National Library of Energy BETA

Sample records for inertial confinement fusion

  1. Inertial Confinement Fusion Experiments & Modeling

    E-Print Network [OSTI]

    Cohen, David

    Inertial Confinement Fusion Experiments & Modeling Using X-ray Absorption Spectroscopy of Thin Does Inertial Confinement Fusion (ICF) Work? A spherical capsule filled with fuel (deuterium Laboratory) #12;Outline I. What is Fusion? II. How does Inertial Fusion work? The physics of indirect

  2. Status of inertial confinement fusion

    SciTech Connect (OSTI)

    Schriever, R.L. (Dept. of Energy, Washington, DC (USA))

    1987-12-01

    Technical, institutional, and financial assessments are made of inertial confinement fusion programs in the United States. Among the programs discussed are the Particle Beam Fusion Accelerator at Sandia, the AURORA facility at Los Alamos, the Heavy Ion Fusion Accelerator at Lawrence Berkeley Laboratory, the OMEGA glass laser system and facility, and the fusion research program at the University of Rochester. Target, diagnostic, heating, and other areas of research are discussed. Prospects for the future of fusion research within the context of the current energy scenario in the country are evaluated.

  3. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01

    AS DRIVERS FOR INERTIAL CONFINEMENT FUSION Andris Faltens,ENERGY PRODUCTION VIA INERTIAL CONFINEMENT FUSIONFor inertial confinement fusion (ICF) to lead to net energy

  4. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  5. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R. (Butler, PA); Del Vecchio, Robert M. (Vandergrift, PA)

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  6. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  7. Lasers and Inertial Confinement Fusion in the United States

    E-Print Network [OSTI]

    thermonuclear device began the Inertial Confinement Fusion Era I1860 · StanislawUlamandEdward Teller developedLasers and Inertial Confinement Fusion in the United States R. L. McCrory Director and Vice Provost confinement fusion (ICF) has grown as successively larger lasers have been built I1859 · The

  8. Summary of progress in inertial confinement fusion

    SciTech Connect (OSTI)

    Younger, S.M.

    1992-01-01

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  9. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01

    from present practice. Inertial Confinement Fusion While forReactors for Inertial Confinement Fusion, K.A. Brueckner (

  10. ACCELERATION SYSTEMS FOR HEAVY-ION BEAMS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01

    ION BEAMS FOR INERTIAL CONFINEMENT FUSION A. Fa1tens, D. L.ION BEAMS FOR INERTIAL CONFINEMENT FUSION A. Faltens, D.L.generation through inertial confinement fusion have been set

  11. Tertiary proton diagnostics in future inertial confinement fusion experiments

    E-Print Network [OSTI]

    Tertiary proton diagnostics in future inertial confinement fusion experiments S. Cremera) and C. P energetic up to 31 MeV tertiary protons produced during the final stage of inertial confinement fusion the elastic scattering of 14.1 MeV neutrons, is a source of very energetic protons capable of escaping from

  12. Species separation in inertial confinement fusion fuels

    SciTech Connect (OSTI)

    Bellei, C.; Amendt, P. A.; Wilks, S. C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Haines, M. G. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Casey, D. T. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Welch, D. R. [Voss Scientic, Albuquerque, New Mexico 87108 (United States)

    2013-01-15

    It is shown by means of multi-fluid particle-in-cell simulations that convergence of the spherical shock wave that propagates through the inner gas of inertial confinement fusion-relevant experiments is accompanied by a separation of deuterium (D) and tritium (T) ions across the shock front. Deuterons run ahead of the tritons due to their lower mass and higher charge-to-mass ratio and can reach the center several tens of picoseconds before the tritons. The rising edge of the DD and TT fusion rate is also temporally separated by the same amount, which should be an observable in experiments and would be a direct proof of the 'stratification conjecture' on the shock front [Amendt et al., Phys. Plasmas 18, 056308 (2011)]. Moreover, dephasing of the D and T shock components in terms of density and temperature leads to a degradation of the DT fusion yield as the converging shock first rebounds from the fuel center (shock yield). For the parameters of this study, the second peak in the fusion yield (compression yield) is strongly dependent on the choice of the flux limiter.

  13. Shock convergence and mix dynamics in inertial confinement fusion

    E-Print Network [OSTI]

    Rygg, James Ryan

    2006-01-01

    Understanding the phenomena of shock propagation and of turbulent mix induced by Rayleigh-Taylor (RT) instability growth is of critical importance for ignition and high gain in inertial confinement fusion (ICF). Capsule ...

  14. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-01-15

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  15. Atomic scale mixing for inertial confinement fusion associated hydro instabilities

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Atomic scale mixing for inertial confinement fusion associated hydro instabilities J. Melvina, , P Alamos, NM 87545, USA Abstract Hydro instabilities have been identified as a potential cause- able. We find numerical convergence for this important quantity, in a purely hydro study, with only

  16. www.postersession.com Inertial Electrostatic Confinement Fusion for Spacecraft

    E-Print Network [OSTI]

    and inertial confinement fusion. Both of these approaches show promise for future sources of energy low in the foreseeable future. Consequently, we are investigating a very low-mass alternative type and useful source of energy for both Earth-based and space-based power systems. This hypothetical

  17. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    E-Print Network [OSTI]

    A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA, 063502 (2014) A compact neutron spectrometer for characterizing inertial confinement fusion implosions-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)a) Rev. Sci. Instrum

  18. Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA Laser

    E-Print Network [OSTI]

    Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA of solid and gaseous samples to diagnose inertial confinement fusion implosions Rev. Sci. Instrum. 83://pop.aip.org/about/rights_and_permissions #12;Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA

  19. The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database

    E-Print Network [OSTI]

    The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion. Related Articles Investigating inertial confinement fusion target fuel conditions through x://pop.aip.org/about/rights_and_permissions #12;The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion

  20. Basics of Inertial Confinement Fusion NIF and Photon Science Directorate Chief Scientist

    E-Print Network [OSTI]

    Basics of Inertial Confinement Fusion John Lindl NIF and Photon Science Directorate Chief Scientist - Boston #12;#12;Outline · The challenge of Inertial Confinement Fusion · Development of the science basis to compression in Inertial Confinement Fusion Direct Drive DT gas 2.5 mm 0.1 mm 10 mm #12;The scale of ICF

  1. Inertially confined fusion using heavy ion drivers

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.; Bangerter, R.O.; Bock, R.; Hogan, W.J.; Lindl, J.D.

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  2. Inertially confined fusion using heavy ion drivers

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B. ); Bangerter, R.O. ); Bock, R. ); Hogan, W.J.; Lindl, J.D. )

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  3. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  4. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  5. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    E-Print Network [OSTI]

    Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using on the ignition and burn of inertial confinement fusion targets: A multi-scale approach Phys. Plasmas 21, 122709 (2014); 10.1063/1.4904212 Kinetic mix mechanisms in shock-driven inertial confinement fusion implosionsa

  6. Linear relaxation to planar Travelling Waves in Inertial Confinement Fusion

    E-Print Network [OSTI]

    Monsaingeon, Léonard

    2012-01-01

    We study linear stability of planar travelling waves for a scalar reaction-diffusion equation with non-linear anisotropic diffusion. The mathematical model is derived from the full thermo-hydrodynamical model describing the process of Inertial Confinement Fusion. We show that solutions of the Cauchy problem with physically relevant initial data become planar exponentially fast with rate $s(\\eps',k)>0$, where $\\eps'=\\frac{T_{min}}{T_{max}}\\ll 1$ is a small temperature ratio and $k\\gg 1$ the transversal wrinkling wavenumber of perturbations. We rigorously recover in some particular limit $(\\eps',k)\\rightarrow (0,+\\infty)$ a dispersion relation $s(\\eps',k)\\sim \\gamma_0 k^{\\alpha}$ previously computed heuristically and numerically in some physical models of Inertial Confinement Fusion.

  7. Inertial confinement fusion method producing line source radiation fluence

    DOE Patents [OSTI]

    Rose, Ronald P. (Peters Township, Washington County, PA)

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  8. MULTI-OBJECTIVE SPECTROSCOPIC DATA ANALYSIS OF INERTIAL CONFINEMENT FUSION IMPLOSION CORES

    E-Print Network [OSTI]

    Louis, Sushil J.

    MULTI-OBJECTIVE SPECTROSCOPIC DATA ANALYSIS OF INERTIAL CONFINEMENT FUSION IMPLOSION CORES: PLASMA the implosion of an Inertial Confinement Fusion (ICF) deuterium-filled plastic-microballoon can provide critical confinement fusion implosion cores based on the self-consistent analysis of simultaneous narrow-band X

  9. Inertial Confinement Fusion | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent SignIndustrialInertial

  10. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    Accelerators for Inertial Confinement Fusion,” Proc. IAEAbriefly compares inertial confinement fusion (ICF) to the

  11. Improving Particle Confinement in Inertial Electrostatic Fusion for Spacecraft Power and

    E-Print Network [OSTI]

    Improving Particle Confinement in Inertial Electrostatic Fusion for Spacecraft Power and Propulsion;2 (This page intentionally left blank) #12;3 Abstract Improving Particle Confinement in Inertial reactors like ITER and inertial confinement reactors like NIF) require very large and heavy structures

  12. Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules

    E-Print Network [OSTI]

    Garnier, Josselin

    Self-consistent analysis of the hot spot dynamics for inertial confinement fusion capsules J. Sanz Hydrodynamic stability of inertial confinement fusion ICF capsules during the deceleration stage has been re October 2005; published online 11 November 2005 In the context of the French Laser-Mégajoule fusion

  13. FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications

    E-Print Network [OSTI]

    Militzer, Burkhard

    FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion) Understanding and designing inertial confinement fusion (ICF) implosions through radiation- hydrodynamics. To minimize the drive energy for ignition, the imploding shell of DT- fuel needs to be kept as cold

  14. Heat transfer in inertial confinement fusion reactor systems

    SciTech Connect (OSTI)

    Hovingh, J.

    1980-04-23

    The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

  15. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2009-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  16. Tutorial on the Physics of Inertial Confinement Fusion for energy applications

    E-Print Network [OSTI]

    Tutorial on the Physics of Inertial Confinement Fusion for energy applications R. Betti University of Rochester and Princeton Plasma Physics Laboratory 3rd Meeting of the NAS panel on Inertial Fusion Energy · The implications of ignition to fusion ENERGY production Does the NIF address all the plasma-target PHYSICS issues

  17. Integrated diagnostic analysis of inertial confinement fusion capsule performance

    SciTech Connect (OSTI)

    Cerjan, Charles; Springer, Paul T.; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2013-05-15

    A conceptual model is developed for typical inertial confinement fusion implosion conditions that integrates available diagnostic information to determine the stagnation properties of the interior fill and surrounding shell. Assuming pressure equilibrium at peak compression and invoking radiative and equation-of-state relations, the pressure, density, and electron temperature are obtained by optimized fitting of the experimental output to smooth, global functional forms. Typical observational data that may be used includes x-ray self-emission, directional neutron time-of-flight signals, neutron yield, high-resolution x-ray spectra, and radiographic images. This approach has been validated by comparison with radiation-hydrodynamic simulations, producing semi-quantitative agreement. Model results implicate poor kinetic energy coupling to the hot core as the primary cause of the observed low thermonuclear burn yields.

  18. KULL: LLNL's ASCI Inertial Confinement Fusion Simulation Code

    SciTech Connect (OSTI)

    Rathkopf, J. A.; Miller, D. S.; Owen, J. M.; Zike, M. R.; Eltgroth, P. G.; Madsen, N. K.; McCandless, K. P.; Nowak, P. F.; Nemanic, M. K.; Gentile, N. A.; Stuart, L. M.; Keen, N. D.; Palmer, T. S.

    2000-01-10

    KULL is a three dimensional, time dependent radiation hydrodynamics simulation code under development at Lawrence Livermore National Laboratory. A part of the U.S. Department of Energy's Accelerated Strategic Computing Initiative (ASCI), KULL's purpose is to simulate the physical processes in Inertial Confinement Fusion (ICF) targets. The National Ignition Facility, where ICF experiments will be conducted, and ASCI are part of the experimental and computational components of DOE's Stockpile Stewardship Program. This paper provides an overview of ASCI and describes KULL, its hydrodynamic simulation capability and its three methods of simulating radiative transfer. Particular emphasis is given to the parallelization techniques essential to obtain the performance required of the Stockpile Stewardship Program and to exploit the massively parallel processor machines that ASCI is procuring.

  19. Development of KrF lasers for inertial confinement fusion

    SciTech Connect (OSTI)

    Sullivan, J.A.; Harris, D.B.

    1990-01-01

    Recent reviews of the Inertial Confinement Fusion (ICF) program have resulted in recommendations that promise to focus the research effort on the examination of the feasibility of pellet ignition at 1 MJ of energy on target. If successful, the next major step in the program has been defined to be the construction of an Ignition Facility. Los Alamos National Laboratory has developed a plan to reach single-pulse multimegajoule ICF facilities using the electron-beam-pumped KrF laser. The Los Alamos plan, its relation to the development of ICF for energy production, and the major features and design issues associated with ICF drivers will be covered in this presentation. 3 figs., 1 tab.

  20. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support

    SciTech Connect (OSTI)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester's Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  1. Progress in the pulsed power Inertial Confinement Fusion program

    SciTech Connect (OSTI)

    Quintenz, J.P.; Matzen, M.K.; Mehlhorn, T.A. [and others

    1996-12-01

    Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that {approx}10 MJ of driver energy must be deposited within the ICF target in order to deposit {approx}1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm{sup 3}), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will be described.

  2. Inertial confinement fusion based on the ion-bubble trigger

    SciTech Connect (OSTI)

    Jafari, S. Nilkar, M.; Ghasemizad, A.; Mehdian, H.

    2014-10-15

    Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

  3. Innovative approaches to inertial confinement fusion reactors: Final report

    SciTech Connect (OSTI)

    Bourque, R.F.; Schultz, K.R.

    1986-11-01

    Three areas of innovative approaches to inertial confinement fusion (ICF) reactor design are given. First, issues pertaining to the Cascade reactor concept are discussed. Then, several innovative concepts are presented which attempt to directly recover the blast energy from a fusion target. Finally, the Turbostar concept for direct recovery of that energy is evaluated. The Cascade issues discussed are combustion of the carbon granules in the event of air ingress, the use of alternate granule materials, and the effect of changes in carbon flow on details of the heat exchanger. Carbon combustion turns out to be a minor problem. Four ICF innovative concepts were considered: a turbine with ablating surfaces, a liquid piston system, a wave generator, and a resonating pump. In the final analysis, none show any real promise. The Turbostar concept of direct recovery is a very interesting idea and appeared technically viable. However, it shows no efficiency gain or any decrease in capital cost compared to reactors with conventional thermal conversion systems. Attempts to improve it by placing a close-in lithium sphere around the target to increase gas generation increased efficiency only slightly. It is concluded that these direct conversion techniques require thermalization of the x-ray and debris energy, and are Carnot limited. They therefore offer no advantage over existing and proposed methods of thermal energy conversion or direct electrical conversion.

  4. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 4, APRIL 2011 1007 Inertial Confinement Fusion Using

    E-Print Network [OSTI]

    IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 39, NO. 4, APRIL 2011 1007 Inertial Confinement Fusion in this paper are available online at http://ieeexplore.ieee.org. Digital Object Identifier 10.1109/TPS.2011

  5. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    E-Print Network [OSTI]

    Ma, T.

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165???m in thickness, 10% and 15% thinner, respectively, than the nominal ...

  6. Self-Similar Structure and Experimental Signatures of Suprathermal Ion Distribution in Inertial Confinement Fusion Implosions

    E-Print Network [OSTI]

    Kagan, Grigory

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities ...

  7. Determination of the deuterium-tritium branching ratio based on inertial confinement fusion implosions

    E-Print Network [OSTI]

    Rosenberg, Michael Jonathan

    The deuterium-tritium (D-T) ?-to-neutron branching ratio [[superscript 3]H(d,?)[superscript 5]He/[superscript 3]H(d,n)[superscript 4]He] was determined under inertial confinement fusion (ICF) conditions, where the ...

  8. Proton emission imaging of the nuclear burn in inertial confinement fusion experiments

    E-Print Network [OSTI]

    DeCiantis, Joseph Loreto

    2005-01-01

    A proton core imaging system has been developed and extensively used for measuring the nuclear burn regions of inertial confinement fusion implosions. These imaging cameras, mounted to the 60-beam OMEGA laser facility, use ...

  9. An Assessment of Inertial Confinement Fusion Target Physics A Panel on Fusion Target Physics ("the Panel") will serve as a technical resource to the

    E-Print Network [OSTI]

    An Assessment of Inertial Confinement Fusion Target Physics A Panel on Fusion Target Physics ("the ON INERTIAL CONFINEMENT FUSION TARGET PHYSICS John Ahearne, Chair Sigma Xi Robert Dynes University Panel") will serve as a technical resource to the Committee on Inertial Confinement Energy Systems ("the

  10. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    SciTech Connect (OSTI)

    Betti, R.; Chang, P. Y.; Anderson, K. S.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Spears, B. K.; Edwards, J.; Lindl, J. D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Fatenejad, M. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Shvarts, D. [NRCN, Negev and Ben Gurion University of the Negev, Beer-Sheva 84015 (Israel)

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.

  11. Progress in direct-drive inertial confinement fusion

    SciTech Connect (OSTI)

    McCrory, R. L.; Meyerhofer, D. D.; Betti, R.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Jacobs-Perkins, D. W.; Knauer, J. P.; Marshall, F. J.; McKenty, P. W.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Short, R. W.; Skupsky, S.; Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)] (and others)

    2008-05-15

    Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ{sub UV} OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of {approx}200 mg/cm{sup 2} in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm{sup 3} and are in good agreement with hydrodynamic simulations. The implosions were performed using an 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts - fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] - have the potential to significantly reduce ignition driver energies and/or provide higher target gain.

  12. Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    E-Print Network [OSTI]

    Logan, B.G.

    2008-01-01

    J. D. Lindl, Inertial Confinement Fusion: The Quest forusing the LASNEX inertial confinement fusion target physics

  13. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01

    Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

  14. Direct-drive inertial confinement fusion: A review

    SciTech Connect (OSTI)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Schmitt, A. J.; Sethian, J. D.; Short, R. W.; Skupsky, S.; Theobald, W.; Kruer, W. L.; Tanaka, K.; Betti, R.; Collins, T. J. B.; Delettrez, J. A.; Hu, S. X.; Marozas, J. A.; Maximov, A. V.; Michel, D. T.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Solodov, A. A.; Soures, J. M.; Stoeckl, C.; Zuegel, J. D.

    2015-11-25

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. The problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 um and 1/4 um. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.

  15. Direct-drive inertial confinement fusion: A review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Craxton, R. S.; Anderson, K. S.; Boehly, T. R.; Goncharov, V. N.; Harding, D. R.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; et al

    2015-11-25

    In this study, the direct-drive, laser-based approach to inertial confinement fusion (ICF) is reviewed from its inception following the demonstration of the first laser to its implementation on the present generation of high-power lasers. The review focuses on the evolution of scientific understanding gained from target-physics experiments in many areas, identifying problems that were demonstrated and the solutions implemented. The review starts with the basic understanding of laser–plasma interactions that was obtained before the declassification of laser-induced compression in the early 1970s and continues with the compression experiments using infrared lasers in the late 1970s that produced thermonuclear neutrons. Themore »problem of suprathermal electrons and the target preheat that they caused, associated with the infrared laser wavelength, led to lasers being built after 1980 to operate at shorter wavelengths, especially 0.35 um—the third harmonic of the Nd:glass laser—and 0.248 um (the KrF gas laser). The main physics areas relevant to direct drive are reviewed. The primary absorption mechanism at short wavelengths is classical inverse bremsstrahlung. Nonuniformities imprinted on the target by laser irradiation have been addressed by the development of a number of beam-smoothing techniques and imprint-mitigation strategies. The effects of hydrodynamic instabilities are mitigated by a combination of imprint reduction and target designs that minimize the instability growth rates. Several coronal plasma physics processes are reviewed. The two-plasmon–decay instability, stimulated Brillouin scattering (together with cross-beam energy transfer), and (possibly) stimulated Raman scattering are identified as potential concerns, placing constraints on the laser intensities used in target designs, while other processes (self-focusing and filamentation, the parametric decay instability, and magnetic fields), once considered important, are now of lesser concern for mainline direct-drive target concepts. Filamentation is largely suppressed by beam smoothing. Thermal transport modeling, important to the interpretation of experiments and to target design, has been found to be non-local in nature. Advances in shock timing and equation-of-state measurements relevant to direct-drive ICF are reported. Room-temperature implosions have provided an increased understanding of the importance of stability and uniformity. The evolution of cryogenic implosion capabilities, leading to an extensive series carried out on the 60-beam OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], is reviewed together with major advances in cryogenic target formation. A polar-drive concept has been developed that will enable direct-drive–ignition experiments to be performed on the National Ignition Facility [C. A. Haynam et al., Appl. Opt. 46 (16), 3276 (2007)]. The advantages offered by the alternative approaches of fast ignition and shock ignition and the issues associated with these concepts are described. The lessons learned from target-physics and implosion experiments are taken into account in ignition and high-gain target designs for laser wavelengths of 1/3 um and 1/4 um. Substantial advances in direct-drive inertial fusion reactor concepts are reviewed. Overall, the progress in scientific understanding over the past five decades has been enormous, to the point that inertial fusion energy using direct drive shows significant promise as a future environmentally attractive energy source.« less

  16. Homodyne target tracking for direct drive laser inertial fusion

    E-Print Network [OSTI]

    Spalding, Jon David

    2009-01-01

    direct drive inertial confinement fusion experiments, asto be used in >>>Inertial Confinement Fusion, as a means of

  17. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    x NOMENCLATURE ICF Inertial Confinement Fusion IFE InertialJ.D. Lindl. Inertial Confinement Fusion. Springer-Verlag,for the laser inertial confinement Fusion-Fission energy (

  18. National Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems

    E-Print Network [OSTI]

    .S. usage, it makes the DoD the single largest energy user in the country." Energy Sources · Laser FusionNational Academies Committee on the Prospects for Inertial Confinement Fusion Energy Systems Tour.S. Naval Research Laboratory Research supported by the Department of Energy, NNSA Presented by Steve

  19. Proton core imaging of the nuclear burn in inertial confinement fusion implosions

    E-Print Network [OSTI]

    Proton core imaging of the nuclear burn in inertial confinement fusion implosions J. L. De; published online 7 April 2006 A proton emission imaging system has been developed and used extensively the penetrating 14.7 MeV protons produced from D 3 He fusion reactions to produce emission images of the nuclear

  20. Comment on 'Species separation in inertial confinement fusion fuels'[Phys. Plasmas 20, 012701 (2013)

    SciTech Connect (OSTI)

    Larroche, O. [CEA DIF, Bruyeres le Chatel, 91297 Arpajon Cedex (France)

    2013-04-15

    A recent paper presents numerical simulations of shock waves in a two-ion-component plasma, investigating how species separation occurring in the latter can affect the nuclear fusion yield of inertial confinement fusion targets. Here, it is shown that an important physical mechanism has obviously been omitted in those calculations, which thus lead to significantly overestimated results.

  1. Inertial Confinement Fusion quarterly report, April--June 1995. Volume 5, No. 3

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    The ICF Quarterly Reports is published four times each fiscal year by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. The journal reports selected current research within the ICF Program. Major areas of investigation presented here include fusion target theory and design, target fabrication, target experiments, and laser and optical science and technology.

  2. Prediction of inertial confinement fusion chamber gas evolution using multi-species computational fluid dynamics

    E-Print Network [OSTI]

    Martin, Robert Scott

    2007-01-01

    to the pro- duction of fusion energy for power generation.injection in an inertial fusion energy chamber, Fusionas Laser Inertial Fusion Energy (Laser IFE), the ability to

  3. Fuel Target Implosion in Ion beam Inertial Confinement Fusion

    E-Print Network [OSTI]

    Kawata, Shigeo

    2015-01-01

    The numerical results for the fuel target implosion are presented in order to clarify the target physics in ion beam inertial fusion. The numerical analyses are performed for a direct-driven ion beam target. In the paper the following issues are studied: the beam obliquely incidence on the target surface, the plasma effect on the beam-stopping power, the beam particle energy, the beam time duration, the target radius, the beam input energy and the non-uniformity effect on the fuel target performance. In this paper the beam ions are protons.

  4. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect (OSTI)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  5. Inertial Confinement Fusion: Quarterly report, April-June 1996

    SciTech Connect (OSTI)

    Correll, D.

    1996-06-01

    The lead article, `Ion-beam propagation in a low-density reactor chamber for heavy-ion inertial fusion` (p. 89), explores the ability of heavy-ion beams to be adequately transported and focused in an IFE reactor. The next article, `Efficient production and applications of 2- to 10-keV x rays by laser-heated underdense radiators` (p. 96), explores the ability of the NIF to produce sufficient high-energy x rays for diagnostic backlighting, target preheating, or uniform irradiation of large test objects for Nuclear Weapons Effects Testing. For capsule implosion experiments, the increasing energies and distances involved in the NIF compared to Nova require the development of new diagnostics methods. The article `Fusion reaction-rate measurements--Nova and NIF` (p. 115) first reviews the use of time-resolved neutron measurements on Nova to monitor fusion burn histories and then explores the limitations of that technique, principally Doppler broadening, for the proposed NIF. It also explores the use of gamma rays on Nova, thereby providing a proof-of-principle for using gamma rays for monitoring fusion burn histories on the NIF. The articles `The energetics of gas-filled hohlraums` (p. 110) and `Measurements of laser- speckle-induced perturbations in laser-driven foils` (p. 123) report measurements on Nova of two important aspects of implosion experiments. The first characterizes the amount of energy lost from a hohlraum by stimulated Brillouin and Raman scattering as a function of gas fill and laser-beam uniformity. The second of these articles shows that the growth of density nonuniformities implanted on smooth capsule surfaces by laser speckle can be correlated with the effects of physical surface roughness. The article `Laser-tissue interaction modeling with the LATIS computer program` (p. 103) explores the use of modeling to enhance the effectiveness--maximize desired effects and minimize collateral damage--of lasers for medical purposes.

