $15M annual funding at constant level-of-effort (FY92 dollars), with a time horizon of about five years. (3) While limiting the analysis of next-generation experimental facilities to heavy ions, the panel assessed both the induction and rf linac approaches, and factored European plans into its considerations as well. (4) Finally, the panel identified high-priority areas in system studies and supporting IFE technologies, taking into account how IFE can benefit from related activities funded by the Office of Fusion Energy and by Defense Programs. This report presents the technical assessment, findings, and recommendations on inertial fusion energy prepared by FEAC Panel 7.

  19. Suggested Path to Develop Inertial Fusion Energy

    E-Print Network [OSTI]

    #12;As discussed before, our FTF final amp design is modest scale-up of Nike's 60-cm amp. using high performance at modest energy KrF based FTF parameters 0.5 MJ energy @ 5 Hz (e.g. thirty 18-k

  20. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect (OSTI)

    Stelmack, Larry

    2003-11-17T23:59:59.000Z

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  1. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15T23:59:59.000Z

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  2. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01T23:59:59.000Z

    Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

  3. Chamber technology concepts for inertial fusion energy: Three recent examples

    SciTech Connect (OSTI)

    Meier, W.R.; Moir, R.W. [Lawrence Livermore National Lab., CA (United States); Abdou, M.A. [California Univ., Los Angeles, CA (United States)

    1997-02-27T23:59:59.000Z

    The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed.

  4. Chamber and target technology development for inertial fusion energy

    SciTech Connect (OSTI)

    Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

    1999-04-07T23:59:59.000Z

    Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology option. Therefore, in the following description of these specific feasibility issues, we try to strike a balance between narrowing the range of recommended R&D options to minimize cost, and keeping enough R&D options to minimize risk.

  5. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01T23:59:59.000Z

    and technologies for fusion energy with lasers and direct-direct drive inertial fusion energy targets. Report 06-02,Improved Inertial Fusion Energy Chamber Inter-Shot

  6. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    -cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket of the reference blanket. Keywords-Laser fusion; lithium blanket; solid breeder; lithium lead; tritium breedingNeutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M

  7. Utility of the US National Ignition Facility for development of inertial fusion energy

    SciTech Connect (OSTI)

    Logan, B.G.; Anderson, A.T.; Tobin, M.T. [Lawrence Livermore National Lab., CA (United States); Schrock, V.E. [California Univ., Berkeley, CA (United States); Meier, W.R. [Schafer (W.J.) Associates, Inc., Livermore, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Tokheim, R.E. [SRI International, Menlo Park, CA (United States). Poulter Lab.; Abdou, M.A. [California Univ., Los Angeles, CA (United States); Schultz, K.R. [General Atomics, San Diego, CA (United States)

    1994-08-01T23:59:59.000Z

    The demonstration of inertial fusion ignition and gain in the proposed US National Ignition Facility (NIF), along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF), a facility for integrated testing of the technologies needed for inertial fusion-energy (IFE) power plants. A workshop was convened at the University of California, Berkeley on February 22--24, 1994, attended by 61 participants from 17 US organizations, to identify possible NIF experiments relevant to IFE. We considered experiments in four IFE areas: Target physics, target chamber dynamics, fusion power ethnology, and target systems, as defined in the following sections.

  8. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect (OSTI)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01T23:59:59.000Z

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  9. Impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    SciTech Connect (OSTI)

    Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [Univ. of California, Berkeley, CA (United States)

    1996-12-31T23:59:59.000Z

    Sisolak et al. defined two methods for the approximation of pulsed irradiation: the steady-state (SS) and the equivalent steady-state (ESS) methods. Both methods have been shown to greatly simplify the process of calculating radionuclide inventories. However, they are not accurate when applied to magnetic fusion energy (MFF) and inertial fusion energy (IFE) experimental facilities. In the work reported here, an attempt has been made to evaluate the accuracy of the SS and ESS methods as they might be applied to typical MFE and IFE power plants. 18 refs., 6 figs.

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  11. The role of the NIF in the development of inertial fusion energy

    SciTech Connect (OSTI)

    Logan, B.G.

    1995-03-16T23:59:59.000Z

    Recent decisions by DOE to proceed with the National Ignition Facility (NIF) and the first half of the Induction Systems Linac Experiments (ILSE) can provide the scientific basis for inertial fusion ignition and high-repetition heavy-ion driver physics, respectively. Both are critical to Inertial Fusion Energy (IFE). A conceptual design has been completed for a 1.8-MJ, 500-TW, 0.35-{micro}m-solid-state laser system, the NIF. The NIF will demonstrate inertial fusion ignition and gain for national security applications, and for IFE development. It will support science applications using high-power lasers. The demonstration of inertial fusion ignition and gain, along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF) identified in the National Energy Policy Act of 1992. The ETF would provide an integrated testbed for the development and demonstration of the technologies needed for IFE power plants. In addition to target physics of ignition, the NIF will contribute important data on IFE target chamber issues, including neutron damage, activation, target debris clearing, operational experience in many areas prototypical to future IFE power plants, and an opportunity to provide tests of candidate low-cost IFE targets and injection systems. An overview of the NIF design and the target area environments relevant to conducting IFE experiments are described in Section 2. In providing this basic data for IFE, the NIF will provide confidence that an ETF can be successful in the integration of drivers, target chambers, and targets for IFE.

  12. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    aspects of a hybrid fusion-fission energy system called theof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

  13. Inertial fusion: strategy and economic potential

    SciTech Connect (OSTI)

    Nuckolls, J.H.

    1983-01-01T23:59:59.000Z

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity).

  14. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30T23:59:59.000Z

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  15. Energy enhancement for deuteron beam fast ignition of a precompressed inertial confinement fusion target

    SciTech Connect (OSTI)

    Yang Xiaoling; Miley, George H. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Flippo, Kirk A. [P-24 Plasma Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hora, Heinrich [University of New South Wales, Sydney 2052 (Australia)

    2011-03-15T23:59:59.000Z

    Fast Ignition (FI) is recognized as a potentially promising approach to achieve the high-energy-gain target performance needed for commercial inertial confinement fusion. Here we consider deuteron beam driven FI which provides not only the 'hot spot' ignition spark, but also extra ''bonus'' fusion energy through reactions in the target. In this study, we estimate the impact of the added deposition energy due to the fusion reactions occurring, based on calculations using a modified energy multiplication factor F{sub c}. The deuteron beam energy deposition range and time are also evaluated in order to estimate the desired deuteron initial energy. It is shown that an average of 30% extra energy can be gained from deuterons with 1 MeV initial energy and 12% from deuterons with 3 MeV initial energy. These results indicate that the energy benefit of this approach could be significant, but a much more comprehensive calculation is needed to realize a full 3D design for realistic experimental studies.

  16. Summary of Assessment of Prospects for Inertial Fusion Energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...Success Stories Touching The Lives

  17. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01T23:59:59.000Z

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  18. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

  19. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  20. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E I

    2010-12-13T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  1. Recyclable transmission line concept for z-pinch driven inertial fusion energy.

    SciTech Connect (OSTI)

    De Groot, J. S. (University of California, Davis, CA); Olson, Craig Lee; Cochrane, Kyle Robert (Ktech Corporation, Albuquerque, NM); Slutz, Stephen A.; Vesey, Roger Alan; Peterson, Per F. (University of California, Berkeley, CA)

    2003-12-01T23:59:59.000Z

    Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

  2. Achieving competitive excellence in nuclear energy: The threat of proliferation; the challenge of inertial confinement fusion

    SciTech Connect (OSTI)

    Nuckolls, J.H.

    1994-06-01T23:59:59.000Z

    Nuclear energy will have an expanding role in meeting the twenty-first-century challenges of population and economic growth, energy demand, and global warming. These great challenges are non-linearly coupled and incompletely understood. In the complex global system, achieving competitive excellence for nuclear energy is a multi-dimensional challenge. The growth of nuclear energy will be driven by its margin of economic advantage, as well as by threats to energy security and by growing evidence of global warming. At the same time, the deployment of nuclear energy will be inhibited by concerns about nuclear weapons proliferation, nuclear waste and nuclear reactor safety. These drivers and inhibitors are coupled: for example, in the foreseeable future, proliferation in the Middle East may undermine energy security and increase demand for nuclear energy. The Department of Energy`s nuclear weapons laboratories are addressing many of these challenges, including nuclear weapons builddown and nonproliferation, nuclear waste storage and burnup, reactor safety and fuel enrichment, global warming, and the long-range development of fusion energy. Today I will focus on two major program areas at the Lawrence Livermore National Laboratory (LLNL): the proliferation of nuclear weapons and the development of inertial confinement fusion (ICF) energy.

  3. Progress in heavy ion driven inertial fusion energy: From scaledexperiments to the integrated research experiment

    SciTech Connect (OSTI)

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek,F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; deHoon, M.J.L.; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-06-22T23:59:59.000Z

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ({approx}100s Amperesheam) and ion energies ({approx}1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions. and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial Fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

  4. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM substrate, adaptive (deformable) optics, surface tension and low Reynolds number, laminar flow in the film

  5. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect (OSTI)

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24T23:59:59.000Z

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  6. Heat transfer in inertial confinement fusion reactor systems

    SciTech Connect (OSTI)

    Hovingh, J.

    1980-04-23T23:59:59.000Z

    The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

  7. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    Code MFE Magnetic Fusion Energy MOX Mixed Oxide NES Nuclearreprocessing mixed oxide (MOX) fuels, as will be discussedbegun using Mixed ox- ide or MOX fuel as a means of both

  8. PLASMA-PHYSICS-21 Heavy ion driven reactor-size double shell inertial fusion targets*

    E-Print Network [OSTI]

    M. C. Serna Moreno; N. A. Tahir; J. J. López Cela; A. R. Piriz; D. H. H. Hoffmann

    Inertial Confinement Fusion (ICF) is considered as an alternative to Magnetic Confinement Fusion to achieve controlled thermonuclear fusion. The main goal is to exploit the energy released from thermonuclear fusion reactions

  9. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite [General Atomics; Foord, Mark N. [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics; Beg, Farhat N. [University of California, San Diego; Schumacher, Douglass W. [The Ohio State University

    2013-10-31T23:59:59.000Z

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investiga

  10. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept

    SciTech Connect (OSTI)

    Knapp, C. E.; Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-07-15T23:59:59.000Z

    A one-dimensional parameter study of a Magneto-Inertial Fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement Eulerian code (Crestone) are compared to those of a Lagrangian code (LASNEX). These are the first published results using the Crestone and LASNEX codes on the PJMIF concept.

  11. Stability of shocks relating to the shock ignition inertial fusion energy scheme

    SciTech Connect (OSTI)

    Davie, C. J., E-mail: c.davie10@imperial.ac.uk; Bush, I. A.; Evans, R. G. [Imperial College London, London SW7 2AZ (United Kingdom)

    2014-08-15T23:59:59.000Z

    Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

  12. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    SciTech Connect (OSTI)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24T23:59:59.000Z

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0.6 atoms per 14.1 MeV neutron.

  13. Analysis of the energy transport and deposition within the reaction chamber of the prometheus inertial fusion energy reactor

    SciTech Connect (OSTI)

    Eggleston, J.E.; Abdou, M.A.; Tillack, M.S. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    One of the parameters affecting the feasibility of Inertial Fusion Energy (IFE) devices is the number of shots per unit time, i.e. the repetition rate. The repetition rate limits the achievable power that can be obtained from the reactor. To obtain an estimate of the allowable time between shots, a code named RECON was developed to model the response of the reaction chamber to the pellet explosion. This paper discusses how the code treats the thermodynamic response of the cavity gas and models the condensation/evaporation of this vapor to and from the first wall. A large amount of energy from the pellet microexplosion is carried by the pellet debris and the x-rays generated in the fusion reaction. Models of x-ray attenuation and ion slowing down are used to estimate the fraction of the pellet energy that is absorbed in the vapor. A large amount of energy is absorbed into the cavity gas, which causes it to become partially ionized. The ionization complicates the calculation of the temperature, pressure, and the radiative heat transfer from the gas to the first wall. To treat this problem, methods developed by Zel`dovich and Raizer are used in modeling the internal energy and the radiative heat flux. RECON was developed to run with a relatively short computational time, yet accurate enough for conceptual reactor design calculations.

  14. Recent U.S. advances in ion-beam-driven high energy density physics and heavy ion fusion

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    physics and heavy ion fusion energy drivers, including bothoptions towards inertial fusion energy. Acknowledgements:fusion drivers for inertial fusion energy. 1. Introduction A

  15. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

    1984-01-01T23:59:59.000Z

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  16. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

    1987-01-01T23:59:59.000Z

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  17. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01T23:59:59.000Z

    Thermonuclear Experimental Reactor), now being constructed in Caderache, France [5]. In contrast, inertial fusion

  18. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    heavy ion inertial fusion energy. ACKNOWLEDGEMENTS Thisheavy ion inertial fusion energy. These include: neutralizedto drift axially). For fusion energy applications, either

  19. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08T23:59:59.000Z

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  20. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01T23:59:59.000Z

    neutralization on heavy-ion fusion chamber transport,” totechniques for heavy ion fusion chamber transport,” Nucl.liquid heavy-ion fusion target chambers,” Fusion Technol.

  1. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01T23:59:59.000Z

    HIFAN 1830 INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMSAC02-05CH11231. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION467 (1992). [38] R. W. Moir, Fusion Tech. 25, 5 (1994) [39

  2. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    drive targets for inertial fusion energy. 1. Introduction Adensity matter and fusion energy. Previously, experiments inHeavy ion fusion science research for high energy density

  3. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    it is unlikely that nuclear fission power plants willIn the case of nuclear fission reactions, the fundamentalaspects of nuclear fusion and fission. This approach, termed

  4. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    SciTech Connect (OSTI)

    Barnard, J J; Armijo, J; Bieniosek, F M; Friedman, A; Hay, M J; Henestroza, E; Logan, B G; More, R M; Ni, P A; Perkins, L J; Ng, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2010-03-19T23:59:59.000Z

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a {approx}3 MeV, {approx}30 A Li{sup +} ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The purpose of NDCX II is to carry out experimental studies of material in the warm dense matter regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. In preparation for this new machine, we have carried out hydrodynamic simulations of ion-beam-heated, metallic solid targets, connecting quantities related to observables, such as brightness temperature and expansion velocity at the critical frequency, with the simulated fluid density, temperature, and velocity. We examine how these quantities depend on two commonly used equations of state.

  5. Tutorial on the Physics of Inertial Confinement Fusion for energy applications

    E-Print Network [OSTI]

    Plasma += EEE n nuclear output thermal inputE If 's slow-down in the plasma, they self-heat the plasma E the level of self-heating of the fusion plasma. A better physics parameter is Q thermal inputE E Q = 5 Q Q instability (ignition) is triggered when the alpha self-heating exceeds all the energy losses in the hot spot

  6. Status and Prospects of the Fast Ignition Inertial Fusion Concept

    SciTech Connect (OSTI)

    Key, M H

    2006-11-15T23:59:59.000Z

    Fast ignition is an alternate concept in inertial confinement fusion, which has the potential for easier ignition and greater energy multiplication. If realized it could improve the prospects for inertial fusion energy. It poses stimulating challenges in science and technology and the research is approaching a key stage in which the feasibility of fast ignition will be determined. This review covers the concepts, the state of the science and technology, the near term prospects and the challenges and risks involved in demonstrating high gain fast ignition.

  7. Economic Evaluation of Electrical Power Generation Using Laser Inertial Fusion Energy (LIFE)

    E-Print Network [OSTI]

    Tm Anklam; Wayne Meier; Al Erl; Robin Miles; Aaron Simon

    2009-01-01T23:59:59.000Z

    With the completion of the National Ignition Facility (NIF) and upcoming ignition experiments, there is renewed interest in laser fusion-fission hybrids and pure fusion systems for base load power generation. An advantage of a laser fusion based system is that it would produce copious neutrons ( ~ 1.8x10 20 /s for a 500 MW fusion source). This opens the door to hybrid systems with once through, high burn-up, closed fuel cycles. With abundant fusion neutrons, only modest fission gain (5 to 10) is needed for power production. Depleted uranium can be used as the fission fuel, effectively eliminating the need for uranium mining and enrichment. With high burn up, a hybrid would generate only 5 % to 10% the volume of high-level nuclear waste per kilowatt hour that a once through light water reactor (LWR) does. Reprocessing is no longer needed to close the fuel cycle as the spent fuel can, after interim cooling, go directly to geologic disposal. While the depleted uranium fuel cycle offers advantages of simplicity and proliferation avoidance, it has the most challenging fuel lifetime requirements. Fissile fuel such as plutonium, or plutonium and minor actinides separated from spent nuclear fuel, would have roughly twice the fission gain and incur only about 25 % of the radiation damage to reach the same burn up level as depleted uranium. These missions are interesting in their own right and also provide an opportunity for early market entry of laser fusion based energy sources. A third fuel cycle option is to burn spent fuel directly, without prior separation of the plutonium and minor actinides. The neutronic and economic performance of this fuel cycle is very similar to the depleted uranium system. The primary difference is the need to fabricate new LIFE fuel from spent LWR fuel. The advantage of this fuel cycle is that it would burn the residual actinides in spent nuclear fuel, greatly reducing long term radio-toxicity and heat load, while avoiding the need to chemically separate spent LWR fuel.

  8. The impact of pulsed irradiation upon neutron activation calculations for inertial and magnetic fusion energy power plants

    SciTech Connect (OSTI)

    Latkowski, J.F. [Lawrence Livermore National Lab., CA (United States); Sanz, J. [Universidad Politecnica de Madrid (Spain); Vujic, J.L. [California Univ., Berkeley, CA (United States)

    1996-06-26T23:59:59.000Z

    Inertial fusion energy (IFE) and magnetic fusion energy (MFE) power plants will probably operate in a pulsed mode. The two different schemes, however, will have quite different time periods. Typical repetition rates for IFE power plants will be 1-5 Hz. MFE power plants will ramp up in current for about 1 hour, shut down for several minutes, and repeat the process. Traditionally, activation calculations for IFE and MFE power plants have assumed continuous operation and used either the ``steady state`` (SS) or ``equivalent steady state`` (ESS) approximations. It has been suggested recently that the SS and ESS methods may not yield accurate results for all radionuclides of interest. The present work expands that of Sisolak, et al. by applying their formulae to conditions which might be experienced in typical IFE and MFE power plants. In addition, complicated, multi-step reaction/decay chains are analyzed using an upgraded version of the ACAB radionuclide generation/depletion code. Our results indicate that the SS method is suitable for application to MFE power plant conditions. We also find that the ESS method generates acceptable results for radionuclides with half-lives more than a factor of three greater than the time between pulses. For components that are subject to 0.05 Hz (or more frequent) irradiation (such as coolant), use of the ESS method is recommended. For components or materials that are subject to less frequent irradiation (such as high-Z target materials), pulsed irradiation calculations should be used.

  9. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .microparticles. Annals of Nuclear Energy, [96] F.B. Brown,In Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    and Hydroelectric 1.1.3 Nuclear Energy . . . . . . . . .Gain GNEP Global Nuclear Energy Partnership HEU HighlyIn Progress in Nuclear Energy, 17. Pergamon Press, 1986.

  11. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    2.1.1 Energy Production . . . . . . . . . 2.1.2 Spentof Figures Current World Energy Production Broken Down byCurrent US Energy Production Broken Down by

  12. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Murphy, T.J.

    1997-11-01T23:59:59.000Z

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  13. Progress in Direct-Drive Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Meyerhofer,D.D.

    2004-12-17T23:59:59.000Z

    Recent progress in direct-drive inertial confinement fusion research at LLE using the 60-beam, 30-kJUV OMEGA laser system and cryogenic target capability to perform ignition-scaled implosions will be reported. In addition, a new high-energy (2.6-kJ) petawatt capability is currently under construction.

  14. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    including nuclear waste incineration and energy production.occurs, a ramp-down and incineration period begins. At thisduring the ramp up and incineration phases of a thermal

  15. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29T23:59:59.000Z

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  16. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect (OSTI)

    Gorensek, M

    2006-11-03T23:59:59.000Z

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  17. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23T23:59:59.000Z

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to diver

  18. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31T23:59:59.000Z

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  19. Lasers and Inertial Confinement Fusion in the United States

    E-Print Network [OSTI]

    thermonuclear device began the Inertial Confinement Fusion Era I1860 · StanislawUlamandEdward Teller developedLasers and Inertial Confinement Fusion in the United States R. L. McCrory Director and Vice Provost confinement fusion (ICF) has grown as successively larger lasers have been built I1859 · The

  20. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28T23:59:59.000Z

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  1. Inertial Confinement Fusion Ignition and High Yield Campaign The Inertial Confinement Fusion Ignition and High Yield (ICF) Campaign supports the U.S. Department of Energy's (DOE)

    E-Print Network [OSTI]

    , and effective nuclear weapons stockpile without underground testing. It supports stockpile assessment in simulations is essential to having confidence in them. More than 99 percent of the energy from a nuclear criticality is attained. The ICF program operates and conducts experiments in facilities that can create

  2. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-01-15T23:59:59.000Z

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  3. Inertial confinement fusion method producing line source radiation fluence

    DOE Patents [OSTI]

    Rose, Ronald P. (Peters Township, Washington County, PA)

    1984-01-01T23:59:59.000Z

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  4. An Assessment of Inertial Confinement Fusion Target Physics A Panel on Fusion Target Physics ("the Panel") will serve as a technical resource to the

    E-Print Network [OSTI]

    An Assessment of Inertial Confinement Fusion Target Physics A Panel on Fusion Target Physics ("the Panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the Physics will prepare a report that will assess the current performance of fusion targets associated

  5. National Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems

    E-Print Network [OSTI]

    · Methane Hydrates Energy Storage · Nanoscale Electrode Materials for Batteries Energy Conversion potential to meet the IFE requirements Electra KrF Laser (NRL) = 248 nm (fundamental) Gas Laser Mercury target performance #12;What is a Krypton Fluoride (KrF) Laser? · Gas Laser--Excimer (Excited Dimer

  6. Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )

    E-Print Network [OSTI]

    National Security, LLC for the DOE/NNSA Slide 1 LA-UR-11-01898 #12;Some Observations An economic for the DOE/NNSA 2 #12;Magneto-inertial fusion: Part of a plan B · May allow more efficient drivers, lower Operated by the Los Alamos National Security, LLC for the DOE/NNSA Slide 3 #12;A Wide Range of Driver

  7. Improving Particle Confinement in Inertial Electrostatic Fusion for Spacecraft Power and

    E-Print Network [OSTI]

    Improving Particle Confinement in Inertial Electrostatic Fusion for Spacecraft Power and Propulsion Electrostatic Fusion for Spacecraft Power and Propulsion By Carl C. Dietrich Fusion energy is attractive for use for power supplies and magnets, in the case of magnetic confinement, or capacitors and lasers in the case

  8. Tertiary proton diagnostics in future inertial confinement fusion experiments

    E-Print Network [OSTI]

    Tertiary proton diagnostics in future inertial confinement fusion experiments S. Cremera) and C. P energetic up to 31 MeV tertiary protons produced during the final stage of inertial confinement fusion the elastic scattering of 14.1 MeV neutrons, is a source of very energetic protons capable of escaping from

  9. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect (OSTI)

    Donovan, D. C. [Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550 (United States); Boris, D. R. [Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington, DC 20375 (United States); Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Piefer, G. R. [Phoenix Nuclear Labs, 2555 Industrial Drive, Madison, Wisconsin 53713 (United States)

    2013-03-15T23:59:59.000Z

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  10. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01T23:59:59.000Z

    these desiderata. ENERGY PRODUCTION VIA INERTIAL CONFINEMENTICF) to lead to net energy production one must as a minimum:

  11. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    E-Print Network [OSTI]

    Kawata, Shigeo

    2015-01-01T23:59:59.000Z

    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  12. Next-generation laser for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Marshall, C.D.; Deach, R.J.; Bibeau, C. [and others

    1997-09-29T23:59:59.000Z

    We report on the progress in developing and building the Mercury laser system as the first in a series of a new generation of diode- pumped solid-state Inertial Confinement Fusion (ICF) lasers at Lawrence Livermore National Laboratory (LLNL). Mercury will be the first integrated demonstration of a scalable laser architecture compatible with advanced high energy density (HED) physics applications. Primary performance goals include 10% efficiencies at 10 Hz and a 1-10 ns pulse with 1 omega energies of 100 J and with 2 omega/3 omega frequency conversion.