  6. He-proton emission imaging for inertial-confinement-fusion experiments (invited)

    E-Print Network [OSTI]

    D3 He-proton emission imaging for inertial-confinement-fusion experiments (invited) F. H. Séguin, Livermore, California 94550 (Presented on 19 April 2004; published 5 October 2004) Proton emission imaging cameras, in combination with proton spectrometers and a proton temporal diagnostic, provide a great deal

  7. D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas

    E-Print Network [OSTI]

    D-T gamma-to-neutron branching ratio determined from inertial confinement fusion plasmas Y. Kim, J. M. Mack, H. W. Herrmann, C. S. Young, G. M. Hale et al. Citation: Phys. Plasmas 19, 056313 (2012 in ignition-scale implosions on the NIF Phys. Plasmas 19, 056307 (2012) Experimental and theoretical

  8. Implosion Experiments using Glass Ablators for Direct-Drive Inertial Confinement Fusion

    E-Print Network [OSTI]

    Smalyuk, V. A.

    Direct-drive implosions with 20-?m-thick glass shells were conducted on the Omega Laser Facility to test the performance of high-Z glass ablators for direct-drive, inertial confinement fusion. The x-ray signal caused by ...

  9. Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth

    E-Print Network [OSTI]

    Inertial Confinement Fusion, High Energy Density Plasmas and an Energy Source on Earth Max Tabak ignition robust burn Supernova core MFE ICF ignition requires large energy and power densities Log10 Achieving the necessary multiplication of power,energy and mass densities requires a well controlled

  10. The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules

    E-Print Network [OSTI]

    Garnier, Josselin

    The role of nuclear reactions and -particle transport in the dynamics of inertial confinement fusion capsules Josselin Garnier1,a and Catherine Cherfils-Clérouin2 1 Laboratoire de Probabilités et the energy released by nuclear reactions, a nonlocal model for the -particle energy deposition process

  11. Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles.1088/0741-3335/52/12/124027 Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles C K Li1 , F H S are in colour only in the electronic version) 1. Introduction Achieving inertial-confinement-fusion (ICF

  12. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01

    approach to Inertial Confinement Fusion (ICF) [1-3] is Fastrelated to the inertial confinement fusion (ICF) [2]. Toscheme of the Inertial Confinement Fusion [5] to medicine [

  13. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01

    and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

  14. Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics

    SciTech Connect (OSTI)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Betti, R.; Boehly, T.R.; Collins, T.J.B.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Igumenshchev, I.V.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Marciante, J.; Marozas, J.a.; Marshall, F.J.; Maximov, A.V.; McKenty, P.W.; Morse, S.F.B.; Myatt, J.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J.D.

    2006-06-28

    Direct-drive inertial confinement fusion (ICF) is expected to demonstrate high gain on the National Ignition Facility (NIF) in the next decade and is a leading candidate for inertial fusion energy production. The NIF will initially be configured for x-ray drive and with no beams placed at the target equator to provide a symmetric irradiation of a direct-drive capsule. LLE is developing the “polar-direct-drive” (PDD) approach that repoints beams toward the target equator. Initial 2-D simulations have shown ignition. A unique “Saturn-like” plastic ring around the equator refracts the laser light incident near the equator toward the target, improving the drive uniformity.

  15. Simulating the magnetized liner inertial fusion plasma confinement with smaller-scale experiments

    SciTech Connect (OSTI)

    Ryutov, D. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.; Slutz, S. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-06-15

    The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. This observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.

  16. Index of light ion inertial confinement fusion publications and presentations January 1989 through December 1993

    SciTech Connect (OSTI)

    Sweeney, M.A.

    1995-11-01

    This report lists publications and presentations that are related to inertial confinement fusion and were authored or coauthored by Sandians in the Pulsed Power Sciences Center from 1989 through 1993. The 661 publications and presentations are categorized into the following general topics: (1) reviews, (2) ion sources, (3) ion diodes, (4) plasma opening switches, (5) ion beam transport, (6) targets and deposition physics, (7) advanced driver and pulsed power technology development, (8) diagnostics, and (9) code development. Research in these areas is arranged by topic in chronological order, with the early efforts under each topic presented first. The work is also categorized alphabetically by first author. A list of acronyms, abbreviations, and definitions of use in understanding light ion inertial confinement fusion research is also included.

  17. Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets

    SciTech Connect (OSTI)

    Tommasini, R

    2010-04-23

    An important diagnostic tool for inertial confinement fusion is time-resolved imaging of the dense cold fuel surrounding the hot spot. Here we report on the source and diagnostic development of hard x-ray radiography and on the first radiographs of direct drive implosions obtained at photon energies up to about 100keV, where the Compton effect is the dominant contributor to the shell opacity. The radiographs of direct drive, plastic shell implosions obtained at the OMEGA laser facility have a spatial resolution of {approx}10um and a temporal resolution of {approx}10ps. This novel Compton Radiography is an invaluable diagnostic tool for Inertial Confinement Fusion targets, and will be integrated at the National Ignition Facility (NIF).

  18. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopy

    SciTech Connect (OSTI)

    Hansen, Stephanie B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2012-05-15

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  19. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    E-Print Network [OSTI]

    Kagan, Grigory; Rinderknecht, H G; Rosenberg, M J; Zylstra, A B; Huang, C -K

    2015-01-01

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility.

  20. Fusion in a magnetically-shielded-grid inertial electrostatic confinement device

    E-Print Network [OSTI]

    Hedditch, John; Khachan, Joe

    2015-01-01

    Theory for a gridded inertial electrostatic confinement (IEC) fusion system is presented that shows a net energy gain is possible if the grid is magnetically shielded from ion impact. A simplified grid geometry is studied, consisting of two negatively-biased coaxial current-carrying rings, oriented such that their opposing magnetic fields produce a spindle cusp. Our analysis indicates that better than break-even performance is possible even in a deuterium-deuterium system at bench-top scales. The proposed device has the unusual property that it can avoid both the cusp losses of traditional magnetic fusion systems and the grid losses of traditional IEC configurations.

  1. Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kagan, Grigory; Svyatskiy, D.; Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Huang, C. -K.; McDevitt, C. J.

    2015-09-03

    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot spots. By utilizing this feature, interference between the hydrodynamic instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. Thus, the ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT atmore »the National Ignition Facility.« less

  2. Seminar -1. letnik bolonjske magistrske stopnje Inertial confinement fusion

    E-Print Network [OSTI]

    ?umer, Slobodan

    ................................................................................................................................12 #12;Introduction Mankind has always dreamed about producing energy in a way the sun does. For over 100 years we have known how ­ how the sun produces energy, but it has always been too difficult how manage to achieve and sustain energy fusion for energy production. In this seminar I will discuss what

  3. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  4. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  5. Species separation and modification of neutron diagnostics in inertial-confinement fusion

    E-Print Network [OSTI]

    Inglebert, Aurelie; Larroche, Olivier

    2014-01-01

    The different behaviours of deuterium (D) and tritium (T) in the hot spot of marginally-igniting cryogenic DT inertial-confinement fusion (ICF) targets are investigated with an ion Fokker-Planck model. With respect to an equivalent single-species model, a higher density and a higher temperature are found for T in the stagnation phase of the target implosion. In addition, the stagnating hot spot is found to be less dense but hotter than in the single-species case. As a result, the fusion reaction yield in the hot spot is significantly increased. Fusion neutron diagnostics of the implosion find a larger ion temperature as deduced from DT reactions than from DD reactions, in good agreement with NIF experimental results. ICF target designs should thus definitely take ion-kinetic effects into account.

  6. Multiple-beam laser–plasma interactions in inertial confinement fusion

    SciTech Connect (OSTI)

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  7. An improved version of the view factor method for simulating inertial confinement fusion hohlraums

    SciTech Connect (OSTI)

    Basko, M. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)] [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

    1996-11-01

    A modified version of the view factor equations is proposed which improves the accuracy of the description of temporal effects in energy redistribution by thermal radiation in cavities driven by power pulses typical for inertial confinement fusion (ICF). The method is applied to analyze the process of radiative symmetrization in the simplest type of closed cylindrical hohlraums heated by two x-ray rings on the sidewall of the hohlraum case. Such hohlraums may be used in certain types of ICF targets driven by ion beams. {copyright} {ital 1996 American Institute of Physics.}

  8. Radiochemical determination of Inertial Confinement Fusion capsule compression at the National Ignition Facility

    SciTech Connect (OSTI)

    Shaughnessy, D. A., E-mail: shaughnessy2@llnl.gov; Moody, K. J.; Gharibyan, N.; Grant, P. M.; Gostic, J. M.; Torretto, P. C.; Wooddy, P. T.; Bandong, B. B.; Cerjan, C. J.; Hagmann, C. A.; Caggiano, J. A.; Yeamans, C. B.; Bernstein, L. A.; Schneider, D. H. G.; Henry, E. A.; Fortner, R. J. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Despotopulos, J. D. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Radiochemistry Program, University of Nevada Las Vegas, Las Vegas, Nevada 89154 (United States)

    2014-06-15

    We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,?) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of {sup 198m+g}Au and {sup 196g}Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

  9. Research and Development of Compact Neutron Sources based on Inertial Electrostatic Confinement Fusion

    SciTech Connect (OSTI)

    Masuda, Kai; Yoshikawa, Kiyoshi; Nagasaki, Kazunobu [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Takamatsu, Teruhisa; Fujimoto, Takeshi; Nakagawa, Tomoya; Kajiwara, Taiju [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 611-0011 (Japan); Misawa, Tsuyoshi; Shiroya, Seiji; Takahashi, Yoshiyuki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-03-10

    Recent progress is described in the research and development of an inertial-electrostatic confinement fusion (IECF) device. Use of a water-cooling jacket with non-uniform thickness shows promising success for landmine detection application, such as effective channeling of neutron flux toward the target and a very stable dc yield in excess of 10{sup 7} D-D neutrons/sec. Addition of an ion source to the conventional glow-discharge-driven IECF enhances the converging deuterium ion energy distribution by allowing a lower operating gas pressure. Improvement in normalized neutron yield, which corresponds to the fusion cross-section averaged over the device radius, by a factor often has been observed.

  10. Driving high-gain shock-ignited inertial confinement fusion targets by green laser light

    SciTech Connect (OSTI)

    Atzeni, Stefano; Marocchino, Alberto; Schiavi, Angelo [Dipartimento SBAI, Universita di Roma 'La Sapienza' and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy)

    2012-09-15

    Standard direct-drive inertial confinement fusion requires UV light irradiation in order to achieve ignition at total laser energy of the order of 1 MJ. The shock-ignition approach opens up the possibility of igniting fusion targets using green light by reducing the implosion velocity and laser-driven ablation pressure. An analytical model is derived, allowing to rescale UV-driven targets to green light. Gain in the range 100-200 is obtained for total laser energy in the range 1.5-3 MJ. With respect to the original UV design, the rescaled targets are less sensitive to irradiation asymmetries and hydrodynamic instabilities, while operating in the same laser-plasma interaction regime.

  11. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Waltz, J., E-mail: jwaltz@lanl.gov [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Canfield, T.R. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Morgan, N.R. [Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Risinger, L.D.; Wohlbier, J.G. [Computational and Computer Sciences Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamics and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.

  12. Ways towards pure deuterium inertial confinement fusion through the attainment of gigavolt potentials

    E-Print Network [OSTI]

    Winterberg, Friedwardt

    2008-01-01

    The attainment of ultrahigh electric potentials by suppressing the stepped leader breakdown of a highly charged conductor levitated in a spiraling Taylor flow opens up the possibility of order of magnitude larger driver energies for the ignition of thermonuclear reactions by inertial confinement. In reaching gigavolt potentials, intense 1016 Watt, GeV ion beams become possible. Together with their large self-magnetic field, these beams should be powerful enough to launch a thermonuclear micro-detonation into pure deuterium, compressed and ignited by such beams. In high gain laser fusion the proton flash from the micro-explosion is likely to destroy the optical laser ignition apparatus, and it is not explained how to avoid this danger. The possible attainment of gigavolt potentials could make laser fusion obsolete.

  13. Inertial confinement fusion quarterly report, April--June 1994. Volume 4, Number 3

    SciTech Connect (OSTI)

    Shaw, M.J. [ed.

    1994-06-01

    This issue of the ICF Quarterly contains six articles covering a wide range of activities within the Inertial Confinement Fusion (ICF) Program. It concentrates on target design; theoretical spectral analysis of ICF capsule surfaces; laser fusion experimental methods; and an alternative ICF design, based on ultrafast, ultrapowerful lasers. A key issue for the success of the ICF process is the hydrodynamic stability of the imploding capsule. There are two primary sources of instability growth in the ICF process: (1) asymmetries in the x-ray flux that drive the compression lead to asymmetric in the imploding surface; (2) imperfections on the capsule surface can grow into large perturbations, degrading the capsule performance. In recent years, a great deal of effort, both experimentally and theoretically, has been spent to enhance the Program`s ability to measure, model, and minimize instability growth during an implosion. Four the articles in this issue discuss this subject.

  14. Inertial confinement fusion. 1995 ICF annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    1996-06-01

    Lawrence Livermore National Laboratory`s (LLNL`s) Inertial Confinement Fusion (ICF) Program is a Department of Energy (DOE) Defense Program research and advanced technology development program focused on the goal of demonstrating thermonuclear fusion ignition and energy gain in the laboratory. During FY 1995, the ICF Program continued to conduct ignition target physics optimization studies and weapons physics experiments in support of the Defense Program`s stockpile stewardship goals. It also continued to develop technologies in support of the performance, cost, and schedule goals of the National Ignition Facility (NIF) Project. The NIF is a key element of the DOE`s Stockpile Stewardship and Management Program. In addition to its primary Defense Program goals, the ICF Program provides research and development opportunities in fundamental high-energy-density physics and supports the necessary research base for the possible long-term application to inertial fusion energy (IFE). Also, ICF technologies have had spin-off applications for industrial and governmental use. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  15. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-10-15

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.

  16. Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility

    E-Print Network [OSTI]

    Li, C. K.

    Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7 MeV D[superscript 3]He protons) are routinely measured from indirectly driven inertial-confinement fusion ...

  17. Production and measurement of engineered surfaces for inertial confinement fusion research

    SciTech Connect (OSTI)

    Day, Robert D [Los Alamos National Laboratory; Hatch, Douglas J [Los Alamos National Laboratory; Rivera, Gerald [Los Alamos National Laboratory

    2011-01-19

    Inertial Confinement Fusion uses the optical energy from a very high power laser to implode spherical capsules that contain a fuel mixture of deuterium and tritium. The capsules are made of either Beryllium, plastic, or glass and range from 0.1 mm to 2 mm in diameter. As a capsule implodes, thereby compressing the fuel to reach nuclear fusion conditions, it achieves temperatures of millions of degrees Centigrade and very high pressures. In this state, the capsule materials act like fluids and often a low density fluidic material will push on a higher density material which can be a very unstable condition depending upon the smoothness of the interface between the two materials. This unstable condition is called a hydrodynamic instabillity which results in the mixing of the two materials. If the mixing occurs between the fuel and a non-fuel material, it can stop the fusion reaction just like adding significant amounts of water to gasoline can stop the operation of an automobile. Another region in the capsule where surface roughness can cause capsule performance degradation is at a joint. For instance, many capsules are made of hemispheres that are joined together. If the joint surfaces are too rough, then there will an effective reduction in density at the joint. This density reduction can cause a non-uniform implosion which will reduce the fusion energy coming out of the capsule.

  18. A review of Inertial Confinement Fusion (ICF), ICF reactors, and the HYLIFE-II concept using liquid FLiBe

    SciTech Connect (OSTI)

    Moir, R.W.

    1989-09-25

    This paper reviews Inertial Confinement Fusion (ICF) reactor designs and discusses their safety, environmental impact, and economic prospects. The emphasis is on designs carried out at Lawrence Livermore National Laboratory (LLNL) because of the author's familiarity with them; the omission of other designs should not necessarily be taken as disparaging towards those designs. 18 refs., 18 figs., 2 tabs.

  19. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule Nelson M. Hoffman, George B. Zimmerman, Kim Molvig, Hans G. Rinderknecht, Michael J. Rosenberg, B. J.

    E-Print Network [OSTI]

    Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions on the ignition and burn of inertial confinement fusion targets: A multi-scale approach Phys. Plasmas 21, 122709 (2014); 10.1063/1.4904212 Metrics for long wavelength asymmetries in inertial confinement fusion

  20. Electric field and ionization-gradient effects on inertial-confinement-fusion implosions This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Electric field and ionization-gradient effects on inertial-confinement-fusion implosions.1088/0741-3335/51/12/124048 Electric field and ionization-gradient effects on inertial-confinement-fusion implosions P A Amendt1 , J L-generated electric fields (108 ­109 V m-1 ) in direct-drive, inertial-confinement-fusion capsules has been reported

  1. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosionsa) H. G. Rinderknecht, H. Sio, C. K. Li, N. Hoffman, A. B. Zylstra, M. J. Rosenberg, J. A. Frenje, M. Gatu Johnson,

    E-Print Network [OSTI]

    Kinetic mix mechanisms in shock-driven inertial confinement fusion implosionsa) H. G. Rinderknecht (2013); 10.1063/1.4805081 On the transport coefficients of hydrogen in the inertial confinement fusion in inertial confinement fusion implosions at OMEGAa) Phys. Plasmas 14, 056306 (2007); 10.1063/1.2671761 Laser

  2. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science

    SciTech Connect (OSTI)

    Seguin, F. H.; Sinenian, N.; Rosenberg, M.; Zylstra, A.; Manuel, M. J.-E.; Sio, H.; Waugh, C.; Rinderknecht, H. G.; Johnson, M. Gatu; Frenje, J.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sangster, T. C.; Roberts, S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2012-10-15

    Compact wedge-range-filter proton spectrometers cover proton energies {approx}3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D{sup 3}He protons in D{sup 3}He implosions, secondary D{sup 3}He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  3. Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF

    E-Print Network [OSTI]

    Gaffney, Jim A; Sonnad, Vijay; Libby, Stephen B

    2013-01-01

    The complex nature of inertial confinement fusion (ICF) experiments results in a very large number of experimental parameters that are only known with limited reliability. These parameters, combined with the myriad physical models that govern target evolution, make the reliable extraction of physics from experimental campaigns very difficult. We develop an inference method that allows all important experimental parameters, and previous knowledge, to be taken into account when investigating underlying microphysics models. The result is framed as a modified $\\chi^{2}$ analysis which is easy to implement in existing analyses, and quite portable. We present a first application to a recent convergent ablator experiment performed at the NIF, and investigate the effect of variations in all physical dimensions of the target (very difficult to do using other methods). We show that for well characterised targets in which dimensions vary at the 0.5% level there is little effect, but 3% variations change the results of i...

  4. A new ignition scheme using hybrid indirect-direct drive for inertial confinement fusion

    E-Print Network [OSTI]

    Fan, Zhengfeng; Dai, Zhensheng; Cai, Hong-bo; Zhu, Shao-ping; Zhang, W Y; He, X T

    2013-01-01

    A new hybrid indirect-direct-drive ignition scheme is proposed for inertial confinement fusion: a cryogenic capsule encased in a hohlraum is first compressed symmetrically by indirect-drive x-rays, and then accelerated and ignited by both direct-drive lasers and x-rays. A steady high-density plateau newly formed between the radiation and electron ablation fronts suppresses the rarefaction at the radiation ablation front and greatly enhances the drive pressure. Meanwhile, multiple shock reflections at the fuel/hot-spot interface are prevented during capsule deceleration. Thus rapid ignition and burn are realized. In comparison with the conventional indirect drive, the hybrid drive implodes the capsule with a higher velocity ($\\sim4.3\\times10^7$ cm/s) and a much lower convergence ratio ($\\sim$25), and the growth of hydrodynamic instabilities is significantly reduced, especially at the fuel/hot-spot interface.

  5. Effect of experimentally observed hydrogenic fractionation on inertial confinement fusion ignition target performance

    SciTech Connect (OSTI)

    McKenty, P. W.; Wittman, M. D.; Harding, D. R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2006-10-01

    The need of cryogenic hydrogenic fuels in inertial confinement fusion (ICF) ignition targets has been long been established. Efficient implosion of such targets has mandated keeping the adiabat of the main fuel layer at low levels to ensure drive energies are kept at reasonable minima. The use of cryogenic fuels helps meet this requirement and has therefore become the standard in most ICF ignition designs. To date most theoretical ICF ignition target designs have assumed a homogeneous layer of deuterium-tritium (DT) fuel kept slightly below the triple point. However, recent work has indicated that, as cryogenic fuel layers are formed inside an ICF capsule, isotopic dissociation of the tritium (T), deuterium (D), and DT takes place leading to a 'fractionation' of the final ice layer. This paper will numerically investigate the effects that various scenarios of fractionation have on hot-spot formation, ignition, and burn in ICF ignition target designs.

  6. Solid Deuterium-Tritium Surface Roughness In A Beryllium Inertial Confinement Fusion Shell

    SciTech Connect (OSTI)

    Kozioziemski, B J; Sater, J D; Moody, J D; Montgomery, D S; Gautier, C

    2006-04-19

    Solid deuterium-tritium (D-T) fuel layers for inertial confinement fusion experiments were formed inside of a 2 mm diameter beryllium shell and were characterized using phase-contrast enhanced x-ray imaging. The solid D-T surface roughness is found to be 0.4 {micro}m for modes 7-128 at 1.5 K below the melting temperature. The layer roughness is found to increase with decreasing temperature, in agreement with previous visible light characterization studies. However, phase-contrast enhanced x-ray imaging provides a more robust surface roughness measurement than visible light methods. The new x-ray imaging results demonstrate clearly that the surface roughness decreases with time for solid D-T layers held at 1.5 K below the melting temperature.

  7. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  8. Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Moses, E

    2009-10-15

    The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

  9. Fatigue cracking of a bare steel first wall in an inertial confinement fusion chamber

    SciTech Connect (OSTI)

    Hunt, R. M.; Abbott, R. P.; Havstad, M. A.; Dunne, A. M.

    2013-06-01

    Inertial confinement fusion power plants will deposit high energy X-rays onto the outer surfaces of the first wall many times a second for the lifetime of the plant. These X-rays create brief temperature spikes in the first few microns of the wall, which cause an associated highly compressive stress response on the surface of the material. The periodicity of this stress pulse is a concern due to the possibility of fatigue cracking of the wall. We have used finite element analyses to simulate the conditions present on the first wall in order to evaluate the driving force of crack propagation on fusion-facing surface cracks. Analysis results indicate that the X-ray induced plastic compressive stress creates a region of residual tension on the surface between pulses. This tension film will likely result in surface cracking upon repeated cycling. Additionally, the compressive pulse may induce plasticity ahead of the crack tip, leaving residual tension in its wake. However, the stress amplitude decreases dramatically for depths greater than 80–100 ?m into the fusion-facing surface. Crack propagation models as well as stress-life estimates agree that even though small cracks may form on the surface of the wall, they are unlikely to propagate further than 100 ?m without assistance from creep or grain erosion phenomena.

  10. Dynamic response of materials on subnanosecond time scales, and beryllium properties for inertial confinement fusion

    SciTech Connect (OSTI)

    Swift, Damian C.; Tierney, Thomas E.; Luo Shengnian; Paisley, Dennis L.; Kyrala, George A.; Hauer, Allan; Greenfield, Scott R.; Koskelo, Aaron C.; McClellan, Kenneth J.; Lorenzana, Hector E.; Kalantar, Daniel; Remington, Bruce A.; Peralta, Pedro; Loomis, Eric

    2005-05-15

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. These relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser-induced ablation can be particularly convenient: this technique has been used to impart shocks and isentropic compression waves from {approx}1 to 200 GPa in a range of elements and alloys, with diagnostics including line imaging surface velocimetry, surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response from the polycrystalline microstructure. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1 TPa.

  11. Krypton Fluoride Laser Driven Inertial Fusion Energy

    E-Print Network [OSTI]

    for Inertial Confinement Fusion Energy Systems San Ramon CA January 29, 2011 presented by John Sethian1 Krypton Fluoride Laser Driven Inertial Fusion Energy Presented to NAS Committee on the Prospects POWER PLANT: Attractive Technology #12;6 Outline S. ObenschainVision of R&D path to Inertial Fusion

  12. (Experimental development, testing and research work in support of the inertial confinement fusion program)

    SciTech Connect (OSTI)

    Johnson, R.; Luckhardt, R.; Terry, N.; Drake, D.; Gaines, J. (eds.)

    1990-04-27

    This KMS Fusion Semi-Annual Technical Report covers the period October 1989 through March 1990. It contains a review of work performed by KMS Fusion, Inc. (KMSF), in support of the national program to achieve inertially confined fusion (ICF). A major section of the report is devoted to target technology, a field which is expected to play an increasingly important role in the overall KMSF fusion effort. Among the highlights of our efforts in this area covered in this report are: improvements and new developments in target fabrication techniques, including a discussion of techniques for introducing gaussian bumps and bands on target surfaces. Development of a single automated system for the interferometric characterization of transparent shells. Residual gas analysis of the blowing gases contained in glass shells made from xerogels. These usually include CO{sub 2}, O{sub 2} and N{sub 2}, and are objectionable because they dilute the fuel. Efforts to observe the ice layers formed in the {beta}-layering process in cryogenic targets, and to simulate the formation of these layers. In addition to our work on target technology, we conducted experiments with the Chroma laser and supported the ICF effort at other labs with theoretical and computational support as well as diagnostic development. Included in the work covered in this report are: experiments on Chroma to study interpenetration of and ionization balance in laser generated plasmas. Diagnostic development, including an optical probe for the Aurora laser at Los Alamos National Laboratory, and a high energy x-ray continuum spectrograph for Aurora. Investigation of the radiation cooling instability as a possible mechanism for the generation of relatively cold, dense jets observed in ICF experiments.

  13. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Spears, Brian K. Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J.; Kilkenny, J.; Knauer, J.

    2014-04-15

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  14. Production and Metrology of Cylindrical Inertial Confinement Fusion Targets with Sinusoidal Perturbations

    SciTech Connect (OSTI)

    Balkey, M.M. [Los Alamos National Laboratory (United States); Day, R.D. [Los Alamos National Laboratory (United States); Batha, S.H. [Los Alamos National Laboratory (United States); Elliot, N.E. [Los Alamos National Laboratory (United States); Pierce, T. [Los Alamos National Laboratory (United States); Sandoval, D.L. [Los Alamos National Laboratory (United States); Garrard, K.P. [North Carolina State University (United States); Sohn, A. [North Carolina State University (United States)

    2004-03-15

    Shock waves generated during inertial confinement fusion implosions propagate toward the center of the capsule encountering interfaces between materials with different densities, such as between the ablator and the DT fuel. These interactions are hydrodynamically unstable and the resulting instability causes mixing of the materials at the interface, which is predicted to have detrimental effects on fusion burn. In this experiment, the growth of a single-mode perturbation machined into a radiographically opaque marker layer, driven by a strong shock, is measured during a cylindrically symmetric implosion. These measurements are used to validate simulations and theories of the complex hydrodynamics. Since any perturbation on the marker layer surface will lead to instability growth, precise knowledge of the initial conditions is critical. The targets used in this experiment have up to a 3.0-{mu}m-amplitude, mode 28 ({lambda} = 98 {mu}m) sinusoidal perturbation machined into a 438-{mu}m-outerradius aluminum band with a nominal thickness of 8 {mu}m. The perturbations were machined using a fast-tool servo [B. JARED and T. A. DOW, Precision Engineering Center Annual Report, North Carolina State University, Raleigh NC, p. 123 (1996)] and were metrologized using a linear variable differential transformer [FRANK J. OLIVER, Practical Instrumentation Tranducers, p. 42-45, Hayden Book Company (1971)]. In this paper, the importance of metrology is discussed and is shown to be critical to the interpretation of experimental results.

  15. Study of fusion regimes in an inertial electrostatic confinement device using the new eclipse disk diagnostic

    SciTech Connect (OSTI)

    Murali, S. Krupakar; Cipiti, B.B.; Santarius, J.F.; Kulcinski, G.L. [Fusion Technology Institute, University of Wisconsin, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2006-05-15

    New diagnostics are required to understand the physics operation of an inertial electrostatic confinement (IEC) device. In an attempt to understand the fusion source regimes within the IEC device, a new diagnostic called the eclipse disk has been introduced. This diagnostic was used to exploit the byproduct protons' energy difference between the deuterium-deuterium (D-D) and deuterium--an isotope of helium with two protons and one neutron (D-{sup 3}He) reactions to study the contributions of the protons generated from various source regimes. These source regimes are divided into five categories namely: converged core, embedded, beam background, volume, and wall-surface sources. The eclipse disk diagnostic has provided the first confirmed evidence that D-{sup 3}He reactions are predominantly embedded reactions. It has been observed that at the present operating power levels (6-10 kW) most of the D-D reactions occur in the volume of the chamber caused by the charge exchanged neutrals, and the converged core contribution is significant only for D-D reactions. Since the branching ratio for the proton and neutron generation in a D-D fusion reaction is {approx}50%, it is inferred that the proton to neutron count ratio is a better parameter to monitor than either proton or neutron counts measured alone while studying the source regimes. This parameter may also be used for studying the potential wells within the cathode grid.

  16. An improved method for measuring the absolute DD neutron yield and calibrating neutron time-of-flight detectors in inertial confinement fusion experiments

    E-Print Network [OSTI]

    Waugh, C. (Caleb Joseph)

    2014-01-01

    Since the establishment of nuclear physics in the early 1900's and the development of the hydrogen bomb in the 1950's, inertial confinement fusion (ICF) has been an important field in physics. Funded largely though the ...

  17. Studies of ion kinetic effects in shock-driven inertial confinement fusion implosions at OMEGA and the NIF and magnetic reconnection using laser-produced plasmas at OMEGA

    E-Print Network [OSTI]

    Rosenberg, Michael Jonathan

    2014-01-01

    Studies of ion kinetic effects during the shock-convergence phase of inertial confinement fusion (ICF) implosions and magnetic reconnection in strongly-driven, laser-produced plasmas have been facilitated by the use of ...

  18. Inertial confinement fusion. ICF quarterly report, October 1993--December 1993, Volume 4, Number 1

    SciTech Connect (OSTI)

    Powell, H.T.; Schleich, D.P.; Murphy, P.W. [eds.

    1994-05-01

    In the 1990 National Academy of Sciences (NAS) report of its review of the U.S. Inertial Confinement Fusion (ICF) Program, it was recommended that a high priority be placed on completing the Precision Nova Project and its associated experimental campaign. Since fiscal year 1990, the lab has therefore campaigned vigorously on Nova and in its supporting laboratories to develop the Precision Nova capabilities needed to perform the stressful target experiments recommended in the 1990 NAS report. The activities to enable these experiments have been directed at improvements in three areas - the Nova laser, target fabrication capabilities, and target diagnostics. As summarized in the five articles in this report, the Precision Nova improvements have been successfully completed. These improvements have had a positive impact on target performance and on the ability to diagnose the results, as evidenced by the HEP-1 experimental results. The five articles generally concentrate on improvements to the capabilities rather than on the associated target physics experiments. Separate abstracts are included for each paper.

  19. Investigation of radial wire arrays for inertial confinement fusion and radiation effects science.

    SciTech Connect (OSTI)

    Serrano, Jason Dimitri; Bland, Simon Nicholas (Imperial College, London); McBride, Ryan D.; Chittenden, Jeremy Paul (Imperial College, London); Suzuki-Vidal, Francisco Andres (Imperial College, London); Jennings, Christopher A.; Hall, Gareth Neville (Imperial College, London); Ampleford, David J.; Peyton, Bradley Philip; Lebedev, Sergey V. (Imperial College, London); Cleveland, Monica; Rogers, Thomas John; Cuneo, Michael Edward; Coverdale, Christine Anne; Jones, Brent Manley; Jones, Michael C.

    2010-02-01

    Radial wire arrays provide an alternative x-ray source for Z-pinch driven Inertial Confinement Fusion. These arrays, where wires are positioned radially outwards from a central cathode to a concentric anode, have the potential to drive a more compact ICF hohlraum. A number of experiments were performed on the 7MA Saturn Generator. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1MA level, where they have been shown to provide similar x-ray outputs to larger diameter cylindrical arrays, to the higher current levels required for ICF. Data indicates that at 7MA radial arrays can obtain higher power densities than cylindrical wire arrays, so may be of use for x-ray driven ICF on future facilities. Even at the 7MA level, data using Saturn's short pulse mode indicates that a radial array should be able to drive a compact hohlraum to temperatures {approx}92eV, which may be of interest for opacity experiments. These arrays are also shown to have applications to jet production for laboratory astrophysics. MHD simulations require additional physics to match the observed behavior.

  20. Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions

    SciTech Connect (OSTI)

    Mason, R. J., E-mail: rodmason01@msn.com; Kirkpatrick, R. C.; Faehl, R. J. [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)] [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)

    2014-02-15

    We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ?40??m diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3}?g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20?keV) central temperature but severely reduced central density (<200?g/cm{sup 3}), while the elliptical shells evidence p?=?2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

  1. Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility

    SciTech Connect (OSTI)

    Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-02-15

    For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

  2. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Kritcher, A. L.; Town, R.; Bradley, D.; Clark, D.; Spears, B.; Jones, O.; Haan, S.; Springer, P. T.; Lindl, J.; Callahan, D.; Edwards, M. J.; Landen, O. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Scott, R. H. H. [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)] [Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom)

    2014-04-15

    We investigate yield degradation due to applied low mode P2 and P4 asymmetries in layered inertial confinement fusion implosions. This study has been performed with a large database of >600 2D simulations. We show that low mode radiation induced drive asymmetries can result in significant deviation between the core hot spot shape and the fuel ?R shape at peak compression. In addition, we show that significant residual kinetic energy at peak compression can be induced by these low mode asymmetries. We have developed a metric, which is a function of the hot spot shape, fuel ?R shape, and residual kinetic energy at peak compression, that is well correlated to yield degradation due to low mode shape perturbations. It is shown that the ?R shape and residual kinetic energy cannot, in general, be recovered by inducing counter asymmetries to make the hot core emission symmetric. In addition, we show that the yield degradation due to low mode asymmetries is well correlated to measurements of time dependent shape throughout the entire implosion, including early time shock symmetry and inflight fuel symmetry.

  3. Indirect-direct hybrid-drive work-dominated hotspot ignition for inertial confinement fusion

    E-Print Network [OSTI]

    He, X T; Li, J W; Liu, J; Lan, K; Wu, J F; Wang, L F; Ye, W H

    2015-01-01

    An indirect-direct hybrid-drive work-dominated hotspot ignition scheme for inertial confinement fusion is proposed: a layered fuel capsule inside a spherical hohlraum with an octahedral symmetry is compressed first by indirect-drive soft-x rays (radiation) and then by direct-drive lasers in last pulse duration. In this scheme, an enhanced shock and a follow-up compression wave for ignition with pressure far greater than the radiation ablation pressure are driven by the direct-drive lasers, and provide large pdV work to the hotspot to perform the work-dominated ignition. The numerical simulations show that the enhanced shock stops the reflections of indirect-drive shock at the main fuel-hotspot interface, and therefore significantly suppresses the hydrodynamic instabilities and asymmetry. Based on the indirect-drive implosion dynamics the hotspot is further compressed and heated by the enhanced shock and follow-up compression wave, resulting in the work-dominated hotspot ignition and burn with a maximal implos...

  4. X-ray ablation rates in inertial confinement fusion capsule materials

    SciTech Connect (OSTI)

    Olson, R. E.; Rochau, G. A.; Leeper, R. J. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Landen, O. L. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2011-03-15

    X-ray ablation rates have been measured in beryllium, copper-doped beryllium, germanium-doped plastic (Ge-doped CH), and diamondlike high density carbon (HDC) for radiation temperatures T in the range of 160-260 eV. In beryllium, the measured ablation rates range from 3 to 12 mg/cm{sup 2}/ns; in Ge-doped CH, the ablation rates range from 2 to 6 mg/cm{sup 2}/ns; and for HDC, the rates range from 2 to 9 mg/cm{sup 2}/ns. The ablation rates follow an approximate T{sup 3} dependence and, for T below 230 eV, the beryllium ablation rates are significantly higher than HDC and Ge-doped CH. The corresponding implied ablation pressures are in the range of 20-160 Mbar, scaling as T{sup 3.5}. The results are found to be well predicted by computational simulations using the physics packages and computational techniques employed in the design of indirect-drive inertial confinement fusion capsules. An iterative rocket model has been developed and used to compare the ablation rate data set to spherical indirect-drive capsule implosion experiments and to confirm the validity of some aspects of proposed full-scale National Ignition Facility ignition capsule designs.

  5. On the transport coefficients of hydrogen in the inertial confinement fusion regime

    SciTech Connect (OSTI)

    Lambert, Flavien; Recoules, Vanina; Decoster, Alain; Clerouin, Jean [CEA, DAM, DIF, F-91297 Arpajon (France); Desjarlais, Michael [Pulsed Power Sciences Center, Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2011-05-15

    Ab initio molecular dynamics is used to compute the thermal and electrical conductivities of hydrogen from 10 to 160 g cm{sup -3} and temperatures up to 800 eV, i.e., thermodynamical conditions relevant to inertial confinement fusion (ICF). The ionic structure is obtained using molecular dynamics simulations based on an orbital-free treatment for the electrons. The transport properties were computed using ab initio simulations in the DFT/LDA approximation. The thermal and electrical conductivities are evaluated using Kubo-Greenwood formulation. Particular attention is paid to the convergence of electronic transport properties with respect to the number of bands and atoms. These calculations are then used to check various analytical models (Hubbard's, Lee-More's and Ichimaru's) widely used in hydrodynamics simulations of ICF capsule implosions. The Lorenz number, which is the ratio between thermal and electrical conductivities, is also computed and compared to the well-known Wiedemann-Franz law in different regimes ranging from the highly degenerate to the kinetic one. This allows us to deduce electrical conductivity from thermal conductivity for analytical model. We find that the coupling of Hubbard and Spitzer models gives a correct description of the behavior of electrical and thermal conductivities in the whole thermodynamic regime.

  6. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect (OSTI)

    Jiang, Shaoen; Jing, Longfei Ding, Yongkun; Huang, Yunbao

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  7. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (? = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosionsmore »on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.« less

  8. Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang Xianzhu [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2012-08-15

    Rayleigh-Taylor instabilities (RTI) in inertial confinement fusion (ICF) implosions are expected to generate magnetic fields at the gas-ice interface and at the ice-ablator interface. The focus here is on the gas-ice interface where the temperature gradient is the largest. A Hall-MHD model is used to study the magnetic field generation and growth for 2-D single-mode and multimode RTI in a stratified two-fluid plasma, the two fluids being ions and electrons. Self-generated magnetic fields are observed and these fields grow as the RTI progresses via the {nabla}n{sub e} Multiplication-Sign {nabla}T{sub e} term in the generalized Ohm's law. Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] present results of the magnetic field generation and growth, and some scaling studies in 2-dimensions. The results presented here study the mechanism behind the magnetic field generation and growth, which is related to fluid vorticity generation by RTI. The magnetic field wraps around the bubbles and spikes and concentrates in flux bundles at the perturbed gas-ice interface where fluid vorticity is large. Additionally, the results of Srinivasan et al.[Phys. Rev. Lett. 108, 165002 (2012)] are described in greater detail. Additional scaling studies are performed to determine the growth of the self-generated magnetic field as a function of density, acceleration, perturbation wavelength, Atwood number, and ion mass.

  9. Pulsed power considerations for electron beam pumped krypton fluoride lasers for inertial confinement fusion applications

    SciTech Connect (OSTI)

    Rose, E.A.; McDonald, T.E.; Rosocha, L.A.; Harris, D.B.; Sullivan, J.A. (Los Alamos National Lab., NM (USA)); Smith, I.D. (Pulse Sciences, Inc., San Leandro, CA (USA))

    1991-01-01

    The Los Alamos National Laboratory inertial confinement fusion (ICF) program is developing the krypton-fluoride excimer laser for use as an ICF driver. The KrF laser has a number of inherent characteristics that make it a promising driver candidate, such as short wavelength (0.25 {mu}m), broad bandwidth to target (>100 cm{sup {minus}1}), pulse-shaping with high dynamic range, and the potential for high overall efficiency (>5%) and repetitive operation. The large KrF laser amplifiers needed for ICF drivers are electron-beam pumped. A key issue for all laser ICF drivers is cost, and a leading cost component of a KrF laser driver is associated with the pulsed power and electron diode. Therefore, the efficient generation of electron beams is a high priority. The Los Alamos ICF program is investigating pulsed-power and diode designs and technologies to further the development of affordable KrF laser ICF drivers. 12 refs., 8 figs.

  10. Development of the large neutron imaging system for inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L.; Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C.

    2012-03-15

    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  11. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    2010 “Prediction of Inertial Confinement Fusion Chamber GasBarodiffusion on the Inertial Confinement Fusion Database. [barodiffusion in inertial-confinement-fusion implosions:

  12. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility

    SciTech Connect (OSTI)

    Town, R. P. J., E-mail: town2@llnl.gov; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

    2014-05-15

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

  13. Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions

    E-Print Network [OSTI]

    Casey, Daniel Thomas

    Measurements of the D(d,p)T (dd) and T(t,2n)[superscript 4]He (tt) reaction yields have been compared with those of the D(t,n)[superscript 4]He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement ...

  14. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in DłHe-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore »of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  15. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in DłHe-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore »of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  16. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (IFC) implosions using fusion burn imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Séguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Amendt, P. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Atzeni, S. [Dipartimento SBAI, Universitŕ di Roma “La Sapienza” and CNISM, Roma (Italy); Rinderknecht, H. G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Hoffman, N. M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:000000030178767X); Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Sio, H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:000000017274236X); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000258834054); Glebov, V. Yu. [Univ. of Rochester, NY (United States); Stoeckl, C. [Univ. of Rochester, NY (United States); Seka, W. [Univ. of Rochester, NY (United States); Marshall, F. J. [Univ. of Rochester, NY (United States); Delettrez, J. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA; Sangster, T. C. [Univ. of Rochester, NY (United States)] (ORCID:0000000340402672); Betti, R. [Univ. of Rochester, NY (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pino, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kagan, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Molvig, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)

    2015-06-01

    The significance and nature of ion kinetic effects in DłHe-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  17. Neutron penumbral imaging simulation and reconstruction for Inertial Confinement Fusion Experiments

    E-Print Network [OSTI]

    Xian-You Wang; Zhen-yun Fang; Yun-qing Tang; Zhi-Cheng Tang; Hong Xiao; Ming Xu

    2012-07-08

    Neutron penumbral imaging technique has been successfully used as the diagnosis method in Inertial Con?ned Fusion. To help the design of the imaging systems in the future in CHINA. We construct the Monte carlo imaging system by Geant4. Use the point spread function from the simulation and decode algorithm (Lucy-Rechardson algorithm) we got the recovery image.

  18. Neutron penumbral imaging simulation and reconstruction for Inertial Confinement Fusion Experiments

    E-Print Network [OSTI]

    Wang, Xian-You; Tang, Yun-qing; Tang, Zhi-Cheng; Xiao, Hong; Xu, Ming

    2012-01-01

    Neutron penumbral imaging technique has been successfully used as the diagnosis method in Inertial Con?ned Fusion. To help the design of the imaging systems in the future in CHINA. We construct the Monte carlo imaging system by Geant4. Use the point spread function from the simulation and decode algorithm (Lucy-Rechardson algorithm) we got the recovery image.

  19. Development of a neutron imaging diagnostic for inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Morgan, G. L.; Berggren, R. R.; Bradley, P. A.; Cverna, F. H.; Faulkner, J. R.; Gobby, P. L.; Oertel, J. A.; Swenson, F. J.; Tegtmeier, J. A.; Walton, R. B.

    2001-01-01

    Pinhole imaging of the neutron production in laser-driven inertial confinement fusion experiments can provide important information about the performance of various capsule designs. This requires the development of systems capable of spatial resolutions on the order of 5 {mu}m or less for source strengths of 10{sup 15} and greater. We have initiated a program which will lead to the achievement of such a system to be employed at the National Ignition Facility (NIF) facility. Calculated neutron output distributions for various capsule designs will be presented to illustrate the information which can be gained from neutron imaging and to demonstrate the requirements for a useful system. We will describe the lines-of-sight available at NIF for neutron imaging and explain how these can be utilized to reach the required parameters for neutron imaging. We will describe initial development work to be carried out at the Omega facility and the path which will lead to systems to be implemented at NIF. Beginning this year, preliminary experiments will be aimed at achieving resolutions of 30--60 {mu}m for direct-drive capsules with neutron outputs of about 10{sup 14}. The main thrust of these experiments will be to understand issues related to the fabrication and alignment of small diameter pinhole systems as well as the problems associated with signal-to-background ratios at the image plane. Subsequent experiments at Omega will be described. These efforts will be aimed at achieving resolutions of about 10 {mu}m. Proposed developments for new imaging systems as well as further refinement of pinhole techniques will be presented.

  20. The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2013-05-15

    Rayleigh-Taylor (RT) instabilities at interfaces of disparate mass densities have long been known to generate magnetic fields during inertial confinement fusion implosions. An externally applied magnetic field can also be efficiently amplified by RT instabilities. The focus here is on magnetic field generation and amplification at the gas-ice interface which is RT unstable during the deceleration phase of the implosion. RT instabilities lead to undesirable mix of hot and cold plasmas which enhances thermal energy loss and tends to produce a more massive warm-spot instead of a hot-spot. Two mechanisms are shown here to mitigate the thermal energy loss from the hot-spot. The first mechanism is the reduction of electron thermal conductivity with interface-aligned magnetic fields. This can occur through self-generated magnetic fields via the Biermann battery effect as well as through externally applied magnetic fields that undergo an exponential growth via the stretch-and-fold magnetohydrodynamic dynamo. Self-generated magnetic fields during RT evolution can result in a factor of 2?10 decrease in the electron thermal conductivity at the gas-ice interface, while externally applied magnetic fields that are compressed to 6–1000 T at the onset of deceleration (corresponding to pre-implosion external fields of 0.06–10 T) could result in a factor of 2–500 reduction in electron thermal conductivity at the gas-ice interface. The second mechanism to mitigate thermal energy loss from the hot-spot is to decrease the interface mixing area between the hot and cold plasmas. This is achieved through large external magnetic fields of 1000 T at the onset of deceleration which damp short-wavelength RT modes and long-wavelength Kelvin-Helmholtz modes thus significantly slowing the RT growth and reducing mix.

  1. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    SciTech Connect (OSTI)

    Olson, R. E. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Leeper, R. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ?34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  2. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 79 - SEPT. 80

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    and D. Keefe, "Inertial Confinement Fusion Systems Usingpresented at the Inertial Confinement Fusion Conf. , Sanapplication to inertial confinement fusion. Betatrons

  3. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)] (ORCID:000000030178767X); Zimmerman, George B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Molvig, Kim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rinderknecht, Hans G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Rosenberg, Michael J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Albright, B. J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simakov, Andrei N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sio, Hong [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:000000017274236X); Zylstra, Alex B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Johnson, Maria Gatu [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Séguin, Fredrick H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Frenje, Johan A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Petrasso, Richard D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000258834054); Higdon, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Srinivasan, Gowri [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glebov, Vladimir Yu. [Univ. of Rochester, NY (United States); Stoeckl, Christian [Univ. of Rochester, NY (United States); Seka, Wolf [Univ. of Rochester, NY (United States); Sangster, T. Craig [Univ. of Rochester, NY (United States)] (ORCID:0000000340402672)

    2015-05-01

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.

  4. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; et al

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore »here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach will motivate continued theoretical research into the development of first-principles-based, comprehensive, self-consistent, yet useable models of kinetic multispecies ion behavior in ICF plasmas.« less

  5. On the Utility of Antiprotons as Drivers for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Perkins, L J; Orth, C D; Tabak, M

    2003-10-20

    By contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90MJ/{micro}g and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ({bar p}) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both {bar p}-driven ablative compression and {bar p}-driven fast ignition, in association with 0-D and 1-D target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of {approx}3x10{sup 15} injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains - i.e., fusion yields divided by the available p - {bar p} annihilation energy from the injected antiprotons (1.88GeV/{bar p}) - range from {approx}3 for volumetric ignition targets to {approx}600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision - temporally and spatially - will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply methods would be required to embark on a serious R&D program for this application.

  6. An accelerator based fusion-product source for development of inertial confinement fusion nuclear diagnostics

    E-Print Network [OSTI]

    . A National Instruments NI FieldPoint system has been in- stalled and programed to control and monitor-particle spectrometry program F. H. Seguin et al., Rev. Sci Instrum. 75, 3520 2004 and the magnetic recoil neutron. as a neutron generator,1 it was converted for use as a fusion- product source, as described in Ref. 2. Since

  7. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Guler, N.; Volegov, P.; Danly, C. R.; Grim, G. P.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2012-10-15

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  8. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    E-Print Network [OSTI]

    Nagayama, T; Florido, R; Mayes, D; Tommasini, R; Koch, J A; Delettrez, J A; Regan, S P; Smalyuk, V A

    2014-01-01

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  9. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    SciTech Connect (OSTI)

    Nagayama, T.; Mancini, R. C.; Florido, R.; Mayes, D. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); Tommasini, R.; Koch, J. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A. [Laboratory for Laser Energetics, University of Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, New York 14623 (United States)

    2014-05-15

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  10. Production of direct drive cylindrical targets for inertial confinement fusion experiments

    SciTech Connect (OSTI)

    Elliott, N. E. (Norman E.); Day, R. D. (Robert D.); Hatch, D. J. (Douglas J.); Sandoval, D. L. (David L.); Gomez, V. M. (Veronica M.); Pierce, T. H. (Timothy H.); Elliott, J. E. (Joyce E.); Manzanares, R. (Ruben)

    2002-01-01

    We have made targets with cylindrical geometry for Inertial Confinement Fusion (ICF) experiments. These targets are used in hydrodynamic experiments on the OMEGA laser at the University of Rochester. The cylindrical design allows the study of three dimensional hydrodynamic effects in a pseudo 2D mode, simplifying data gathering and analysis. Direct drive refers to the fact that the target is illuminated directly by approximately 50 laser beams and is imploded by the material pressure generated from ablation of the outside of the target. The production of cylindrical targets involves numerous steps. These steps are shared in common with many other types of ICF targets but no other single target type encompasses such a wide range of fabrication techniques. These targets consist of a large number of individual parts, all fabricated from commercially purchased raw material, requiring many machining, assembly, electroplating and chemical process steps. Virtually every manufacturing and assembly process we currently possess is involved in the production of these targets. The generic target consists of a plastic cylinder (ablator) that is roughly lmm in diameter by 2.25mm long. The wall of the cylinder is roughly 0.07mm thick. There is an aluminum cylinder 0.5mm wide and O.Olmm thick centered on the inside of the plastic cylinder and coaxial with the outside plastic cylinder. The outside of this aluminum band has surface finishes of differing random average roughness. The required average surface roughness is determined in advance by experimental design based on the amount of turbulent mix to be observed. The interior of the cylinder is filled with low density polystyrene foam that is made in house. To produce a finished target additional features are added to each target. X-ray backlighters are cantilevered off the target that allow time resolved x-ray images of the imploding target to be recorded during the experiment. The x-ray backlighters are driven by additional laser beams that are delayed to record an image at the appropriate time after the main beams are fired. An aperture to limit the area imaged and reduce x-ray background is placed on the target opposite the backlighters. Finally, alignment fibers that allow the target to be located precisely in three dimensional space before being shot are placed in several locations on the outside of the target.