  13. ARIES Inertial Fusion Chamber Assessment M. S. Tillack*, F. Najmabadi, L. A. El-Guebaly, D. Goodin, W. R. Meier,

    E-Print Network [OSTI]

    California at San Diego, University of

    -coupled indirect drive and fast ignition. Arguably, inertial fusion looks significantly more credible and more components (i.e., final optics, final focus magnets), chamber physics (particle and radiation transport, gas al., "Inertial Fusion Energy Reactor Design Studies: Prometheus Final Report," MDC 92E0008 (DOE

  14. Inertial Confinement Fusion | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default SignInertial

  15. Progress in the pulsed power Inertial Confinement Fusion program

    SciTech Connect (OSTI)

    Quintenz, J.P.; Matzen, M.K.; Mehlhorn, T.A. [and others

    1996-12-01T23:59:59.000Z

    Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that {approx}10 MJ of driver energy must be deposited within the ICF target in order to deposit {approx}1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm{sup 3}), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will be described.

  16. Inertial Fusion Program. Progress report, July 1-December 31, 1979

    SciTech Connect (OSTI)

    Skoberne, F. (comp.) [comp.

    1981-10-01T23:59:59.000Z

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements in the Los Alamos National Laboratory eight-beam Helios system are described. These improvements increased the reliability of the laser and permitted the firing of 290 shots, most of which delivered energies of approximately 8 kJ to the target. Modifications to Gemini are outlined, including the installation of a new target-insertion mechanism. The redirection of the Antares program is discussed in detail, which will achieve a total energy of approximatey 40 kJ with two beams. This redirection will bring Antares on-line almost two years earlier than was possible with the full six-beam system, although at a lower energy. Experiments with isentropically imploded Sirius-B targets are discussed, and x-ray radiation-loss data from gold microballoons are presented, which show that these results are essentially identical with those obtained at glass-laser wavelengths. Significant progress in characterizing laser fusion targets is reported. New processes for fabricating glass miroballoon x-ray diagnostic targets, the application of high-quality metallic coatings, and the deposition of thick plastic coatings are described. Results in the development of x-ray diagnostics are reported, and research in the Los Alamos heavy-ion fusion program is summarized. Results of investigations of phase-conjugation research of gaseous saturable absorbers and of the use of alkali-halide crystals in a new class of saturable absorbers are summarized. New containment-vessel concepts for Inertial Confinement Fusion reactors are discussed, and results of a scoping study of four fusion-fission hybrid concepts are presented.

  17. The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules

    E-Print Network [OSTI]

    Garnier, Josselin

    The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules Josselin Garnier1,a and Catherine Cherfils-Clérouin2 1 Laboratoire de Probabilités et the energy released by nuclear reactions, a nonlocal model for the -particle energy deposition process

  18. Development of Compton Radiography Diagnostics for Inertial Confinement Fusion Implosions

    SciTech Connect (OSTI)

    Tommasini, R; Hatchett, S P; Hey, D S; Izumi, N; Koch, J A; Landen, O L; Mackinnon, A J; Delettrez, J; Glebov, V; Stoeckl, C

    2010-11-16T23:59:59.000Z

    An important diagnostic tool for inertial confinement fusion will be time-resolved radiographic imaging of the dense cold fuel surrounding the hot spot. The measurement technique is based on point-projection radiography at photon energies from 60-200 keV where the Compton effect is the dominant contributor to the opacity of the fuel or pusher. We have successfully applied this novel Compton Radiography technique to the study of the final compression of directly driven plastic capsules at the OMEGA facility. The radiographs have a spatial and temporal resolution of {approx}10 {micro}m and {approx}10ps, respectively. A statistical accuracy of {approx}0.5% in transmission per resolution element is achieved, allowing localized measurements of areal mass densities to 7% accuracy. The experimental results show 3D non-uniformities and lower than 1D expected areal densities attributed to drive asymmetries and hydroinstabilities.

  19. Integrated diagnostic analysis of inertial confinement fusion capsule performance

    SciTech Connect (OSTI)

    Cerjan, Charles; Springer, Paul T.; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2013-05-15T23:59:59.000Z

    A conceptual model is developed for typical inertial confinement fusion implosion conditions that integrates available diagnostic information to determine the stagnation properties of the interior fill and surrounding shell. Assuming pressure equilibrium at peak compression and invoking radiative and equation-of-state relations, the pressure, density, and electron temperature are obtained by optimized fitting of the experimental output to smooth, global functional forms. Typical observational data that may be used includes x-ray self-emission, directional neutron time-of-flight signals, neutron yield, high-resolution x-ray spectra, and radiographic images. This approach has been validated by comparison with radiation-hydrodynamic simulations, producing semi-quantitative agreement. Model results implicate poor kinetic energy coupling to the hot core as the primary cause of the observed low thermonuclear burn yields.

  20. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01T23:59:59.000Z

    Lithium- Injection Fusion-Energy (HYLIFE)Reactor," UCRL-Aspects of Magnetic Fusion Energy," Lawrence Livermorefor the Inertial Fusion Energy Experiments," proceedings of

  1. SAFIRE: A systems analysis code for ICF (inertial confinement fusion) reactor economics

    SciTech Connect (OSTI)

    McCarville, T.J.; Meier, W.R.; Carson, C.F.; Glasgow, B.B.

    1987-01-12T23:59:59.000Z

    The SAFIRE (Systems Analysis for ICF Reactor Economics) code incorporates analytical models for scaling the cost and performance of several inertial confinement fusion reactor concepts for electric power. The code allows us to vary design parameters (e.g., driver energy, chamber pulse rate, net electric power) and evaluate the resulting change in capital cost of power plant and the busbar cost of electricity. The SAFIRE code can be used to identify the most attractive operating space and to identify those design parameters with the greatest leverage for improving the economics of inertial confinement fusion electric power plants.

  2. Inertial confinement fusion based on the ion-bubble trigger

    SciTech Connect (OSTI)

    Jafari, S., E-mail: SJafari@guilan.ac.ir; Nilkar, M.; Ghasemizad, A. [Department of Physics, University of Guilan, Rasht 41335-1914 (Iran, Islamic Republic of); Mehdian, H. [Department of Physics and Institute for Plasma Research, Tarbiat Moallem University, Tehran 15614 (Iran, Islamic Republic of)

    2014-10-15T23:59:59.000Z

    Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

  3. Atomic scale mixing for inertial confinement fusion associated hydro instabilities

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Atomic scale mixing for inertial confinement fusion associated hydro instabilities J. Melvina, , P Alamos, NM 87545, USA Abstract Hydro instabilities have been identified as a potential cause- able. We find numerical convergence for this important quantity, in a purely hydro study, with only

  4. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  5. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  6. Future directions in inertial confinement fusion

    SciTech Connect (OSTI)

    Bodner, S.E. (Naval Research Laboratory, Washington, DC (United States))

    1992-06-01T23:59:59.000Z

    The author discusses future directions for the ICF program. At this time there is still uncertainty on a number of key issues necessary to decide on what type of a National Ignition Facility should be constructed. Mechanisms are in place to answer these questions. The author offers his opinions of where the program is likely to proceed. Technology wise indications are that direct drive heating has the best chance of reaching ignition and high gain. This has the advantage of making all three major user programs happy, namely weapons physics, weapons effects, and electrical energy. The demand for and price of energy in the country will have a major impact on the way the program is developed. From the laser fusion side the most promising drivers at present seem to be KrF lasers, and a major concern for these systems is whether the peak to valley nonuniformities can be reduced to the 1 to 2% level when delivered to the target in order to avoid driving instabilities.

  7. Investigation of plasma instabilities relevant toInvestigation of plasma instabilities relevant to inertial confinement fusioninertial confinement fusion

    E-Print Network [OSTI]

    Strathclyde, University of

    . At sufficiently high temperatures a propagating fusion burn wave is ignited, releasing ~70 times the energy it is hoped that their effects can be minimized allowing fusion power to be harnessed to help combat the world's energy crisis. Plasmas InstabilitiesInertial Confinement Instabilities Small instabilities in a plasma

  8. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for Z-pinch inertial fusion energy (Z-IFE) and high yield.

    SciTech Connect (OSTI)

    Sharpe, Robin Arthur; Kingsep, Alexander S. (Kurchatov Institute, Moscow, Russia); Smith, David Lewis; Olson, Craig Lee; Ottinger, Paul F. (Naval Research Laboratory, Washington, DC); Schumer, Joseph Wade (Naval Research Laboratory, Washington, DC); Welch, Dale Robert (Voss Scientific, Albuquerque, NM); Kim, Alexander (High Currents Institute, Tomsk, Russia); Kulcinski, Gerald L. (University of Wisconsin, Madison, WI); Kammer, Daniel C. (University of Wisconsin, Madison, WI); Rose, David Vincent (Voss Scientific, Albuquerque, NM); Nedoseev, Sergei L. (Kurchatov Institute, Moscow, Russia); Pointon, Timothy David; Smirnov, Valentin P. (Kurchatov Institute, Moscow, Russia); Turgeon, Matthew C.; Kalinin, Yuri G. (Kurchatov Institute, Moscow, Russia); Bruner, Nichelle "Nicki" (Voss Scientific, Albuquerque, NM); Barkey, Mark E. (University of Alabama, Tuscaloosa, AL); Guthrie, Michael (University of Wisconsin, Madison, WI); Thoma, Carsten (Voss Scientific, Albuquerque, NM); Genoni, Tom C. (Voss Scientific, Albuquerque, NM); Langston, William L.; Fowler, William E.; Mazarakis, Michael Gerrassimos

    2007-01-01T23:59:59.000Z

    Z-Pinch Inertial Fusion Energy (Z-IFE) complements and extends the single-shot z-pinch fusion program on Z to a repetitive, high-yield, power plant scenario that can be used for the production of electricity, transmutation of nuclear waste, and hydrogen production, all with no CO{sub 2} production and no long-lived radioactive nuclear waste. The Z-IFE concept uses a Linear Transformer Driver (LTD) accelerator, and a Recyclable Transmission Line (RTL) to connect the LTD driver to a high-yield fusion target inside a thick-liquid-wall power plant chamber. Results of RTL and LTD research are reported here, that include: (1) The key physics issues for RTLs involve the power flow at the high linear current densities that occur near the target (up to 5 MA/cm). These issues include surface heating, melting, ablation, plasma formation, electron flow, magnetic insulation, conductivity changes, magnetic field diffusion changes, possible ion flow, and RTL mass motion. These issues are studied theoretically, computationally (with the ALEGRA and LSP codes), and will work at 5 MA/cm or higher, with anode-cathode gaps as small as 2 mm. (2) An RTL misalignment sensitivity study has been performed using a 3D circuit model. Results show very small load current variations for significant RTL misalignments. (3) The key structural issues for RTLs involve optimizing the RTL strength (varying shape, ribs, etc.) while minimizing the RTL mass. Optimization studies show RTL mass reductions by factors of three or more. (4) Fabrication and pressure testing of Z-PoP (Proof-of-Principle) size RTLs are successfully reported here. (5) Modeling of the effect of initial RTL imperfections on the buckling pressure has been performed. Results show that the curved RTL offers a much greater buckling pressure as well as less sensitivity to imperfections than three other RTL designs. (6) Repetitive operation of a 0.5 MA, 100 kV, 100 ns, LTD cavity with gas purging between shots and automated operation is demonstrated at the SNL Z-IFE LTD laboratory with rep-rates up to 10.3 seconds between shots (this is essentially at the goal of 10 seconds for Z-IFE). (7) A single LTD switch at Tomsk was fired repetitively every 12 seconds for 36,000 shots with no failures. (8) Five 1.0 MA, 100 kV, 100 ns, LTD cavities have been combined into a voltage adder configuration with a test load to successfully study the system operation. (9) The combination of multiple LTD coaxial lines into a tri-plate transmission line is examined. The 3D Quicksilver code is used to study the electron flow losses produced near the magnetic nulls that occur where coax LTD lines are added together. (10) Circuit model codes are used to model the complete power flow circuit with an inductive isolator cavity. (11) LTD architectures are presented for drivers for Z-IFE and high yield. A 60 MA LTD driver and a 90 MA LTD driver are proposed. Present results from all of these power flow studies validate the whole LTD/RTL concept for single-shot ICF high yield, and for repetitive-shot IFE.

  9. Peter A. Norreys Professor of Inertial Fusion Science,

    E-Print Network [OSTI]

    The Target Gain InputEnergyDriver OutputEnergyNuclear G Driver nuclear output E E G LIFE fusion reactor Credit: Lawrence Livermore National Laboratory #12;EEE n output nuclear Nuclear energy output from plasma -heating due to slowing down in plasma External thermal energy input to the fusion plasma 5 Q E E

  10. Compression and combustion of non-cryogenic targets with a solid thermonuclear fuel for inertial fusion

    SciTech Connect (OSTI)

    Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sherman, V. E. [St. Petersburg State Polytechnic University (Russian Federation)

    2013-04-15T23:59:59.000Z

    Variants of a target with a solid thermonuclear fuel in the form of deuterium-tritium hydrides of light metals for an inertial fusion have been proposed. The laser-pulse-induced compression of non-cryogenic targets, as well as ignition and combustion of such targets, has been examined. The numerical calculations show that, despite a decrease in the caloric content of the fuel and an increase in the energy losses on intrinsic radiation in the target containing deuterium-tritium hydrides of light metals as compared to the target containing deuterium-tritium ice, the non-cryogenic target can ensure the fusion gain sufficient for its use in the energy cycle of a thermonuclear power plant based on the inertial plasma confinement method.

  11. Princeton Plasma Physics Lab - Inertial confinement fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.7 348,016.0 336,514.0 350,723.3fact-sheets

  12. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    SciTech Connect (OSTI)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01T23:59:59.000Z

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  13. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 1: Executive Summary & Overview

    SciTech Connect (OSTI)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C.D.; Laybourne, P.; Shillito, K. R.

    1992-03-01T23:59:59.000Z

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability economics, and technology development needs.

  14. Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect (OSTI)

    Tommasini, R

    2010-04-23T23:59:59.000Z

    An important diagnostic tool for inertial confinement fusion is time-resolved imaging of the dense cold fuel surrounding the hot spot. Here we report on the source and diagnostic development of hard x-ray radiography and on the first radiographs of direct drive implosions obtained at photon energies up to about 100keV, where the Compton effect is the dominant contributor to the shell opacity. The radiographs of direct drive, plastic shell implosions obtained at the OMEGA laser facility have a spatial resolution of {approx}10um and a temporal resolution of {approx}10ps. This novel Compton Radiography is an invaluable diagnostic tool for Inertial Confinement Fusion targets, and will be integrated at the National Ignition Facility (NIF).

  15. Inertial confinement fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default

  16. A semi-analytic model of magnetized liner inertial fusion

    E-Print Network [OSTI]

    McBride, Ryan D

    2015-01-01T23:59:59.000Z

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized alpha-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original Ma...

  17. Inertial Fusion Program. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  18. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana, E-mail: srinbhu@vt.edu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Tang, Xian-Zhu, E-mail: xtang@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-10-15T23:59:59.000Z

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.

  19. Octahedral spherical hohlraum and its laser arrangement for inertial fusion

    SciTech Connect (OSTI)

    Lan, Ke; He, Xian-Tu; Liu, Jie [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi; Lai, Dongxian [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-05-15T23:59:59.000Z

    A recent publication [K. Lan et al., Phys. Plasmas 21, 010704 (2014)] proposed a spherical hohlraum with six laser entrance holes of octahedral symmetry at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and superiority on low backscatter without supplementary technology. This paper extends the previous one by studying the laser arrangement and constraints of octahedral hohlraum in detail. As a result, it has serious beam crossing at ?{sub L}?45°, and ?{sub L}=50° to 60° is proposed as the optimum candidate range for the golden octahedral hohlraum, here ?{sub L} is the opening angle that the laser quad beam makes with the Laser Entrance Hole (LEH) normal direction. In addition, the design of the LEH azimuthal angle should avoid laser spot overlapping on hohlraum wall and laser beam transferring outside hohlraum from a neighbor LEH. The octahedral hohlraums are flexible and can be applicable to diverse inertial fusion drive approaches. This paper also applies the octahedral hohlraum to the recent proposed hybrid indirect-direct drive approach.

  20. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  1. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01T23:59:59.000Z

    California 9~516 This work explores the economy of scale for multi- unit inertial fusion energy power plants

  3. Fusion Energy Sciences Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01T23:59:59.000Z

    Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

  4. Multiple-beam laser–plasma interactions in inertial confinement fusion

    SciTech Connect (OSTI)

    Myatt, J. F., E-mail: jmya@lle.rochester.edu; Zhang, J.; Maximov, A. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States); Hinkel, D. E.; Michel, P.; Moody, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

    2014-05-15T23:59:59.000Z

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  5. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Moses, E

    2009-10-15T23:59:59.000Z

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  6. Proton emission imaging of the nuclear burn in inertial confinement fusion experiments

    E-Print Network [OSTI]

    DeCiantis, Joseph Loreto

    2005-01-01T23:59:59.000Z

    A proton core imaging system has been developed and extensively used for measuring the nuclear burn regions of inertial confinement fusion implosions. These imaging cameras, mounted to the 60-beam OMEGA laser facility, use ...

  7. Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants

    E-Print Network [OSTI]

    Debonnel, Christophe Sylvain

    2006-01-01T23:59:59.000Z

    Williams. HYLIFE-II: A molten-salt inertial fusion energyelectricity. The binary molten salt ?ibe (LiF-BeF 2 ) andtarget and ablated molten salt. Her approach was essentially

  8. Determination of the deuterium-tritium branching ratio based on inertial confinement fusion implosions

    E-Print Network [OSTI]

    Rosenberg, Michael Jonathan

    The deuterium-tritium (D-T) ?-to-neutron branching ratio [[superscript 3]H(d,?)[superscript 5]He/[superscript 3]H(d,n)[superscript 4]He] was determined under inertial confinement fusion (ICF) conditions, where the ...

  9. Inertial Fusion Driven by Intense Heavy-Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook linkProtections moreINERTIAL

  10. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01T23:59:59.000Z

    and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

  11. Fusion Power Associates Fusion Energy Sciences Program

    E-Print Network [OSTI]

    Fusion Power Associates Fusion Energy Sciences Program www.ofes.fusion.doe.gov U.S. Department for ITER Decision Making (IAEA, November 8-9, 2004) Delegations from China, European Union, Japan

  12. Inertial fusion program. Progress report, July 1-December 31, 1978

    SciTech Connect (OSTI)

    Perkins, R.B.

    1980-11-01T23:59:59.000Z

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  13. KrF laser path to high gain ICF (inertial confinement fusion) laboratory microfusion facility

    SciTech Connect (OSTI)

    Harris, D.B.; Sullivan, J.A.; Figueiro, J.F.; Cartwright, D.C.; McDonald, T.E.; Hauer, A.A.; Coggeshall, S.V.; Younger, S.M.

    1990-01-01T23:59:59.000Z

    The krypton-fluoride laser has many desirable features for inertial confinement fusion. Because it is a gas laser capable of operation with high efficiency, it is the only known laser candidate capable of meeting the driver requirements for inertial fusion energy (IFE) production. Los Alamos National Laboratory has defined a program plan to develop KrF lasers for IFE production. This plan develops the KrF laser and demonstrates the target performance in single-pulse facilities. A 100-kJ Laser Target Test Facility (LTTF) is proposed as the next step, to be followed by a 3 to 10-MJ Laboratory Microfusion Facility (LMF). The LTTF will resolve many target physics issues and accurately define the driver energy required for the LMF. It is also proposed that the technology development for IFE, such as the high-efficiency, high-reliability, repetitively pulsed driver, the reactor, mass production of targets, and the mechanism of injecting targets be developed in parallel with the single-pulse facilities. 11 refs., 4 figs.

  14. Production and measurement of engineered surfaces for inertial confinement fusion research

    SciTech Connect (OSTI)

    Day, Robert D [Los Alamos National Laboratory; Hatch, Douglas J [Los Alamos National Laboratory; Rivera, Gerald [Los Alamos National Laboratory

    2011-01-19T23:59:59.000Z

    Inertial Confinement Fusion uses the optical energy from a very high power laser to implode spherical capsules that contain a fuel mixture of deuterium and tritium. The capsules are made of either Beryllium, plastic, or glass and range from 0.1 mm to 2 mm in diameter. As a capsule implodes, thereby compressing the fuel to reach nuclear fusion conditions, it achieves temperatures of millions of degrees Centigrade and very high pressures. In this state, the capsule materials act like fluids and often a low density fluidic material will push on a higher density material which can be a very unstable condition depending upon the smoothness of the interface between the two materials. This unstable condition is called a hydrodynamic instabillity which results in the mixing of the two materials. If the mixing occurs between the fuel and a non-fuel material, it can stop the fusion reaction just like adding significant amounts of water to gasoline can stop the operation of an automobile. Another region in the capsule where surface roughness can cause capsule performance degradation is at a joint. For instance, many capsules are made of hemispheres that are joined together. If the joint surfaces are too rough, then there will an effective reduction in density at the joint. This density reduction can cause a non-uniform implosion which will reduce the fusion energy coming out of the capsule.

  15. Inertial fusion program, January 1-June 30, 1979

    SciTech Connect (OSTI)

    Skoberne, F. (comp.)

    1981-06-01T23:59:59.000Z

    Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

  16. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  17. Proton core imaging of the nuclear burn in inertial confinement fusion implosions

    E-Print Network [OSTI]

    Proton core imaging of the nuclear burn in inertial confinement fusion implosions J. L. De; published online 7 April 2006 A proton emission imaging system has been developed and used extensively the penetrating 14.7 MeV protons produced from D 3 He fusion reactions to produce emission images of the nuclear

  18. Comment on 'Species separation in inertial confinement fusion fuels'[Phys. Plasmas 20, 012701 (2013)

    SciTech Connect (OSTI)

    Larroche, O. [CEA DIF, Bruyeres le Chatel, 91297 Arpajon Cedex (France)

    2013-04-15T23:59:59.000Z

    A recent paper presents numerical simulations of shock waves in a two-ion-component plasma, investigating how species separation occurring in the latter can affect the nuclear fusion yield of inertial confinement fusion targets. Here, it is shown that an important physical mechanism has obviously been omitted in those calculations, which thus lead to significantly overestimated results.

  19. Fusion Energy Sciences Program Mission

    E-Print Network [OSTI]

    Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion-heated) plasma, and the Fusion Energy Sciences Advisory Committee (FESAC) has concluded that the fusion program

  20. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    E-Print Network [OSTI]

    Powers, Jeffrey

    2011-01-01T23:59:59.000Z

    of a Hybrid Fusion-Fission Nuclear Energy System. ” Thesis.hybrid fusion-fission Laser Inertial Fusion-based Energy (LIFE) systems.Hybrid LIFE Engines Laser Inertial Fusion-based Energy (LIFE) systems

  1. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 16931709 PII: S0029-5515(03)67272-8

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2003-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 43 (2003) 1693­1709 PII: S0029-5515(03)67272-8 Fusion energy with lasers, direct drive targets.iop.org/NF/43/1693 Abstract A coordinated, focused effort is underway to develop Laser Inertial Fusion Energy

  2. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect (OSTI)

    Sheffield, J.

    2001-03-07T23:59:59.000Z

    Fusion can play an important role in sustainable global energy because it has an available and unlimited fuel supply and location not restricted by climate or geography. Further, it emits no greenhouse gases. It has no potential for large energy releases in an accident, and no need for more than about 100 years retention for radioactive waste disposal. Substantial progress in the realization of fusion energy has been made during the past 20 years of research. It is now possible to produce significant amounts of energy from controlled deuterium and tritium (DT) reactions in the laboratory. This has led to a growing confidence in our ability to produce burning plasmas with significant energy gain in the next generation of fusion experiments. As success in fusion facilities has underpinned the scientific feasibility of fusion, the high cost of next-step fusion facilities has led to a shift in the focus of international fusion research towards a lower cost development path and an attractive end product. The increasing data base from fusion research allows conceptual fusion power plant studies, of both magnetic and inertial confinement approaches to fusion, to translate commercial requirements into the design features that must be met if fusion is to play a role in the world's energy mix; and identify key R and D items; and benchmark progress in fusion energy development. This paper addresses the question, ''Is mankind closer or farther away from controlled fusion than a few decades ago?'' We review the tremendous scientific progress during the last 10 years. We use the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements and to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the energy market.

  3. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect (OSTI)

    Hunt, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Abbott, R. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Havstad, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunne, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-06-01T23:59:59.000Z

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 ?m into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 ?m without assistance from creep or grain erosion phenomena.

  4. Fusion reactor control study. Volume 4: inertial confinement reactors. Final report

    SciTech Connect (OSTI)

    Chang, F.R.; Fisher, J.L.; Madden, P.A.

    1982-03-01T23:59:59.000Z

    This study of inertial confinement fusion (ICF) reactor control investigated concepts of the type intended to be driven by laser, electron, or light-ion pulsed energy beams. The study delineates the major reactor control functions, the methods and techniques advanced so far to perform those functions, and the problems, uncertainties, and issues associated with their possible implementation. The perceived shortcomings of some proposed methods of beam/target interaction initiated a search for potentially better solutions to the guidance/pointing/tracking control problem. A preliminary study of a new scheme to accomplish this most important control function is described. The simulated performance of the concept, which involves the active control of the intensity of a laser tube through which the fuel pellet travels to the target point, is encouraging. However, it is concluded that a more detailed study including experimental verification is required to establish the practicality of the concept.

  5. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

  6. Inertial fusion program. Progress report, January 1-June 30, 1978

    SciTech Connect (OSTI)

    Skoberne, F. (comp.)

    1980-05-01T23:59:59.000Z

    Studies and experiments aimed at investigating the possibility of restoring wavefront quality in optical systems through phase conjugation are summarized, and work that could lead to the development of highly damage-resistant isolators is discussed. The effects of various parameters on pulse-energy uniformity and of multipass extraction on laser efficiency are reported. Results of equation-of-state, shock propagation, multiburst simulation, and opacity measurements are discussed. Target designs are described that should provide a smooth transition from the exploding-pusher regime of experiments to that of isentropic compression. Progress in target fabrication techniques toward creating a 20-times-liquid-density target are outlined, and efforts that led to the extension of our neutron detection capability to levels of less than 10/sup 3/ n are summarized. The results of various studies of laser fusion application, e.g., for producing ultrahigh-temperature process heat or hydrogen from water decomposition are presented, as well as investigations of fusion-fission hybrids for the production of /sup 233/U from /sup 232/Th.

  7. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  8. Engineering design of the Nova Laser Facility for inertial-confinement fusion

    SciTech Connect (OSTI)

    Simmons, W W; Godwin, R O; Hurley, C A; Wallerstein, E. P.; Whitham, K.; Murray, J. E.; Bliss, E. S.; Ozarski, R. G.; Summers, M. A.; Rienecker, F.; Gritton, D. G.; Holloway, F. W.; Suski, G. J.; Severyn, J. R.

    1982-01-25T23:59:59.000Z

    The design of the Nova Laser Facility for inertial confinement fusion experiments at Lawrence Livermore National Laboratory is presented from an engineering perspective. Emphasis is placed upon design-to-performance requirements as they impact the various subsystems that comprise this complex experimental facility.

  9. He-proton emission imaging for inertial-confinement-fusion experiments (invited)

    E-Print Network [OSTI]

    D3 He-proton emission imaging for inertial-confinement-fusion experiments (invited) F. H. Séguin, Livermore, California 94550 (Presented on 19 April 2004; published 5 October 2004) Proton emission imaging cameras, in combination with proton spectrometers and a proton temporal diagnostic, provide a great deal

  10. THE CONCEPT OF ISOCHORIC CENTRAL SPARK IGNITION AND ITS FUEL GAIN IN INERTIAL FUSION

    E-Print Network [OSTI]

    Boyer, Edmond

    of two distinct regions named as hot and cold regions and formed by hydro-dynamical implosion of fuel power plant has been investigated and fuel gain for isochoric model in this method is calculated. We have shown the effects of different physical parameters of inertial fusion on fuel gain and optimized

  11. A Fusion Test Facility for Inertial Fusion Presented by Stephen Obenschain

    E-Print Network [OSTI]

    target designs consistent with the energy application. · Development of economical mass production with direct laser drive NRL Laser Fusion DT ice (fuel) ablator D Pellet shell imploded by laser ablation to v 300 km/sec for >MJ designs Hot fuel Cold fuel · Reduce pellet mass while increasing implosion velocity

  12. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect (OSTI)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01T23:59:59.000Z

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Starpower: The U.S. and the International Quest for Fusion Energy

    E-Print Network [OSTI]

    of this report) #12;. Foreword Fusion research, offering the hope of an energy technology with an essentially un with the requirements for develop- ment of a usefuI energy technology. The report does not analyze inertial confinement

  14. Pulsed Power Driven Fusion Energy

    SciTech Connect (OSTI)

    SLUTZ,STEPHEN A.

    1999-11-22T23:59:59.000Z

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  15. Fusion Energy Program Presentation to

    E-Print Network [OSTI]

    International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced MaterialsFusion Energy Program Presentation to Field Work Proposals Washington, D.C. N. Anne Davies Associate Director for Fusion energy Office of Energy Research March23, 1994 #12;FUSION ENERGY PROGRAM FYI

  16. The 2002 Fusion Summer Study will be a forum for the critical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to

    E-Print Network [OSTI]

    in the fusion energy sciences program, and will provide crucial community input to the long range planning to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy

  17. Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion

    E-Print Network [OSTI]

    Dietrich, Carl, 1977-

    2007-01-01T23:59:59.000Z

    Fusion energy is attractive for use in future spacecraft because of improved fuel energy density and reduced radioactivity compared with fission power. Unfortunately, the most promising means of generating fusion power on ...

  18. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Kritcher, A. L.; Town, R.; Bradley, D.; Clark, D.; Spears, B.; Jones, O.; Haan, S.; Springer, P. T.; Lindl, J.; Callahan, D.; Edwards, M. J.; Landen, O. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Scott, R. H. H. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)] [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)

    2014-04-15T23:59:59.000Z

    We investigate yield degradation due to applied low mode P2 and P4 asymmetries in layered inertial confinement fusion implosions. This study has been performed with a large database of >600 2D simulations. We show that low mode radiation induced drive asymmetries can result in significant deviation between the core hot spot shape and the fuel ?R shape at peak compression. In addition, we show that significant residual kinetic energy at peak compression can be induced by these low mode asymmetries. We have developed a metric, which is a function of the hot spot shape, fuel ?R shape, and residual kinetic energy at peak compression, that is well correlated to yield degradation due to low mode shape perturbations. It is shown that the ?R shape and residual kinetic energy cannot, in general, be recovered by inducing counter asymmetries to make the hot core emission symmetric. In addition, we show that the yield degradation due to low mode asymmetries is well correlated to measurements of time dependent shape throughout the entire implosion, including early time shock symmetry and inflight fuel symmetry.

  19. To: ! Members of the National Academy of Sciences Committee on the Prospects for Inertial Confinement Fusion Energy Systems, and the Panel

    E-Print Network [OSTI]

    : either a shift primarily to non-ignition nuclear weapons research ("high energy density physics different indirect-drive target designs that could be quickly developed and tested. For others, Plan B would for a proper direct-drive test. Also, the chamber portholes that would be needed for direct-drive were covered

  20. Plasma Jet Driven Magneto-Inertial Fusion (PJMIF)

    E-Print Network [OSTI]

    National Security, LLC for NNSA LA-UR-11-07030 #12;Plasma jet experiments can provide cm National Security, LLC for NNSA Imploding plasma liner formed by 30 merging plasma jets with 1.5 MJ, LLC for NNSA MIF ICF Basko et al., Nucl. Fusion, 2000 Magnetic field reduces thermal transport

  1. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    SciTech Connect (OSTI)

    Sweeney, M.A. [ed.

    1995-11-01T23:59:59.000Z

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included.

  2. Development of backlighting sources for a Compton radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect (OSTI)

    Tommasini, R; MacPhee, A; Hey, D; Ma, T; Chen, C; Izumi, N; Unites, W; MacKinnon, A; Hatchett, S P; Remington, B A; Park, H S; Springer, P; Koch, J A; Landen, O L; Seely, J; Holland, G; Hudson, L

    2008-05-07T23:59:59.000Z

    We present scaled demonstrations of backlighter sources, emitting Bremsstrahlung x-rays with photon energies above 75 keV, that we will use to record x-ray Compton radiographic snapshots of cold dense DT fuel in inertial confinement fusion implosions at the National Ignition Facility (NIF). In experiments performed at the Titan laser facility at Lawrence Livermore National Laboratory, we measured the source size and the Bremsstrahlung spectrum as a function of laser intensity and pulse length, from solid targets irradiated at 2e17-5e18 W/cm{sup 2} using 2-40 ps pulses. Using Au planar foils we achieved source sizes down to 5.5 {micro}m, and conversion efficiencies of about 1e-3 J/J into x-ray photons with energies in the 75-100 keV spectral range. We can now use these results to design NIF backlighter targets and shielding, and to predict Compton radiography performance as a function of the NIF implosion yield and associated background.

  3. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15T23:59:59.000Z

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  4. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Spears, Brian K., E-mail: spears9@llnl.gov; Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)] [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Knauer, J. [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)] [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)

    2014-04-15T23:59:59.000Z

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  5. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    E-Print Network [OSTI]

    Kagan, Grigory; Rinderknecht, H G; Rosenberg, M J; Zylstra, A B; Huang, C -K

    2015-01-01T23:59:59.000Z

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility.

  6. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08T23:59:59.000Z

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  7. Ion microtomography and particle-induced x-ray emission analysis of direct drive inertial confinement fusion targets

    SciTech Connect (OSTI)

    Antolak, A.J.; Pontau, A.E.; Morse, D.H. (Sandia National Laboratories, Livermore, California 94551 (United States)); Weirup, D.L.; Heikkinen, D.W. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Cholewa, M.; Bench, G.S.; Legge, G.J.F. (Micro Analytical Research Centre, University of Melbourne, Melbourne (Australia))

    1992-07-01T23:59:59.000Z

    The complementary techniques of ion microtomography (IMT) and particle-induced x-ray emission (PIXE) are used to provide submicron-scale characterization of inertial confinement fusion (ICF) targets for density uniformity, sphericity, and trace-element spatial distributions. ICF target quality control in the laser fusion program is important to ensure that the energy deposition from the lasers results in uniform compression and minimization of Rayleigh--Taylor instabilities. We obtain 1% total electron density determinations using IMT with spatial resolution approaching 2 {mu}m. Utilizing PIXE, we can map out dopant and impurity distributions with elemental detection sensitivities on the order of a few parts per million. We present examples of ICF target characterization by IMT and PIXE in order to demonstrate their potential impact in assessing target fabrication processes.

  8. Inertial fusion energy studies in the UK

    E-Print Network [OSTI]

    interactions ·Neutron damage to first wall and optics ·Channel formation #12;The types of research ­ the wider acceleration High harmonic generation Secondary radiation sources Nuclear physics Fundamental laser plasma

  9. Recent progress on the Los Alamos Aurora ICF (inertial confinement fusion) laser system

    SciTech Connect (OSTI)

    Rosocha, L.A.; Blair, L.S.

    1987-01-01T23:59:59.000Z

    Aurora is the Los Alamos short-pulse, high-power, krypton-fluoride laser system. It serves as an end-to-end technology demonstration prototype for large-scale ultraviolet laser systems for short wavelength inertial confinement fusion (ICF) investigations. The system is designed to employ optical angular multiplexing and serial amplification by electron-beam-driven KrF laser amplifiers to deliver stacked, 248-nm, 5-ns duration multikilojoule laser pulses to ICF-relevant targets. This paper presents a summary of the Aurora system and a discussion of the progress achieved in the construction and integration of the laser system. We concentrate on the main features of the following major system components: front-end lasers, amplifier train, multiplexer, optical relay train, demultiplexer, and the associated optical alignment system. During the past year, two major construction and integration tasks have been accomplished. The first task is the demonstration of 96-beam multiplexing and amplified energy extraction, as evidenced by the integrated operation of the front end, the multiplexer (12-fold and 8-fold encoders), the optical relay train, and three electron-beam-driven amplifiers. The second task is the assembly and installation of the demultiplexer optical hardware, which consists of over 300 optical components ranging in size from several centimeters square to over a meter square. 13 refs., 13 figs.

  10. Optical Comb Generation for Streak Camera Calibration for Inertial Confinement Fusion Experiments

    SciTech Connect (OSTI)

    Ronald Justin, Terence Davies, Frans Janson, Bruce Marshall, Perry Bell, Daniel Kalantar, Joseph Kimbrough, Stephen Vernon, Oliver Sweningsen

    2008-09-18T23:59:59.000Z

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is coming on-line to support physics experimentation for the U.S. Department of Energy (DOE) programs in Inertial Confinement Fusion (ICF) and Stockpile Stewardship (SS). Optical streak cameras are an integral part of the experimental diagnostics instrumentation at NIF. To accurately reduce streak camera data a highly accurate temporal calibration is required. This article describes a technique for simultaneously generating a precise +/- 2 ps optical marker pulse (fiducial reference) and trains of precisely timed, short-duration optical pulses (so-called “comb” pulse trains) that are suitable for the timing calibrations. These optical pulse generators are used with the LLNL optical streak cameras. They are small, portable light sources that, in the comb mode, produce a series of temporally short, uniformly spaced optical pulses, using a laser diode source. Comb generators have been produced with pulse-train repetition rates up to 10 GHz at 780 nm, and somewhat lower frequencies at 664 nm. Individual pulses can be as short as 25-ps FWHM. Signal output is via a fiber-optic connector on the front panel of the generator box. The optical signal is transported from comb generator to streak camera through multi-mode, graded-index optical fiber.

  11. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect (OSTI)

    Jiang, Shaoen; Jing, Longfei, E-mail: scmyking-2008@163.com; Ding, Yongkun [Laser Fusion Research Center, China Academy Engineering Physics, Mianyang 621900 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510006 (China)

    2014-10-15T23:59:59.000Z

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  12. The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang, Xian-Zhu [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-05-15T23:59:59.000Z

    Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2?10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 6–1000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.06–10 T) could result in a factor of 2–500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

  13. Fast Neutral Generation by Charge Exchange Reaction and Its Effect on Neutron Production Rate in Inertial Electrostatic Confinement Fusion Systems

    SciTech Connect (OSTI)

    Yoshinaga, S.; Matsuura, H.; Nakao, Y.; Kudo, K. [Kyushu University (Japan)

    2005-05-15T23:59:59.000Z

    Fast neutral generation by charge exchange reaction in inertial electrostatic confinement plasmas is studied by solving the Poisson equation and the Boltzmann equation for fast neutrals. Fusion reactions carried by the charge exchange fast neutrals become appreciable compared with ion-background fusion reaction. It is shown that the fusion reaction between fast neutral and background gas is sensitively affected by experimental parameters (grid voltage, background gas pressure) and ion distribution function.

  14. Inertial Confinement Fusion: How to Make a Star

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial

  15. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect (OSTI)

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30T23:59:59.000Z

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  16. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G., E-mail: lynn@ece.unm.edu; Gilmore, Mark [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2014-11-15T23:59:59.000Z

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ?10{sup 4} T (100 Megagauss) over small volumes (?10{sup ?10}m{sup 3}) at high plasma densities (?10{sup 28}m{sup ?3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  17. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect (OSTI)

    Stephens, Richarad Burnite [General Atomics] [General Atomics; Freeman, Richard R. [The Ohio State University] [The Ohio State University; Van Woekom, L. D. [The Ohio State University] [The Ohio State University; Key, M. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; MacKinnon, Andrew J. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics] [General Atomics

    2014-02-27T23:59:59.000Z

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

  18. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:000000030178767X); Zimmerman, George B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Molvig, Kim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rinderknecht, Hans G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Rosenberg, Michael J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Albright, B. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simakov, Andrei N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sio, Hong [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:000000017274236X); Zylstra, Alex B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Johnson, Maria Gatu [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Séguin, Fredrick H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Frenje, Johan A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Petrasso, Richard D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000258834054); Higdon, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Srinivasan, Gowri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glebov, Vladimir Yu. [Univ. of Rochester, NY (United States); Stoeckl, Christian [Univ. of Rochester, NY (United States); Seka, Wolf [Univ. of Rochester, NY (United States); Sangster, T. Craig [Univ. of Rochester, NY (United States)] (ORCID:0000000340402672)

    2015-05-01T23:59:59.000Z

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.

  19. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; et al

    2015-05-01T23:59:59.000Z

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore »here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.« less

  20. {gamma}-ray 'bang-time' measurements with a gas-Cherenkov detector for inertial-confinement fusion experiments

    SciTech Connect (OSTI)

    Horsfield, C. J.; Caldwell, S. E.; Christensen, C. R.; Evans, S. C.; Mack, J. M.; Sedillo, T.; Young, C. S.; Glebov, V. Yu. [Atomic Weapons Establishment, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States)

    2006-10-15T23:59:59.000Z

    In a laser driven inertial-confinement fusion experiment, bang time is defined as the time between the laser light impinging the target and the peak of the fusion reactions. Bang time is often used to compare computed predictions to experiment. Large laser facilities, such as NIF and LMJ, which are currently under construction, will produce yields far in excess of any previous inertial-confinement fusion experiment. One of the implications of such high yields is that fusion {gamma} rays, which have branching ratios four orders of magnitude less than that of fusion neutrons, may be used to diagnose bang time. This article describes the first of such {gamma}-ray bang-time measurement made using the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The diagnostic used for this was a gas Cherenkov detector. The experimental setup, data and error analyses, and suggested improvements are presented.

  1. Apparatus for an Inertial Fusion Reactor Inventor Abraham Massry |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Tableimpurity ionAntonyaDEnergy

  2. Development of aerogel-lined targets for inertial confinement fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu, James Cowin PNNL Probing

  3. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Waltz, J., E-mail: jwaltz@lanl.gov [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Canfield, T.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Morgan, N.R. [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Risinger, L.D.; Wohlbier, J.G. [Computational and Computer Sciences Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-06-15T23:59:59.000Z

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.

  4. Liquid Vortex Shielding for Fusion Energy Applications

    SciTech Connect (OSTI)

    Bardet, Philippe M. [University of California, Berkeley (United States); Supiot, Boris F. [University of California, Berkeley (United States); Peterson, Per F. [University of California, Berkeley (United States); Savas, Oemer [University of California, Berkeley (United States)

    2005-05-15T23:59:59.000Z

    Swirling liquid vortices can be used in fusion chambers to protect their first walls and critical elements from the harmful conditions resulting from fusion reactions. The beam tube structures in heavy ion fusion (HIF) must be shielded from high energy particles, such as neutrons, x-rays and vaporized coolant, that will cause damage. Here an annular wall jet, or vortex tube, is proposed for shielding and is generated by injecting liquid tangent to the inner surface of the tube both azimuthally and axially. Its effectiveness is closely related to the vortex tube flow properties. 3-D particle image velocimetry (PIV) is being conducted to precisely characterize its turbulent structure. The concept of annular vortex flow can be extended to a larger scale to serve as a liquid blanket for other inertial fusion and even magnetic fusion systems. For this purpose a periodic arrangement of injection and suction holes around the chamber circumference are used, generating the layer. Because it is important to match the index of refraction of the fluid with the tube material for optical measurement like PIV, a low viscosity mineral oil was identified and used that can also be employed to do scaled experiments of molten salts at high temperature.