  11. Development of aerogel-lined targets for inertial confinement...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Development of aerogel-lined targets for inertial confinement fusion experiments Citation Details In-Document Search Title: Development of aerogel-lined...

  12. Development of aerogel-lined targets for inertial confinement...

    Office of Scientific and Technical Information (OSTI)

    aerogel-lined targets for inertial confinement fusion experiments Braun, T 36 MATERIALS SCIENCE Abstract not provided Lawrence Livermore National Laboratory (LLNL), Livermore, CA...

  13. Ion microtomography and particle-induced x-ray emission analysis of direct drive inertial confinement fusion targets

    SciTech Connect (OSTI)

    Antolak, A.J.; Pontau, A.E.; Morse, D.H. (Sandia National Laboratories, Livermore, California 94551 (United States)); Weirup, D.L.; Heikkinen, D.W. (Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)); Cholewa, M.; Bench, G.S.; Legge, G.J.F. (Micro Analytical Research Centre, University of Melbourne, Melbourne (Australia))

    1992-07-01

    The complementary techniques of ion microtomography (IMT) and particle-induced x-ray emission (PIXE) are used to provide submicron-scale characterization of inertial confinement fusion (ICF) targets for density uniformity, sphericity, and trace-element spatial distributions. ICF target quality control in the laser fusion program is important to ensure that the energy deposition from the lasers results in uniform compression and minimization of Rayleigh--Taylor instabilities. We obtain 1% total electron density determinations using IMT with spatial resolution approaching 2 {mu}m. Utilizing PIXE, we can map out dopant and impurity distributions with elemental detection sensitivities on the order of a few parts per million. We present examples of ICF target characterization by IMT and PIXE in order to demonstrate their potential impact in assessing target fabrication processes.

  14. Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

    2008-10-24

    Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

  15. multiscale analysis the hotspot dynamics during the deceleration phase of inertial confinement capsules

    E-Print Network [OSTI]

    Garnier, Josselin

    multiscale analysis the hotspot dynamics during the deceleration phase of inertial confinement December 2004) paper is devoted study deceleration phase inertial confinement capsules. First self. [DOI: 10.1063/1.1825389] INTRODUCTION dynamics the deceleration phase inertial con­ finement fusion

  16. Time-Dependent Nuclear Measurements of Mix in Inertial Confinement Fusion J. R. Rygg, J. A. Frenje, C. K. Li, F. H. Seguin, and R. D. Petrasso*

    E-Print Network [OSTI]

    Time-Dependent Nuclear Measurements of Mix in Inertial Confinement Fusion J. R. Rygg, J. A. Frenje (Received 19 January 2007; published 24 May 2007) The first time-dependent nuclear measurements of turbulent reaction to proceed. The time necessary for Rayleigh-Taylor (RT) growth to induce mix delays peak nuclear

  17. On the change in Inertial Confinement Fusion Implosions upon using an ab initio multiphase DT equation of state

    E-Print Network [OSTI]

    Caillabet, Laurent; Salin, Gwenaël; Mazevet, Stéphane; Loubeyre, Paul

    2011-01-01

    Improving the description of the equation of state (EoS) of deuterium-tritium (DT) has recently been shown to change significantly the gain of an Inertial Confinement Fusion (ICF) target (Hu et al., PRL 104, 235003 (2010)). We use here an advanced multi-phase equation of state (EoS), based on ab initio calculations, to perform a full optimization of the laser pulse shape with hydrodynamic simulations starting from 19 K in DT ice. The thermonuclear gain is shown to be a robust estimate over possible uncertainties of the EoS. Two different target designs are discussed, for shock ignition and self-ignition. In the first case, the areal density and thermonuclear energy can be recovered by slightly increasing the laser energy. In the second case, a lower in-flight adiabat is needed, leading to a significant delay (3ns) in the shock timing of the implosion.

  18. Refraction-Enhanced X-ray Radiography for Inertial Confinement Fusion and Laser-Produced Plasma Applications

    SciTech Connect (OSTI)

    Koch, J A; Landen, O L; Kozioziemski, B J; Izumi, N; Dewald, E L; Salmonson, J D; Hammel, B A

    2008-08-26

    We explore various laser-produced plasma and inertial-confinement fusion (ICF) applications of phase-contrast x-ray radiography, and we show how the main features of these enhancements can be considered from a geometrical optics perspective as refraction enhancements. This perspective simplifies the analysis, and often permits simple analytical formulae to be derived that predict the enhancements. We explore a raytrace approach to various material interface applications, and we explore a more general example of refractive bending of x-rays by an implosion plasma. We find that refraction-enhanced x-ray radiography of implosions may provide a means to quantify density differences across shock fronts as well as density variations caused by local heating due to high-Z dopants. We also point out that refractive bending by implosions plasmas can blur fine radiograph features, and can also provide misleading contrast information in area-backlit pinhole imaging experiments unless its effects are taken into consideration.

  19. Energy deposition of MeV electrons in compressed targets of fast-ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Li, C.K.; Petrasso, R.D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2006-05-15

    Energy deposition of MeV electrons in dense plasmas, important for fast ignition in inertial confinement fusion, is modeled analytically. It is shown that classical stopping and scattering dominate electron transport and energy deposition when the electrons reach the dense plasmas in the cores of compressed targets, while 'anomalous' stopping associated with self-generated fields and micro-instabilities (suggested by previous simulations) might initially play an important role in the lower-density plasmas outside the dense core. For MeV electrons in precompressed deuterium-tritium fast-ignition targets, the initial penetration results in approximately uniform energy deposition but the latter stages of penetration involve mutual couplings of energy loss, straggling, and blooming that lead to enhanced, nonuniform energy deposition. This model can be used for quantitatively assessing ignition requirements for fast ignition.

  20. Inertial Confinement Fusion Target Component Fabrication and Technology Development Support. Annual report, January 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Steinman, D.

    1993-03-01

    On December 31, 1990, the US Department of Energy entered into a contract with General Atomics (GA) to be the Inertial Confinement Fusion (ICF) Target Component Fabrication and Technology Development Support contractor. This report documents the technical activities of the period January 1, 1991 through September 30, 1992. During this period, GA was assigned 15 tasks in support of the Inertial Confinement Fusion program and its laboratories. These tasks included Facilities Activation, Staff Development, and Capabilities Validation to establish facilities and equipment, and demonstrate capability to perform ICF target fabrication research, development and production activities. The capabilities developed and demonstrated are those needed for fabrication and precise characterization of polymer shells and polymer coatings. We made progress toward production capability for glass shells, barrier layer coatings, and gas idling of shells. We fabricated over 1000 beam diagnostic foil targets for Sandia National Laboratory Albuquerque and provided full-time on-site engineering support for target fabrication and characterization. We initiated development of methods to fabricate polymer shells by a controlled mass microencapsulation technique, and performed chemical syntheses of several chlorine- and silicon-doped polymer materials for the University of Rochester`s Laboratory for Laser Energetics (UR/LLE). We performed the conceptual design of a cryogenic target handling system for UR/LLE that will fill, transport, layer, and characterize targets filled with cryogenic deuterium or deuterium-tritium fuel, and insert these cryogenic targets into the OMEGA-Upgrade target chamber for laser implosion experiments. This report summarizes and documents the technical progress made on these tasks.

  1. THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION

    E-Print Network [OSTI]

    Herrmannsfeldt, W.b.

    2010-01-01

    29 The Fission-fusion Hybrid - iii - General DiscussionInteraction in Heavy Ion Fusion BIBLIOGRAPHY HEAVY IONReactor Designs . . . 27 Pure Fusion Power Reactor Tritium

  2. Dynamic response of materials on sub-nanosecond time scales, and beryllium properties for inertial confinement fusion

    SciTech Connect (OSTI)

    Swift, D C; Tierney, T E; Luo, S N; Paisley, D L; Kyrala, G A; Hauer, A; Greenfield, S R; Koskelo, A C; McClellan, K J; Lorenzana, H E; Knudson, M D; Peralta, P P; Loomis, E

    2004-12-09

    During the past few years, substantial progress has been made in developing experimental techniques capable of investigating the response of materials to dynamic loading on nanosecond time scales and shorter, with multiple diagnostics probing different aspects of the behavior. these relatively short time scales are scientifically interesting because plastic flow and phase changes in common materials with simple crystal structures--such as iron--may be suppressed, allowing unusual states to be induced and the dynamics of plasticity and polymorphism to be explored. Loading by laser ablation can be particularly convenient. The TRIDENT laser has been used to impart shocks and isentropic compression waves from {approx}1 to 200GPa in a range of elements and alloys, with diagnostics including surface velocimetry (line-imaging VISAR), surface displacement (framed area imaging), x-ray diffraction (single crystal and polycrystal), ellipsometry, and Raman spectroscopy. A major motivation has been the study of the properties of beryllium under conditions relevant to the fuel capsule in inertial confinement fusion: magnetically-driven shock and isentropic compression shots at Z were used to investigate the equation of state and shock melting characteristics, complemented by laser ablation experiments to investigate plasticity and heterogeneous response. These results will help to constrain acceptable tolerances on manufacturing, and possible loading paths, for inertial fusion ignition experiments at the National Ignition Facility. Laser-based techniques are being developed further for future material dynamics experiments, where it should be possible to obtain high quality data on strength and phase changes up to at least 1TPa.

  3. Improving particle confinement in inertial electrostatic fusion for spacecraft power and propulsion

    E-Print Network [OSTI]

    Dietrich, Carl, 1977-

    2007-01-01

    Fusion energy is attractive for use in future spacecraft because of improved fuel energy density and reduced radioactivity compared with fission power. Unfortunately, the most promising means of generating fusion power on ...

  4. Block Ignition Inertial Confinement Fusion (ICF) with Condensed Matter Cluster Type Targets for p-B11 Powered Space Propulsion

    SciTech Connect (OSTI)

    Miley, George H. [University of Illinois Urbana-Champaign, NPL Associates 216 Talbot Laboratory 104 S. Wright St. Urbana, IL 61801 (United States); Hora, H. [Department of Theoretical Physics, University of New South Wales Sydney (Australia); Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Sheng Zhengming [Beijing National Laboratory for CondensedMatter Physics Institute of Physics Chinese Academy of ScienceBeijing 100080 (China); Zhang Jie [School of Computer Sciences, University of Western Sydney, Penrith (Australia); Osman, F. [China Academy of Engineering Physics, Mianyang (China); Zhang Weiyan [Institute of Applied Physics and Computational Mathematics, Beijing (China); Tuhe Xia [Institute of Physics, Academy of Science, Prague (Czech Republic)

    2009-03-16

    The use of laser-driven Inertial Confinement Fusion (ICF) for space propulsion has been the subject of several earlier conceptual design studies, (see: Orth, 1998; and other references therein). However, these studies were based on older ICF technology using either 'direct' or 'in-direct x-ray driven' type target irradiation. Important new directions have opened for laser ICF in recent years following the development of 'chirped' lasers capable of ultra short pulses with powers of TW up to few PW which leads to the concept of 'fast ignition (FI)' to achieve higher energy gains from target implosions. In a recent publication the authors showed that use of a modified type of FI, termed 'block ignition' (Miley et al., 2008), could meet many of the requirements anticipated (but not then available) by the designs of the Vehicle for Interplanetary Space Transport Applications (VISTA) ICF fusion propulsion ship (Orth, 2008) for deep space missions. Subsequently the first author devised and presented concepts for imbedding high density condensed matter 'clusters' of deuterium into the target to obtain ultra high local fusion reaction rates (Miley, 2008). Such rates are possible due to the high density of the clusters (over an order of magnitude above cryogenic deuterium). Once compressed by the implosion, the yet higher density gives an ultra high reaction rate over the cluster volume since the fusion rate is proportional to the square of the fuel density. Most recently, a new discovery discussed here indicates that the target matrix could be composed of B{sup 11} with proton clusters imbedded. This then makes p-B{sup 11} fusion practical, assuming all of the physics issues such as stability of the clusters during compression are resolved. Indeed, p-B{sup 11} power is ideal for fusion propulsion since it has a minimum of unwanted side products while giving most of the reaction energy to energetic alpha particles which can be directed into an exhaust (propulsion) nozzle. Power plants using p-B{sup 11} have been discussed for such applications before, but prior designs face formidable physics/technology issues, largely overcome with the present approach.

  5. LBNL perspective on inertial fusion energy

    E-Print Network [OSTI]

    Bangerter, Roger O.

    1995-01-01

    LBNL Perspective on Inertial Fusion Energy Roger Bangerter1990) and the last Fusion Energy Advisory Committee (1993)year 2005, the Inertial Fusion Energy Program must grow to

  6. The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Peterson, J. L., E-mail: peterson76@llnl.gov; Michel, P.; Thomas, C. A.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-07-15

    Achieving symmetric hohlraum radiation drive is an important aspect of indirectly driven inertial confinement fusion experiments. However, when experimentally delivered laser powers deviate from ideal conditions, the resultant radiation field can become asymmetric. Two situations in which this may arise are random uncorrelated fluctuations, in as-delivered laser power and laser beams that do not participate in the implosion (either intentionally or unintentionally). Furthermore, laser plasma interactions in the hohlraum obfuscate the connection between laser powers and radiation drive. To study the effect of these situations on drive symmetry, we develop a simplified model for crossed-beam energy transfer, laser backscatter, and plasma absorption that can be used in conjunction with view factor calculations to expediently translate laser powers into three-dimensional capsule flux symmetries. We find that crossed-beam energy transfer can alter both the statistical properties of uncorrelated laser fluctuations and the impact of missing laser beams on radiation symmetry. A method is proposed to mitigate the effects of missing laser beams.

  7. Effects of Nonuniform Illumination on Implosion Asymmetry in Direct-Drive Inertial Confinement Fusion

    E-Print Network [OSTI]

    Fusion C. K. Li, F. H. Se´guin, J. A. Frenje, and R. D. Petrasso* Plasma Science and Fusion Center York 14623, USA (Received 29 April 2003; published 19 May 2004) Target areal density (R) asymmetries is the capsule radius); thereafter they grow linearly [6]. Low-mode-number asymmetries (` 10) result primar- ily

  8. Summary talk to 21st IAEA FEC, Chendu, 2006 Inertial fusion advance

    E-Print Network [OSTI]

    scheme V. heavy ion fusion scheme VI. Other miscellanies VII. Brief remarks #12;Inertial confinement fusion (ICF) parallel to magnetic confinement fusion (MCF) is an alternative approach to gain inertialSummary talk to 21st IAEA FEC, Chendu, 2006 Inertial fusion advance towards ignition and gain X. T

  9. A Review of the U.S. Department of Energy's Inertial Fusion Energy Program

    E-Print Network [OSTI]

    Tillack, Mark

    FESAC's response to that charge. KEY WORDS: Fusion energy; inertial confinement fusion. EXECUTIVE the energy released as an attractive energy source for mankind. The inertial confinement approach to fusionA Review of the U.S. Department of Energy's Inertial Fusion Energy Program Rulon Linford,1

  10. Measurements of R asymmetries at burn time in inertial-confinement-fusion capsules

    E-Print Network [OSTI]

    . K. Li, J. A. Frenje, S. Kurebayashi, and R. D. Petrassoa) Plasma Science and Fusion Center Laboratory for Laser Energetics, University of Rochester, Rochester, New York 146211 Received 5 March 2002 include exponentially-growing Rayleigh­Taylor RT instabilities and linearly growing secular modes, either

  11. Comment on 'Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions'

    E-Print Network [OSTI]

    Hua Zheng; Aldo Bonasera

    2013-03-19

    Recent implosion experiments performed at the OMEGA laser facility reported by Casey et al.[1], displayed an anomalously low dd proton yield and a high tt neutron yield as compared to dt fusion reactions, explained as a stratification of the fuel in the implosion core. We suggest that in the com- pression stage the fuel is out of equilibrium. Ions are inward accelerated to a velocity v0 independent on the particle type. Yield ratios are simply given by the ratios of fusion cross-sections obtained at the same velocity. A 'Hubble' type model gives also a reasonable description of the data. These considerations might be relevant for implosion experiments at the National Ignition Facility as well.

  12. Comment on 'Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions'

    E-Print Network [OSTI]

    Zheng, Hua

    2013-01-01

    Recent implosion experiments performed at the OMEGA laser facility reported by Casey et al.[1], displayed an anomalously low dd proton yield and a high tt neutron yield as compared to dt fusion reactions, explained as a stratification of the fuel in the implosion core. We suggest that in the com- pression stage the fuel is out of equilibrium. Ions are inward accelerated to a velocity v0 independent on the particle type. Yield ratios are simply given by the ratios of fusion cross-sections obtained at the same velocity. A 'Hubble' type model gives also a reasonable description of the data. These considerations might be relevant for implosion experiments at the National Ignition Facility as well.

  13. Inertial confinement fusion quarterly report, October--December 1992. Volume 3, No. 1

    SciTech Connect (OSTI)

    Dixit, S.N. [ed.

    1992-12-31

    This report contains papers on the following topics: The Beamlet Front End: Prototype of a new pulse generation system;imaging biological objects with x-ray lasers; coherent XUV generation via high-order harmonic generation in rare gases; theory of high-order harmonic generation; two-dimensional computer simulations of ultra- intense, short-pulse laser-plasma interactions; neutron detectors for measuring the fusion burn history of ICF targets; the recirculator; and lasnex evolves to exploit computer industry advances.

  14. Inertial confinement fusion target component fabrication and technology development support: Annual report, October 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    Gibson, J. [ed.

    1998-12-01

    During this period, General Atomics (GA) and their partner Schafer Corporation were assigned 17 formal tasks in support of the Inertial Confinement Fusion (ICF) program and its five laboratories. A portion of the effort on these tasks included providing direct ``On-site Support`` at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). They fabricated and delivered over 1,200 hohlraum mandrels and numerous other micromachined components to LLNL, LANL, and SNLA. They produced more than 1,300 glass and plastic target capsules for LLNL, LANL, SNLA, and the University of Rochester/Laboratory for Laser Energetics (UR/LLE). They also delivered nearly 2,000 various target foils and films for Naval Research Lab (NRL) and UR/LLE in FY98. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. During FY98, great progress was made by the GA/Schafer-UR/LLE-LANL team in the design, procurement, installation, and testing of the OMEGA Cryogenic Target System (OCTS) that will field cryogenic targets on OMEGA. The design phase was concluded for all components of the OCTS and all major components were procured and nearly all were fabricated. Many of the components were assembled and tested, and some have been shipped to UR/LLE. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. They are part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. They also contributed cryogenic support and developed concepts for NIF cryogenic targets. This report summarizes and documents the technical progress made on these tasks.

  15. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2013-06-15

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  16. Process for manufacture of inertial confinement fusion targets and resulting product

    DOE Patents [OSTI]

    Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

    1982-01-01

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  17. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    fusion plasma confinement are known: gravita- tional, magnetic andConfinement Fusion IFE Inertial Fusion Energy IPCC Intergovernmental Panel on Climate Change MCNP Monte Carlo N-Particle Transport Code MFE Magnetic

  18. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 1, Executive summary and overview, Final report

    SciTech Connect (OSTI)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    Conceptual designs and assessments have been completed for two inertial fusion energy (IFE) electric power plants. The detailed designs and results of the assessment studies are presented in this report. Osiris is a heavy-ion-beam (HIB) driven power plant and SOMBRERO is a Krypton-Fluoride (KrF) laser-driven power plant. Both plants are sized for a net electric power of 1000 MWe.

  19. Magnetic Confinement Fusion Science Status and Challenges

    E-Print Network [OSTI]

    Magnetic Confinement Fusion Science Status and Challenges S. Prager University of Wisconsin February, 2005 #12;Two approaches to fusion Inertial confinement extremely dense, short-lived Magnetic by centrifugal force of particles moving along curved magnetic field plasma magnetic field Centrifugal force #12

  20. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    SciTech Connect (OSTI)

    Armijo, Julien

    2006-10-01

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

  1. Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion S. P. Regan, J. A. Delettrez, V. N. Goncharov, F. J. Marshall, J. M. Soures, V. A. Smalyuk, P. B. Radha, B. Yaakobi,

    E-Print Network [OSTI]

    Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion S. P. Regan, J 87545, USA J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Se´guin Plasma Science and Fusion Center May 2004) The mixing of cold, high-density shell plasma with the low-density, hot spot plasma

  2. Ion microtomography (IMT) and particle-induced x-ray emission (PIXE) analysis direct drive of inertial confinement fusion (ICF) targets

    SciTech Connect (OSTI)

    Antolak, A.J.; Pontau, A.E.; Morse, D.H. (Sandia National Labs., Livermore, CA (United States)); Weirup, D.L.; Heikkinen, D.W.; Hornady, R.S. (Lawrence Livermore National Lab., CA (United States)); Cholewa, M.; Bench, G.S.; Legge, G.J.F. (Melbourne Univ. (Australia). Micro Analytical Research Centre)

    1991-11-20

    The complementary techniques of ion microtomography (IMT) and particle-induced x-ray emission (PIXE) are used to provide micro-characterization of inertial confinement fusion (ICF) targets for density uniformity, sphericity, and trace element spatial distributions. ICF target quality control in the laser fusion program is important to ensure that the energy deposition from the lasers results in uniform compression and minimization of Taylor-Rayleigh instabilities. We obtain 1% density determinations using IMT with spatial resolution approaching two microns. Utilizing PIXE, we can map out dopant and impurity distributions with elemental detection sensitivities on the order of a few ppm. We present examples of IMT and PIXE analyses performed on several ICF targets.

  3. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01

    ion drivers for inertial confinement fusion, was achieved.ion driver beams for inertial confinement fusion, they weredriver beams for inertial confinement fusion were successful

  4. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01

    along the road to useful energy is "scientific-breakeven"then the promise of useful energy from inertial fusionstill farther from useful net energy production). Scientific

  5. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  6. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    SciTech Connect (OSTI)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

  7. ORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program

    E-Print Network [OSTI]

    and technological achievements of the inertial confinement fusion program over the past several decades are immenseORIGINAL PAPER The Rationale for an Expanded Inertial Fusion Energy Program Stephen O. Dean for an expanded effort on the development of inertial fusion as an energy source is dis- cussed. It is argued

  8. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ?R are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect (OSTI)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  9. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect (OSTI)

    Nelson, A. J.; Cooper, G. W. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  10. Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    E-Print Network [OSTI]

    Prost, Lionel Robert

    2007-01-01

    Drive Approach to Inertial Confinement Fusion and the Targetthat determine inertial confinement fusion target gain and18] D. Keefe, Inertial confinement fusion, Annual Review of

  11. Status of target physics for inertial confinement fusion: Report on the review at DOE Headquarters, Germantown, MD on November 14--17, 1988

    SciTech Connect (OSTI)

    Not Available

    1990-03-09

    A four day review to assess the status of target physics of inertial confinement fusion was held at US Department of Energy (DOE) Headquarters on November 14--17, 1988. This review completes the current series of reviews of the inertial fusion program elements to assess the status of the data base for a decision to proceed with the proposed Laboratory Microfusion Facility (LMF) that is being planned. In addition to target physics, the program elements that have been reviewed previously include the driver technology development for KrF and solid-state lasers, and the light-on beam pulsed power system. This series of reviews was undertaken for internal DOE assessment in anticipation of the ICF program review mandated by the Congress in 1988 to be completed in 1990 to assess the significance and implications of the progress that has been realized in the laboratory and the underground Halite/Centurion experiments. For this target physics review, both the direct and the indirect drive approaches were considered. The principal issues addressed in this review were: Is the present target physics data base adequate for a decision to proceed with design and construction of LMF now as opposed to continue planning activities at this time What specific additional target physics data are desirable to reduce the risk for a DOE decision to construct an LMF What is the role for continuation of Halite/Centurion experiments What priority should be given to the direct drive approach Are the program elements optimally structured to resolve the critical issues for an LMF decision Specific findings relating to these five issues are summarized in the following.