  5. INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 42 (2002) 13511356 PII: S0029-5515(02)54166-1

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    2002-01-01T23:59:59.000Z

    in an inertial fusion energy power plant R.W. Petzoldt1 , D.T. Goodin1 , A. Nikroo1 , E. Stephens1 , N. Siegel2 (IFE) power plant designs, the fuel is a spherical layer of frozen DT contained in a target fusion energy (IFE) power plant, the fuel is solid DT at 18 K encapsulated inside a target

  6. 50 Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    , .... · Controlled Thermonuclear Fusion had great potential ­ Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 · A period of rapid

  7. Snowmass 2002: The Fusion Energy Sciences Summer Study

    SciTech Connect (OSTI)

    N. Sauthoff; G. Navratil; R. Bangerter

    2002-01-31T23:59:59.000Z

    The Fusion Summer Study 2002 will be a forum for the critical technical assessment of major next-steps in the fusion energy sciences program, and will provide crucial community input to the long-range planning activities undertaken by the DOE [Department of Energy] and the FESAC [Fusion Energy Sciences Advisory Committee]. It will be an ideal place for a broad community of scientists to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated research experiments in inertial fusion energy. This meeting is open to every member of the fusion energy science community and significant international participation is encouraged. The objectives of the Fusion Summer Study are three: (1) Review scientific issues in burning plasmas to establish the basis for the following two objectives and to address the relations of burning plasma in tokamaks to innovative magnetic fusion energy (MFE) confinement concepts and of ignition in inertial fusion energy (IFE) to integrated research facilities. (2) Provide a forum for critical discussion and review of proposed MFE burning plasma experiments (e.g., IGNITOR, FIRE, and ITER) and assess the scientific and technological research opportunities and prospective benefits of these approaches to the study of burning plasmas. (3) Provide a forum for the IFE community to present plans for prospective integrated research facilities, assess present status of the technical base for each, and establish a timetable and technical progress necessary to proceed for each. Based on significant preparatory work by the fusion community prior to the July Snowmass meeting, the Snowmass working groups will prepare a draft report that documents the scientific and technological benefits of studies of burning plasmas. The report will also include criteria by which the benefits of each approach to fusion science, fusion engineering/technology, and the fusion development path can be assessed. Finally, the report will present a uniform technical assessment of the benefits of the three approaches. The draft report will be presented and extensively discussed during the July meeting, leading to a final report. This report will provide critical fusion community input to the decision process of FESAC and DOE in 2002-2003, and to the review of burning plasma science by the National Academy of Sciences called for by FESAC and Energy Legislation which was passed by the House of Representatives [H.R. 4]. Members of the fusion community are encouraged to participate in the Snowmass working groups.

  8. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Séguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Amendt, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atzeni, S. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma (Italy); Rinderknecht, H. G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Hoffman, N. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:000000030178767X); Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Sio, H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:000000017274236X); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000258834054); Glebov, V. Yu. [Univ. of Rochester, NY (United States); Stoeckl, C. [Univ. of Rochester, NY (United States); Seka, W. [Univ. of Rochester, NY (United States); Marshall, F. J. [Univ. of Rochester, NY (United States); Delettrez, J. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Sangster, T. C. [Univ. of Rochester, NY (United States)] (ORCID:0000000340402672); Betti, R. [Univ. of Rochester, NY (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pino, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kagan, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Molvig, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)

    2015-06-01T23:59:59.000Z

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  9. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-01T23:59:59.000Z

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore »of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  10. Interactive tools designed to study mix in inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Welser-sherrill, Leslie [Los Alamos National Laboratory; Cooley, James H [Los Alamos National Laboratory; Wilson, Doug C [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Graphical user interface tools have been built in IDL to study mix in inertial confinement fusion (ICF) implosion cores. FLAME (Fall-Line Analysis Mix Evaluator), a code which investigates yield degradation due to mix , was designed to post-process 1D hydrodynamic simulation output by implementing a variety of mix models. Three of these mix models are based on the physics of the fall-line. In addition, mixing data from other sources can be incorporated into the yield degradation analysis. Two independent tools called HAME (Haan Analysis Mix Evaluator) and YAME (Youngs Analysis Mix Evaluator) were developed to calculate the spatial extent of the mix region according to the Haan saturation model and Youngs' phenomenological model, respectively. FLAME facilitates a direct comparison to experimental data. The FLAME, HAME, and YAME interfaces are user-friendly, flexible, and platform-independent.

  11. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    SciTech Connect (OSTI)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01T23:59:59.000Z

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

  12. "50" Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

  13. Realization of Fusion Energy: An alternative fusion roadmap

    E-Print Network [OSTI]

    Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

  14. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Beiersdorfer, P.; Schneider, M.; Widmann, K. [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sanchez del Rio, M. [European Synchrotron Radiation Facility, BP 220, 38043-Grenoble Cedex (France); Zhang, L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2012-10-15T23:59:59.000Z

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  15. Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century

    E-Print Network [OSTI]

    Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos Ferreira, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy Consumption ·· Global WarmingGlobal Warming ·· Advantages of Fusion energyAdvantages of Fusion energy

  16. Fusion Energy 101 Jeff Freidberg

    E-Print Network [OSTI]

    : · Huge resources ­ a renewable · No CO2 emissions · No pollution · Inherently safe · No proliferation be in the future? 2 #12;Consumption of Energy by Sector Transportation Electricity Heating EIA ­ DOE 2010 3 #12;Where does fusion fit in? · Goal of fusion: make electricity · Lots of it! · Base load electricity ­ 24

  17. Dark Energy and Dark Matter as Inertial Effects

    E-Print Network [OSTI]

    Serkan Zorba

    2012-10-20T23:59:59.000Z

    A globally rotating model of the universe is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal and a combination of centrifugal and the Coriolis forces, respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard {\\Lambda}-CDM model.

  18. An improved method for measuring the absolute DD neutron yield and calibrating neutron time-of-flight detectors in inertial confinement fusion experiments

    E-Print Network [OSTI]

    Waugh, C. (Caleb Joseph)

    2014-01-01T23:59:59.000Z

    Since the establishment of nuclear physics in the early 1900's and the development of the hydrogen bomb in the 1950's, inertial confinement fusion (ICF) has been an important field in physics. Funded largely though the ...

  19. Studies of ion kinetic effects in shock-driven inertial confinement fusion implosions at OMEGA and the NIF and magnetic reconnection using laser-produced plasmas at OMEGA

    E-Print Network [OSTI]

    Rosenberg, Michael Jonathan

    2014-01-01T23:59:59.000Z

    Studies of ion kinetic effects during the shock-convergence phase of inertial confinement fusion (ICF) implosions and magnetic reconnection in strongly-driven, laser-produced plasmas have been facilitated by the use of ...

  20. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15T23:59:59.000Z

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  1. THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION

    E-Print Network [OSTI]

    Herrmannsfeldt, W.b.

    2010-01-01T23:59:59.000Z

    29 The Fission-fusion Hybrid - iii - General DiscussionInteraction in Heavy Ion Fusion BIBLIOGRAPHY HEAVY IONReactor Designs . . . 27 Pure Fusion Power Reactor Tritium

  2. Ion microtomography (IMT) and particle-induced x-ray emission (PIXE) analysis direct drive of inertial confinement fusion (ICF) targets

    SciTech Connect (OSTI)

    Antolak, A.J.; Pontau, A.E.; Morse, D.H. (Sandia National Labs., Livermore, CA (United States)); Weirup, D.L.; Heikkinen, D.W.; Hornady, R.S. (Lawrence Livermore National Lab., CA (United States)); Cholewa, M.; Bench, G.S.; Legge, G.J.F. (Melbourne Univ. (Australia). Micro Analytical Research Centre)

    1991-11-20T23:59:59.000Z

    The complementary techniques of ion microtomography (IMT) and particle-induced x-ray emission (PIXE) are used to provide micro-characterization of inertial confinement fusion (ICF) targets for density uniformity, sphericity, and trace element spatial distributions. ICF target quality control in the laser fusion program is important to ensure that the energy deposition from the lasers results in uniform compression and minimization of Taylor-Rayleigh instabilities. We obtain 1% density determinations using IMT with spatial resolution approaching two microns. Utilizing PIXE, we can map out dopant and impurity distributions with elemental detection sensitivities on the order of a few ppm. We present examples of IMT and PIXE analyses performed on several ICF targets.

  3. Science/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    community. Benefits Fusion is the energy source that powers the sun and stars. In the fusion process, formsScience/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2005 Comparable Appropriation FY 2006 Request Fusion Energy Sciences Science

  4. X-ray ablation rates in inertial confinement fusion capsule materials

    SciTech Connect (OSTI)

    Olson, R. E.; Rochau, G. A.; Leeper, R. J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2011-03-15T23:59:59.000Z

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm{sup 2}/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm{sup 2}/ns; and for HDC, the rates range from 2 to 9 mg/cm{sup 2}/ns. The ablation rates follow an approximate T{sup 3} dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T{sup 3.5}. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  5. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    SciTech Connect (OSTI)

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain; Clerouin, Jean [CEA, DAM, DIF, F-91297 Arpajon (France); Desjarlais, Michael [Pulsed Power Sciences Center, Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2011-05-15T23:59:59.000Z

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations are then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.

  6. Pulse*Star Inertial Confinement Fusion Reactor: heat transfer loop and balance of plant considerations

    SciTech Connect (OSTI)

    McDowell, M.W.; Murray, K.A.

    1984-05-09T23:59:59.000Z

    A conceptual heat transfer loop and balance of plant design for the Pulse*Star Inertial Confinement Fusion Reactor has been investigated and results are presented. The Pulse*Star reaction vessel, a perforated steel bell jar approximately 11 m in diameter, is immersed in Li/sub 17/Pb/sub 83/ coolant which flows through the perforations and forms a 1.5 m thick plenum of droplets around an 8 m diameter inner chamber. The reactor and associated pumps, piping, and steam generators are contained within a 17 m diameter pool of Li/sub 17/Pb/sub 83/ coolant to minimize structural requirements and occupied space, resulting in reduced cost. Four parallel heat transfer loops with flow rates of 5.5 m/sup 3//s each are necessary to transfer 3300 MWt of power. The steam generator design was optimized by finding the most cost-effective combination of heat exchanger area and pumping power. Power balance calculations based on an improved electrical conversion efficiency revealed a net electrical output of 1260 MWe to the bus bar and a resulting net efficiency of 39%. Suggested balance-of-plant layouts are also presented.

  7. Introduction to Fusion Energy Jerry Hughes

    E-Print Network [OSTI]

    Introduction to Fusion Energy Jerry Hughes IAP @ PSFC January 8, 2013 Acknowledgments: Catherine) a practical energy source on earth 2 mcE #12;Fusion is a form of nuclear energy · A huge amount of energy;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars Supernova produces

  8. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01T23:59:59.000Z

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  9. Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Slough, John

    2011-12-10T23:59:59.000Z

    The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides for an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration of megagauss magnetic field compression by a small array of full scale macrons. In addition the physics of the compression of an FRC to fusion conditions will be undertaken with a smaller scale MFL. The timescale for testing will be rapidly accelerated by taking advantage of other facilities at MSNW where the target FRC will be created and translated inside the MFL just prior to implosion of the MFL. Experimental success would establish the concept at the �proof of principle� level and the following phase III effort would focus on the full development of the concept into a fusion gain device. Successful operation would lead to several benefits in various fields. It would have application to high energy density physics, as well as nuclear waste transmutation and alternate fission fuel cycles. The smaller scale device could find immediate application as an intense source of neutrons for diagnostic imaging and non-invasive object interrogation.

  10. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1988-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  11. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ?R are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect (OSTI)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-10-15T23:59:59.000Z

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ?1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120?keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  12. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect (OSTI)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); and others

    2013-05-15T23:59:59.000Z

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  13. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion (ICF)

    SciTech Connect (OSTI)

    Smalyuk, V A

    2012-06-07T23:59:59.000Z

    Rayleigh-Taylor (RT) instability is one of the major concerns in inertial confinement fusion (ICF) because it amplifies target modulations in both acceleration and deceleration phases of implosion, which leads to shell disruption and performance degradation of imploding targets. This article reviews experimental results of the RT growth experiments performed on OMEGA laser system, where targets were driven directly with laser light. RT instability was studied in the linear and nonlinear regimes. The experiments were performed in acceleration phase, using planar and spherical targets, and in deceleration phase of spherical implosions, using spherical shells. Initial target modulations consisted of 2-D pre-imposed modulations, and 2-D and 3-D modulations imprinted on targets by the non-uniformities in laser drive. In planar geometry, the nonlinear regime was studied using 3-D modulations with broadband spectra near nonlinear saturation levels. In acceleration-phase, the measured modulation Fourier spectra and nonlinear growth velocities are in good agreement with those predicted by Haan's model [Haan S W 1989 Phys. Rev. A 39 5812]. In a real-space analysis, the bubble merger was quantified by a self-similar evolution of bubble size distributions [Oron D et al 2001 Phys. Plasmas 8, 2883]. The 3-D, inner-surface modulations were measured to grow throughout the deceleration phase of spherical implosions. RT growth rates are very sensitive to the drive conditions, therefore they can be used to test and validate drive physics in hydrodynamic codes used to design ICF implosions. Measured growth rates of pre-imposed 2-D target modulations below nonlinear saturation levels were used to validate non-local thermal electron transport model in laser-driven experiments.

  14. Fusion Energy Sciences Advisory Committee Strategic Planning

    E-Print Network [OSTI]

    D R A F T Fusion Energy Sciences Advisory Committee Report on Strategic Planning: Priorities ............................................................................................................... 68 #12; iii Preface Fusion, the energy source that powers our sun and the stars. Fusion energy could therefore fulfill one of the basic needs of modern civili- zation: abundant energy

  15. Fusion Electricity A roadmap to the realisation of fusion energy

    E-Print Network [OSTI]

    Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

  16. Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile by Subprogram (dollars in thousands) FY 2006 Current Appropriation FY 2007 Request FY 2008 Request Fusion Energy,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public Law

  17. A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences

    E-Print Network [OSTI]

    A Strategic Program Plan for Fusion Energy Sciences 1 Fusion Energy Sciences #12;2 Bringing independence. Fusion power plants will provide economical and abundant energy without greenhouse gas emissions, while creating manageable waste and little risk to public safety and health. Making fusion energy a part

  18. Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

  19. Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

  20. JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER

    E-Print Network [OSTI]

    JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergy Fusion fuel: deuterium et tritium Deuterium: plenty in the ocean Tritium: made in situ from Lithium

  1. A Roadmap to Laser Fusion Energy

    E-Print Network [OSTI]

    the radioactive environment, for easier maintenance. · No ultra-high vacuum or superconducting magnets. LaserA Roadmap to Laser Fusion Energy Stephen E. Bodner Retired (former head of the NRL laser fusion Energy Systems January 30, 2011 #12;In 1971-1972 LLNL announced that they had an idea for laser fusion

  2. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01T23:59:59.000Z

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  3. Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency

    E-Print Network [OSTI]

    Logan, B. Grant

    2008-01-01T23:59:59.000Z

    Fusion at High Coupling Efficiency B.G. Logan 1, L.J.fusion at high coupling efficiency B. G. Logan , L . J.Issues with coupling efficiency, beam illumination symmetry

  4. Rim for rotary inertial energy storage device and method

    DOE Patents [OSTI]

    Knight, Jr., Charles E. (Knoxville, TN); Pollard, Roy E. (Powell, TN)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  5. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01T23:59:59.000Z

    Fusion Science, Magnetic Fusion Energy, and Related Fieldsof Science, Office of Fusion Energy Sciences, of the U.S.Fusion Science, Magnetic Fusion Energy, and Related Fields

  6. Fusion Energy Sciences Jobs

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,ofOpportunities Biological andOpportunitiesOffice

  7. Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor

    E-Print Network [OSTI]

    Lu?trek, Mitja

    Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor Bozidara, we tested a combination of thigh inertial sensor with hart rate monitor, usually worn by athletes and availability and ease of development. Average smart phone has a rather powerful processing unit. It comes

  8. The Path to Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Prager, Stewart (PPPL) [PPPL

    2011-05-04T23:59:59.000Z

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  9. Sandia National Laboratories: DOE Office of Fusion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sandia-UC Davis Collaboration Funded by DOE Office of Fusion Energy On March 4, 2014, in Energy, News, News & Events, Nuclear Energy, Partnership, Research &...

  10. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High

  11. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High Large Scale

  12. Energy Sources Used for Fusion Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Energy Sources Used for Fusion Welding Thomas W. Eagar, Massachusetts Institute of Technology reliability. The Section "Fusion Welding Processes" in this Volume provides details about equipment and systems for the major fusion welding proc- esses. The purpose of this Section of the Volume is to discuss

  13. Distribution Category: Magnetic Fusion Energy

    E-Print Network [OSTI]

    Abdou, Mohamed

    . Abdou Fusion Power Program October 1982 Invited paper presented at the International Conference by Mohamed A. Abdou ABSTRACT Key technological problems that influence tritium breeding in fusion blankets

  14. Sean Finnegan & Ann Satsangi Fusion Energy Sciences

    E-Print Network [OSTI]

    Energy (IFE) science. #12;HEDLP definition "High-energy-density laboratory plasma (HEDLP) physicsSean Finnegan & Ann Satsangi Fusion Energy Sciences Program Management Team for HEDLP Fusion Power Associates15 December 2011 Comments on the DOE-SC Program in High Energy Density Laboratory Plasma Science

  15. EPRI Fusion Energy Assessment July 19, 2011

    E-Print Network [OSTI]

    parallelization and increased risk management (from FESAC "Plan for Development of Fusion Energy" DOE/SC-0074EPRI Fusion Energy Assessment July 19, 2011 Palo Alto, CA Roadmapping an MFE Strategy R.J. Fonck ENERGY DEVELOPMENT PROJECT · The U.S. MFE program can break out into a directed energy development

  16. The National Ignition Facility (NIF) A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2006-11-27T23:59:59.000Z

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  17. Sandia Energy - Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergy Storage ComponentsFuel

  18. Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as

    E-Print Network [OSTI]

    Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has as fusion energy produced divided the external energy incident on the fusion reaction chamber. Typical fusion power plant design concepts require a fusion gain of 30 for MFE and 70 for IFE. Fusion energy

  19. Distribution Categories: Magnetic Fusion Energy (UC-20)

    E-Print Network [OSTI]

    Harilal, S. S.

    Schematic illustrating ion or electron electron beam target interaction 4 2 Flow chart of A8THERMAL-2Distribution Categories: Magnetic Fusion Energy (UC-20) Inertia! Confinement Fusion (UC-21) ANL and square time pulse 16 11 The effect of higher initial temperatures and energy densities on the melting

  20. LANL | Physics | Inertial Confinement Fusion and High Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's...

  1. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect (OSTI)

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nobile, A.; Wermer, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sessions, K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15T23:59:59.000Z

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  2. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect (OSTI)

    Petzoldt, R.W.

    1995-03-07T23:59:59.000Z

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  3. Timely Delivery of Laser Inertial Fusion Energy Presentation prepared for

    E-Print Network [OSTI]

    list) Cost of electricity Rate and cost of build Licensing simplicity Reliability, Availability to 1-5 years Modular laser, optics and processing equipment enables maintenance without plant shutdown

  4. Systems Modeling For The Laser Fusion-Fission Energy (LIFE) Power Plant

    SciTech Connect (OSTI)

    Meier, W R; Abbott, R; Beach, R; Blink, J; Caird, J; Erlandson, A; Farmer, J; Halsey, W; Ladran, T; Latkowski, J; MacIntyre, A; Miles, R; Storm, E

    2008-10-02T23:59:59.000Z

    A systems model has been developed for the Laser Inertial Fusion-Fission Energy (LIFE) power plant. It combines cost-performance scaling models for the major subsystems of the plant including the laser, inertial fusion target factory, engine (i.e., the chamber including the fission and tritium breeding blankets), energy conversion systems and balance of plant. The LIFE plant model is being used to evaluate design trade-offs and to identify high-leverage R&D. At this point, we are focused more on doing self consistent design trades and optimization as opposed to trying to predict a cost of electricity with a high degree of certainty. Key results show the advantage of large scale (>1000 MWe) plants and the importance of minimizing the cost of diodes and balance of plant cost.

  5. Fusion: an energy source for synthetic fuels

    SciTech Connect (OSTI)

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01T23:59:59.000Z

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  6. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect (OSTI)

    None, None

    2003-03-05T23:59:59.000Z

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  7. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    , scientists and engineers are working to make fusion a real option for our electricity supply.At the forefront consumption is expected to grow dramatically over the next fifty years as the world's population expands; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable

  8. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    SciTech Connect (OSTI)

    Armijo, Julien

    2006-10-01T23:59:59.000Z

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

  9. Structures in high-energy fusion data

    E-Print Network [OSTI]

    H. Esbensen

    2012-06-05T23:59:59.000Z

    Structures observed in heavy-ion fusion cross sections at energies above the Coulomb barrier are interpreted as caused by the penetration of centrifugal barriers that are well-separated in energy. The structures are most pronounced in the fusion of lighter, symmetric systems, where the separation in energy between successive angular momentum barriers is relatively large. It is shown that the structures or peaks can be revealed by plotting the first derivative of the energy weighted cross section. It is also shown how an orbital angular momentum can be assign to the observed peaks by comparing to coupled-channels calculations. This is illustrated by analyzing high-energy fusion data for $^{12}$C+$^{16}$O and $^{16}$O+$^{16}$O, and the possibility of observing similar structures in the fusion of heavier systems is discussed.

  10. RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET

    E-Print Network [OSTI]

    RENEWABLE ENERGY GROUPS COVET FUSION'S BUDGET A group called the Energy Efficiency Education-effective and environmentally sound energy- efficiency and renewable energy programs." Rep. Philip R. Sharp (D-IN) and chair the resolution, H. Con. Res. 188). Sharp said "For too long, cost-effectiveefficiencyand renewable energy

  11. Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1

    SciTech Connect (OSTI)

    Dixit, S.N. [ed.

    1992-12-31T23:59:59.000Z

    This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

  12. On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean

    E-Print Network [OSTI]

    Miami, University of

    On the Loss of Wind-Induced Near-Inertial Energy to Turbulent Mixing in the Upper Ocean XIAOMING-inertial energy available for ocean mixing at depth is, at most, 0.1 TW. This confirms a recent suggestion energy source for the diapycnal mixing in the ocean required to maintain the meridional over- turning

  13. Fusion Energy Sciences Network Requirements Review Final Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Items 10 Review Background and Structure 11 Office of Fusion Energy Sciences Overview 14 Case Studies 17 1 Fusion Facilities: International Perspective 17 2 General Atomics:...

  14. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2013-06-15T23:59:59.000Z

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  15. Process for manufacture of inertial confinement fusion targets and resulting product

    DOE Patents [OSTI]

    Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

    1982-01-01T23:59:59.000Z

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  16. MSc in Plasma Physics & Applications Laser Fusion Energy

    E-Print Network [OSTI]

    Paxton, Anthony T.

    . Thermonuclear fusion provides unlimited energy for all the world which is clean from long lived radioactiveMSc in Plasma Physics & Applications Laser Fusion Energy Why laser fusionDescription of the course fusion for energy production. This unique training scheme involves eight leading European centres

  17. A roadmap to the realiza/on of fusion energy

    E-Print Network [OSTI]

    A roadmap to the realiza/on of fusion energy Francesco Romanelli, EFDA STAC #12;Why a roadmap · The need for a long-term strategy on energy Strategic Energy Technology plan, Energy Roadmap 2050 · In this context, Fusion must

  18. Alternative pathways to fusion energy (focus on Department of Energy

    E-Print Network [OSTI]

    Alternative pathways to fusion energy (focus on Department of Energy Innovative Confinement for a restructured fusion energy science program [5] 1996 | FESAC: Opportunities in Alternative Confinement Concepts, suggests program for Innovative Concepts [1] 1995 | OTA TPX and the Alternates [2] 1995 | PCAST (given flat

  19. Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy CrisisEnergy Crisis

    E-Print Network [OSTI]

    Strathclyde, University of

    Nuclear Fusion: A Solution to the GlobalNuclear Fusion: A Solution to the Global Energy Crisis.maclellan@strath.ac.uk Introduction and Motivation What is Nuclear Fusion? Laser Plasma Interactions The world, and particularly is harnessing the power of nuclear fusion. It is however, extremely difficult to sustain a fusion reaction

  20. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  1. Fusion cross sections at deep subbarrier energies

    E-Print Network [OSTI]

    K. Hagino; N. Rowley; M. Dasgupta

    2003-02-12T23:59:59.000Z

    A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisingly large surface diffusenesses required to fit recent high-precision fusion data.

  2. ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY R LE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE

    E-Print Network [OSTI]

    1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RÔ LE DE L'ÉNERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

  3. ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RLE DE L'NERGIE DE FUSION DANS UNE STRATGIE D'NERGIE

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    1-1 ROLE OF FUSION ENERGY IN A SUSTAINABLE GLOBAL ENERGY STRATEGY RÔLE DE L'ÉNERGIE DE FUSION DANS. 1. Introduction 1. Introduction 1.1. Fusion energy 1.1. Energie de fusion Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion

  4. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial*

    E-Print Network [OSTI]

    with simple models for hohlraum wall energy loss to predict coupling efficiencies and a simple one into running the driver. More- over, the unrecycled portion of energy produced must be sufficient to sell

  5. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; et al

    2014-10-01T23:59:59.000Z

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore »filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±« less

  6. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Zylstra, A. B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Rinderknecht, H. G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Waugh, C. J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Sio, H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Sinenian, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. Yu. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Hohenberger, M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sangster, T. C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Yeamans, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Talison, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zacharias, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)

    2014-10-01T23:59:59.000Z

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF

  7. Large Scale Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

    E-Print Network [OSTI]

    Gerber, Richard

    2014-01-01T23:59:59.000Z

    Requirements  for  Fusion  Energy  Sciences:  Target  2017  Requirements  for  Fusion  Energy  Sciences:  Target  and  Context   DOE’s  Fusion  Energy  Sciences  program  

  8. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    simulations of fusion and energy systems with unprecedentedRequirements  for  Fusion  Energy  Sciences   14 General  and  Storage  Requirements  for  Fusion  Energy  Sciences  

  9. Exact Dragging of Inertial Axes by Cosmic Energy-Currents on the Past Light-Cone

    E-Print Network [OSTI]

    Christoph Schmid

    2014-06-18T23:59:59.000Z

    We prove exact rotational dragging of local inertial axes (= spin axes of gyroscopes) by arbitrary cosmic energy-currents on the past light-cone of the gyroscope for linear perturbations of Friedmann-Robertson-Walker cosmologies. Hence the principle formulated by Mach holds for arbitrary linear cosmological perturbations.

  10. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect (OSTI)

    Kramer, K

    2010-04-08T23:59:59.000Z

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 {micro}m of tungsten to mitigate x-ray damage. The first wall is cooled by Li{sub 17}Pb{sub 83} eutectic, chosen for its neutron multiplication and good heat transfer properties. The {sub 17}Pb{sub 83} flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li{sub 17}Pb{sub 83}, separated from the Li{sub 17}Pb{sub 83} by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF{sub 2}), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by the same radial flibe flow that travels through perforated ODS walls to the reflector blanket. This reflector blanket is 75 cm thick comprised of 2 cm diameter graphite pebbles cooled by flibe. The flibe extraction plenum surrounds the reflector bed. Detailed neutronics designs studies are performed to arrive at the described design. The LFFH engine thermal power is controlled using a technique of adjusting the {sup 6}Li/{sup 7}Li enrichment in the primary and secondary coolants. The enrichment adjusts system thermal power in the design by increasing tritium production while reducing fission. To perform the simulations and design of the LFFH engine, a new software program named LFFH Nuclear Control (LNC) was developed in C++ to extend the functionality of existing neutron transport and depletion software programs. Neutron transport calculations are performed with MCNP5. Depletion calculations are performed using Monteburns 2.0, which utilizes ORIGEN 2.0 and MCNP5 to perform a burnup calculation. LNC supports many design parameters and is capable of performing a full 3D system simulation from initial startup to full burnup. It is able to iteratively search for coolant {sup 6}Li enrichments and resulting material compositions that meet user defined performance criteria. LNC is utilized throughout this study for time dependent simulation of the LFFH engine. Two additional methods were developed to improve the computation efficiency of LNC calculations. These methods, termed adaptive time stepping and adaptive mesh refinement were incorporated into a separate stand alone C++ library name the Adaptive Burnup Library (ABL). The ABL allows for other client codes to call and utilize its functionality. Adaptive time stepping is useful for automatically maximizing the size of the depletion time step while maintaining a desired level of accuracy. Adaptive meshing allows for analysis of fixed fuel configurations that would normally require a computationally burdensome number of depletion zones. Alternatively, Adaptive M

  11. Fusion Power Associates Annual Meeting and Symposium Fusion and Energy Policy

    E-Print Network [OSTI]

    Laboratory, UK 10:00 Break 10:30 European Fusion Development Strategy - R. Andreani, EFDA, Garching 11Fusion Power Associates Annual Meeting and Symposium Fusion and Energy Policy October 11-12, 2005. Dean, President, FPA 8:40 Overview of Energy Policies at the USDOE ­ Robert C. Marlay, USDOE Office

  12. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-01T23:59:59.000Z

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al. , Opt. Commun.133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burnmore »can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  13. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01T23:59:59.000Z

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al. , Opt. Commun.133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ?±10% accuracy, and mean neutron energy to ?±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15?20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ?±25?40 km/s.

  14. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-06-15T23:59:59.000Z

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ?±10% accuracy, and mean neutron energy to ?±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15?20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ?±25?40 km/s.

  15. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01T23:59:59.000Z

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al. , Opt. Commun.133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  16. Taming turbulence in magnetized plasmas: from fusion energy to

    E-Print Network [OSTI]

    occurs (fusion of particle beams will not work...) Thermonuclear fusion in a confined plasma (T~10 keTaming turbulence in magnetized plasmas: from fusion energy to black hole accretion disks Troy?: In fusion plasmas turbulent leakage of heat and particles is a key issue. Sheared flow can suppress

  17. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    24 Department of Advanced Energy Nuclear Fusion Research Education Program 23 8 23 to Nuclear Fusion Research Education Program 277-8561 5-1-5 1 04-7136-4092 http://www.k.u-tokyo.ac.jp/fusion: nemoto@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12

  18. Bold Step by the World to Fusion Energy: ITER

    E-Print Network [OSTI]

    DnT v #12;FUSION "SELF-HEATING" POWER BALANCE 274-01/rs FUSION POWER DENSITY: pf = Rf = n f for n FUSION Fission initiated by electrically neutral particle [neutron] and can occur at room temperature electrically charged particles at very high energy: Threshold temperature for most reactive fusion reaction

  19. Preliminary assessment and analysis of CO{sub 2} cleaning for an inertial fusion device

    SciTech Connect (OSTI)

    Ying, A.; Abdou, M. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31T23:59:59.000Z

    The mechanisms of cleaning with carbon dioxide ice (CO{sub 2}) for the National Ignition Facility (NIF) application are discussed and analyzed. The compatibility between this cleaning process and the materials proposed for energy-relevant liquid-interaction experiments is examined. The cleaning mechanisms include kinetic shear stress, sublimation followed by thermophoresis, and solvent action. The study shows that the debris size could determine the efficiency of this cleaning technique. Furthermore, if the condensed vapor particulate becomes flattened and embedded inside the abscissa while hitting the surface, a large kinetic shear would be needed for debris removal which might damage the surface. 20 refs., 5 figs.

  20. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    providing the significant funds needed for rapid progress in fusion or in any new carbon-free energy source. Major progress toward fusion energy was made in the 1980s and 1990s as...

  1. Update and Outlook for the Fusion Energy Sciences Program

    E-Print Network [OSTI]

    Update and Outlook for the Fusion Energy Sciences Program E.J. Synakowski Associate Director, Office of Science Fusion Energy Sciences Fusion Power Associates Annual Meeting Washington, D.C. December Energy Sciences 3D topologies Samuel Barish, Lead,: Validation Platforms, Stellarators Steve Eckstrand

  2. Virtual Laboratory for Technology For Fusion Energy Science

    E-Print Network [OSTI]

    VLT Virtual Laboratory for Technology For Fusion Energy Science Stan Milora, ORNL Director, Virtual and ITER #12;VLT Virtual Laboratory for Technology For Fusion Energy Science The Technology Program Virtual Laboratory for Technology For Fusion Energy Science The VLT is the steward of burning plasma

  3. Virtual Laboratory for Technology For Fusion Energy Science

    E-Print Network [OSTI]

    VLT Virtual Laboratory for Technology For Fusion Energy Science Stan Milora, ORNL Director, Virtual for Technology For Fusion Energy Science VLT Research MissionVLT Research Mission To contribute to the national;VLT Virtual Laboratory for Technology For Fusion Energy Science OutlineOutline · VLT contributions

  4. FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil

    E-Print Network [OSTI]

    PLANS FOR FUSION ENERGY SCIENCES SUMMER STUDY 2002 Gerald Navratil Columbia University American-steps in the fusion energy sciences program, and will provide crucial community input to the long range planning to examine goals and proposed initiatives in burning plasma science in magnetic fusion energy and integrated

  5. Energy Scaling Laws for Distributed Inference in Random Fusion Networks

    E-Print Network [OSTI]

    Yukich, Joseph E.

    the minimum spanning tree, and above by a suboptimal policy, referred to as Data Fusion for Markov Random, the policy with the minimum average energy consumption is bounded below by the average energy of fusion along models, Eu- clidean random graphs, stochastic geometry and data fusion. I. INTRODUCTION WE consider

  6. INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 48 (2006) B153B163 doi:10.1088/0741-3335/48/12B/S15

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    -drive). If the thermonuclear fuel is ignited and a burn wave propagates through the dense core, the fusion energy produced canINSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion for direct-drive and fast ignition inertial confinement fusion R Betti1,2,3 , K Anderson1,3 , T R Boehly3

  7. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    E-Print Network [OSTI]

    Min Liu; Ning Wang; Zhuxia Li; Xizhen Wu; Enguang Zhao

    2006-01-25T23:59:59.000Z

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied.

  8. Vintage DOE: What is Fusion | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Vintage DOE: What is Fusion Vintage DOE: What is Fusion January 10, 2011 - 12:45pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public...

  9. How low-energy fusion can occur

    E-Print Network [OSTI]

    B. Ivlev

    2012-12-04T23:59:59.000Z

    Fusion of two deuterons of room temperature energy is discussed. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. The wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

  10. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect (OSTI)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Il’in, D. V.; Sherman, V. E. [St. Petersburg State Technical University (Russian Federation)

    2014-11-15T23:59:59.000Z

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  11. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    E-Print Network [OSTI]

    F. Muhammad Zamrun; K. Hagino; N. Takigawa

    2006-06-07T23:59:59.000Z

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of $^{16}$O with $^{154,}$$^{144}$Sm,$^{186}$W and $^{208}$Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two $^{64}$Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

  12. Sub-barrier Fusion Cross Sections with Energy Density Formalism

    SciTech Connect (OSTI)

    Zamrun, Muhammad; Hagino, F. K.; Takigawa, N. [Department of Physics, Tohoku University, 980-8578 (Japan)

    2006-08-14T23:59:59.000Z

    We discuss the applicability of the energy density formalism (EDF) for heavy-ion fusion reactions at sub-barrier energies. For this purpose, we calculate the fusion excitation function and the fusion barrier distribution for the reactions of 16O with 154,144Sm, 186W and 208Pb with the coupled-channels method. We also discuss the effect of saturation property on the fusion cross section for the reaction between two 64Ni nuclei, in connection to the so called steep fall-off phenomenon of fusion cross sections at deep sub-barrier energies.

  13. Fusion energy Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures

    E-Print Network [OSTI]

    Fusion energy · Fusion powers the Sun, and all stars, in which light nuclei fuse together at high temperatures (15 million degrees) releasing a large amount of energy. · The aim of fusion research is to use of hydrogen). In the plasma the deuterium and tritium fuse to produce energy. · Fusion is a very efficient

  14. Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials Research Program

    E-Print Network [OSTI]

    Abdou, Mohamed

    , Livermore, CA 94551. 6 University of Wisconsin, Madison, WI 53706. 7 Columbia University, New York, NY 10027Journal of Fusion Energy, Vol. 19, No. 1, March 2000 ( 2001) Review of the Fusion Materials.S. Department of Energy (DOE) Fusion Energy Sciences Advisory Committee Panel on the Review of the Fusion

  15. Inertial Fusion Sciences and Applications 2003: State of the Art 2003, Published by the American Nuclear Society

    SciTech Connect (OSTI)

    Editors: B. A. Hammel; D. D. Meyerhofer; J. Meyer-ter-Vehn; H. Azechi. Organizing Chair: W. J. Hogan

    2004-06-01T23:59:59.000Z

    Collection of all papers presented and submitted at the IFSA2003 conference. Topics included target design and performance, fast ignition, plasma instabilities, laser technology, fusion reactor technology

  16. Thermonuclear Fusion Energy : Assessment and Next Step Ren Pellat

    E-Print Network [OSTI]

    Thermonuclear Fusion Energy : Assessment and Next Step René Pellat High Commissioner at the French 2000, Rome Abstract Fifty years of thermonuclear fusion work with no insurmountable road blocks have allowed to continuously progress towards the fusion reactor which stays a physics and technology ambitious

  17. China To Build Its Own Fusion Reactor ENERGY TECH

    E-Print Network [OSTI]

    Thermonuclear Experimental Reactor project reached agreement in Moscow Tuesday to construct the first fusion devices in thermonuclear reaction," and that "Chinese scientists started to develop a fusion operationChina To Build Its Own Fusion Reactor ENERGY TECH by Edward Lanfranco Beijing (UPI) July 1, 2005

  18. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    23 Department of Advanced Energy Nuclear Fusion Research Education Program 22 8 24) (1) (2) (3) (4) (5) (6) (7) (8) #12;- 7 - 23 Guide to Nuclear Fusion Research Education@criepi.denken.or.jp tel: 046-856-2121 12 http://www. k.u-tokyo.ac.jp/fusion-pro/ #12;- 3 - (1) TOEFL TOEIC

  19. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    26 Department of Advanced Energy Nuclear Fusion Research Education Program 25 8 20) #12; 26 Guide to Nuclear Fusion Research Education Program 03-5841-6563 E-mail : ae: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 , 7 12 http://www. k.u-tokyo.ac.jp/fusion

  20. Is nuclear fusion a sustainable energy form? A. M. Bradshaw

    E-Print Network [OSTI]

    Is nuclear fusion a sustainable energy form? A. M. Bradshaw Max Planck Institute for Plasma Physics million years. The fuels for nuclear fusion ­ lithium and deuterium ­ satisfy this condition because multipliers foreseen for fusion power plants, in particular beryllium, represent a major supply problem

  1. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect (OSTI)

    Nelson, A. J.; Cooper, G. W. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2012-10-15T23:59:59.000Z

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  2. Fusion energy | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities HighFusion Power

  3. Fusion Energy Sciences Advisory Committee Meeting January 31, 2013

    E-Print Network [OSTI]

    Fusion Energy Sciences Advisory Committee Meeting January 31, 2013 Agenda Time Topic Speaker 9 Energy Sciences 10:15 Break 10:45 Briefing from the Subcommittee on Magnetic Fusion Energy Program with the New Charge on Scientific Facilities Prioritization Dr.JohnSarff,Chairof theSubcommitteeon Scientific

  4. FES Science Network Requirements - Report of the Fusion Energy Sciences Network Requirements Workshop Conducted March 13 and 14, 2008

    E-Print Network [OSTI]

    Dart, Eli

    2008-01-01T23:59:59.000Z

    Division, and the Office of Fusion Energy Sciences.Requirements Report of the Fusion Energy Sciences NetworkRequirements Workshop Fusion Energy Sciences Program Office,

  5. Magnetized Target Fusion (MTF): Principles, Status, and International Collaboration

    SciTech Connect (OSTI)

    Kirkpatrick, R.C.

    1998-11-16T23:59:59.000Z

    Magnetized target fusion (MTF) is an approach to thermonuclear fusion that is intermediate between the two extremes of inertial and magnetic confinement. Target plasma preparation is followed by compression to fusion conditions. The use of a magnetic field to reduce electron thermal conduction and potentially enhance DT alpha energy deposition allows the compression rate to be drastically reduced relative to that for inertial confinement fusion. This leads to compact systems with target driver power and intensity requirements that are orders of magnitude lower than for ICF. A liner on plasma experiment has been proposed to provide a firm proof of principle for MTF.

  6. The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy

    E-Print Network [OSTI]

    , describes R&D needs for heavy-ion accelerator, target and chamber R&D. 44 pages. Defines goals and criteria tasks) - ion accelerator technologies - chamber and maintenance technologies - pulsed power technologiesThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan

  7. Commentary on A Conceptual Design of Transport Lines for a Heavy-Ion Inertial-Fusion Power Plant

    SciTech Connect (OSTI)

    Lee, E.P.

    2011-04-13T23:59:59.000Z

    Some major system features are not stated but can be inferred. For example this is probably an engineering test facility, not a power plant driver, because the standoff from target to final magnet is only 5.0 m. The fusion target takes two-sided illumination with indirect drive using a total of 60 beam pulses: 10 pre-pulses (3.0 GeV) + 20 main pulses (4.0 GeV) from each side. On page 12 it's stated that the charge per beam pulse is 26.8 {micro}C, so we calculate pre-pulse: 20 x 3 GeV x 26.8 {micro}C = 1.608MJ, main pulse: 40 x 4 GeV x 26.8 {micro}C = 4.288MJ, total beam energy 5.896MJ. The beam ion mass ks 200 amu, so the species is Hg{sup +}. Therefore the mid-pulse velocities are: pre-pulse v = .1773c = 5.316 x 10{sup 7} m/s, main pulse v = .2040c = 6.114 x 10{sup 7} m/s, On page 12 it is stated that the pre-compression pulse length is L{sub 0} = 10.0m, and compression is by a 'factor of order 20'. They infer a final pulse length of about .5 m and final durations pre-pulse {tau} {approx} .5/5.316 x 10{sup 7} = 9.4 ns; main pulse {tau} {approx} .5/6.114 x 10{sup 7} = 8.2 ms. The magnetic rigidity of the beam ions is [B{rho}] = {gamma}m v/e = {l_brace} 112.0 T-m - prepulse/129.5 T-m - mainpulse{r_brace}.

  8. Workshop on Accelerators for Heavy Ion Fusion Summary Report of the Workshop

    E-Print Network [OSTI]

    Seidl, P.A.

    2013-01-01T23:59:59.000Z

    et al. , "HYLIFE-II: A Molten-Salt Inertial Fusion EnergyL. Vay 3 Vallecitos Molten Salt Research Princeton PlasmaPower Corp. , Vallecitos Molten Salt Research, and Voss

  9. Paths to Magne,c Fusion Energy (nature ignores budget austerity)

    E-Print Network [OSTI]

    Paths to Magne,c Fusion Energy (nature ignores budget austerity) S. Prager fusion problems should be solved in parallel with ITER Energy confinement to fusion energy present DIII-D NSTX CMOD Plasma confinement research program #12

  10. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Works 32 likes Every four minutes, another American home or business goes solar, but how do solar panels turn sunlight into energy? We'll answer that question and more Learn...

  11. The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass

    E-Print Network [OSTI]

    Ohanian, Hans C

    2010-01-01T23:59:59.000Z

    We establish a general relation between the canonical energy-momentum tensor and the tensor that acts as the source of the gravitational field in Einstein's equations. In General Relativity, we use this relation to give a general proof of the exact equality of the gravitational and inertial masses for any arbitrary system of matter and gravitational fields, regardless of the presence of nonminimal couplings. In the Brans-Dicke scalar field theory, we establish that the nonminimal coupling of the scalar field leads to an inequality between the gravitational and inertial masses, and we derive an exact formula for this inequality and confirm that it is approximately proportional to the gravitational self-energy (the Nordvedt effect), but with a constant of proportionality different from what is claimed in the published literature in calculations based on the PPN scheme. Similar inequalities of gravitational and inertial masses are expected to occur in other scalar and vector theories.

  12. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  13. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    cost direct plasma MHD direct conversion [38], as well as toT-lean targets and direct conversion for heavy ion fusion. [conversion loss of beam energy into x-rays. High ablation velocities with heavy ion direct

  14. Key Points of STFC and EPSRC's Fusion for Energy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy

    E-Print Network [OSTI]

    Key Points of STFC and EPSRC's Fusion for Energy Strategy EPSRC and STFC Councils have agreed a revised strategy for fusion for energy research: 1) EPSRC and STFC will support fusion research as a long and demonstrating leadership to realise the goal of fusion energy. 2) EPSRC will develop a long term base funding

  15. Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N OFFICE OF DEFENSE PROGRAMS

    E-Print Network [OSTI]

    1 Inertial Fusion in NNSA N AT I O N AL N U C L E AR S E C U R I T Y AD M I N I S T R AT I O N, 2012 #12;2 ICF Program is critically important element of NNSA's Stockpile Stewardship Program (SSP to the Editor from Tom D'Agostino (NNSA Administrator) & Parney Albright (LLNL Director) stated NIF's primary

  16. Fusion-fission energy systems evaluation

    SciTech Connect (OSTI)

    Teofilo, V.L.; Aase, D.T.; Bickford, W.E.