  12. A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion

    SciTech Connect (OSTI)

    Labate, L.; Koester, P.; Levato, T.; Gizzi, L. A. [Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche, Pisa (Italy)

    2012-10-15

    A novel x-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any x-ray photon energy range, over a large domain, on a single-shot basis. The device (named energy-encoded pinhole camera) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available x-ray spectral domain is only limited by the quantum efficiency of scientific-grade x-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any x-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent inertial confinement fusion related experiments will be reported in order to detail the new diagnostic.

  13. Magneto-Inertial Fusion (Magnetized Target Fusion)( g g )

    E-Print Network [OSTI]

    LA-UR-11-01898 #12;Magneto-inertial fusion: A hybrid approach to fusion....ICF with a twistMagneto-Inertial Fusion (Magnetized Target Fusion)( g g ) or "why should we bother with another ICF boost performance (LLE, Omega) ·Magnetized Target Fusion (MTF) demonstration, FRCHX at AFRL

  14. Measurements of the Differential Cross Sections for the Elastic n-{sup 3}H and n-{sup 2}H Scattering at 14.1 MeV by Using an Inertial Confinement Fusion Facility

    SciTech Connect (OSTI)

    Frenje, J. A.; Li, C. K.; Seguin, F. H.; Casey, D. T.; Petrasso, R. D.; McNabb, D. P.; Navratil, P.; Quaglioni, S.; Sangster, T. C.; Glebov, V. Yu; Meyerhofer, D. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2011-09-16

    For the first time the differential cross section for the elastic neutron-triton (n-{sup 3}H) and neutron-deuteron (n-{sup 2}H) scattering at 14.1 MeV has been measured by using an inertial confinement fusion facility. In these experiments, which were carried out by simultaneously measuring elastically scattered {sup 3}H and {sup 2}H ions from a deuterium-tritium gas-filled inertial confinement fusion capsule implosion, the differential cross section for the elastic n-{sup 3}H scattering was obtained with significantly higher accuracy than achieved in previous accelerator experiments. The results compare well with calculations that combine the resonating-group method with an ab initio no-core shell model, which demonstrate that recent advances in ab initio theory can provide an accurate description of light-ion reactions.

  15. An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility

    SciTech Connect (OSTI)

    Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

    2014-07-15

    A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure Rayleigh–Taylor and Richtmyer–Meshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a “low-foot” drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

  16. Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping

    SciTech Connect (OSTI)

    Myatt, J. F.; Short, R. W.; Maximov, A. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Vu, H. X. [Electrical and Computer Engineering Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407 (United States)] [Electrical and Computer Engineering Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0407 (United States); DuBois, D. F.; Russell, D. A. [Lodestar Research Corporation, 2400 Central Avenue, P-5, Boulder, Colorado 80301 (United States)] [Lodestar Research Corporation, 2400 Central Avenue, P-5, Boulder, Colorado 80301 (United States); Zhang, J. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2013-05-15

    The extended Zakharov model of the two-plasmon decay instability in an inhomogeneous plasma [D. F. DuBois et al., Phys. Rev. Lett. 74, 3983 (1995); D. A. Russell and D. F. DuBois, Phys. Rev. Lett. 86, 428 (2001)] is further generalized to include the evolution of the electron distribution function in the quasi-linear approximation [cf., e.g., K. Y. Sanbonmatsu et al. Phys. Plasmas 7, 2824 (2000); D. A. Russell et al., paper presented at the Workshop on SRS/SBS Saturation, Wente Vineyards, Livermore, CA, 2–5 April 2002]. This makes it possible to investigate anomalous absorption of laser light and hot electron production due to the two-plasmon decay instability of multiple overlapping electromagnetic waves. Scalings of hot-electron production in the (stationary) nonlinearly saturated regime relevant to recent experiments [B. Yaakobi et al., Phys. Plasmas 19, 012704 (2012); D. H. Froula et al., Phys. Rev. Lett. 108, 165003 (2012)] have been obtained. They indicate a sensitivity to ion-acoustic wave (IAW) damping and to the collisional absorption of Langmuir waves. Such a sensitivity might be exploited in inertial confinement fusion target design by the use of mid-Z ablators.

  17. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    E-Print Network [OSTI]

    Powers, Jeffrey

    2011-01-01

    for the Laser Inertial Confinement Fusion-Fission Energy (laser-driven inertial confinement fusion (ICF) to produce

  18. Laser Inertial Fusion Energy Control Systems

    SciTech Connect (OSTI)

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  19. On_the_implementation_of_the_conditions_of_Inertial_Confinement_ Fusion by bombarding the target a macro particle

    E-Print Network [OSTI]

    Dolya, S N

    2013-01-01

    The acceleration of lithium tube segments with the length one centimeter, diameter sixteen microns wall thickness one nanometer is considered. These segments are electrically charged by proton beams produced by an electron beam source. Then, they are accelerated by the traveling wave field in a spiral waveguide. The segments are next sent to a target where they are compressed by three hundred times in the longitudinal direction and compressing target radially, so the conditions for thermonuclear fusion are realized.

  20. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    SciTech Connect (OSTI)

    Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  1. Fast Pb-glass neutron-to-light converter for ICF (inertial confinement fusion) target burn history measurements

    SciTech Connect (OSTI)

    Lerche, R.A.; Cable, M.D.; Phillion, D.W.

    1990-09-01

    We are developing a streak camera based instrument to diagnose the fusion reaction rate (burn history) within laser-driven ICF targets filled with D-T fuel. Recently, we attempted measurements using the 16.7-MeV gamma ray emitted in the T(d,{gamma}){sup 5}He fusion reaction. Pb glass which has a large cross section for pair production acts as a gamma-ray-to-light converter. Gamma rays interact within the glass to form electron-positron pairs that produce large amounts (1000 photons/gamma ray) of prompt (<10 ps) Cerenkov light as they slow down. In our experimental instrument, an f/10 Cassegrain telescope optically couples light produced within the converter to a streak camera having 20-ps resolution. Experiments using high-yield (10{sup 13} D-T neutrons), direct-drive targets at Nova produced good signals with widths of 200 ps. Time-of-flight measurements show the signals to be induced by neutrons rather than gamma rays. The Pb glass appears to act as a fast neutron-to-light converter. We continue to study the interactions process and the possibility of using the 16.7-MeV gamma rays for burn time measurements.

  2. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect (OSTI)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Il’in, D. V.; Sherman, V. E. [St. Petersburg State Technical University (Russian Federation)

    2014-11-15

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  3. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    Thermonuclear Experimental Reactor), now being constructed in Caderache, France [5]. In contrast, inertial fusion

  4. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    confinement fusion (ICF) to the more-familiar magnetic-fusion have opposite strategies for meeting this criterion. Magnetic confinement

  5. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  6. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    HIFAN 1830 INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMSAC02-05CH11231. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION467 (1992). [38] R. W. Moir, Fusion Tech. 25, 5 (1994) [39

  7. Progress in heavy ion drivers inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01

    ION DRIVEN INERTIAL FUSION ENERGY: FROM SCALED EXPERIMENTSThe promise of inertial fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focus

  8. Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants

    E-Print Network [OSTI]

    Debonnel, Christophe Sylvain

    2006-01-01

    Fusion Energy . . . . . . . . . . . . . . . . . . . . . . . . .Fusion Energy . . . . . . . . . . . . . . . . . . . . .of Energy’s inertial fusion energy program. Journal of

  9. Road to Inertial Fusion Energy Fusion Power Associates Meeting

    E-Print Network [OSTI]

    . Crack is clear through 5 mm thick deck plate #12;Coal-fired and KrF laser fusion power power plants have-electron-beams-nrl-to-clean-up- nox-emissions-from-coal-power-plant NRL has a Cooperative Research and Development AgreementRoad to Inertial Fusion Energy Fusion Power Associates Meeting Washington DC 16 December 2014

  10. First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    E-Print Network [OSTI]

    Amendt, P.

    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with [superscript 3]He gas. These ...

  11. Measurements of the T(t,2n)4He Neutron Spectrum at Low Reactant Energies from Inertial Confinement Implosions

    E-Print Network [OSTI]

    Casey, Daniel Thomas

    Measurements of the neutron spectrum from the T(t,2n)[superscript 4]He (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium ...

  12. Studies of fast electron transport in the problems of inertial fusion energy

    E-Print Network [OSTI]

    Frolov, Boris K.

    2006-01-01

    Problems of Inertial Fusion Energy by Boris K. Frolov DoctorProblems of Inertial Fusion Energy A dissertation submitted

  13. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect (OSTI)

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C.; Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B.; Casey, D. T.; Landen, O. L.; Moran, M. J.; Zacharias, R. A.; Kilkenny, J. D.; Nikroo, A.

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF

  14. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect (OSTI)

    Rosenberg, M. J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Zylstra, A. B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Rinderknecht, H. G. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Waugh, C. J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Sio, H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Sinenian, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. Yu. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Hohenberger, M. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Stoeckl, C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Sangster, T. C. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics; Yeamans, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mackinnon, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Talison, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moran, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zacharias, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kilkenny, J. D. [General Atomics, San Diego, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF

  15. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Seguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; et al

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore »filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±« less

  16. Copyright National Academy of Sciences. All rights reserved. Interim Report-Status of the Study "An Assessment of the Prospects for Inertial Fusion Energy"

    E-Print Network [OSTI]

    Copyright © National Academy of Sciences. All rights reserved. Interim Report-Status of the Study "An Assessment of the Prospects for Inertial Fusion Energy" Interim Report--Status of the Study "An Assessment of the Prospects for Inertial Fusion Energy" Committee on the Prospects for Inertial Confinement

  17. Progress in heavy ion driven inertial fusion energy: From scaled experiments to the integrated research experiment

    E-Print Network [OSTI]

    2001-01-01

    The promise of inertia! fusion energy driven by heavy ionleading to an inertial fusion energy power plant. The focusIRE. 1 INTRODUCTION Inertial fusion energy targets require

  18. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    E-Print Network [OSTI]

    Sharp, W. M.

    2011-01-01

    of Science, Office of Fusion Energy Sciences, of the U.S.of Science, Office of Fusion Energy Sciences, of the U.S.option for inertial-fusion energy production. This paper

  19. Effects of non-local electron transport in one-dimensional and two-dimensional simulations of shock-ignited inertial confinement fusion targets

    SciTech Connect (OSTI)

    Marocchino, A.; Atzeni, S.; Schiavi, A. [Dipartimento SBAI, Universitŕ di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)] [Dipartimento SBAI, Universitŕ di Roma “La Sapienza” and CNISM, Roma 00161 (Italy)

    2014-01-15

    In some regions of a laser driven inertial fusion target, the electron mean-free path can become comparable to or even longer than the electron temperature gradient scale-length. This can be particularly important in shock-ignited (SI) targets, where the laser-spike heated corona reaches temperatures of several keV. In this case, thermal conduction cannot be described by a simple local conductivity model and a Fick's law. Fluid codes usually employ flux-limited conduction models, which preserve causality, but lose important features of the thermal flow. A more accurate thermal flow modeling requires convolution-like non-local operators. In order to improve the simulation of SI targets, the non-local electron transport operator proposed by Schurtz-Nicolaď-Busquet [G. P. Schurtz et al., Phys. Plasmas 7, 4238 (2000)] has been implemented in the DUED fluid code. Both one-dimensional (1D) and two-dimensional (2D) simulations of SI targets have been performed. 1D simulations of the ablation phase highlight that while the shock profile and timing might be mocked up with a flux-limiter; the electron temperature profiles exhibit a relatively different behavior with no major effects on the final gain. The spike, instead, can only roughly be reproduced with a fixed flux-limiter value. 1D target gain is however unaffected, provided some minor tuning of laser pulses. 2D simulations show that the use of a non-local thermal conduction model does not affect the robustness to mispositioning of targets driven by quasi-uniform laser irradiation. 2D simulations performed with only two final polar intense spikes yield encouraging results and support further studies.

  20. Prospects for inertial fusion as an energy source

    SciTech Connect (OSTI)

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  1. Magneto-inertial Fusion: An Emerging Concept for Inertial Fusion and Dense Plasmas in Ultrahigh Magnetic Fields

    SciTech Connect (OSTI)

    Thio, Francis Y.C.

    2008-01-01

    An overview of the U.S. program in magneto-inertial fusion (MIF) is given in terms of its technical rationale, scientific goals, vision, research plans, needs, and the research facilities currently available in support of the program. Magneto-inertial fusion is an emerging concept for inertial fusion and a pathway to the study of dense plasmas in ultrahigh magnetic fields (magnetic fields in excess of 500 T). The presence of magnetic field in an inertial fusion target suppresses cross-field thermal transport and potentially could enable more attractive inertial fusion energy systems. A vigorous program in magnetized high energy density laboratory plasmas (HED-LP) addressing the scientific basis of magneto-inertial fusion has been initiated by the Office of Fusion Energy Sciences of the U.S. Department of Energy involving a number of universities, government laboratories and private institutions.

  2. Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, Vol. 18, No. 4, 1999 Report of the FEAC Inertial Fusion Energy Review. S. Department of Energy Fusion Energy Advisory Committee (FEAC) review of its Inertial Fusion Energy of California at San Diego. KEY WORDS: Fusion; fusion science; fusion energy; inertial fusion energy. I. SUMMARY

  3. Inertial Fusion Program. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  4. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    SciTech Connect (OSTI)

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  5. Target Physics Scaling for Z-Pinch Inertial Fusion Energy

    SciTech Connect (OSTI)

    Olson, R. E. [Sandia National Laboratories (United States)

    2005-05-15

    The Z-pinch fusion energy power plant concept is based upon an X-ray driven inertial confinement fusion (ICF) capsule having a hypothetical yield of 3 GJ with an overall target gain in the range of 50-100. In the present paper, a combination of analytic arguments, results of radiation-hydrodynamic computational simulations, and empirical scalings from Z-pinch hohlraum experiments are used to demonstrate that the absorption of approximately 6 MJ of X-ray energy by the capsule and 26 MJ by the hohlraum walls of an ICF target ({approx} 32 MJ total X-ray input) will be adequate to provide a 3 GJ yield. As a result, it appears that the Ref. 1 assumption of a 3 GJ thermonuclear yield with an overall target gain approaching 100 is conceptually feasible.

  6. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    E-Print Network [OSTI]

    Barnard, J.J.

    2008-01-01

    PHYSICS AND INERTIAL FUSION ENERGY J. J. Barnard 1 , J.dense matter and inertial fusion energy related beam-targetas drivers for inertial fusion energy (IFE), for their high

  7. Measurements of the Differential Cross Sections for the Elastic n-[superscript 3]H and n--[superscript 2]H Scattering at 14.1 MeV by Using an Inertial Confinement Fusion Facility

    E-Print Network [OSTI]

    McNabb, D. P.

    For the first time the differential cross section for the elastic neutron-triton (n-[superscript 3]H) and neutron-deuteron (n-[superscript 2]H) scattering at 14.1 MeV has been measured by using an inertial confinement ...

  8. Direct-Drive Inerital Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition

    SciTech Connect (OSTI)

    McCrory, R.L.; Regan, S.P.; Loucks, S.J.; Meyerhofer, D.D.; Skupsky, S.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Edgell, D.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Igumenshchev, I.V.; Keck, R.L.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Marciante, J.; Marozas, J.A.; Marshall, F.J.; Maximov, A.V.; McKenty, P.W.; Myatt, J.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J.D.

    2005-10-07

    Significant theoretical and experimental progress continues to be made at the University of Rocheter's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion enery power plant.

  9. Magneto-inertial fusion with laser compression of a magnetized spherical target

    SciTech Connect (OSTI)

    Kostyukov, I. Yu., E-mail: kost@appl.sci-nnov.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation); Ryzhkov, S. V., E-mail: ryzhkov@power.bmstu.ru [Bauman Moscow State Technical University (Russian Federation)

    2011-12-15

    The paper is devoted to the principles of magneto-inertial fusion and laser-plasma methods of generation of a Megagauss field during spherical implosion of a magnetized target. A model based on a magnetic confinement system, namely, a cusp configuration with inertial compression of the target by a laser driver, is developed. The dynamics of plasma in a cusp compressed under the effect of laser beams is precalculated. Analytical and numerical estimates of the particle number and magnetic field intensity during magneto-inertial plasma compression are obtained. The problems of irradiation of a spherically closed volume by a high-energy laser pulse are discussed.

  10. Magnetic Confinement Fusion at the Crossroads

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Matterhorn initiated at Princeton 1950s Classified US Project Sherwood on controlled thermonuclear fusionMagnetic Confinement Fusion at the Crossroads Michael Bell Princeton Plasma Physics Laboratory #12;MGB / UT / 070307 2 The Beginnings of Fusion Energy Research 1928 Concept of fusion reactions

  11. Progress on Z-pinch inertial fusion energy.

    SciTech Connect (OSTI)

    Olson, Craig Lee

    2004-09-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  12. Progress in Z-pinch inertial fusion energy.

    SciTech Connect (OSTI)

    Weed, John Woodruff

    2010-03-01

    The goal of z-pinch inertial fusion energy (IFE) is to extend the single-shot z-pinch inertial confinement fusion (ICF) results on Z to a repetitive-shot z-pinch power plant concept for the economical production of electricity. Z produces up to 1.8 MJ of x-rays at powers as high as 230 TW. Recent target experiments on Z have demonstrated capsule implosion convergence ratios of 14-21 with a double-pinch driven target, and DD neutron yields up to 8x10exp10 with a dynamic hohlraum target. For z-pinch IFE, a power plant concept is discussed that uses high-yield IFE targets (3 GJ) with a low rep-rate per chamber (0.1 Hz). The concept includes a repetitive driver at 0.1 Hz, a Recyclable Transmission Line (RTL) to connect the driver to the target, high-yield targets, and a thick-liquid wall chamber. Recent funding by a U.S. Congressional initiative for $4M for FY04 is supporting research on RTLs, repetitive pulsed power drivers, shock mitigation, full RTL cycle planned experiments, high-yield IFE targets, and z-pinch power plant technologies. Recent results of research in all of these areas are discussed, and a Road Map for Z-Pinch IFE is presented.

  13. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and R are determined in thin-shell inertial-confinement-fusion

    E-Print Network [OSTI]

    . Landen,3 M. J. Moran,3 R. A. Zacharias,3 J. D. Kilkenny,4 and A. Nikroo4 1 Plasma Science and Fusion Energetics, University of Rochester, Rochester, New York 14623, USA 3 Lawrence Livermore National Laboratory and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National

  14. U.S. Heavy Ion Beam Science towards inertial fusion energy

    E-Print Network [OSTI]

    2002-01-01

    Science towards Inertial Fusion Energy B.G. Logan 1), D.Ion Fusion in the U.S. Fusion Energy Sciences Program [25].activities for inertial fusion energy at Lawrence Livermore

  15. Status of and prospects for the fast ignition inertial fusion concept

    SciTech Connect (OSTI)

    Key, M. H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2007-05-15

    Fast ignition is an alternate concept in inertial confinement fusion, which has the potential for easier ignition and greater energy multiplication. If realized, it could improve the prospects for inertial fusion energy. It poses stimulating challenges in science and technology, and the research is approaching a key stage in which the feasibility of fast ignition will be determined. This review covers the concepts, the state of the science and technology, the near-term prospects, and the challenges and risks involved in demonstrating high-gain fast ignition.

  16. A novel technique for single-shot energy-resolved 2D X-ray imaging of plasmas relevant for the Inertial Confinement Fusion

    E-Print Network [OSTI]

    L. Labate; P. Koester; T. Levato; L. A. Gizzi

    2012-11-02

    A novel X-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any X-ray photon energy range, over a large domain, on a single-shot basis. The device (named Energy-encoded Pinhole Camera - EPiC) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available X-ray spectral domain is only limited by the Quantum Efficiency of scientific-grade X-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any X-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent ICF related experiments will be reported in order to detail the new diagnostic.

  17. A novel technique for single-shot energy-resolved 2D X-ray imaging of plasmas relevant for the Inertial Confinement Fusion

    E-Print Network [OSTI]

    Labate, L; Levato, T; Gizzi, L A

    2012-01-01

    A novel X-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any X-ray photon energy range, over a large domain, on a single-shot basis. The device (named Energy-encoded Pinhole Camera - EPiC) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available X-ray spectral domain is only limited by the Quantum Efficiency of scientific-grade X-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any X-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent ICF related experiments will be reported in order to detail the new diagnostic.

  18. Inertial Fusion Program. Progress report, July 1-December 31, 1979

    SciTech Connect (OSTI)

    Skoberne, F. (comp.) [comp.

    1981-10-01

    Progress in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements in the Los Alamos National Laboratory eight-beam Helios system are described. These improvements increased the reliability of the laser and permitted the firing of 290 shots, most of which delivered energies of approximately 8 kJ to the target. Modifications to Gemini are outlined, including the installation of a new target-insertion mechanism. The redirection of the Antares program is discussed in detail, which will achieve a total energy of approximatey 40 kJ with two beams. This redirection will bring Antares on-line almost two years earlier than was possible with the full six-beam system, although at a lower energy. Experiments with isentropically imploded Sirius-B targets are discussed, and x-ray radiation-loss data from gold microballoons are presented, which show that these results are essentially identical with those obtained at glass-laser wavelengths. Significant progress in characterizing laser fusion targets is reported. New processes for fabricating glass miroballoon x-ray diagnostic targets, the application of high-quality metallic coatings, and the deposition of thick plastic coatings are described. Results in the development of x-ray diagnostics are reported, and research in the Los Alamos heavy-ion fusion program is summarized. Results of investigations of phase-conjugation research of gaseous saturable absorbers and of the use of alkali-halide crystals in a new class of saturable absorbers are summarized. New containment-vessel concepts for Inertial Confinement Fusion reactors are discussed, and results of a scoping study of four fusion-fission hybrid concepts are presented.

  19. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01

    A. Moses, “Inertial fusion energy target output and chamberA. J. Schmitt, et al. , “Fusion energy research with lasers,o?s for inertial fusion energy power plants,” presented at

  20. The National Ignition Facility - Applications for Inertial Fusion Energy and High Energy Density Science

    SciTech Connect (OSTI)

    Campbell, E.M.; Hogan, W.J.

    1999-08-12

    Over the past several decades, significant and steady progress has been made in the development of fusion energy and its associated technology and in the understanding of the physics of high-temperature plasmas. While the demonstration of net fusion energy (fusion energy production exceeding that required to heat and confine the plasma) remains a task for the next millennia and while challenges remain, this progress has significantly increased confidence that the ultimate goal of societally acceptable (e.g. cost, safety, environmental considerations including waste disposal) central power production can be achieved. This progress has been shared by the two principal approaches to controlled thermonuclear fusion--magnetic confinement (MFE) and inertial confinement (ICF). ICF, the focus of this article, is complementary and symbiotic to MFE. As shown, ICF invokes spherical implosion of the fuel to achieve high density, pressures, and temperatures, inertially confining the plasma for times sufficient long (t {approx} 10{sup -10} sec) that {approx} 30% of the fuel undergoes thermonuclear fusion.

  1. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    , and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability of the energy from a nuclear weapon is generated while in the high energy density (HED) state. High thermonuclear ignition to the national nuclear weapons program was one of the earliest motivations of the ICF

  2. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons under extreme conditions that approach the high energy density (HED) environments found in a nuclear in HED science and support broader national science goals. Virtually all of the energy from a nuclear

  3. Inertial Confinement Fusion | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Penguin Computing Clusters to Support Stockpile Stewardship at National Labs Academic Alliances ICF operates a set of world-class experimental facilities to create HEDP conditions...

  4. Princeton Plasma Physics Lab - Inertial confinement fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram GuidelinesThousand CubicCubicengineering Thisroadmappingiter

  5. Inertial confinement fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,ImpactScientific andIndividualEvent

  6. An Inertial-Fusion Z-Pinch Power Plant Concept

    SciTech Connect (OSTI)

    DERZON,MARK S.; ROCHAU,GARY E.; DEGROOT,J.; OLSON,CRAIG L.; PETERSON,P.; PETERSON,R.R.; SLUTZ,STEPHEN A.; ZAMORA,ANTONIO J.

    2000-12-15

    With the promising new results of fast z-pinch technology developed at Sandia National Laboratories, we are investigating using z-pinch driven high-yield Inertial Confinement Fusion (ICF) as a fusion power plant energy source. These investigations have led to a novel fusion system concept based on an attempt to separate many of the difficult fusion engineering issues and a strict reliance on existing technology, or a reasonable extrapolation of existing technology, wherever possible. In this paper, we describe the main components of such a system with a focus on the fusion chamber dynamics. The concept works with all of the electrically-coupled ICF proposed fusion designs. It is proposed that a z-pinch driven ICF power system can be feasibly operated at high yields (1 to 30 GJ) with a relatively low pulse rate (0.01-0.1 Hz). To deliver the required current from the rep-rated pulse power driver to the z-pinch diode, a Recyclable Transmission Line (RTL) and the integrated target hardware are fabricated, vacuum pumped, and aligned prior to loading for each power pulse. In this z-pinch driven system, no laser or ion beams propagate in the chamber such that the portion of the chamber outside the RTL does not need to be under vacuum. Additionally, by utilizing a graded-density solid lithium or fluorine/lithium/beryllium eutectic (FLiBe) blanket between the source and the first-wall the system can breed its own fuel absorb a large majority of the fusion energy released from each capsule and shield the first-wall from a damaging neutron flux. This neutron shielding significantly reduces the neutron energy fluence at the first-wall such that radiation damage should be minimal and will not limit the first-wall lifetime. Assuming a 4 m radius, 8 m tall cylindrical chamber design with an 80 cm thick spherical FLiBe blanket, our calculations suggest that a 20 cm thick 6061-T6 Al chamber wall will reach the equivalent uranium ore radioactivity level within 100 years after a 30 year plant operation. The implication of this low radioactivity is that a z-pinch driven power plant may not require deep geologic waste storage.