    1980-01-01T23:59:59.000Z

    This report serves as the basis for comparing the fusion-fission (hybrid) energy system concept with other advanced technology fissile fuel breeding concepts evaluated in the Nonproliferation Alternative Systems Assessment Program (NASAP). As such, much of the information and data provided herein is in a form that meets the NASAP data requirements. Since the hybrid concept has not been studied as extensively as many of the other fission concepts being examined in NASAP, the provided data and information are sparse relative to these more developed concepts. Nevertheless, this report is intended to provide a perspective on hybrids and to summarize the findings of the rather limited analyses made to date on this concept.

  17. The Energy-Momentum Tensor in General Relativity and in Alternative Theories of Gravitation, and the Gravitational vs. Inertial Mass

    E-Print Network [OSTI]

    Hans C. Ohanian

    2013-02-28T23:59:59.000Z

    We establish a general relation between the canonical energy-momentum tensor of Lagrangian dynamics and the tensor that acts as the source of the gravitational field in Einstein's equations, and we show that there is a discrepancy between these tensors when there are direct nonminimal couplings between matter and the Riemann tensor. Despite this discrepancy, we give a general proof of the exact equality of the gravitational and inertial masses for any arbitrary system of matter and gravitational fields, even in the presence of nonminimal second-derivative couplings and-or linear or nonlinear second-derivative terms of any kind in the Lagrangian. The gravitational mass is defined by the asymptotic Newtonian potential at large distance from the system, and the inertial mass is defined by the volume integral of the energy density determined from the canonical energy-momentum tensor. In the Brans-Dicke scalar field theory, we establish that the nonminimal coupling and long range of the scalar field leads to an inequality between the gravitational and inertial masses, and we derive an exact formula for this inequality and confirm that it is approximately proportional to the gravitational self-energy (the Nordvedt effect), but with a constant of proportionality different from what is claimed in the published literature in calculations based on the PPN scheme. Similar inequalities of gravitational and inertial masses are expected to occur in other scalar and vector theories.

  18. DOE/SC-0041 Fusion Energy Sciences Advisory Committee

    E-Print Network [OSTI]

    plasma physics experiment and its major supporting elements? What are the different levels of self-heating of strong self- heating, the burning plasma regime. This is the regime in which the internal nuclear fusion transfer their energy to the background plasma. When this self-heating of the plasma by fusion alpha

  19. Department of Advanced Energy Nuclear Fusion Research Education Program

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    25 Department of Advanced Energy Nuclear Fusion Research Education Program 24 8 21.Yasuhiro@jaxa.jp tel: 050-336-27836 mail: sakai@isas.jaxa.jp tel: 050-3362-5919 12 http://www. k.u-tokyo.ac.jp/fusion 15 (1) (2) (1) (2) (3) (4) (5) (6) (7) (8) (9) #12;- 8 - 25 Guide to Nuclear

  20. Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets

    E-Print Network [OSTI]

    for cryogenic refrigeration plants needed to maintain the magnets' temperature near absolute zero, direct costsImproved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets Robert D. Woolley for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum

  1. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15T23:59:59.000Z

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  2. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Harnessing the energy of thermonuclear fusion reactions is one of the greatest challenges of our time. FusionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014002 (10pp) doi:10.1088/0029-5515/50/1/014002 ITER on the road to fusion energy Kaname Ikeda Director

  3. Adiabatic Heavy Ion Fusion Potentials for Fusion at Deep Sub-barrier Energies

    E-Print Network [OSTI]

    S. V. S. Sastry; S. Kailas; A. K. Mohanty; A. Saxena

    2003-11-12T23:59:59.000Z

    The fusion cross sections from well above barrier to extreme sub-barrier energies have been analysed using the energy (E) and angular momentum (L) dependent barrier penetration model ({\\small{ELDBPM}}). From this analysis, the adiabatic limits of fusion barriers have been determined for a wide range of heavy ion systems. The empirical prescription of Wilzynska and Wilzynski has been used with modified radius parameter and surface tension coefficient values consistent with the parameterization of the nuclear masses. The adiabatic fusion barriers calculated from this prescription are in good agreement with the adiabatic barriers deduced from {\\small{ELDBPM}} fits to fusion data. The nuclear potential diffuseness is larger at adiabatic limit, resulting in a lower $\\hbar\\omega$ leading to increase of "logarithmic slope" observed at energies well below the barrier. The effective fusion barrier radius and curvature values are anomalously smaller than the predictions of known empirical prescriptions. A detailed comparison of the systematics of fusion barrier with and without L-dependence has been presented.

  4. Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth

    E-Print Network [OSTI]

    Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. #12;Tabak Snowmass We are making

  5. Placing Fusion in the spectrum of energy development

    E-Print Network [OSTI]

    Exponential growth phase: energy production irrelevant My observations based on this graph. · First of all: since the exponential growth stops at typically 1% of the final capacity, the energy production during is irrelevant for energy production. #12;Niek Lopes Cardozo, Placing fusion in the energy development spectrum

  6. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect (OSTI)

    David A. Petti; Susana Reyes; Lee C. Cadwallader; Jeffery F. Latkowski

    2004-09-01T23:59:59.000Z

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  7. Status of Safety and Environmental Activities in the U.S. Fusion Program

    SciTech Connect (OSTI)

    Petti, D.A. [Idaho National Engineering and Environmental Laboratory (United States); Reyes, S. [Lawrence Livermore National Laboratory (United States); Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States); Latkowski, J.F. [Lawrence Livermore National Laboratory (United States)

    2005-05-15T23:59:59.000Z

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  8. Status of Safety and Environmental Activities in the US Fusion Program

    SciTech Connect (OSTI)

    Petti, D A; Reyes, S; Cadwallader, L C; Latkowski, J F

    2004-09-02T23:59:59.000Z

    This paper presents an overview of recent safety efforts in both magnetic and inertial fusion energy. Safety has been a part of fusion design and operations since the inception of fusion research. Safety research and safety design support have been provided for a variety of experiments in both the magnetic and inertial fusion programs. The main safety issues are reviewed, some recent safety highlights are discussed and the programmatic impacts that safety research has had are presented. Future directions in the safety and environmental area are proposed.

  9. Journal of Fusion Energy, Vol. 17, No. 4, 1998 Status and Objectives of Tokamak Systems for Fusion

    E-Print Network [OSTI]

    Journal of Fusion Energy, Vol. 17, No. 4, 1998 Status and Objectives of Tokamak Systems for Fusion). It was the first comprehensive survey of the status of the tokamak fusion research concept, which was to become buildup of the U.S. tokamak program during the latter half of the 1970's and is published now to archive

  10. Please cite this article in press as: K.J. Boehm, et al., Modeling results for mass production layering in a fluidized bed, Fusion Eng. Des. (2011), doi:10.1016/j.fusengdes.2010.08.004

    E-Print Network [OSTI]

    Raffray, A. René

    2011-01-01T23:59:59.000Z

    production layering device for inertial fusion energy (IFE) fuel pellets are presented. In an IFE power plant GModel FUSION-5362; No.of Pages11 Fusion Engineering and Design xxx (2011) xxx­xxx Contents lists.B. Alexanderb , D.T. Goodinb a Center for Energy Research, M/C 0438 460D EBU II, University of California, San

  11. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  12. Fusion at near-barrier energies within quantum diffusion approach

    E-Print Network [OSTI]

    V. V. Sargsyan; G. G. Adamian; N. V. Antonenko; W. Scheid; H. Q. Zhang

    2013-11-20T23:59:59.000Z

    The nuclear deformation and neutron-transfer process have been identified as playing a major role in the magnitude of the sub-barrier fusion (capture) cross sections. There are a several experimental evidences which confirm the importance of nuclear deformation on the fusion. The influence of nuclear deformation is straightforward. If the target nucleus is prolate in the ground state, the Coulomb field on its tips is lower than on its sides, that then increases the capture or fusion probability at energies below the barrier corresponding to the spherical nuclei. The role of neutron transfer reactions is less clear. The importance of neutron transfer with positive Q-values on nuclear fusion (capture) originates from the fact that neutrons are insensitive to the Coulomb barrier and therefore they can start being transferred at larger separations before the projectile is captured by target-nucleus. Therefore, it is generally thought that the sub-barrier fusion cross section will increase because of the neutron transfer. The fusion (capture) dynamics induced by loosely bound radioactive ion beams is currently being extensively studied. However, the long-standing question whether fusion (capture) is enhanced or suppressed with these beams has not yet been answered unambiguously. The study of the fusion reactions involving nuclei at the drip-lines has led to contradictory results.

  13. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    Fujiwara. Perspective of ODS alloys application in nuclear97 RAFM steel and two european ODS EUROFER 97 steels. Fusiontemperature oxidation behavior of ODS ferritics. Journal of

  14. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    pathway for li6 isotope enrichment. Applied Physics B, 87(explored various enrichment schemes including laser isotopeisotope production con- tinues past the point of full power, but is controlled via 6 Li coolant enrichment

  15. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    scenario in a notional generation IV example sodium fastCommittee and the Generation IV Interna- tional Forum.Generation IV roadmap - crosscutting fuels and materials R&D

  16. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    outlook, October 2007. 1.1 [3] Peak oil wikipedia, the freeen.wikipedia.org/wiki/Peak_oil#cite_note-mkinghubbert1956-0.

  17. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    Coolant . . . . 2.3.6 Molten Salt Main Coolant . . . . .Metal Atoms flibe The molten salt coolant 2LiF+BeF2 FOMmain system coolant is the molten salt flibe (2LiF-BeF 2 ),

  18. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    IV example sodium fast reactor. assessing design variations.generate fuel for fast nuclear reactors, although Basov and

  19. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    low density, high heat capacity liquid at room temp, verydensity liquid that would have a high heat capacity so itLiquid Na H 2 O Good moderator, chemically stable, high volumetric heat capacity,

  20. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    DT Deuterium-Tritium DU Depleted Uranium FIMA Fission ofengine loaded with depleted uranium. In Proc. PHYSOR 2010,in the form of depleted uranium (DU). The remaining ~3,075

  1. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    DT Deuterium-Tritium DU Depleted Uranium FIMA Fission ofengine loaded with depleted uranium. In Proc. PHYSOR 2010,fuel layer comprised of depleted uranium contained in

  2. Fusion barrier distributions in systems with finite excitation energy

    E-Print Network [OSTI]

    K. Hagino; N. Takigawa; A. B. Balantekin

    1997-06-24T23:59:59.000Z

    Eigen-channel approach to heavy-ion fusion reactions is exact only when the excitation energy of the intrinsic motion is zero. In order to take into account effects of finite excitation energy, we introduce an energy dependence to weight factors in the eigen-channel approximation. Using two channel problem, we show that the weight factors are slowly changing functions of incident energy. This suggests that the concept of the fusion barrier distribution still holds to a good approximation even when the excitation energy of the intrinsic motion is finite. A transition to the adiabatic tunneling, where the coupling leads to a static potential renormalization, is also discussed.

  3. Journal of Fusion Energy, VoL 10, No. 2. 1991 An Accelerated Fusion Power Development Plan1

    E-Print Network [OSTI]

    considerably since the 1970's energy crisis. Once-vigorous energy programs have been cut to subcritical fundingJournal of Fusion Energy, VoL 10, No. 2. 1991 An Accelerated Fusion Power Development Plan1 Stephen O. Dean,2Charles C. Baker,3 Daniel R. Cohn,4 and Susan D. Kinkead5 Energy for electricity

  4. THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER

    E-Print Network [OSTI]

    Abdou, Mohamed

    1 THE PATH TOWARD MAGNETIC FUSION ENERGY DEMONSTRATON AND THE ROLE OF ITER ABDOU, M. A. Center to enable a transition to fusion energy demonstration (DEMO). Fusion Nuclear Science and Technology (FNST conducting magnets. 1. Introduction: Fusion has great potential to be a sustainable energy source

  5. Fusion energy science: Clean, safe, and abundant energy through innovative science and technology

    SciTech Connect (OSTI)

    None

    2001-01-01T23:59:59.000Z

    Fusion energy science combines the study of the behavior of plasmas--the state of matter that forms 99% of the visible universe--with a vision of using fusion--the energy source of the stars--to create an affordable, plentiful, and environmentally benign energy source for humankind. The dual nature of fusion energy science provides an unfolding panorama of exciting intellectual challenge and a promise of an attractive energy source for generations to come. The goal of this report is a comprehensive understanding of plasma behavior leading to an affordable and attractive fusion energy source.

  6. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    SciTech Connect (OSTI)

    Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)] [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)

    2014-01-15T23:59:59.000Z

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaï-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  7. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    SciTech Connect (OSTI)

    Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15T23:59:59.000Z

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  8. Fusion dynamics of symmetric systems near barrier energies

    E-Print Network [OSTI]

    Zhao-Qing Feng; Gen-Ming Jin

    2009-09-06T23:59:59.000Z

    The enhancement of the sub-barrier fusion cross sections was explained as the lowering of the dynamical fusion barriers within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model. The numbers of nucleon transfer in the neck region are appreciably dependent on the incident energies, but strongly on the reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions $^{58}$Ni+$^{58}$Ni and $^{64}$Ni+$^{64}$Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of neutron to proton in the neck region at initial collision stage is observed and obvious for neutron-rich systems, which can reduce the interaction potential of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared them with the available experimental data.

  9. Energy & technology review, April 1995

    SciTech Connect (OSTI)

    Bookless, W.A.; Stull, S. [eds.

    1995-04-01T23:59:59.000Z

    This publication presents research overviews on projects from the Lawrence Livermore laboratory. This issue provides information on microsphere targets for inertial confinement fusion experiments; laser fabrication of berllium components; and the kinetic energy interceptor.

  10. Applications and Progress of Dust Injection to Fusion Energy

    SciTech Connect (OSTI)

    Wang Zhehui; Wurden, Glen A. [Los Alamos National Laboratory (United States); Mansfield, Dennis K.; Roquemore, Lane A. [Princeton Plasma Physics Laboratory (United States); Ticos, Catalin M. [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania)

    2008-09-07T23:59:59.000Z

    Three regimes of dust injection are proposed for different applications to fusion energy. In the 'low-speed' regime (<5 km/s), basic dust transport study, edge plasma diagnostics, edge-localized-mode (ELM) pacing in magnetic fusion devices can be realized by injecting dust of known properties into today's fusion experiments. ELM pacing, as an alternative to mini-pellet injection, is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion devices. Different schemes are available to inject dust. In the 'intermediate-speed' regime (10-200 km/s), possible applications of dust injection include fueling of the next-step fusion devices, core-diagnostics of the next-step fusion devices, and compression of plasma and solid targets to aid fusion energy production. Promising laboratory results of dust moving at 10-50 km/s do exist. Significant advance in this regime may be expected in the near term to achieve higher dust speeds. In the 'high-speed' regime (>500 km/s), dust injection can potentially be used to directly produce fusion energy through impact. Ideas on how to achieve these extremely high speeds are mostly on paper. No plan exists today to realize them in laboratory. Some experimental results, including electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration, are summarized and compared. Some features and limitations of the different acceleration methods will be discussed. A necessary component of all dust injectors is the dust dropper (also known as dust dispenser). A computer-controlled piezoelectric crystals has been developed to dropped dust in a systematic and reproducible manner. Particle fluxes ranges from a few tens of particles per second up to thousands of particles per second by this simple device.

  11. The Path to Magnetic Fusion Energy

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    for U.S. fusion research. This presentation proposes a mission for a major new U.S. facility, leading-even behind us, it is now time to address the logically first of the combined physics and technology% Japan 13% U.S. 10% China 10% India 10% Russia 10% S. Korea China Europe India Japan (w/EU) South Korea U

  12. and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 (13pp) doi:10.1088/0029-5515/48/2/024016

    E-Print Network [OSTI]

    Solna, Knut

    2008-01-01T23:59:59.000Z

    and INTERNATIONAL ATOMIC ENERGY AGENCYIOP PUBLISHING NUCLEAR FUSION Nucl. Fusion 48 (2008) 024016 Vinca, Belgrade, Serbia 2 National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu

  13. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004 (14pp) doi:10.1088/0029-5515/50/1/014004

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014004.iop.org/NF/50/014004 Abstract Fusion energy research began in the early 1950s as scientists worked to harness at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.-s, 52.57.-z, 28.52.-s, 89.30.Jj (Some

  14. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  15. Secretary of Energy Advisory Board SLAC National Accelerator...

    Broader source: Energy.gov (indexed) [DOE]

    - 12:30 PM Energy of the Future - National Ignition Facility (NIF) and Laser Inertial Fusion Energy (LIFE) Ed Moses 12:30 PM - 1:45 PM Lunch Break 2:00 PM - 2:30 PM Subcommittee...

  16. Damage Threats and Response of Final Optics for Laser-Fusion Power Plants

    E-Print Network [OSTI]

    Tillack, Mark

    Damage Threats and Response of Final Optics for Laser-Fusion Power Plants M. S. Tillack1 , S. A-1597 The final optics for laser-IFE (inertial fusion energy) power plants will be exposed to a variety of damage to be the most serious concerns for a power plant. 1. Introduction Survival of the final optic is one of the most

  17. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    SciTech Connect (OSTI)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-07-15T23:59:59.000Z

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

  18. Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Fusion of Neutron-Rich O Ions on a Carbon Target at Near-Barrier Energies Indiana University: M in the outer crust · Superbursts observed for accreting neutron stars · Fusion of neutron-rich light nuclei as a possible heat source in neutron star crust Fusion cross-section · Dynamics of fusion reaction with neutron

  19. Inertial range turbulence in kinetic plasmas

    E-Print Network [OSTI]

    G. G. Howes

    2007-11-27T23:59:59.000Z

    The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.

  20. Laser Inertial Fusion-based

    E-Print Network [OSTI]

    as thermal insulator to protect capsule during injection: --Radiation heating to capsule: ­ Polyimide transmits in the IR ­ Radiation shield (Al/polyimide/Al) gives 99% reflectivity --Convective heating of polyimide window dominates: ­ Heat transfer coefficient ~8 W/m2-K at window edge ­ Window heats to ~80

  1. Thursday, January 30, 2003 Energy Secretary Abraham Announces U.S. to Join Negotiations on Major International Fusion

    E-Print Network [OSTI]

    of a major international magnetic fusion research project, U.S. Secretary of Energy Spencer Abraham announced feasibility of fusion energy. "This international fusion project is a major step towards a fusion demonstration power plant that could usher in commercial fusion energy," Secretary Abraham said. "ITER also

  2. DOE/SC-0041 Fusion Energy Sciences Advisory Committee

    E-Print Network [OSTI]

    major supporting elements? What are the different levels of self-heating that are needed to contribute is the development of a basic understanding of plasma behavior in the regime of strong self- heating, the burning their energy to the background plasma. When this self-heating of the plasma by fusion alpha particles is large

  3. Technology spinoffs from the Magnetic Fusion Energy Program

    SciTech Connect (OSTI)

    Not Available

    1984-02-01T23:59:59.000Z

    This document briefly describes eight new spin-offs from the fusion program: (1) cray timesharing system, (2) CRT touch panel, (3) magneform, (4) plasma separation process, (5) homopolar resistance welding, (6) plasma diagnostic development, (7) electrodeless microwave lamp, and (8) superconducting energy storage. (MOW)

  4. Determination of Atomic Data Pertinent to the Fusion Energy Program

    SciTech Connect (OSTI)

    Reader, J.

    2013-06-11T23:59:59.000Z

    We summarize progress that has been made on the determination of atomic data pertinent to the fusion energy program. Work is reported on the identification of spectral lines of impurity ions, spectroscopic data assessment and compilations, expansion and upgrade of the NIST atomic databases, collision and spectroscopy experiments with highly charged ions on EBIT, and atomic structure calculations and modeling of plasma spectra.

  5. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2010-11-15T23:59:59.000Z

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  6. Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001

    E-Print Network [OSTI]

    Senator Dianne Feinstein Statement on the Fusion Energy Sciences Act of 2001 June 28, 2001 Mr to accelerate the development of fusion energy as a practical and realistic alternative to fossil fuels for our introduced the "Fusion Energy Sciences Act of 2001" on the House side as H.R. 1781. Since the beginning

  7. MEASURING FUSION CROSS-SECTIONS FOR THE C SYSTEM AT NEAR BARRIER ENERGIES

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES Michael Rudolph Michael Rudolph MEASURING FUSION CROSS-SECTIONS FOR THE 20 O + 12 C SYSTEM AT NEAR BARRIER ENERGIES The fusion of neutron-rich 20 O on 12 C at energies in the range of 20 MeV Elab 41 MeV was measured

  8. The Fusion Energy Program: The Role of TPX and Alternate Concepts

    E-Print Network [OSTI]

    The Fusion Energy Program: The Role of TPX and Alternate Concepts February 1995 OTA-BP-ETI-141 GPO, The Fusion Energy Program: The Role of TPX and Alternate Concepts, OTA-BP-ETI-141 (Washington, DC: U of alternate concept research as conducted in the U.S. fusion energy program. While the focus of the study

  9. An evaluation of fusion energy R&D gaps using Technology Readiness Levels

    E-Print Network [OSTI]

    for prioritization. #12;The topic of fusion energy R&D gaps is receiving increased attention page 2 of 16 In EUAn evaluation of fusion energy R&D gaps using Technology Readiness Levels M. S. Tillack to develop and apply this technology assessment approach to fusion energy are reported here. #12;We adopted

  10. Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 1 The hybrid scenario in JET

    E-Print Network [OSTI]

    Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 1 The « hybrid » scenario in JET burning plasma for the hybrid scenario #12;Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 2 4 5 #12;Emmanuel Joffrin XXth Fusion Energy Conference, November 2004 3 JET hybrid regime (1.7T, 1

  11. Stauts of the Laser Inertial Fusion Energy (LIFE) Hohlraum Point Design

    SciTech Connect (OSTI)

    Amendt, P; Dunne, M; Ho, D; Lasinski, B; Meeker, D; Ross, J S

    2012-04-10T23:59:59.000Z

    Progress on the hohlraum point design for the LIFE engine is described. New features in the original design [Amendt et al., Fus. Sci. Technol. 60, 49 (2011)] are incorporated that address the imperatives of low target cost, high manufacturing throughput, efficient and prompt material recycling, an ability for near-term testing of key target design uncertainties on the National Ignition Facility, and robustness to target chamber environment and injection insults. To this end, the novel use of Pb hohlraums and aerogel-supported liquid DT fuel loading within a high-density-carbon (HDC) ablator is implemented in the hohlraum point design.

  12. Simulation of Gas Dynamic Behavior in Dry-Wall Inertial Fusion Energy Chambers

    E-Print Network [OSTI]

    Tillack, Mark

    . In this work, the code TSUNAMI [2] was used to model chamber gas dynamics for different shapes, sizes of size scaling. Previous- ly, TSUNAMI was used primarily for studying liquid protec- ted chambers which the basic response charac- teristics (with emphasis on the evolution towards a quiescent state

  13. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01T23:59:59.000Z

    Logan, R. M. More, P. A. Ni, P. K. Roy, W. L. Waldron, P. A.NIMA 577 (2007) 238. [6] P. K. Roy, P. A. Seidl, A. Anders,

  14. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01T23:59:59.000Z

    in the generation of ultra-intense laser pulses using theexperiments with ultra-high intensity laser [10]. The modeldot, and then ultra-high intensity single laser is used to

  15. Fusion Energy An Industry-Led Initiative

    E-Print Network [OSTI]

    - Sunlight and its derivatives - Fission energy based on breeders - Clean coal (several hundreds of years

  16. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

  17. Workshop on Accelerators for Heavy Ion Fusion: Summary Report of the Workshop

    SciTech Connect (OSTI)

    Seidl, P.A.; Barnard, J.J.

    2011-04-29T23:59:59.000Z

    The Workshop on Accelerators for Heavy Ion Fusion was held at Lawrence Berkeley National Laboratory May 23-26, 2011. The workshop began with plenary sessions to review the state of the art in HIF (heavy ion fusion), followed by parallel working groups, and concluded with a plenary session to review the results. There were five working groups: IFE (inertial fusion energy) targets, RF approach to HIF, induction accelerator approach to HIF, chamber and driver interface, ion sources and injectors.

  18. U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted=

    E-Print Network [OSTI]

    States plan to build a $5 billion fusion reactor, called the International Thermonuclear ExperimentalU.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted= print&position=top Page: 1 January 30, 2003 U.S. to Participate in Fusion Project By THE ASSOCIATED

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010 (12pp) doi:10.1088/0029-5515/49/10/104010

    E-Print Network [OSTI]

    École Normale Supérieure

    2009-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 49 (2009) 104010. Zwingmann CEA, IRFM, F-13108 St Paul-lez-Durance, France 1 Associazione EURATOM-ENEA sulla Fusione, C;Nucl. Fusion 49 (2009) 104010 G. Giruzzi et al 9 LJAD, U.M.R. C.N.R.S. No 6621, Universit´e de Nice

  20. ROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL THERMONUCLEAR EXPERIMENTAL

    E-Print Network [OSTI]

    THERMONUCLEAR EXPERIMENTAL REACTOR Rôle de l'énergie de fusion dans la production énergétique du 21 e siècle etROLE OF FUSION ENERGY FOR THE 21 CENTURY ENERGY MARKET AND DEVELOPMENT STRATEGY WITH INTERNATIONAL be improved to contribute to this issue. Fusion is an energy source of the Sun and the Star. It is a quite

  1. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and R are determined in thin-shell inertial-confinement-fusion

    E-Print Network [OSTI]

    A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield for extending by 103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions. Sci. Instrum. 85, 063502 (2014); 10.1063/1.4880203 D 3 He -proton emission imaging for inertial

  2. January 14, 2014 MIT PSFC IAP Seminar Series Introduction to Fusion Energy Research

    E-Print Network [OSTI]

    ; to build a fusion reactor, and build a fusion power plant There has been tremendous progress in fusion energy research is an exciting, fast-moving international research area #12;January 14, 2014 MIT PSFC IAP car's gas engine · Your fireplace ·Gravitational force: Falling water transforms potential energy

  3. Feb15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION

    E-Print Network [OSTI]

    Feb­15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides must utilize one blanket neutron for tritium breeding. The ATW and fusion plants are found to have

  4. Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION

    E-Print Network [OSTI]

    Feb-15 2000 1 D.Jassby ELECTRICAL ENERGY REQUIREMENTS FOR ATW AND FUSION NEUTRONS by D.L. JASSBY the electrical energy requirements of accelerator (ATW) and fusion plants designed to transmute nuclides must utilize one blanket neutron for tritium breeding. The ATW and fusion plants are found to have

  5. Multi-University Research to Advance Discovery Fusion Energy Science using a

    E-Print Network [OSTI]

    Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

  6. Low-energy fusion caused by an interference

    E-Print Network [OSTI]

    B. Ivlev

    2012-11-30T23:59:59.000Z

    Fusion of two deuterons of room temperature energy is studied. The nuclei are in vacuum with no connection to any external source (electric or magnetic field, illumination, surrounding matter, traps, etc.) which may accelerate them. The energy of the two nuclei is conserved and remains small during the motion through the Coulomb barrier. The penetration through this barrier, which is the main obstacle for low-energy fusion, strongly depends on a form of the incident flux on the Coulomb center at large distances from it. In contrast to the usual scattering, the incident wave is not a single plane wave but the certain superposition of plane waves of the same energy and various directions, for example, a convergent conical wave. As a result of interference, the wave function close to the Coulomb center is determined by a cusp caustic which is probed by de Broglie waves. The particle flux gets away from the cusp and moves to the Coulomb center providing a not small probability of fusion (cusp driven tunneling). Getting away from a caustic cusp also occurs in optics and acoustics.

  7. Energy payback and CO{sub 2} gas emissions from fusion and solar photovoltaic electric power plants. Final report to Department of Energy, Office of Fusion Energy Sciences

    SciTech Connect (OSTI)

    Kulcinski, G.L.

    2002-12-01T23:59:59.000Z

    A cradle-to-grave net energy and greenhouse gas emissions analysis of a modern photovoltaic facility that produces electricity has been performed and compared to a similar analysis on fusion. A summary of the work has been included in a Ph.D. thesis titled ''Life-cycle assessment of electricity generation systems and applications for climate change policy analysis'' by Paul J. Meier, and a synopsis of the work was presented at the 15th Topical meeting on Fusion Energy held in Washington, DC in November 2002. In addition, a technical note on the effect of the introduction of fusion energy on the greenhouse gas emissions in the United States was submitted to the Office of Fusion Energy Sciences (OFES).

  8. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    E-Print Network [OSTI]

    E. I. Moses

    2001-11-09T23:59:59.000Z

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  9. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-08-01T23:59:59.000Z

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  10. Nuclear Fusion Energy Research Ghassan Antar

    E-Print Network [OSTI]

    Shihadeh, Alan

    to address these issues. In particular there has been consistent emphasis on nuclear reactor accidents since the Chernobyl accident by the International Atomic Energy Agency (IAEA) and the World Meteorological

  11. Thermonuclear fusion

    E-Print Network [OSTI]

    Thermonuclear fusion is a way to achieve nuclear fusion by using extremely high temperatures. There are two forms of thermonuclear fusion: uncontrolled, in which the resulting energy is released in an uncontrolled manner, as it is in thermonuclear weapon...

  12. Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion

    E-Print Network [OSTI]

    Heiz, Ulrich

    100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

  13. Sandia Energy - Fusion Instabilities Lessened by Unexpected Effect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy StorageFirst-Ever AsianCommercialFusion

  14. Fusion Energy Advisory Committee: Advice and recommendations to the US Department of Energy in response to the charge letter of September 1, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    This document is a compilation of the written records that relate to the Fusion Energy Advisory Committee`s deliberations with regard to the Letter of Charge received from the Director of Energy Research, dated September 1, 1992. During its sixth meeting, held in March 1993, FEAC provided a detailed response to the charge contained in the letter of September 1, 1992. In particular, it responded to the paragraph: ``I would like the Fusion Energy Advisory Committee (FEAC) to evaluate the Neutron Interactive Materials Program of the Office of Fusion Energy (OFE). Materials are required that will satisfy the service requirements of components in both inertial and magnetic fusion reactors -- including the performance, safety, economic, environmental, and recycle/waste management requirements. Given budget constraints, is our program optimized to achieve these goals for DEMO, as well as to support the near-term ITER program?`` Before FEAC could generate its response to the charge in the form of a letter report, one member, Dr. Parker, expressed severe concerns over one of the conclusions that the committee had reached during the meeting. It proved necessary to resolve the issue in public debate, and the matter was reviewed by FEAC for a second time, during its seventh meeting, held in mid-April, 1993. In order to help it to respond to this charge in a timely manner, FEAC established a working group, designated Panel No. 6, which reviewed the depth and breadth of the US materials program, and its interactions and collaborations with international programs. The panel prepared background material, included in this report as Appendix I, to help FEAC in its deliberations.

  15. Princeton Plasma Physics Lab - Fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.7 348,016.0 336,514.0 350,723.3fact-sheets en PPPL

  16. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    constant Fluctuation due to calorimeter cooling system Electra's main oscillator has produced > 400J foil lifetime @ 5 Hz ·Deflecting laser gas or mist cooling promising Electra progress on Phase I goals Nd:glass Yb:crystals Increased energy storage and efficiency boule slab Gas Vanes Convective cooling

  17. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 (6pp) doi:10.1088/0029-5515/50/1/014006

    E-Print Network [OSTI]

    .57.-z, 89.30.Ji 1. Laser and laser fusion from past and present to future In 1917, Albert EinsteinIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 014006 energized implosion could be utilized for energy generation. Today, there are many facilities worldwide

  18. The Fusion Advanced Studies Torus (FAST): a proposal for an ITER satellite facility in support of the development of fusion energy

    E-Print Network [OSTI]

    Zonca, Fulvio

    of the development of fusion energy This article has been downloaded from IOPscience. Please scroll down to see and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10/IPPLM Association, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication

  19. Fusion Energy Sciences Review Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities High

  20. Designing Radiation Resistance in Materials for Fusion Energy

    SciTech Connect (OSTI)

    Zinkle, Steven J [University of Tennessee (UT)] [University of Tennessee (UT); Snead, Lance Lewis [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Proposed fusion and advanced (Generation IV) fission energy systems require high performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (non-structural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials where vacancies are immobile at the design operating temperatures, or construct high densities of point defect recombination sinks. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  1. Fusion Energy Greg Hammett & Russell Kulsred Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity from NOAA'sFusionBenefits

  2. Technical Feasibility of Fusion Energy Extension of the Fusion Program and Basic

    E-Print Network [OSTI]

    of the Radiological Toxic Hazard Potential between Light-Water Reactor Plant, Fusion Reactor Plant, and Coal-Fired

  3. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01T23:59:59.000Z

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  4. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  5. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-10-19T23:59:59.000Z

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion.

  6. An Assessment of the Department of Energy's Office of Fusion Energy

    E-Print Network [OSTI]

    competences and with regard for appropriate balance. This project was supported by the Department of Energy reserved. Printed in the United States of America #12;The National Academy of Sciences is a privateAn Assessment of the Department of Energy's Office of Fusion Energy Sciences Program NATIONAL

  7. On the nuclear interaction. Potential, binding energy and fusion reaction

    E-Print Network [OSTI]

    I. Casinos

    2008-05-22T23:59:59.000Z

    The nuclear interaction is responsible for keeping neutrons and protons joined in an atomic nucleus. Phenomenological nuclear potentials, fitted to experimental data, allow one to know about the nuclear behaviour with more or less success where quantum mechanics is hard to be used. A nuclear potential is suggested and an expression for the potential energy of two nuclear entities, either nuclei or nucleons, is developed. In order to estimate parameters in this expression, some nucleon additions to nuclei are considered and a model is suggested as a guide of the addition process. Coulomb barrier and energy for the addition of a proton to each one of several nuclei are estimated by taking into account both the nuclear and electrostatic components of energy. Studies on the binding energies of several nuclei and on the fusion reaction of two nuclei are carried out.

  8. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  9. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization

    E-Print Network [OSTI]

    Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng; Xie, Lihua

    2015-01-01T23:59:59.000Z

    T.T. GPS/MEMS INS Data Fusion and Map Matching in UrbanP. ; Besada, J.A. ; Casar, J.R. Fusion of RSS and inertialConference on Information Fusion (FUSION), Istanbul, Turkey,

  10. Recent EFDA work on Pulsed DEMO, August 2012, TOFE T N Todd Culham Centre for Fusion Energy, Oxfordshire

    E-Print Network [OSTI]

    Energy, Oxfordshire The Future of Nuclear Power: Fusion Recent EFDA work on pulsed DEMO The UK fusion) · Start-up power requirements, energy storage strategy · Energy storage systems available

  11. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fusion Hydrogen Fusion - Mark Uhran Safe, Clean and Virtually Unlimited Energy Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental...

  12. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 (8pp) doi:10.1088/0029-5515/50/3/034007

    E-Print Network [OSTI]

    Morrison, Philip J.,

    2010-01-01T23:59:59.000Z

    -dimensional (2D), two-field version of this model has been intensively investigated in [4­6] and a 3D extensionIOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 034007 for obtaining 0029-5515/10/034007+08$30.00 1 © 2010 IAEA, Vienna Printed in the UK #12;Nucl. Fusion 50 (2010

  13. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001

    E-Print Network [OSTI]

    Heidbrink, William W.

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

  14. Role of atomic collisions in fusion

    SciTech Connect (OSTI)

    Post, D.E.

    1982-04-01T23:59:59.000Z

    Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

  15. P h y s i c a l O c e a n o g r a p h y D i v i s i o n Near-inertial Energy Pathways

    E-Print Network [OSTI]

    understanding of the near-inertial energy flux from the mixed layer to the ocean interior, an important element of the ocean's energy budget. Through this effort, a new hourly- interpolated drifter product with an explicitP h y s i c a l O c e a n o g r a p h y D i v i s i o n Near-inertial Energy Pathways Renellys

  16. Nuclear Fusion (Nuclear Fusion ( )) as Clean Energy Source for Mankindas Clean Energy Source for Mankind

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    for electricity generation; worldwide ~ 66% for electricity use (~75% by 2025) ! Coal Consumption (Billion Tons is imported ­ almost completely relying on world energy supply. · Taiwan electricity supply: ~75% by fossil · How will Taiwan get adequate energy supply? - Taiwan government aims to achieve ~30% energy supply

  17. LANL Fusion Energy Sciences ResearchLANL Fusion Energy Sciences Research G. A. Wurden

    E-Print Network [OSTI]

    for the U.S. Department of Energy's NNSA UNCLASSIFIED #12;| Los Alamos National Laboratory | Abstract mitigation (US-ITER) Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED April 2013

  18. Laboratory for Laser Energetics annual report, 1 October 1991--30 September 1992. Inertial Fusion Program and National Laser Users Facility Program

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described.

  19. ENERGY ISSUES WORKING GROUP ON LONG-TERM VISIONS FOR FUSION POWER

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FOR ELECTRICAL ENERGY PRODUCTION IN THE NEXT CENTURY AND FUSION'S POTENTIAL FOR PENETRATING THIS ENERGY MARKET. 1, global warming, etc. The question then arose as to whether or not the community should account for Fusion Power considered the following four questions: 1. What is the projected market for electrical

  20. The European Joint Undertaking for ITER and the Development of Fusion Energy

    E-Print Network [OSTI]

    1 The European Joint Undertaking for ITER and the Development of Fusion Energy (Fusion for Energy Agreement · Last meeting of negotiators took place in Jeju, China in November 2005 · Meeting of legal experts in Barcelona last week resolved most remaining issues #12;3 Tentative ITER Timetable · Political

  1. Opportunities in the Fusion Energy Sciences Program [Includes Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    None

    1999-06-01T23:59:59.000Z

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  2. Opportunities in the Fusion Energy Sciences Program. Appendix C: Topical Areas Characterization

    SciTech Connect (OSTI)

    none,

    1999-06-30T23:59:59.000Z

    Recent years have brought dramatic advances in the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. The challenge is to make fusion energy practical. As a result of the advances of the last few years, there are now exciting opportunities to optimize fusion systems so that an attractive new energy source will be available when it may be needed in the middle of the next century. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities.

  3. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01T23:59:59.000Z

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  4. Study of fusion dynamics using Skyrme energy density formalism with different surface corrections

    E-Print Network [OSTI]

    Ishwar Dutt; Narinder K. Dhiman

    2010-11-19T23:59:59.000Z

    Within the framework of Skyrme energy density formalism, we investigate the role of surface corrections on the fusion of colliding nuclei. For this, the coefficient of surface correction was varied between 1/36 and 4/36, and its impact was studied on about 180 reactions. Our detailed investigations indicate a linear relationship between the fusion barrier heights and strength of the surface corrections. Our analysis of the fusion barriers advocate the strength of surface correction of 1/36.

  5. Atomic Physics in the Quest for Fusion Energy and ITER

    SciTech Connect (OSTI)

    Charles H. Skinner

    2008-02-27T23:59:59.000Z

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  6. fusion

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A0/%2A

  7. Fusion Engineering and Design 81 (2006) 16391645 Thermo-mechanical analysis of a micro-engineered

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2006-01-01T23:59:59.000Z

    laser (HAPL) program goal is to develop a laser inertial fusion reactor using a solid first wall (FW of X-rays, ions, and neutrons assumed unimpeded by any gas in the chamber. X-rays and ions have shallow such a small volume [6]. Shallow energy absorption leads to fast expansion in the surface while the bulk

  8. University of California, San Diego UCSD-ENG-105 Fusion Division

    E-Print Network [OSTI]

    Krstic, Miroslav

    of various threats. The full range of damage threats in a laser-IFE power plant includes laser damage and optic response in inertial fusion energy (IFE) power plants and simulation of those phenomena through for a laser-IFE power plant and to field both small and medium scale prototypes for testing. The top level

  9. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Wurden, Glen A. [Los Alamos National Laboratory

    2012-08-24T23:59:59.000Z

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  10. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608S621 doi:10.1088/0029-5515/47/10/S10

    E-Print Network [OSTI]

    Martín-Solís, José Ramón

    2007-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 47 (2007) S608­S, EURATOM Association, 01-497, Warsaw, Poland E-mail: pericoli@frascati.enea.it Received 30 January 2007 of turbulence suppression and energy transport. At the highest densities the ion thermal conductivity remains

  11. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005 (15pp) doi:10.1088/0029-5515/50/9/095005

    E-Print Network [OSTI]

    Vlad, Gregorio

    2010-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 50 (2010) 095005, Warsaw, Poland E-mail: Pizzuto@frascati.enea.it Received 5 January 2009, accepted for publication 15 June) in the energy range 0.5­1 MeV. The total power input will be in the 30­40 MW range under different plasma

  12. AVTA: Ford Fusion HEV 2010 Testing Results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. The baseline performance testing provides a point of comparison...

  13. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect (OSTI)

    Hawryluk, R J [PPPL

    2011-01-05T23:59:59.000Z

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  14. Fusion Energy Division annual progress report period ending December 31, 1986

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1987-10-01T23:59:59.000Z

    This annual report on fusion energy discusses the progress on work in the following main topics: toroidal confinement experiments; atomic physics and plasma diagnostics development; plasma theory and computing; plasma-materials interactions; plasma technology; superconducting magnet development; fusion engineering design center; materials research and development; and neutron transport. (LSP)

  15. Fusion of $^{6}$Li with $^{159}$Tb} at near barrier energies

    E-Print Network [OSTI]

    M. K. Pradhan; A. Mukherjee; P. Basu; A. Goswami; R. Kshetri; R. Palit; V. V. Parkar; M. Ray; Subinit Roy; P. Roy Chowdhury; M. Saha Sarkar; S. Santra

    2011-06-10T23:59:59.000Z

    Complete and incomplete fusion cross sections for $^{6}$Li+$^{159}$Tb have been measured at energies around the Coulomb barrier by the $\\gamma$-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by $\\sim$34% compared to the coupled channels calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data of $^{11,10}$B+$^{159}$Tb and $^{7}$Li+$^{159}$Tb shows that the extent of suppression is correlated with the $\\alpha$-separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction $^{6}$Li+$^{159}$Tb, at below-barrier energies are primarily due to the $d$-transfer to unbound states of $^{159}$Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  16. Fusion of {sup 6}Li with {sup 159}Tb at near-barrier energies

    SciTech Connect (OSTI)

    Pradhan, M. K.; Mukherjee, A.; Basu, P.; Goswami, A.; Kshetri, R.; Roy, Subinit; Chowdhury, P. Roy; Sarkar, M. Saha; Palit, R.; Parkar, V. V.; Santra, S.; Ray, M. [Nuclear Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhan Nagar, Kolkata-700064 (India); Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai-400005 (India); Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Department of Physics, Behala College, Parnasree, Kolkata-700060 (India)

    2011-06-15T23:59:59.000Z

    Complete and incomplete fusion cross sections for {sup 6}Li + {sup 159}Tb have been measured at energies around the Coulomb barrier by the {gamma}-ray method. The measurements show that the complete fusion cross sections at above-barrier energies are suppressed by {approx}34% compared to coupled-channel calculations. A comparison of the complete fusion cross sections at above-barrier energies with the existing data for {sup 11,10}B + {sup 159}Tb and {sup 7}Li + {sup 159}Tb shows that the extent of suppression is correlated with the {alpha} separation energies of the projectiles. It has been argued that the Dy isotopes produced in the reaction {sup 6}Li + {sup 159}Tb at below-barrier energies are primarily due to the d transfer to unbound states of {sup 159}Tb, while both transfer and incomplete fusion processes contribute at above-barrier energies.

  17. Energy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country resuming international effort

    E-Print Network [OSTI]

    plan to build a $5 billion fusion reactor, called the International Thermonuclear Experimental ReactorEnergy chief tells Jersey: Fusion's back Secretary, at top research lab in Plainsboro, says country States plans to resume participation in an international collaboration to develop fusion energy

  18. Nuclear Data for Fusion Energy Technologies: Requests, Status and Development Needs

    SciTech Connect (OSTI)

    Fischer, U. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Institut fuer Reaktorsicherheit, Postfach 3640, D-76021 Karlsruhe (Germany); Batistoni, P. [Associazione Euratom-ENEA sulla Fusione, ENEA Fusion Divison, Via E. Fermi 27, I-00044 Frascati (Italy); Cheng, E. [TSI Research, Inc., P.O. Box 2754, Rancho Santa Fe, CA 92067 (United States); Forrest, R.A. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Nishitani, T. [Fusion Neutronics Laboratory, JAERI, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2005-05-24T23:59:59.000Z

    The current status of nuclear data evaluations for fusion technologies is reviewed. Well-qualified data are available for neutronics and activation calculations of fusion power reactors and the next-step device ITER, the International Thermonuclear Experimental Reactor. Major challenges for the further development of fusion nuclear data arise from the needs of the long-term fusion programme. In particular, co-variance data are required for uncertainty assessments of nuclear responses. Further, the nuclear data libraries need to be extended to higher energies above 20 MeV to enable neutronics and activation calculations of IFMIF, the International Fusion Material Irradiation Facility. A significant experimental effort is required in this field to provide a reliable and sound database for the evaluation of cross-section data in the higher energy range.