  7. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-aspects of magnetic fusion energy, September 1989. 1.1.3.2 [based on laser inertial fusion energy (LIFE). Fusion Science

  8. Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

    2010-11-30

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

  9. Compression and combustion of non-cryogenic targets with a solid thermonuclear fuel for inertial fusion

    SciTech Connect (OSTI)

    Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Sherman, V. E. [St. Petersburg State Polytechnic University (Russian Federation)

    2013-04-15

    Variants of a target with a solid thermonuclear fuel in the form of deuterium-tritium hydrides of light metals for an inertial fusion have been proposed. The laser-pulse-induced compression of non-cryogenic targets, as well as ignition and combustion of such targets, has been examined. The numerical calculations show that, despite a decrease in the caloric content of the fuel and an increase in the energy losses on intrinsic radiation in the target containing deuterium-tritium hydrides of light metals as compared to the target containing deuterium-tritium ice, the non-cryogenic target can ensure the fusion gain sufficient for its use in the energy cycle of a thermonuclear power plant based on the inertial plasma confinement method.

  10. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    1.1.3.2 Fusion Energy . . . . . . . . . 1.1.3.3 Fission-Laser Inertial Fusion-based Energy 2.1 Potentialaspects of magnetic fusion energy, September 1989. 1.1.3.2 [

  11. Review of Heavy-Ion Inertial Fusion Physics

    E-Print Network [OSTI]

    Kawata1, S; Ogoyski, A I

    2015-01-01

    In this review paper on heavy ion inertial fusion (HIF), the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB) transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non- uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several- MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a...

  12. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    E-Print Network [OSTI]

    1998-01-01

    Heavy Ion Driven Inertial Fusion Energy January 30, 1998 W.C. L . Olson, J. Fusion Energy 1, 309 (1982). "Filamentationof Energy Research [Office of Fusion Energy Science], U . S.

  13. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    E-Print Network [OSTI]

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-01-01

    A. Moses, “Inertial fusion energy target output and chamberA. J. Schmitt, et al. , “Fusion energy research with lasers,and focusing,” J. Fusion Energy 1, 309 (1982). [35] D. R.

  14. Self-pinched beam transport experiments Relevant to Heavy Ion Driven inertial fusion energy

    E-Print Network [OSTI]

    1998-01-01

    C. L . Olson, J. Fusion Energy 1, 309 (1982). "FilamentationHeavy Ion Driven Inertial Fusion Energy January 30, 1998 W.of Energy Research [Office of Fusion Energy Science], U . S.

  15. Laser-driven proton fast ignition of inertial fusion: concepts, issues and prospects

    SciTech Connect (OSTI)

    Badziak, J.; Jablonski, S.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Honrubia, J. [GIFI, Universidad Politecnica de Madrid, Madrid (Spain)

    2008-03-19

    Fast ignition (FI) is a novel approach to inertial confinement fusion, which has the potential for higher energy gain at lower overall driver energy and cost. This paper is a brief review of basic FI concepts and issues, with a particular emphasis on FI with laser-generated proton beams. General requirements for the DT fuel and the ignitor (particle beam) as well as for the laser drivers are discussed. Key issues related to proton FI are considered and selected results of experimental and numerical studies are described. A progress in development of laser facilities for FI research and prospects for FI experiments are outlined.

  16. Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01

    MATTER AND INERTIAL FUSION ENERGY APPLICATIONS ON NDCX-II Byof Science, Office of Fusion Energy Sciences, of the U.S.matter and inertial fusion energy applications on NDCX-II J.

  17. Effects of chamber pressure variation on the grid temperature in an inertial electrostatic confinement device

    SciTech Connect (OSTI)

    Murali, S. Krupakar [Lawrenceville Plasma Physics, 128 Lincoln Blvd., Middlesex, New Jersey 08846 (United States); Emmert, G. A.; Santarius, J. F.; Kulcinski, G. L. [Fusion Technology Institute, University of Wisconsin, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2010-10-15

    Inertial electrostatic confinement fusion devices are compact sources of neutrons, protons, electrons, and x rays. Such sources have many applications. Improving the efficiency of the device also increases the applications of this device. Hence a thorough understanding of the operation of this device is needed. In this paper, we study the effect of chamber pressure on the temperature of the cathode. Experimentally, the grid temperature decreases as the chamber pressure increases; numerical simulations suggest that this is caused by the reduction of the hot ion current to the cathode as the pressure increases for constant power supply current. Such an understanding further supports the conclusion that the asymmetric heating of the cathode can be decreased by homogenizing the ion flow around the cathode.

  18. IS C O N SIN FUSION TECHNOLOGY INSTITUTE

    E-Print Network [OSTI]

    inertial confinement fusion provided by a KrF laser. Symmetrically illuminated reactor systems have some. INTRODUCTION Inertial confinement fusion (ICF) using symmetrically illuminated direct drive targets has been Illuminated Inertial Confinement Fusion I.N. Sviatoslavsky, M.E. Sawan, G.A. Moses, G.L. Kulcinski, R

  19. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  20. Threshold bubble chamber for measurement of knock-on DT neutron tails from magnetic and inertial confinement experiments

    SciTech Connect (OSTI)

    Fisher, R.K. [General Atomics, San Diego, CA (United States); Zaveryaev, V.S. [Russian Research Centre, Moscow (Russian Federation). Kurchatov Institute; Trusillo, S.V. [Russian Federal Nuclear Centre, Arzamas (Russian Federation). Experimental Physics Institute

    1996-07-01

    We propose a new {open_quotes}threshold{close_quotes} bubble chamber detector for measurement of knock-on neutron tails. These energetic neutrons result from fusion reactions involving energetic fuel ions created by alpha knock-on collisions in tokamak and other magnetic confinement experiments, and by both alpha and neutron knock-on collisions in inertial confinement fusion (ICF) experiments. The energy spectrum of these neutrons will yield information on the alpha population and energy distribution in tokamaks, and on alpha target physics and {rho}R measurements in ICF experiments. The bubble chamber should only detect neutrons with energies above a selectable threshold energy controlled by the bubble chamber pressure. The bubble chamber threshold mechanism, detection efficiency, and proposed applications to the International Thermonuclear Experimental Reactor (ITER) and National Ignition Facility (NIF) experiments will be discussed.

  1. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  2. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Senior Research Scientist Richard Petrasso's group at the MIT center has been creating detection techniques for inertial confinement fusion (ICF) experiments for more than a...

  3. First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    SciTech Connect (OSTI)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Betti, R.; Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Landen, O.; Smalyuk, V. A.; Wilks, S.; Greenwood, A.; Nikroo, A.

    2014-04-01

    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50:50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

  4. First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Betti, R.; Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Landen, O.; Smalyuk, V. A.; Wilks, S.; Greenwood, A.; Nikroo, A.

    2014-04-01

    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with He 3 gas. These implosions were found to produce DHe 3 -proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50?50 DHe 3 gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

  5. First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; et al

    2014-04-01

    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50:50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

  6. Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Panel

    E-Print Network [OSTI]

    Abdou, Mohamed

    Journal of Fusion Energy, Vol. 15, Nos. 3/4, 1996 Report of the FESAC Inertial Fusion Energy Review Marshall Rosenbluth, H,~3 William Tang, 12 and Ernest Valeo 12 Dr. Robert W. Conn, Chair Fusion Energy on a specific recommendation made by your Committee in its report, "A Restructured Fusion Energy Sciences Pro

  7. Octahedral spherical hohlraum and its laser arrangement for inertial fusion

    SciTech Connect (OSTI)

    Lan, Ke; He, Xian-Tu; Liu, Jie [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zheng, Wudi; Lai, Dongxian [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-05-15

    A recent publication [K. Lan et al., Phys. Plasmas 21, 010704 (2014)] proposed a spherical hohlraum with six laser entrance holes of octahedral symmetry at a specific hohlraum-to-capsule radius ratio of 5.14 for inertial fusion study, which has robust high symmetry during the capsule implosion and superiority on low backscatter without supplementary technology. This paper extends the previous one by studying the laser arrangement and constraints of octahedral hohlraum in detail. As a result, it has serious beam crossing at ?{sub L}?45°, and ?{sub L}=50° to 60° is proposed as the optimum candidate range for the golden octahedral hohlraum, here ?{sub L} is the opening angle that the laser quad beam makes with the Laser Entrance Hole (LEH) normal direction. In addition, the design of the LEH azimuthal angle should avoid laser spot overlapping on hohlraum wall and laser beam transferring outside hohlraum from a neighbor LEH. The octahedral hohlraums are flexible and can be applicable to diverse inertial fusion drive approaches. This paper also applies the octahedral hohlraum to the recent proposed hybrid indirect-direct drive approach.

  8. Rep-Rated Target Injection for Inertial Fusion Energy

    SciTech Connect (OSTI)

    Frey, D.T.; Goodin, D.T.; Stemke, R.W.; Petzoldt, R.W.; Drake, T.J.; Egli, W.; Vermillion, B.A.; Klasen, R.; Cleary, M.M

    2005-05-15

    Inertial Fusion Energy (IFE) with laser drivers is a pulsed power generation system that relies on repetitive, high-speed injection of targets into a fusion reactor. To produce an economically viable IFE power plant the targets must be injected into the reactor at a rate between 5 and 10 Hz.To survive the injection process, direct drive (laser fusion) targets (spherical capsules) are placed into protective sabots. The sabots separate from the target and are stripped off before entering the reactor chamber. Indirect drive (heavy ion fusion) utilizes a hohlraum surrounding the spherical capsule and enters the chamber as one piece.In our target injection demonstration system, the sabots or hohlraums are injected into a vacuum system with a light gas gun using helium as a propellant. To achieve pulsed operation a rep-rated injection system has been developed. For a viable power plant we must be able to fire continuously at 6 Hz. This demonstration system is currently set up to allow bursts of up to 12 targets at 6 Hz. Using the current system, tests have been successfully run with direct drive targets to show sabot separation under vacuum and at barrel exit velocities of {approx}400 m/s.The existing revolver system along with operational data will be presented.

  9. IS C O N SIN FUSION TECHNOLOGY INSTITUTE

    E-Print Network [OSTI]

    Isotopes Using Inertial Electrostatic Confinement B.B. Cipiti Fusion Technology Institute University FUSION OF ADVANCED FUELS TO PRODUCE MEDICAL ISOTOPES USING INERTIAL ELECTROSTATIC CONFINEMENT by Benjamin OF WISCONSIN MADISON WISCONSIN The Fusion of Advanced Fuels to Produce Medical Isotopes Using Inertial

  10. A 20-year Vision for the UK Contribution to Fusion as an Energy Source

    E-Print Network [OSTI]

    following ITER. The role for the UK in inertial confinement fusion (ICF) over the next 20 years is strongly fusion (MCF) and inertial confinement fusion (ICF) - the full list of which is given in Annex B programme over the next 20 years is given below. In magnetic confinement fusion (MCF) the continued

  11. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect (OSTI)

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  12. The Requirements for Collision Data on the Species Helium, Beryllium and Boron in Magnetic Confinement Fusion

    E-Print Network [OSTI]

    The Requirements for Collision Data on the Species Helium, Beryllium and Boron in Magnetic Confinement Fusion

  13. Latest Developments in Image Processing Methods and Technologies for Magnetic Confinement Nuclear Fusion

    E-Print Network [OSTI]

    Latest Developments in Image Processing Methods and Technologies for Magnetic Confinement Nuclear Fusion

  14. Development and validation of compressible mixture viscous fluid algorithm applied to predict the evolution of inertial fusion energy chamber gas and the impact of gas on direct-drive target survival

    E-Print Network [OSTI]

    Martin, Robert Scott

    2011-01-01

    and technologies for fusion energy with lasers and direct-direct drive inertial fusion energy targets. Report 06-02,Improved Inertial Fusion Energy Chamber Inter-Shot

  15. A Sustainable Nuclear Fuel Cycle Based on Laser Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E; Diaz de la Rubia, T; Storm, E; Latkowski, J; Farmer, J; Abbott, R; Kramer, K; Peterson, P; Shaw, H; Lehman II, R

    2009-05-22

    The National Ignition Facility (NIF), a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, will soon be completed at the Lawrence Livermore National Laboratory. Experiments designed to accomplish the NIF's goal will commence in 2010, using laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 35 MJ are expected soon thereafter. They propose that a laser system capable of generating fusion yields of 35 to 75 MJ at 10 to 15 Hz (i.e., {approx} 350- to 1000-MW fusion and {approx} 1.3 to 3.6 x 10{sup 20} n/s), coupled to a compact subdritical fission blanket, could be used to generate several GW of thermal power (GWth) while avoiding carbon dioxide emissions, mitigating nuclear proliferation concerns and minimizing the concerns associated with nuclear safety and long-term nuclear waste disposition. this Laser Inertial Fusion Energy (LIFE) based system is a logical extension of the NIF laser and the yields expec ted from the early ignition experiments on NIF. The LIFE concept is a once-through,s elf-contained closed fuel cycle and would have the following characteristics: (1) eliminate the need for spent fuel chemical separation facilities; (4) maintain the fission blanket subcritical at all times (k{sub eff} < 0.90); and (5) minimize future requirements for deep underground geological waste repositories and minimize actinide content in the end-of-life nuclear waste below the Department of Energy's (DOE's) attractiveness Level E (the lowest). Options to burn natural or depleted U, Th, U/Th mixtures, Spent Nuclear Fuel (SNF) without chemical separations of weapons-attractive actinide streams, and excess weapons Pu or highly enriched U (HEU) are possible and under consideration. Because the fission blanket is always subcritical and decay heat removal is possible via passive mechanisms, the technology is inherently safe. Many technical challenges must be met, but a LIFE solution could provide a sustainable path for worldwide growth of nuclear powr for electricity production and hydrogen generation.

  16. NATURE | NEWS Laser fusion nears crucial milestone

    E-Print Network [OSTI]

    of `inertial confinement' fusion -- faces an uncertain future. Would success mean that the US Department National Laboratory in New Mexico, agrees, saying that scientists working on inertial confinement should to the troubles that have plagued a competing approach to fusion -- magnetic confinement -- and its flagship

  17. The US inertial confinement fusion (ICF) ignition programme and the inertial fusion energy (IFE) programme

    SciTech Connect (OSTI)

    Lindl, J.D.; Hammel, B.A.; Logan, B. Grant; Meyerhofer, David D.; Payne, S.A.; Sethisn, John D.

    2003-11-13

    This paper describes international experience with the use of Voluntary Agreements for increasing industrial sector energy-efficiency, drawing lessons learned regarding the essential elements of the more successful programs. The paper focuses on a pilot project for implementation of a Voluntary Agreement with two steel mills in Shandong Province that was developed through international collaboration with experts in China, the Netherlands, and the U.S. Designing the pilot project involved development of approaches for energy-efficiency potential assessments for the steel mills, target-setting to establish the Voluntary Agreement energy-efficiency goals, preparing energy-efficiency plans for implementation of energy-saving technologies and measures, and monitoring and evaluating the project's energy savings.

  18. Fusion Lecture Summary Eugene S. Evans

    E-Print Network [OSTI]

    Budker, Dmitry

    Fusion Lecture Summary Eugene S. Evans Physics H190, University of California, Berkeley March 31. Evans (2010) Fusion Lecture Summary March 31, 2010 1 / 15 #12;Outline 1 Overview of NIF Specifications Timeline Goals 2 Inertial Confinement Fusion (ICF) 3 Science at NIF 4 Fusion and the Future Laser Inertial

  19. LANL | Physics | Inertial Confinement Fusion and High Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the world's most powerful lasers, Physics Division scientists are aiming to create thermonuclear burn in the laboratory. The experimental research of the Physics Division's...

  20. Impeding Hohlraum Plasma Stagnation in Inertial-Confinement Fusion

    E-Print Network [OSTI]

    Li, C. K.

    This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in ...

  1. Inertial confinement fusion quarterly report, October-December 1996

    SciTech Connect (OSTI)

    Hammer, J.

    1997-01-01

    The articles in this issue report progress on: Supernova Hydrodynamics Experiments on the Nova Laser; Characterization of Laser-Driven Shock Waves Using Interferometry; Absolute Equation of State Measurements of Compressed Liquid Deuterium Using Nova; Low-Density-Foam Shells; Tetrahedral Hohlraums; The Rosseland Mean Opacity of a Composite Material at High Temperatures.

  2. Inertial confinement fusion reaction chamber and power conversion system study

    SciTech Connect (OSTI)

    Maya, I.; Schultz, K.R.; Battaglia, J.M.; Buksa, J.J.; Creedson, R.L.; Erlandson, O.D.; Levine, H.E.; Roelant, D.F.; Sanchez, H.W.; Schrader, S.A.

    1984-09-01

    GA Technologies has developed a conceptual ICF reactor system based on the Cascade rotating-bed reaction chamber concept. Unique features of the system design include the use of low activation SiC in a reaction chamber constructed of box-shaped tiles held together in compression by prestressing tendons to the vacuum chamber. Circulating Li/sub 2/O granules serve as the tritium breeding and energy transport material, cascading down the sides of the reaction chamber to the power conversion system. The total tritium inventory of the system is 6 kg; tritium recovery is accomplished directly from the granules via the vacuum system. A system for centrifugal throw transport of the hot Li/sub 2/O granules from the reaction chamber to the power conversion system has been developed. A number of issues were evaluated during the course of this study. These include the response of first-layer granules to the intense microexplosion surface heat flux, cost effective fabrication of Li/sub 2/O granules, tritium inventory and recovery issues, the thermodynamics of solids-flow options, vacuum versus helium-medium heat transfer, and the tradeoffs of capital cost versus efficiency for alternate heat exchange and power conversion system option. The resultant design options appear to be economically competitive, safe, and environmentally attractive.

  3. Inertial Confinement Fusion Ignition and High Yield Campaign

    E-Print Network [OSTI]

    in producing cryogenic targets required for both x-ray and direct drive #12;7 A refurbishment of Z (ZR Project- refurbishment needed · $57M total estimated cost, 4-5 year schedule #12;8 OMEGA Extended Performance (EP

  4. Development of aerogel-lined targets for inertial confinement fusion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements ofCOMPOSITION OF VAPORSSeries)SupportedDavidA(MPAS)experiments

  5. Inertial Confinement Fusion: How to Make a Star

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logoInIndustry @ ALSscience

  6. Development of aerogel-lined targets for inertial confinement fusion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnectlaser-solidSwitchgrass and Miscanthus(Conference)Report)effects

  7. IS C O N SIN FUSION TECHNOLOGY INSTITUTE

    E-Print Network [OSTI]

    . #12;I. INTRODUCTION The inertial electrostatic confinement (IEC) fusion concept was first patented OF WISCONSIN MADISON WISCONSIN Composition of the Source Region Plasma in Inertial Electrostatic Confinement Electrostatic Confinement Devices D.R. Boris and G.A. Emmert Fusion Technology Institute University of Wisconsin

  8. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  9. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 1, Final report

    SciTech Connect (OSTI)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for inertial confinement reactors. The first of three volumes briefly discusses the following: Introduction; Key objectives, requirements, and assumptions; Systems modeling and trade studies; Prometheus-L reactor plant design overview; Prometheus-H reactor plant design overview; Key technical issues and R&D requirements; Comparison of IFE designs; and study conclusions.

  10. Inertial Fusion Energy reactor design studies: Prometheus-L, Prometheus-H. Volume 2, Final report

    SciTech Connect (OSTI)

    Waganer, L.M.; Driemeyer, D.E.; Lee, V.D.

    1992-03-01

    This report contains a review of design studies for Inertial Confinement reactor. This second of three volumes discussions is some detail the following: Objectives, requirements, and assumptions; rationale for design option selection; key technical issues and R&D requirements; and conceptual design selection and description.

  11. Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

    SciTech Connect (OSTI)

    Powers, J; Abbott, R; Fratoni, M; Kramer, K; Latkowski, J; Seifried, J; Taylor, J

    2010-03-08

    The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW{sub th} for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment 'cooling periods' to allow {sup 233}Pa to decay to {sup 233}U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.

  12. Damage production and accumulation in SiC structures in inertial and magnetic fusion systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    damage and helium production on defect accumulation in SiC/SiC composites are also discussed. Ó 2010Damage production and accumulation in SiC structures in inertial and magnetic fusion systems M spectrum, and pulsed nature of neutron production result in significant differences in damage parameters

  13. Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber

    E-Print Network [OSTI]

    Raffray, A. René

    Neutronics Assessment of Blanket Options for the HAPL Laser Inertial Fusion Energy Chamber M-cooled lithium blanket, a helium-cooled solid breeder blanket, and a dual-coolant lithium lead blanket; nuclear heating I. INTRODUCTION The High Average Power Laser (HAPL) program led by the Naval Research

  14. Research and Development Assessments for Prometheus Heavy Ion and Laser Driven Inertial Fusion Energy Reactor Designs

    E-Print Network [OSTI]

    Tillack, Mark

    station electric power plants have been conceptually designed and analyzed in the Prometheus[1] study led by McDonnell Douglas Aerospace. These plants use inertial fusion energy (IFE) technologies by employing with a list of important R&D tasks that need to be conducted, and (3) identify areas of R&D that are common

  15. Addressing the issues of target fabrication and injection for inertial fusion energy

    E-Print Network [OSTI]

    Tillack, Mark

    survive injection into the target chamber without damage. An example of a recent direct drive IFE targetAddressing the issues of target fabrication and injection for inertial fusion energy D.T. Goodin a, CA 92024, USA Abstract Addressing the issues associated with target fabrication and injection

  16. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    SciTech Connect (OSTI)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)] [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  17. Direct-Drive Inertial Fusion Research at the University of Rochester's Laboratory for Laser Energetics: A Review

    SciTech Connect (OSTI)

    McCrory, R.L.; Meyerhofer, D.D.; Loucks, S.J.; Skupsky, S.; Bahr, R.E.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Collins, T.J.B.; Delettrez, J.A.; Donaldson, W.R.; Epstein, R.; Fletcher, K.A.; Freeman, C.; Frenje, J.A.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Jaanimagi, P.A.; Keck, R.L.; Kelly, J.H.; Kessler, T.J.; Kilkenny, J.D.; Knauer, J.P.; Li, C.K.; Lund, L.D.; Marozas, J.A.; McKenty, P.W.; Marshall, F.J.; Morse, S.F.B.; Padalino, S.; Petrasso, R.D.; Radha, P.B.; Regan, S.P.; Roberts, S.; Sangster, T.C.; Seguin, F.H.; Seka, W.; Smalyuk, V.A.; Soures, J.M.; Stoeckl, C.; Thorp, K.A.; Yaakobi, B.; Zuegel, J.D.

    2010-04-16

    This paper reviews the status of direct-drive inertial confinement fusion (ICF) research at the University of Rochester's Laboratory for Laser Energetics (LLE). LLE's goal is to demonstrate direct-drive ignition on the National Ignition Facility (NIF) by 2014. Baseline "all-DT" NIF direct-drive ignition target designs have been developed that have a predicted gain of 45 (1-D) at a NIF drive energy of ~1.6 MJ. Significantly higher gains are calculated for targets that include a DT-wicked foam ablator. This paper also reviews the results of both warm fuel and initial cryogenic-fuel spherical target implosion experiments carried out on the OMEGA UV laser. The results of these experiments and design calculations increase confidence that the NIF direct-drive ICF ignition goal will be achieved.

  18. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect (OSTI)

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  19. Fusion utility in the Knudsen layer (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Fusion utility in the Knudsen layer Citation Details In-Document Search Title: Fusion utility in the Knudsen layer In inertial confinement fusion, the loss of fast ions from the...

  20. The Dipole Fusion Confinement Concept: A White Paper for the Fusion Community

    E-Print Network [OSTI]

    that accompanied strong magnetic and electric fluctuations in planetary magnetospheres represented a fundamental and neutron stars. The use of a dipole magnetic field generated by a levitated ring to confine a hot plasma for fusion power generation was first considered by Akira Hasegawa after participating in the Voyager 2

  1. Ion Fast Ignition-Establishing a Scientific Basis for Inertial Fusion Energy --- Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite; Foord, Mark N.; Wei, Mingsheng; Beg, Farhat N.; Schumacher, Douglass W.

    2013-10-31

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional ?central hot spot? (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10?s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The compressed fuel is opaque to laser light. The ignition laser energy must be converted to a jet of energetic charged particles to deposit energy in the dense fuel. The original concept called for a spray of laser-generated hot electrons to deliver the energy; lack of ability to focus the electrons put great weight on minimizing the electron path. An alternative concept, proton-ignited FI, used those electrons as intermediaries to create a jet of protons that could be focused to the ignition spot from a more convenient distance. Our program focused on the generation and directing of the proton jet, and its transport toward the fuel, none of which were well understood at the onset of our program. We have developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to create a self-consistent understanding of the fundamental physics underlying these issues. Our strategy was to examine the new physics emerging as we added the complexity necessary to use proton beams in an inertial fusion energy (IFE) application. From the starting point of a proton beam accelerated from a flat, isolated foil, we 1) curved it to focus the beam, 2) attached the foil to a superstructure, 3) added a side sheath to protect it from the surrounding plasma, and finally 4) studied the proton beam behavior as it passed through a protective end cap into plasma. We built up, as we proceeded, a self-consistent picture of the quasi-neutral plasma jet that is the proton beam that, for the first time, included the role of the hot electrons in shaping the jet. Controlling them?through design of the accelerating surface and its connection to the surrounding superstructure?is critical; their uniform spread across the proton accelerating area is vital, but their presence in the jet opposes focus; their electron flow away from the acceleration area reduces conversion efficiency but can also increase focusing ability. The understanding emerging from our work and the improved simulation tools we have developed allow designing structures that optimize proton beams for focused heating. Our findings include: ? The achievable focus of proton beams is limited by the thermal pressure gradient in the laser-generated hot electrons that drive the process. This bending can be suppressed using a controlled flow of hot electrons along the surrounding cone wall, which induces a local transverse focusing sheath electric field. The resultant (vacuum-focused) spot can meet IFE requirements. ? Confinement of laser-generated electrons to the proton accelerating area can be achieved by supporting targets on thin struts. That increases laser-to-proton conversion energy by ~50%. As noted above, confinement should not be total; necessary hot-electron leakage into the surrounding superstructure for proton focusing can be controlled by with the strut width/number. ? Proton jets are further modified as they enter the fuel through the superstructure?s end cap. They can generate currents during that transit that further focus the proton beams. We developed a new ion stopping module for LSP code that properly accounted for changes in stopping power with ionization (e.g. temperature), and will be using it in future studies. The improved understanding, new experimental platforms, and the self-consistent modeling capability allow researchers a new ability to investigate the interaction of large ion currents with warm dense matter. That is of direct importance to the creation and investiga

  2. Inertial fusion program. Progress report, July 1-December 31, 1978

    SciTech Connect (OSTI)

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  3. Inertial fusion program, January 1-June 30, 1979

    SciTech Connect (OSTI)

    Skoberne, F.

    1981-06-01

    Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

  4. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    SciTech Connect (OSTI)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.; Hendricks, C. D.; Laybourne, P.; Shillito, K. R.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  5. Z-inertial fusion energy: power plant final report FY 2006.

    SciTech Connect (OSTI)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  6. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect (OSTI)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.; Key, M.; MacKinnon, Andrew J.; Wei, Mingsheng

    2014-02-27

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

  7. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    SciTech Connect (OSTI)

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  8. TIMELY DELIVERY OF LASER INERTIAL FUSION ENERGY (LIFE)

    SciTech Connect (OSTI)

    Dunne, A M

    2010-11-30

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. A key goal of the NIF is to demonstrate fusion ignition for the first time in the laboratory. Its flexibility allows multiple target designs (both indirect and direct drive) to be fielded, offering substantial scope for optimization of a robust target design. In this paper we discuss an approach to generating gigawatt levels of electrical power from a laser-driven source of fusion neutrons based on these demonstration experiments. This 'LIFE' concept enables rapid time-to-market for a commercial power plant, assuming success with ignition and a technology demonstration program that links directly to a facility design and construction project. The LIFE design makes use of recent advances in diode-pumped, solid-state laser technology. It adopts the paradigm of Line Replaceable Units utilized on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. A demonstration LIFE plant based on these design principles is described, along with the areas of technology development required prior to plant construction. A goal-oriented, evidence-based approach has been proposed to allow LIFE power plant rollout on a time scale that meets policy imperatives and is consistent with utility planning horizons. The system-level delivery builds from our prior national investment over many decades and makes full use of the distributed capability in laser technology, the ubiquity of semiconductor diodes, high volume manufacturing markets, and U.S. capability in fusion science and nuclear engineering. The LIFE approach is based on the ignition evidence emerging from NIF and adopts a line-replaceable unit approach to ensure high plant availability and to allow evolution from available technologies and materials. Utilization of a proven physics platform for the ignition scheme is an essential component of an acceptably low-risk solution. The degree of coupling seen on NIF between driver and target performance mandates that little deviation be adopted from the NIF geometry and beamline characteristics. Similarly, the strong coupling between subsystems in an operational power plant mandates that a self-consistent solution be established via an integrated facility delivery project. The benefits of separability of the subsystems within an IFE plant (driver, chamber, targets, etc.) emerge in the operational phase of a power plant rather than in its developmental phase. An optimized roadmap for IFE delivery needs to account for this to avoid nugatory effort and inconsistent solutions. For LIFE, a system design has been established that could lead to an operating power plant by the mid-2020s, drawing from an integrated subsystem development program to demonstrate the required technology readiness on a time scale compatible with the construction plan. Much technical development work still remains, as does alignment of key stakeholder groups to this newly emerging development option. If the required timeline is to be met, then preparation of a viable program is required alongside the demonstration of ignition on NIF. This will enable timely analysis of the technical and economic case and establishment of the appropriate delivery partnership.

  9. Gas Transport and Control in Thick-Liquid Inertial Fusion Power Plants

    E-Print Network [OSTI]

    Debonnel, Christophe Sylvain

    2006-01-01

    Fusion Energy . . . . . . . . . . . . . . . . . . . . . . . . .Fusion Energy . . . . . . . . . . . . . . . . . . . . .vortex shielding for fusion energy applications. Fusion

  10. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    SciTech Connect (OSTI)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  11. Machine Learning Methods for Data Driven Theory in the Physical Sciences with Applications to Confinement Regime Identification in Nuclear Fusion

    E-Print Network [OSTI]

    Machine Learning Methods for Data Driven Theory in the Physical Sciences with Applications to Confinement Regime Identification in Nuclear Fusion

  12. An experiment to test centrifugal confinement for fusion* R. F. Ellis, A. B. Hassam,

    E-Print Network [OSTI]

    Hassam, Adil

    An experiment to test centrifugal confinement for fusion* R. F. Ellis, A. B. Hassam, S. Messer forces from supersonic rotation to augment conventional magnetic confinement. Optimizing this ``knob confine plasmas to desired regions of shaped magnetic fields; second, the accompanying large velocity

  13. A Lithium Self-Cooled Blanket for the HAPL Conceptual Inertial Confinement Reactor

    SciTech Connect (OSTI)

    Sviatoslavsky, I.N. [University of Wisconsin-Madison (United States); Raffray, A.R. [University of California, San Diego (United States); Sawan, M.E. [University of Wisconsin-Madison (United States); Wang, X. [University of California, San Diego (United States)

    2005-04-15

    A multi-institutional study HAPL (High Average Power Laser) is investigating a relatively near term conceptual design of a laser driven inertial confinement reactor. A primary focus of the study is the protection of the first wall (FW) from the target emanations. This paper gives a brief analysis of one of several possible blankets that can be integrated with the chosen FW protection scheme. The structural material is conventional ferritic steel (FS) F82H cooled with liquid lithium. The maximum average temperature is constrained to 550 deg. C. The chamber radius is 6.5 m at midplane, tapering to 2.5 m at the ends, and is surrounded by a cylindrical vacuum vessel. The first wall (FW) is 0.35 cm FS, which has a 0.1 cm thick layer of tungsten bonded to it facing the target. The FW is cooled with Li admitted at the bottom of the blanket, flows through a gap between 0.25-0.5 cm to the top, then returns through the center of the blanket channel to the bottom. There are 60 laser beam ports situated around the chamber. The tritium breeding ratio (TBR) is 1.124. A Brayton cycle is envisaged with an efficiency in the range of 42-44%.

  14. Inertial fusion energy: A clearer view of the environmental and safety perspectives

    SciTech Connect (OSTI)

    Latkowski, J.F.

    1996-11-01

    If fusion energy is to achieve its full potential for safety and environmental (S&E) advantages, the S&E characteristics of fusion power plant designs must be quantified and understood, and the resulting insights must be embodied in the ongoing process of development of fusion energy. As part of this task, the present work compares S&E characteristics of five inertial and two magnetic fusion power plant designs. For each design, a set of radiological hazard indices has been calculated with a system of computer codes and data libraries assembled for this purpose. These indices quantify the radiological hazards associated with the operation of fusion power plants with respect to three classes of hazard: accidents, occupational exposure, and waste disposal. The three classes of hazard have been qualitatively integrated to rank the best and worst fusion power plant designs with respect to S&E characteristics. From these rankings, the specific designs, and other S&E trends, design features that result in S&E advantages have been identified. Additionally, key areas for future fusion research have been identified. Specific experiments needed include the investigation of elemental release rates (expanded to include many more materials) and the verification of sequential charged-particle reactions. Improvements to the calculational methodology are recommended to enable future comparative analyses to represent more accurately the radiological hazards presented by fusion power plants. Finally, future work must consider economic effects. Trade-offs among design features will be decided not by S&E characteristics alone, but also by cost-benefit analyses. 118 refs., 35 figs., 35 tabs.

  15. Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept

    SciTech Connect (OSTI)

    Knapp, C. E.; Kirkpatrick, R. C.

    2014-07-15

    A one-dimensional parameter study of a Magneto-Inertial Fusion (MIF) concept indicates that significant gain may be achievable. This concept uses a dynamically formed plasma shell with inwardly directed momentum to drive a magnetized fuel to ignition, which in turn partially burns an intermediate layer of unmagnetized fuel. The concept is referred to as Plasma Jet MIF or PJMIF. The results of an adaptive mesh refinement Eulerian code (Crestone) are compared to those of a Lagrangian code (LASNEX). These are the first published results using the Crestone and LASNEX codes on the PJMIF concept.

  16. Stability of shocks relating to the shock ignition inertial fusion energy scheme

    SciTech Connect (OSTI)

    Davie, C. J. Bush, I. A.; Evans, R. G.

    2014-08-15

    Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

  17. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect (OSTI)

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ?10{sup 4} T (100 Megagauss) over small volumes (?10{sup ?10}m{sup 3}) at high plasma densities (?10{sup 28}m{sup ?3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  18. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Martens, Daniel; Hsu, Scott C.

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  19. The National Ignition Facility and the Promise of Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E I

    2010-12-13

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

  20. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  1. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM substrate, adaptive (deformable) optics, surface tension and low Reynolds number, laminar flow in the film

  2. ARIES Inertial Fusion Chamber Assessment M. S. Tillack*, F. Najmabadi, L. A. El-Guebaly, D. Goodin, W. R. Meier,

    E-Print Network [OSTI]

    commissioned two large, multi-institutional IFE power plant design studies: Prometheus [1] and OSIRIS/ER-54101) March 1992. [2] W. R. MEIER, et al., "OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs components (i.e., final optics, final focus magnets), chamber physics (particle and radiation transport, gas

  3. Workshop on Accelerators for Heavy Ion Fusion Summary Report of the Workshop

    E-Print Network [OSTI]

    Seidl, P.A.

    2013-01-01

    ion inertial fusion," Nuclear Fusion, Vol. 33, No. 4 (1993)ion inertial fusion energy,” Nuclear Fusion 45 (2005) S291–

  4. Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Slough, John

    2011-12-10

    The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides for an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration of megagauss magnetic field compression by a small array of full scale macrons. In addition the physics of the compression of an FRC to fusion conditions will be undertaken with a smaller scale MFL. The timescale for testing will be rapidly accelerated by taking advantage of other facilities at MSNW where the target FRC will be created and translated inside the MFL just prior to implosion of the MFL. Experimental success would establish the concept at the �proof of principle� level and the following phase III effort would focus on the full development of the concept into a fusion gain device. Successful operation would lead to several benefits in various fields. It would have application to high energy density physics, as well as nuclear waste transmutation and alternate fission fuel cycles. The smaller scale device could find immediate application as an intense source of neutrons for diagnostic imaging and non-invasive object interrogation.

  5. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  6. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to diver

  7. Survey of Laser Markets Relevant to Inertial Fusion Energy Drivers, information for National Research Council

    SciTech Connect (OSTI)

    Bayramian, A J; Deri, R J; Erlandson, A C

    2011-02-24

    Development of a new technology for commercial application can be significantly accelerated by leveraging related technologies used in other markets. Synergies across multiple application domains attract research and development (R and D) talent - widening the innovation pipeline - and increases the market demand in common components and subsystems to provide performance improvements and cost reductions. For these reasons, driver development plans for inertial fusion energy (IFE) should consider the non-fusion technology base that can be lveraged for application to IFE. At this time, two laser driver technologies are being proposed for IFE: solid-state lasers (SSLs) and KrF gas (excimer) lasers. This document provides a brief survey of organizations actively engaged in these technologies. This is intended to facilitate comparison of the opportunities for leveraging the larger technical community for IFE laser driver development. They have included tables that summarize the commercial organizations selling solid-state and KrF lasers, and a brief summary of organizations actively engaged in R and D on these technologies.

  8. Multiscale methods for analyzing and computing fluid and plasma turbulence: Applications to magnetically confined plasmas in fusion devices.

    E-Print Network [OSTI]

    Schneider, Kai

    to magnetically confined plasmas in fusion devices. The optimization of many industrial processes requires in the case of magnetically confined plasmas encountered in tokamaks. The understanding of confinement of the confinement determines the performance of the device. Plasma turbulence shares numerous properties with fluid

  9. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  10. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  11. Issues and Paths to Magnetic Confinement Fusion Energy

    E-Print Network [OSTI]

    Roadmap in a nutshell MST = Mid-scale tokamak IC = Interna-onal Collabora Roadmap in a nutshell MST = Mid-scale tokamak IC = Interna-onal Collabora (CN) FNS (US) Europe's new fusion roadmap: · Eight strategic missions

  12. Inertial Confinement Fusion Ignition and High Yield The Inertial Confinement Fusion Ignition and High Yield (ICF) program supports the U.S. Department of Energy's (DOE)

    E-Print Network [OSTI]

    ) physics for the validation of codes and models necessary to maintain a safe, secure, and effective nuclear is essential to having confidence in them. More than 99 percent of the energy from a nuclear weapon Ignition and High Yield (ICF) program supports the U.S. Department of Energy's (DOE) national security

  13. Inertial Confinement Fusion Ignition and High Yield Campaign The Inertial Confinement Fusion Ignition and High Yield (ICF) Campaign supports the U.S. Department of Energy's (DOE)

    E-Print Network [OSTI]

    , and effective nuclear weapons stockpile without underground testing. It supports stockpile assessment and information are directly applicable to assessing the health of our nuclear weapons and making decisions (SSP) has been developing advanced simulation capabilities to model nuclear weapons with sufficient

  14. Overview of US heavy-ion fusion progress and plans

    E-Print Network [OSTI]

    Logan, B.G.

    2010-01-01

    linac-driven inertial fusion energy and high energy densitytargets for inertial fusion energy (IFE) driven by inductionIBX and future inertial fusion energy drivers, current HIF-

  15. Fluid Dynamic Aspects of the Porous Wetted Wall Protection Scheme for Inertial Fusion Energy Reactors

    SciTech Connect (OSTI)

    Shin, S.; Abdelall, F.; Juric, D.; Abdel-Khalik, S.I.; Yoda, M.; Sadowski, D. [Georgia Institute of Technology (United States)

    2003-05-15

    A numerical and experimental investigation has been conducted to analyze the fluid dynamic aspects of the porous wetted wall protection scheme for inertial fusion energy (IFE) reactor first walls. A level contour reconstruction method has been used to track the three-dimensional evolution of the liquid film surface on porous downward-facing walls with different initial film thickness, liquid injection velocity through the porous wall, surface disturbance amplitude, configuration and mode number, liquid properties, and surface inclination angle. Generalized charts for the computed droplet detachment time, detached droplet equivalent diameter, and minimum film thickness during the transient for various design parameters and coolant properties are presented.In order to validate the numerical results over a wide range of parameters, an experimental test facility has been designed and constructed to simulate the hydrodynamics of downward-facing porous wetted walls. Nondimensionalization of the model shows that water can be adequately used as a simulant to validate the numerical results. Preliminary experimental results show good agreement with model predictions. The results of this investigation should allow designers of conceptual IFE reactors to identify appropriate 'windows' for successful operation of the porous wetted wall protection concept for different coolants.

  16. Behavior of Elemental Tritium in Atmospheric Diffusion in Inertial Fusion Reactors

    SciTech Connect (OSTI)

    Velarde, Marta; Perlado, Jose Manuel [Universidad Politecnica de Madrid (Spain)

    2003-05-15

    The evaluation of the radiological environmental impact of tritium emission to the atmosphere from inertial fusion energy (IFE) reactors has different chronological phases. In the release primary phase, the important factors are the boundary conditions: atmospheric and geometric grid from the point of emission. The second phase occurs when the tritium is deposited in the ground. This phase is important in order to account for the dosimetric effects of tritium, and it is a key factor in the chronic and collective doses of the population.The final internal irradiation dose is calculated as the addition of doses by ingestion, by inhalation of the primary plume, by absorption on the skin, and inhalation by reemission to the atmosphere.Each of the two chemical forms (HT and HTO) of tritium present in the environment from potential IFE reactor releases contributes in different ways to the most exposed individual and the committed effective dose equivalent (50-CEDE). The HTO presents a much larger percentage of the internal irradiation from inhalation and absorption through the skin than HT. However, in releases where HT represents 100%, the contributions to the total effective dose by ingestion and reemission are important.

  17. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    of a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevinof a Hybrid Fusion-Fission Nuclear Energy System by Kevin

  18. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01

    4.3.3.4 Chamber Radius and Fusion Neutron Flux . . . . .1.1.3.2 Fusion Energy . . . . . . . . .1.1.3.3 Fission-Fusion Hybrids . . . . 1.2 Scope and Purpose

  19. Recycling issues facing target and RTL materials of inertial fusion designs L. El-Guebaly, P. Wilson, M. Sawan, D. Henderson, A. Varuttamaseni,

    E-Print Network [OSTI]

    California at San Diego, University of

    . Wilson, M. Sawan, D. Henderson, A. Varuttamaseni, and the ARIES and Z-Pinch Teams Fusion Technology (608) 263-4499 elguebaly@engr.wisc.edu Abstract Designers of heavy ion (HI) and Z-pinch inertial fusion. On the contrary, RTL recycling is a "must" requirement for the Z-pinch concept in order to minimize the RTL

  20. The roadmap to magnetic confinement fusion Cutaway of the ITER tokamak. ( ITER)

    E-Print Network [OSTI]

    Hampshire, Damian

    The roadmap to magnetic confinement fusion Cutaway of the ITER tokamak. (© ITER) There are two ways "tokamak" configuration invented by Tamm and Sakharov in 1950 and declassified in 1957 [1] . Over 198 tokamaks have been built [2] . Four large tokamak projects were built in the 1980s. Two of these

  1. Intermittency and turbulence in a magnetically confined fusion plasma

    E-Print Network [OSTI]

    V. Carbone; L. Sorriso-Valvo; E. Martines; V. Antoni; P. Veltri

    2001-01-30

    We investigate the intermittency of magnetic turbulence as measured in Reversed Field Pinch plasmas. We show that the Probability Distribution Functions of magnetic field differences are not scale invariant, that is the wings of these functions are more important at the smallest scales, a classical signature of intermittency. We show that scaling laws appear also in a region very close to the external wall of the confinement device, and we present evidences that the observed intermittency increases moving towards the wall.

  2. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect (OSTI)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  3. Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions

    SciTech Connect (OSTI)

    Slutz, S. A.; Peterson, K. J.; Vesey, R. A.; Lemke, R. W.; Bailey, J. E.; Varnum, W.; Ruiz, C. L.; Cooper, G. W.; Chandler, G. A.; Rochau, G. A.; Mehlhorn, T. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1186 (United States)

    2006-10-15

    Simulations have been useful for improving the design of dynamic hohlraums for the purpose of imploding inertial fusion capsules [S. A. Slutz, J. E. Bailey, G. A. Chandler et al., Phys. Plasmas 10, 1875 (2003)]. These design changes, which have resulted in capsule implosions with hot dense cores [J. E. Bailey, G. A. Chandler, S. A. Slutz et al., Phys. Rev. Lett. 92, 085002 (2004)] and the production of thermonuclear neutrons [C. L. Ruiz, G. Cooper, S. A. Slutz et al., Phys. Rev. Lett. 93, 015001 (2005)], were based primarily on a series of one-dimensional numerical simulations, which treated the dynamic hohlraum and the capsule implosion separately. In this paper we present simulations which are fully integrated to include the implosion of wire arrays onto foam convertors, the implosion of the capsule imbedded in the foam, and the absorption of radiation into the electrodes. These simulations yield predictions that are in remarkably good agreement with measured values considering the complexity of the problem, which spans more than 100 ns of wire implosion with the subsequent capsule implosion on a few ns timescale. For example, the predicted neutron yields are less than a factor of 2 higher than the measured values, while the predicted shock velocity is about 30% higher than the measured value. The spectroscopically inferred imploded capsule gas core temperatures are somewhat lower than predicted by the simulations, while the gas densities are about a factor of 2 higher. Simulations indicate that a more slowly rising radiation drive temperature yields higher core densities and lower temperatures and thus better agreement with experimental measurements. Possible reasons for a more slowly rising radiation drive are discussed.

  4. Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency

    E-Print Network [OSTI]

    Logan, B. Grant

    2008-01-01

    11] G. R. Magelssen, Nuclear Fusion 24, No.12, p. 1527,2004) [17] M . Tabak, Nuclear Fusion 36, No 2 (1996) [18] S.Atzeni and C. Ciampi, Nuclear Fusion 37, 1665 (1997) [19] R.

  5. Developing a commercial production process for 500,000 targets per day: A key challenge for inertial fusion energy

    SciTech Connect (OSTI)

    Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Flint, G.W.; Kilkenny, J.D.; McQuillan, B.W.; Nikroo, A.; Paguio, R.R.; Petzoldt, R.W.; Schroen, D.G.; Sheliak, J.D.; Vermillion, B.A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Carlson, L.C.; Goodman, P.; Maksaereekul, W.; Raffray, R.; Spalding, J.; Tillack, M.S. [University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92023 (United States)] (and others)

    2006-05-15

    As is true for current-day commercial power plants, a reliable and economic fuel supply is essential for the viability of future Inertial Fusion Energy (IFE) [Energy From Inertial Fusion, edited by W. J. Hogan (International Atomic Energy Agency, Vienna, 1995)] power plants. While IFE power plants will utilize deuterium-tritium (DT) bred in-house as the fusion fuel, the 'target' is the vehicle by which the fuel is delivered to the reaction chamber. Thus the cost of the target becomes a critical issue in regard to fuel cost. Typically six targets per second, or about 500 000/day are required for a nominal 1000 MW(e) power plant. The electricity value within a typical target is about $3, allocating 10% for fuel cost gives only 30 cents per target as-delivered to the chamber center. Complicating this economic goal, the target supply has many significant technical challenge - fabricating the precision fuel-containing capsule, filling it with DT, cooling it to cryogenic temperatures, layering the DT into a uniform layer, characterizing the finished product, accelerating it to high velocity for injection into the chamber, and tracking the target to steer the driver beams to meet it with micron-precision at the chamber center.

  6. INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion 48 (2006) B153B163 doi:10.1088/0741-3335/48/12B/S15

    E-Print Network [OSTI]

    2006-01-01

    -drive). If the thermonuclear fuel is ignited and a burn wave propagates through the dense core, the fusion energy produced canINSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION Plasma Phys. Control. Fusion for direct-drive and fast ignition inertial confinement fusion R Betti1,2,3 , K Anderson1,3 , T R Boehly3

  7. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOE Patents [OSTI]

    Fisch, Nathaniel J. (Cambridge, MA)

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  8. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOE Patents [OSTI]

    Bers, Abraham (Arlington, MA)

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  9. Vlasov simulations of kinetic enhancement of Raman backscatter in laser fusion plasmas

    E-Print Network [OSTI]

    Strozzi, D. J. (David J.)

    2006-01-01

    Stimulated Raman scattering (SRS) is studied in plasmas relevant to inertial confinement fusion (ICF). The Eulerian Vlasov-Maxwell code ELVIS was developed and run for this purpose. Plasma waves are heavily Landau damped ...

  10. Magnetized Target Fusion (MTF): Principles, Status, and International Collaboration

    SciTech Connect (OSTI)

    Kirkpatrick, R.C.

    1998-11-16

    Magnetized target fusion (MTF) is an approach to thermonuclear fusion that is intermediate between the two extremes of inertial and magnetic confinement. Target plasma preparation is followed by compression to fusion conditions. The use of a magnetic field to reduce electron thermal conduction and potentially enhance DT alpha energy deposition allows the compression rate to be drastically reduced relative to that for inertial confinement fusion. This leads to compact systems with target driver power and intensity requirements that are orders of magnitude lower than for ICF. A liner on plasma experiment has been proposed to provide a firm proof of principle for MTF.

  11. NEW SOURCES OF RADIATION

    E-Print Network [OSTI]

    Schimmerling, W.

    2010-01-01

    for driving inertial confinement fusion (Godlove, 1979}.Inertial fusion Neutral beam injection Magnetic confinement fusion

  12. Fusion Power Associates 34th Annual Meeting

    E-Print Network [OSTI]

    Fusion Power Associates 34th Annual Meeting Washington, DC 11 December 2013 Perspectives Laser power ~ EL Pulse length ~ EL Mass fuel ~ EL 1/3 1/3 1/3 2/3 Performance metrics include Px (atm, 165001 (2010). **R. Betti, "Theory of Ignition and Hydro-Equivalence for Inertial Confinement Fusion

  13. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.; Caggiano, J.; Hatarik, R.; Izumi, N.; Khan, S. F.; Ma, T.; Spears, B. K.; Town, R. P. J.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

  14. Direct Drive Heavy-Ion-Beam Inertial Fusion at High Coupling Efficiency

    E-Print Network [OSTI]

    Logan, B. Grant

    2008-01-01

    Fusion at High Coupling Efficiency B.G. Logan 1, L.J.fusion at high coupling efficiency B. G. Logan , L . J.Issues with coupling efficiency, beam illumination symmetry

  15. Implementation of scattering pinhole diagnostic for detection of fusion products on CR-39 at high particle fluence

    E-Print Network [OSTI]

    Orozco, David, S.B. Massachusetts Institute of Technology

    2014-01-01

    Many Inertial Confinement Fusion (ICF) experiments use solid-state nuclear track detector CR-39 as a means to detect different types of nuclear products. Until recently, it was difficult to use CR-39 in experiments with ...