  19. Fusion Power Associates Annual Meeting and Symposium Fusion Energy: Preparing for the NIF and ITER Era

    E-Print Network [OSTI]

    Materials Labs ­ S. Zinkle Fusion Technology ­ S. Milora 5:30 Depart ORNL 6:00 Reception 7:30 Board:50 Preparations for NIF Ignition Campaign ­ John Lindl, LLNL 9:10 Status of Z-Pinch Research ­ Keith Matzen Technology Program­ Stan Milora, ORNL 1:40 Issues and Opportunities from ITER Review ­ R. Hawryluk, PPPL 2

  20. CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Fusion Technology at

    E-Print Network [OSTI]

    more of an engineering challenge than a scientific one, is to build economically viable nuclear fusion self-sufficiency is vital to viable power station operation · The Test Blanket Programme of components will be inevitable · Manned access to in-vessel components and support systems

  1. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget...

  2. Summary for FT, IT and SE 20th IAEA Fusion Energy Conference

    E-Print Network [OSTI]

    and should be moved to the ultimat goal of utilizing fusion energy for human being in near future from existing experiments and these projections give confidence that ITER will meet it's goal of long

  3. Neutralinos in Vector Boson Fusion at High Energy Colliders

    E-Print Network [OSTI]

    Berlin, Asher; Low, Matthew; Wang, Lian-Tao

    2015-01-01T23:59:59.000Z

    Discovering dark matter at high energy colliders continues to be a compelling and well-motivated possibility. Weakly interacting massive particles are a particularly interesting class in which the dark matter particles interact with the standard model weak gauge bosons. Neutralinos are a prototypical example that arise in supersymmetric models. In the limit where all other superpartners are decoupled, it is known that for relic density motivated masses, the rates for neutralinos are too small to be discovered at the Large Hadron Collider (LHC), but that they may be large enough for a 100 TeV collider to observe. In this work we perform a careful study in the vector boson fusion channel for pure winos and pure higgsinos. We find that given a systematic uncertainty of 1% (5%), with 3000 fb$^{-1}$, the LHC is sensitive to winos of 240 GeV (125 GeV) and higgsinos of 125 GeV (55 GeV). A future 100 TeV collider would be sensitive to winos of 1.1 TeV (750 GeV) and higgsinos of 530 GeV (180 GeV) with a 1% (5%) uncert...

  4. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    Farge, Marie

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

  5. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10.1088/0029-5515/54/4/043016

    E-Print Network [OSTI]

    Harilal, S. S.

    . Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 043016 (8pp) doi:10 becomes well coupled to the melt motion. Under the plasma impact with high velocity of 5000 m s-1 , the W

  6. | International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10.1088/0029-5515/54/3/033008

    E-Print Network [OSTI]

    Harilal, S. S.

    . Miloshevsky and A. Hassanein Center for Materials under Extreme Environment, School of Nuclear Engineering| International Atomic Energy Agency Nuclear Fusion Nucl. Fusion 54 (2014) 033008 (8pp) doi:10 is observed on the melt surface in the absence of plasma impact. The magnetic field of 5 T that is parallel

  7. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 (13pp) doi:10.1088/0029-5515/52/1/013001

    E-Print Network [OSTI]

    Budny, Robert

    2012-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013001 using the PTRANSP code. The baseline toroidal field (5.3 T), plasma current ramped to 15 MA and a flat are predicted assuming GLF23 and boundary parameters. Conservatively low temperatures ( 0.6 keV) and v 400 rad s

  8. Code of a Tokamak Fusion Energy Facility ITER

    SciTech Connect (OSTI)

    Yasuhide Asada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Kenzo Miya [Keio University (Japan); Kazuhiko Hada; Eisuke Tada [Japan Atomic Energy Research Institute (Japan)

    2002-07-01T23:59:59.000Z

    The technical structural code for ITER (International Thermonuclear Experimental Fusion Reactor) and, as more generic applications, for D-T burning fusion power facilities (hereafter, Fusion Code) should be innovative because of their quite different features of safety and mechanical components from nuclear fission reactors, and the necessity of introducing several new fabrication and examination technologies. Introduction of such newly developed technologies as inspection-free automatic welding into the Fusion Code is rationalized by a pilot application of a new code concept of {sup s}ystem-based code for integrity{sup .} The code concept means an integration of element technical items necessary for construction, operation and maintenance of mechanical components of fusion power facilities into a single system to attain an optimization of the total margin of these components. Unique and innovative items of the Fusion Code are typically as follows: - Use of non-metals; - Cryogenic application; - New design margins on allowable stresses, and other new design rules; - Use of inspection-free automatic welding, and other newly developed fabrication technologies; - Graded approach of quality assurance standard to cover radiological safety-system components as well as non-safety-system components; - Consideration on replacement components. (authors)

  9. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect (OSTI)

    Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-01-21T23:59:59.000Z

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  10. Electrodynamics in the zero-point field: on the equilibrium spectral energy distribution and the origin of inertial mass

    E-Print Network [OSTI]

    Michael Ibison

    2003-02-19T23:59:59.000Z

    Attempts at an electromagnetic explanation of the inertial mass of charged particles have recently been revived within the framework of Stochastic Electrodynamics, characterized by the adoption of a classical version of the electromagnetic zero-point field (ZPF). Recent claims of progress in that area have to some extent received support from related claims that the classical equilibrium spectrum of charged matter is that of the classically conceived ZPF. The purpose of this note is to suggest that some strong qualifications should accompany these claims. It is pointed out that a classical massless charge cannot acquire mass from nothing as a result of immersion in any EM field, and therefore that the ZPF alone cannot provide a full explanation of inertial mass. Of greater concern, it is observed that the peculiar circumstances under which classical matter is in equilibrium with the ZPF do not concur with observation.

  11. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    E-Print Network [OSTI]

    C. L. Jiang; B. B. Back; H. Esbensen; R. V. F. Janssens; abd K. E. Rehm

    2005-08-01T23:59:59.000Z

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the $Q$-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  12. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies.

    SciTech Connect (OSTI)

    Jiang, C. L.; Back, B. B.; Esbensen, H.; Janssens, R. V. F.; Rehm, K. E.; Physics

    2006-01-01T23:59:59.000Z

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the 'stiffness' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  13. Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    SciTech Connect (OSTI)

    Jiang, C.L.; Back, B.B.; Esbensen, H.; Janssens, R.V.F.; Rehm, K.E. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2006-01-15T23:59:59.000Z

    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the ''stiffness'' of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the Q-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.

  14. Energy dependence of potential barriers and its effect on fusion cross-sections

    E-Print Network [OSTI]

    A. S. Umar; C. Simenel; V. E. Oberacker

    2014-01-28T23:59:59.000Z

    Couplings between relative motion and internal structures are known to affect fusion barriers by dynamically modifying the densities of the colliding nuclei. The effect is expected to be stronger at energies near the barrier top, where changes in density have longer time to develop than at higher energies. Quantitatively, modern TDHF calculations are able to predict realistic fusion thresholds. However, the evolution of the potential barrier with bombarding energy remains to be confronted with the experimental data. The aim is to find signatures of the energy dependence of the barrier by comparing fusion cross-sections calculated from potentials obtained at different bombarding energies with the experimental data. This comparison is made for the $^{40}$Ca+$^{40}$Ca and $^{16}$O+$^{208}$Pb systems. Fusion cross-sections are computed from potentials calculated with the density-constrained TDHF method. The couplings decrease the barrier at low-energy in both cases. A deviation from the Woods-Saxon nuclear potential is also observed at the lowest energies. In general, fusion cross-sections around a given energy are better reproduced by the potential calculated at this energy. The coordinate-dependent mass plays a crucial role for the reproduction of sub-barrier fusion cross-sections. Effects of the energy dependence of the potential can be found in experimental barrier distributions only if the variation of the barrier is significant in the energy-range spanned by the distribution. It appears to be the case for $^{16}$O+$^{208}$Pb but not for $^{40}$Ca+$^{40}$Ca. These results show that the energy dependence of the barrier predicted in TDHF calculations is realistic. This confirms that the TDHF approach can be used to study the couplings between relative motion and internal degrees of freedom in heavy-ion collisions.

  15. Historical Perspective on the United States Fusion Program

    SciTech Connect (OSTI)

    Dean, Stephen O

    2005-04-15T23:59:59.000Z

    Progress and Policy is traced over the approximately 55 year history of the U. S. Fusion Program. The classified beginnings of the effort in the 1950s ended with declassification in 1958. The effort struggled during the 1960s, but ended on a positive note with the emergence of the tokamak and the promise of laser fusion. The decade of the 1970s was the 'Golden Age' of fusion, with large budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy Engineering Act of 1980, overwhelming approved by Congress and signed by President Carter. The Act called for a '$20 billion, 20 year' effort aimed at construction of a fusion Demonstration Power Plant around the end of the century. The U. S. Magnetic Fusion Energy program has been on a downhill slide since 1980, both in terms of budgets and the construction of new facilities. The Inertial Confinement Fusion program, funded by Department of Energy Defense Programs, has faired considerably better, with the construction of many new facilities, including the National Ignition Facility (NIF)

  16. Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

    E-Print Network [OSTI]

    Measurement of Energy Distribution of Deuterium-Tritium Fusion Alpha-particles and MeV Energy Knock-on Deuterons in JET Plasmas

  17. Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible

    E-Print Network [OSTI]

    Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC IAP 2014" " January 15, 2014" This work performed under the auspices of the U.S. Department of Energy

  18. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect (OSTI)

    Chew, J.

    1994-04-01T23:59:59.000Z

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  19. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei

    E-Print Network [OSTI]

    Ning Wang; Xizhen Wu; Zhuxia Li; Min Liu; Werner Scheid

    2006-09-18T23:59:59.000Z

    The Skyrme energy-density functional approach has been extended to study the massive heavy-ion fusion reactions. Based on the potential barrier obtained and the parameterized barrier distribution the fusion (capture) excitation functions of a lot of heavy-ion fusion reactions are studied systematically. The average deviations of fusion cross sections at energies near and above the barriers from experimental data are less than 0.05 for 92% of 76 fusion reactions with $Z_1Z_2fusion reactions, for example, the $^{238}$U-induced reactions and $^{48}$Ca+$^{208}$Pb the capture excitation functions have been reproduced remarkable well. The influence of structure effects in the reaction partners on the capture cross sections are studied with our parameterized barrier distribution. Through comparing the reactions induced by double-magic nucleus $^{48}$Ca and by $^{32}$S and $^{35}$Cl, the 'threshold-like' behavior in the capture excitation function for $^{48}$Ca induced reactions is explored and an optimal balance between the capture cross section and the excitation energy of the compound nucleus is studied. Finally, the fusion reactions with $^{36}$S, $^{37}$Cl, $^{48}$Ca and $^{50}$Ti bombarding on $^{248}$Cm, $^{247,249}$Bk, $^{250,252,254}$Cf and $^{252,254}$Es, and as well as the reactions lead to the same compound nucleus with Z=120 and N=182 are studied further. The calculation results for these reactions are useful for searching for the optimal fusion configuration and suitable incident energy in the synthesis of superheavy nuclei.

  20. Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions

    E-Print Network [OSTI]

    Kai Wen; Fumihiko Sakata; Zhu-Xia Li; Xi-Zhen Wu; Ying-Xun Zhang; Shan-Gui Zhou

    2014-11-08T23:59:59.000Z

    Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD) model, the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD model show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is due to a rearrangement of nucleons in the intrinsic system. The former mechanism monotonically increases the dissipative energy and shows a weak dependence on the incident energy, while the latter depends on both the relative distance between two fusing nuclei and the incident energy. It is shown that the latter mechanism is responsible for the energy dependence of the fusion potential and explains the fading out of the fluctuation-dissipation relation.

  1. A hybrid model for fusion at deep sub-barrier energies

    E-Print Network [OSTI]

    Ajit Kumar Mohanty

    2010-11-17T23:59:59.000Z

    A hybrid model where the tunneling probability is estimated based on both sudden and adiabatic approaches has been proposed to understand the heavy ion fusion phenomena at deep sub-barrier energies. It is shown that under certain approximations, it amounts to tunneling through two barriers: one while overcoming the normal Coulomb barrier (which is of sudden nature) along the radial direction until the repulsive core is reached and thereafter through an adiabatic barrier along the neck degree of freedom while making transition from a di-nuclear to a mono-nuclear regime through shape relaxation. A general feature of this hybrid model is a steep fall-off of the fusion cross section, sharp increase of logarithmic derivative L(E) with decreasing energy and the astrophysical S-factor showing a maxima at deep sub-barrier energies particularly for near symmetric systems. The model can explain the experimental fusion measurements for several systems ranging from near symmetric systems like $^{58}Ni+^{64}Ni, ^{58}Ni+^{58}Ni$ and $ ^{58}Ni+^{69}Y$ to asymmetric one like $^{16}O+^{208}Pb$ where the experimental findings are very surprising. Since the second tunneling is along the neck co-ordinate, it is further conjectured that deep sub-barrier fusion supression may not be observed for the fusion of highly asymmetric projectile target combinations where adiabatic transition occurs automatically without any hindrance. The recent deep sub-barrier fusion cross section measurements of $^{6}Li+^{198}Pt$ system supports this conjecture.

  2. Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier

    E-Print Network [OSTI]

    N. Keeley; R. Raabe; N. Alamanos; J. L. Sida

    2007-02-16T23:59:59.000Z

    The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The data for total fusion are also consistent with a possible sub-barrier enhancement; however, this observation is not conclusive and other couplings besides the single-neutron channels would be needed in order to explain any actual enhancement. We find that a characteristic feature of halo nuclei is the dominance of direct reactions over fusion at near and sub-barrier energies; the main part of the cross section is related to neutron transfers, while calculations indicate only a modest contribution from the breakup process.

  3. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation.

  4. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  5. Status of the HAPL Program Laser Fusion Energy

    E-Print Network [OSTI]

    -optics Government Labs 1. NRL 2. LLNL 3. SNL 4. LANL 5. ORNL 6. PPPL 7. SRNL Industry 1. General Atomics 2. L3/PSD 3 still need to do Electricity or Hydrogen Generator Reaction chamber Spherical pellet Pellet factory* Threat spectra Fusion Test Facility: Gain > 50 @ 500 kJ 2 different simulations** Simulations Codes

  6. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect (OSTI)

    Nelson, Alan J. [University of New Mexico, Albuquerque, NM; Cooper, Gary Wayne [University of New Mexico, Albuquerque, NM; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01T23:59:59.000Z

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was first developed and then applied to the axial neutron time of flight detectors at the ZFacility mentioned above. First, MCNPPoliMi was used to model relevant portions of the facility between the source and the detector locations. To obtain useful statistics, variance reduction was utilized. Then, the resulting collision output table produced by MCNPPoliMi was further analyzed by a MATLAB postprocessing code. This converted the energy deposited by neutron and photon interactions in the plastic scintillator (i.e., nTOF detector) into light output, in units of MeVee%D1%84 (electron equivalent) vs time. The time response of the detector was then folded into the signal via another MATLAB code. The simulated response was then compared with experimental data and shown to be in good agreement. To address the issue of neutron scattering, an %E2%80%9CIdeal Case,%E2%80%9D (i.e., a plastic scintillator was placed at the same distance from the source for each detector location) with no structural components in the problem. This was done to produce as %E2%80%9Cpure%E2%80%9D a neutron signal as possible. The simulated waveform from this %E2%80%9CIdeal Case%E2%80%9D was then compared with the simulated data from the %E2%80%9CFull Scale%E2%80%9D geometry (i.e., the detector at the same location, but with all the structural materials now included). The %E2%80%9CIdeal Case%E2%80%9D was subtracted from the %E2%80%9CFull Scale%E2%80%9D geometry case, and this was determined to be the contribution due to scattering. The time response was deconvolved out of the empirical data, and the contribution due to scattering was then subtracted out of it. A transformation was then made from dN/dt to dN/dE to obtain neutron spectra at two different detector locations.

  7. on the Establishment of the ITER International Fusion Energy Organization for the Joint Implementation of the ITER Project

    E-Print Network [OSTI]

    AGREEMENT on the Establishment of the ITER International Fusion Energy Organization for the Joint Fusion Energy Organization Article 2 Purpose of the ITER Organization Article 3 Functions of the ITER://fusionforenergy.europa.eu/downloads/aboutf4e/l_35820061216en00620081.pdf #12;Preamble The European Atomic Energy Community (hereinafter

  8. Fusion of light proton-rich exotic nuclei at near-barrier energies

    E-Print Network [OSTI]

    P. Banerjee; K. Krishan; S. Bhattacharya; C. Bhattacharya

    2002-02-08T23:59:59.000Z

    We study theoretically fusion of the light proton-rich exotic nuclei $^{17}$F and $^8$B at near-barrier energies in order to investigate the possible role of breakup processes on their fusion cross sections. To this end, coupled channel calculations are performed considering the couplings to the breakup channels of these projectiles. In case of $^{17}$F, the coupling arising out of the inelastic excitation from the ground state to the bound excited state and its couplings to the continuum have also been taken into consideration. It is found that the inelastic excitation/breakup of $^{17}$F affect the fusion cross sections very nominally even for a heavy target like Pb. On the other hand, calculations for fusion of the one-proton halo nucleus $^8$B on a Pb target show a significant suppression of the complete fusion cross section above the Coulomb barrier. This is due to the larger breakup probability of $^8$B as compared to that of $^{17}$F. However, even for $^8$B, there is little change in the complete fusion cross sections as compared to the no-coupling case at sub-barrier energies.

  9. An innovative accelerator-driven inertial electrostatic confinement device using converging ion beams

    SciTech Connect (OSTI)

    Bauer, T. H.; Wigeland, R. A.

    1999-12-08T23:59:59.000Z

    Fundamental physics issues facing development of fusion power on a small-scale are assessed with emphasis on the idea of Inertial Electrostatic Confinement (IEC). The authors propose a new concept of accelerator-driven IEC fusion, termed Converging Beam Inertial Electrostatic Confinement (CB-IEC). CB-IEC offers a number of innovative features that make it an attractive pathway toward resolving fundamental physics issues and assessing the ultimate viability of the IEC concept for power generation.

  10. Fokker Planck kinetic modeling of suprathermal particles in a fusion plasma B. E. Peigneya,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes. KeywordsFokker Planck kinetic modeling of suprathermal particles in a fusion plasma B. E. Peigneya, , O the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying

  11. Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003

    SciTech Connect (OSTI)

    Post, R F

    2005-02-03T23:59:59.000Z

    Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by compressing and heating a tiny pellet of frozen fusion fuel in nanoseconds, such that before disassembly the pellet fuses and releases its energy as a micro-explosion. The first, and most thoroughly investigated means to create this compression and heating is to use multiple laser beams, with total energies of megajoules, focused down to impinge uniformly on the pellet target. To illustrate the extreme difference between the usual magnetic confinement regime at that of inertial fusion, there are twenty orders of magnitude in fusion power density (ten orders of magnitude in plasma density) between the two regimes. In principle fusion power systems could operate at any density between these extremes, if means were to be found to exploit this possibility.

  12. anterior cervical fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  13. alkaline phosphatase fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  14. antibody fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  15. abl fusion gene: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  16. acyltransferase gfp fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  17. albumin fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  18. anatomical information fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  19. antigen fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  20. affects myoblast fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  1. anterior spinal fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  2. anterior vertebral fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  3. anterior interbody fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  4. acquired motor fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  5. angiography fusion images: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  6. alloy fusion safety: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  7. altered fusion transcript: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  8. artificial gene fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  9. activate membrane fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  10. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    Facility (NIF) will extend HEDP experiments to include access to thermonuclear burn conditions's Stockpile Stewardship Program (SSP) through three strategic objectives: Achieve thermonuclear ignition thermonuclear ignition to the national nuclear weapons program was one of the earliest motivations of the ICF

  11. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    (SSP) through three strategic objectives: · Achieve thermonuclear ignition in the laboratory experiments to include access to thermonuclear burn conditions in the laboratory, a unique and unprecedented to demonstrate thermonuclear ignition in the laboratory. The NIF is a 192-bea

  12. Inertial Confinement Fusion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  13. SUPPORT FUSION ENERGY SCIENCES IN FY 2013 HELP THE UNITED STATES REMAIN A WORLD LEADER IN FUSION RESEARCH

    E-Print Network [OSTI]

    impact of discouraging future fusion researchers from entering the field; · Contraction in plasma research and a jeopardized ability to design and build future fusion systems in this country; · The U

  14. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

  15. Uniformity of fuel target implosion in Heavy Ion Fusion

    E-Print Network [OSTI]

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

    2015-01-01T23:59:59.000Z

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  16. DANCING WITH THE STARSDANCING WITH THE STARS QUEST FOR FUSION ENERGYQUEST FOR FUSION ENERGY

    E-Print Network [OSTI]

    of the Sun ?? How much energy is released in burning coal ?? #12;THE SUN AS A COAL POWER PLANTTHE SUN of the =Sun 264 10 Watts× Potential energy Solar power out Su pu n's lifetime t 14 6 10 .sec= ×= The Sun would last for about 20 million years.The Sun would last for about 20 million years. 2 3 5 Potential Energy M

  17. A Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage Images

    E-Print Network [OSTI]

    Abidi, Mongi A.

    dual-energy X-ray images for better object classification and threat detection. The fusion stepA Combinational Approach to the Fusion, De-noising and Enhancement of Dual-Energy X-Ray Luggage-based noise reduction technique which is very efficient in removing background noise from fused X-ray images

  18. Fusion cross sections for 6,7Li + 24Mg reactions at energies below and above the barrier

    E-Print Network [OSTI]

    M. Ray; A. Mukherjee; M. K. Pradhan; Ritesh Kshetri; M. Saha Sarkar; R. Palit; I. Majumdar; P. K. Joshi; H. C. Jain; B. Dasmahapatra

    2008-05-07T23:59:59.000Z

    Measurement of fusion cross sections for the 6,7Li + 24Mg reactions by the characteristic gamma-ray method has been done at energies from below to well above the respective Coulomb barriers. The fusion cross sections obtained from these gamma-ray cross sections for the two systems are found to agree well with the total reaction cross sections at low energies. The decrease of fusion cross sections with increase of energy is consistent with the fact that other channels, in particular breakup open up with increase of bombarding energy. This shows that there is neither inhibition nor enhancement of fusion cross sections for these systems at above or below the barrier. The critical angular momenta (lcr) deduced from the fusion cross sections are found to have an energy dependence similar to other Li - induced reactions.

  19. U.S. Signs International Fusion Energy Agreement; Large-Scale, Clean Fusion

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G. Theofanous, 1996ofDOE NationalEnergy

  20. Life Pure Fusion Target Designs: Status and Prospects

    SciTech Connect (OSTI)

    Amendt, P; Dunne, M; Ho, D; Lindl, J

    2011-10-20T23:59:59.000Z

    Analysis and radiation-hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant are presented. The required laser energy driver is 2.2 MJ at a 0.351-{mu}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for near-term experimental resolution of the key physics uncertainties on the National Ignition Facility.