  16. Stability of a plasma confined in a dipole field Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

    E-Print Network [OSTI]

    For a magnetic fusion confinement configuration, end losses can be eliminated by levitating the current loop confined in a magnetic dipole field is stabilized by the expansion of the magnetic flux. The stability of low beta electrostatic modes in a magnetic dipole field is examined when the distribution function

  17. Magnetized Target Fusion (MTF): A Low-Cost Fusion Development Path

    SciTech Connect (OSTI)

    Lindemuth, I.R.; Siemon, R.E.; Kirkpatrick, R.C.; Reinovsky, R.E.

    1998-10-19

    Simple transport-based scaling laws are derived to show that a density and time regime intermediate between conventional magnetic confinement and conventional inertial confinement offers attractive reductions in system size and energy when compared to magnetic confinement and attractive reductions in heating power and intensity when compared to inertial confinement. This intermediate parameter space appears to be readily accessible by existing and near term pulsed power technologies. Hence, the technology of the Megagauss conference opens up an attractive path to controlled thermonuclear fusion.

  18. Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGAa...

    E-Print Network [OSTI]

    to small-scale, turbulent eddies and atomic-level mixing of the high-density compressed shell with hot, low of Rayleigh-Taylor RT instability growth at a density interface leads to small-scale, turbulent eddies to understand hydro- dynamic instabilities and mix has been ongoing for many decades, due in large part

  19. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al. , Opt. Commun.133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  20. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, H. G. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Sio, H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Hoffman, N.; Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States). Plasma Science and Fusion Center; Betti, R. [Lab. for Laser Energetics, Rochester, NY (United States); Yu Glebov, V. [Lab. for Laser Energetics, Rochester, NY (United States); Meyerhofer, D. D. [Lab. for Laser Energetics, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, Rochester, NY (United States); Seka, W. [Lab. for Laser Energetics, Rochester, NY (United States); Stoeckl, C. [Lab. for Laser Energetics, Rochester, NY (United States); Kagan, G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Molvig, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bellei, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Amendt, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smalyuk, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilks, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Greenwood, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)

    2014-05-01

    Shock-driven implosions of thin-shell capsules, or ''exploding pushers,'' generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D3He gas fills ranging from pure deuterium to pure 3He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations

  1. Compact Torus Accelerator Driven Inertial Confinement Fusion Power Plant HYLIFE-CT

    SciTech Connect (OSTI)

    Logan, B G; Moir, R W; Tabak, M; Bieri, R L; Hammer, J H; Hartman, C W; Hoffman, M A; Leber, R L; Petzoldt, R W; Tobin, M T

    2005-03-30

    A Compact Torus Accelerator (CTA) is used to accelerate a Compact Torus (CT) to 35 MJ kinetic energy which is focused to a 20 mm diameter where its kinetic energy is converted to a shaped x-ray pulse of 30 MJ. The capsule yield with a prescribed radiation profile is calculated to be (gain 60 times 30 MJ) 1.8 GJ. Schemes for achieving this profile are described. The CT is accelerated in a length of 30 m within an annulus of 150 mm ID and 300 mm OD where the maximum magnetic field is 28 T. A 2.5 m conical taper reduces the mean diameter of the CT from 225 mm to 20 mm. The conical section is made out of solid Li{sub 2}BeF{sub 4}. The target with its frozen conical guide section is accurately placed at the end of the accelerator about once per second. The reactor called HYLIFE uses liquid jets to attenuate blast effects including shrapnel from the shattered conical guide section and radiation so that the vessel is expected to last 30 years. The calculated cost of electricity is estimated (in constant 1988 dollars) to be about 4.8 cents/kW {center_dot} h compared to the future cost of nuclear and coal of 4.3 to 5.8 cents/kW {center_dot} h. The CT driver contributes 17% to the cost of electricity. Present CT's make 2 x 10{sup 8} W/cm{sup 2}; the goal of experiments in progress is 10{sup 11} W/cm{sup 2} with further modifications to allow 10{sup 12}W/cm{sup 2}, whereas the reactor requires 10{sup 15} W/cm{sup 2} in a shaped pulse.

  2. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ?±10% accuracy, and mean neutron energy to ?±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15?20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ?±25?40 km/s.

  3. Initial experiments on the shock-ignition inertial confinement fusion concepta...

    E-Print Network [OSTI]

    pro- posed by Betti et al.4,5 It promises to achieve ignition with 3-times-lower driver energy than and the energy gain G scales as G /vi 1.25 Ref. 9 , where is the burn up fraction that increases with R Ref. 2-averaged ar- eal density of 0.13 g/cm2 and peak R of 0.24 g/cm2 Ref. 10 . In fast ignition, the implosion

  4. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect (OSTI)

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  5. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Hoffman, N.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; et al

    2014-05-19

    Shock-driven implosions of thin-shell capsules, or ''exploding pushers,'' generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D3He gas fills ranging from pure deuterium to pure 3He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important inmore »the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations« less

  6. Improved lifetimes and synchronization behavior in multi-grid inertial electrostatic confinement fusion devices

    E-Print Network [OSTI]

    McGuire, Thomas John, 1977-

    2007-01-01

    A high output power source is required for fast, manned exploration of the solar system, especially the outer planets. Travel times measured in months, not years, will require high power, lightweight nuclear systems. The ...

  7. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hoffman, N.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Betti, R.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bellei, C.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-05-15

    Shock-driven implosions of thin-shell capsules, or “exploding pushers,” generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D{sup 3}He gas fills ranging from pure deuterium to pure {sup 3}He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations.

  8. Bayesian inference of inaccuracies in radiation transport physics from inertial confinement fusion experiments

    E-Print Network [OSTI]

    Gaffney, Jim A; Sonnad, Vijay; Libby, Stephen B

    2013-01-01

    First principles microphysics models are essential to the design and analysis of high energy density physics experiments. Using experimental data to investigate the underlying physics is also essential, particularly when simulations and experiments are not consistent with each other. This is a difficult task, due to the large number of physical models that play a role, and due to the complex (and as a result, noisy) nature of the experiments. This results in a large number of parameters that make any inference a daunting task; it is also very important to consistently treat both experimental and prior understanding of the problem. In this paper we present a Bayesian method that includes both these effects, and allows the inference of a set of modifiers which have been constructed to give information about microphysics models from experimental data. We pay particular attention to radiation transport models. The inference takes into account a large set of experimental parameters and an estimate of the prior kno...

  9. Response to 'Comment on 'Species separation in inertial confinement fusion fuels'' [Phys. Plasmas 20, 044701 (2013)

    SciTech Connect (OSTI)

    Bellei, C.; Amendt, P. A.; Wilks, S. C. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Casey, D. T.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Welch, D. R. [Voss Scientific, Albuquerque, New Mexico 87108 (United States)

    2013-04-15

    The claims made in the preceding Comment are categorically refuted. Further evidence to support the conclusions of our original paper is herein provided.

  10. Bayesian Analysis of Inertial Confinement Fusion Experiments at the National Ignition Facility

    E-Print Network [OSTI]

    Gaffney, J A; Sonnad, V; Libby, S B

    2012-01-01

    We develop a Bayesian inference method that allows the efficient determination of several interesting parameters from complicated high-energy-density experiments performed on the National Ignition Facility (NIF). The model is based on an exploration of phase space using the hydrodynamic code HYDRA. A linear model is used to describe the effect of nuisance parameters on the analysis, allowing an analytic likelihood to be derived that can be determined from a small number of HYDRA runs and then used in existing advanced statistical analysis methods. This approach is applied to a recent experiment in order to determine the carbon opacity and X-ray drive; it is found that the inclusion of prior expert knowledge and fluctuations in capsule dimensions and chemical composition significantly improve the agreement between experiment and theoretical opacity calculations. A parameterisation of HYDRA results is used to test the application of both Markov chain Monte Carlo (MCMC) and genetic algorithm (GA) techniques to e...

  11. Multifluid interpenetration mixing in directly driven inertial confinement fusion capsule implosionsa...

    E-Print Network [OSTI]

    the sur- rounding shell and hydrogen fuel by instability growth has been recognized to cause performance

  12. Diagnosing inertial confinement fusion implosions at OMEGA and the NIF Using novel neutron spectrometry

    E-Print Network [OSTI]

    Casey, Daniel Thomas

    2012-01-01

    A novel neutron spectrometer, called the Magnetic Recoil Spectrometer (MRS), was designed, built, and implemented on the OMEGA laser facility and the National Ignition Facility (NIF) to measure the neutron spectra from ...

  13. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  14. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Hoffman, N.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Betti, R.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Kagan, G.; Molvig, K.; Bellei, C.; Amendt, P.; Landen, O.; Rygg, J. R.; Smalyuk, V. A.; Wilks, S.; Greenwood, A.; Nikroo, A.

    2014-05-19

    Shock-driven implosions of thin-shell capsules, or ''exploding pushers,'' generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D3He gas fills ranging from pure deuterium to pure 3He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations

  15. NNSA Defense Programs Inertial Confinement Fusion Ignition and High Yield Campaign

    E-Print Network [OSTI]

    to provide advanced assessment capabilities for stockpile stewardship ·Support stockpile refurbishment

  16. Inertial confinement fusion quarterly report: October--December 1995. Volume 6, Number 1

    SciTech Connect (OSTI)

    McEachern, R.L.; Carpenter, J.; Miguel, A.; Murphy, P.; Perez, J.; Schleich, D.

    1996-07-01

    This issue presents recent results from the ICF program at Lawrence Livermore National Laboratory in areas ranging from cryogenics to plasma instabilities. The article ``Metastable Crystal Structures of Solid Hydrogen`` describes primarily Raman spectroscopy studies of H{sub 2} and D{sub 2} films deposited at various rates and temperatures. All ignition target designs for ICF require a cryogenic deuterium-tritium (DT) fuel layer of uniform thickness and acceptable roughness. Solid DT layers, in particular, are easier to support in the presence of gravity and self-symmetrize due to self heating from the beta decay of tritium. The roughness of these films is closely related to their crystal structure, so it is important to understand film morphology under different deposition conditions. Three articles present different approaches to the study of plasma instabilities that lead to stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). In ``Modeling of Self-Focusing Experiments by Beam Propagation Codes,`` the authors describe the use of computer codes to model nonlinear effects during the propagation of laser beams through optical elements. Such codes have played a key role in the design of high-power lasers for ICF, both historically and for the NIF. The article ``Optical Scatter--A Diagnostic Tool to Investigate Laser Damage in KDP and DKDP`` examines the important problem of characterizing single crystals of KH{sub 2}PO{sub 4} (KDP) and deuterated KDP. These materials are used as optical switches, for frequency conversion in the Nova laser, and will be required for the NIF. The use of soft x-rays as a plasma probe is the topic of ``Soft X-Ray Interferometry.`` Interferometry of laser-produced plasmas presents a significant challenge, especially at electron densities exceeding 10{sup 20} cm{sup {minus}3}. The authors compare x-ray and optical interferometry of plasmas and show experimental results from a soft x-ray Mach-Zehnder interferometer.

  17. Inertial confinement fusion quarterly report, January--March 1993. Volume 3, No. 2

    SciTech Connect (OSTI)

    Amendt, P.A. [ed.

    1993-09-01

    This report discusses the following topics: High Fluence Third Harmonic Generation; Ultraviolet Induced Transient Absorption in KDP and Its Influence on Fourth Harmonic Frequency Conversion; Relativistic Semiclassical Atomic Transition Rates; Verification of OPAL Opacity Code Predictions for Conditions of Astrophysical Interest; Solid Hydrogen Surfaces; Large Aperture Sol-Gel Random Phase Plates for Beam Smoothing on Nova; and Neutron Time-of-Flight Ion Temperature Diagnostic for Nova.

  18. Electro-optical deflectors as a method of beam smoothing for Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Rothenberg, J.E.

    1997-01-01

    The electro-optic deflector is analyzed and compared to smoothing by spectral dispersion for efficacy as a beam smoothing method for ICF. It is found that the electro-optic deflector is inherently somewhat less efficient when compared either on the basis of equal peak phase modulation or equal generated bandwidth.

  19. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore »uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  20. Magnetized target fusion and fusion propulsion.

    SciTech Connect (OSTI)

    Kirkpatrick, R. C. (Ronald C.)

    2001-01-01

    Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

  1. Using fusion-product spectroscopy to study inertial fusion implosions, stopping power, and astrophysical nucleosynthesis at OMEGA and the NIF

    E-Print Network [OSTI]

    Zylstra, Alex B

    2015-01-01

    By measuring energetic charged-particle products from fusion reactions occurring in plasmas, nuclear diagnostics can be used to study the properties of the burning plasma, as a probe of the plasma, or of the fundamental ...

  2. Megajoule-class single-pulse KrF laser test facility as a logical step toward inertial fusion commercialization

    SciTech Connect (OSTI)

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    The cost and efficiency of megajoule-class KrF laser single pulse test facilities have been examined. A baseline design is described which illuminates targets with 5 MJ with shaped 10-ns pulses. The system uses 24 main amplifiers and operates with an optics operating fluence of 4.0 J/cm/sup 2/. This system has 9.0% efficiency and costs $200/joule. Tradeoff studies indicate that large amplifier modules and high fluences lead to the lowest laser system costs, but that only a 20% cost savings can be realized by going to amplifier modules larger than 200 kJ and/or fluences greater than 4 J/cm/sup 2/. The role of the megajoule-class single-pulse test facility towards inertial fusion commercialization will also be discussed.

  3. Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment

    SciTech Connect (OSTI)

    Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Shiraga, Hiroyuki; Azechi, Hiroshi; Inubushi, Yuichi

    2010-10-15

    Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 {mu}m and 100 ps of spatial and temporal resolutions, respectively.

  4. PUBLISHED ONLINE: 27 JUNE 2010 | DOI: 10.1038/NPHYS1701 Inertially confined plasma in an imploding bubble

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    thermonuclear fusion1,2 . Convincing evidence for fusion is yet to be shown, but the transient condi- tions-3 --comparable to the densities produced in laser-driven fusion experiments7 --with effective plasma acoustic cavitation in deuterated acetone12,13 resulting from intracavity fusion reactions (that is

  5. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOE Patents [OSTI]

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  6. IS C O N SIN FUSION TECHNOLOGY INSTITUTE

    E-Print Network [OSTI]

    for the Breeding Blanket of the ICF Tritium Production Reactor SIRIUS-T M.E. Sawan and E.A. Mogahed Fusion for the tritium production ICF reactor SIRIUS-T is presented. The blanket consists of alternating layers illuminated inertial confinement fusion (ICF) tritium production facility.1 The target is illuminated by 92 Kr

  7. Evidence for a New Path to the Self-Sustainment of the Thermonuclear Fusion Reactions in Magnetically Confined Burning Plasma Experiments

    E-Print Network [OSTI]

    Evidence for a New Path to the Self-Sustainment of the Thermonuclear Fusion Reactions in Magnetically Confined Burning Plasma Experiments

  8. Drift compression and final focus systems for heavy ion inertial fusion

    E-Print Network [OSTI]

    de Hoon, M.J.L.

    2001-01-01

    cheapest source of energy; an a?ordable cost of electricitycheapest source of energy in the near future, partic- ularly heavy ion fusion is expected to be able to provide electricity

  9. Fusion Energy Program Presentation to

    E-Print Network [OSTI]

    Physics GPPJPrograrn Direction TotalMFE Inertial Fusion Energy Less ProductivitySavings TotalFusion Energy

  10. R&D for a Soft X-Ray Free Electron Laser Facility

    E-Print Network [OSTI]

    Staples, John

    2009-01-01

    for Application to Inertial Confinement Fusion, 1998 SPIElaser systems for inertial confinement fusion (ICF). Early

  11. Optical Probing of CO2 Laser-Plasma Interactions at Near Critical Density

    E-Print Network [OSTI]

    Gong, Chao

    2015-01-01

    O. , et al. , Inertial confinement fusion and fast ignitorignition in inertial confinement fusion, ion beam cancer

  12. Recent U.S. advances in ion-beam-driven high energy density physics and heavy ion fusion

    E-Print Network [OSTI]

    2006-01-01

    physics and heavy ion fusion energy drivers, including bothoptions towards inertial fusion energy. Acknowledgements:fusion drivers for inertial fusion energy. 1. Introduction A

  13. DEMONSTRATING A TARGET SUPPLY FOR INERTIAL FUSION ENERGY D.T. Goodin,1 N.B. Alexander,1 L.C. Brown,1 D.A. Callahan,2 P. Ebey,3 D.T. Frey,1 R. Gallix,1 D. Geller,3

    E-Print Network [OSTI]

    Tillack, Mark

    DEMONSTRATING A TARGET SUPPLY FOR INERTIAL FUSION ENERGY D.T. Goodin,1 N.B. Alexander,1 L.C. Brown-5608 A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The technology to economically manufacture

  14. Joining techniques for a reduced activation 12Cr steel for inertial fusion energy

    SciTech Connect (OSTI)

    Hunt, R. M.; El-Dasher, B.; Choi, B. W.; Torres, S. G.

    2014-10-01

    At Lawrence Livermore National Laboratory, we are developing a reduced activation ferritic martensitic steel that is based on the ferritic martensitic steel HT-9. As a part of the development of this steel, we tested a series of welding processes for characterization, including conventional welds (electron beam, tungsten inert gas, and laser) as well as solid-state welds (hot isostatic pressing). We also heat treated the joints at various temperatures between 750 °C and 1050 °C to find a suitable normalization scheme. The modified HT-9 reduced activation ferritic martensitic steel appears highly suitable to welding and diffusion bonding. All welds showed good quality fusion zones with insignificant cracking or porosity. Additionally, a heat treatment schedule of 950 °C for one hour caused minimal grain growth while still converging the hardness of the base metal with that of the fusion and heat-affected zones. Also, modified HT-9 diffusion bonds that were created at temperatures of at least 950 °C for two hours at 103 MPa had interface tensile strengths of greater than 600 MPa. The diffusion bonds showed no evidence of increased hardness nor void formation at the diffusion bonded interface.

  15. On Stimulated Scattering of Laser Light in Inertial Fusion Energy Targets

    SciTech Connect (OSTI)

    Nikolic, Ljubomir; Skoric, Milos M.; Ishiguro, Seiji; Sato, Tetsuya

    2003-05-15

    Propagation of a laser light through regions of an underdense plasma is an active research topic in laser fusion. In particular, a large effort has been invested in studies of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), which can reflect laser energy and produce energetic particles to preheat a fusion energy target. Experiments, theory, and simulations agree on a complex interplay between various laser-plasma instabilities. By particle-in-cell simulations of an underdense electron plasma, apart from the standard SRS, a strong backscattering was found near the electron plasma frequency at densities beyond the quarter critical. This novel instability, recognized in recent experiments as stimulated laser scattering on a trapped electron-acoustic mode (SEAS), is absent from a classical theory of laser-parametric instabilities. A parametric excitation of SEAS instability is explained by a three-wave resonant decay of the incident laser light into a standing backscattered wave and a slow trapped electron-acoustic wave ({omega} <{omega}{sub p}). Large SEAS pulsations, eventually suppressed by relativistic heating of electrons, are observed in these simulations. This phenomenon seems relevant to future hohlraum target and fast ignition experiments.

  16. MIT Plasma Fusion Sciences Center IAP Seminar! Jan 10th, 2012!

    E-Print Network [OSTI]

    MIT Plasma Fusion Sciences Center IAP Seminar! Jan 10th, 2012! ! ! ! ! ! Otto Landen! Associate-07NA27344 Inertial Confinement Fusion Physics and Challenges*! #12;The NIF ignition experiments-degenerate fuel Spherical collapse of the shell produces a central hot spot surrounded by cold, dense main fuel

  17. Update for the Drag Force on an Injected Pellet and Target Fabrication for Inertial Fusion

    SciTech Connect (OSTI)

    Norimatsu, Takayoshi; Nagai, Keiji; Takeda, Tetsuji; Mima, Kunioki; Yamanaka, Tatsuhiko [Osaka University (Japan)

    2003-05-15

    To create a conceptual design of a tracking system of a target injected into a wet-walled, laser-fusion reactor, the influence of residual gas on the target trajectory is discussed based on a kinetic model, assuming all of the impinging molecules are adsorbed on the target surface. The model targets are a high-gain target for central ignition and a fast-ignition target with a cone as an optical guide for an additional heating laser. In the case of a fast-ignition target, tracking in the reactor might be skipped, depending on its condition, because of the heavy cone. Recent activities in fabrication of the fast-ignition target are briefly mentioned.

  18. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    SciTech Connect (OSTI)

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  19. Measurements of relativistic effects in collective Thomson scattering at electron temperatures less than 1 keV

    E-Print Network [OSTI]

    Ross, James Steven

    2010-01-01

    Thomson scattering fom inertial-confinement-fusion hohlraumpropagation through inertial confinement fusion hohlraumment Fusion Plasmas Inertial confinement fusion (ICF) is the

  20. Convective heating analysis of an IFE target in a high temperature, low Reynolds number xenon environment

    E-Print Network [OSTI]

    Holdener, Dain Steffen

    2011-01-01

    Et Al. Symmetric Inertial Confinement Fusion Implostions atAdvances in Inertial Confinement Fusion at the National2005): Chapter 2: Inertial Confinement Fusion 2.1: Fusion

  1. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    E-Print Network [OSTI]

    2005-01-01

    heavy ion inertial fusion energy. ACKNOWLEDGEMENTS Thisheavy ion inertial fusion energy. These include: neutralizedto drift axially). For fusion energy applications, either

  2. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  3. IS C O N SIN FUSION TECHNOLOGY INSTITUTE

    E-Print Network [OSTI]

    . Introduction Investigation of inertial confinement fusion (ICF) using symmetrically-illuminated direct drive OF WISCONSIN MADISON WISCONSIN SIRIUS-T, A Symmetrically Illuminated ICF Tritium Production Facility I Illuminated ICF Tritium Production Facility I.N. Sviatoslavsky, M.E. Sawan, G.A. Moses, G.L. Kulcinski, R

  4. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  5. On anomalous plasma transport in the edge of magnetic confinement devices

    E-Print Network [OSTI]

    Angus, Justin Ray

    2012-01-01

    promising magnetic confinement devices for a fusion reactorthermonuclear fusion in magnetic confinement devices.what is fusion energy, how do magnetic confinement devices

  6. Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF

    E-Print Network [OSTI]

    Ma, Tammy Yee Wing

    2010-01-01

    1.1 Basics of Inertial Confinement Fusion with High Poweredguided fast-ignition inertial confinement fusion, Phys. Rev.Fast-Ignition Inertial Confinement Fusion,” Physical Review

  7. Space-Charge Limits on the Transport of Ion Beams in a Long Alternating Gradient System

    E-Print Network [OSTI]

    Tiefenback, M.G.

    2011-01-01

    13, [6| Denis Keefe. Inertial Confinement Fusion. Annual andconfinement." Inertial confinement fusion, or ICF, is aapproach to inertial confinement fusion (ICF), however,

  8. Numerical and experimental studies of IFE target layering in a cryogenic fluidized bed

    E-Print Network [OSTI]

    Boehm, Kurt Julian

    2009-01-01

    target for inertial confinement fusion“, J. Vac. Sci.Tritium”, Inertial Confinement Fusion, ICF Quarterly Report,set up by the Inertial Confinement Fusion (ICF) group at

  9. AN INTENSE NON-RELATIVISTIC CESIUM ION BEAM

    E-Print Network [OSTI]

    Lampel, M.C.

    2010-01-01

    Crit. Overview of Inertial Confinement Fusion and the LBLas drivers for inertial confinement fusion (ICF). Multiplebrief discussion of the inertial confinement fusion program.

  10. Lawrence Berkeley Laboratory Institutional Plan FY 1993-98

    E-Print Network [OSTI]

    Chartock, Michael

    2009-01-01

    tritium pellet for inertial confinement fusion. For magneticas drivers for inertial confinement fusion. The Laboratoryresearch for inertial-confinement fusion and in neutral-beam

  11. Investigation of the dynamics and emission characteristics of x-pinch plasmas

    E-Print Network [OSTI]

    Haas, David Michael

    2011-01-01

    imaging of inertial confinement fusion capsules, AppliedImaging of Inertial Confinement Fusion Capsules Appliedimaging of inertial confinement fusion capsules, Applied

  12. The effects of pre-formed plasma on the generation and transport of fast electrons in relativistic laser-solid interactions

    E-Print Network [OSTI]

    Paradkar, Bhooshan S.

    2012-01-01

    of implosion in inertial confinement fusion: Shock timingfast-ignition inertial confinement fusion. Physical reviewscheme of inertial confinement fusion. The efficiency with

  13. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01

    Inertial Confinement Fusion . . . . . . . . . . . . . . .approach to Inertial Confinement Fusion re- quires laser-to ignite an inertial confinement fusion reac- Alfv´en

  14. Sputter target erosion and its effects on long duration DC magnetron sputter coating

    E-Print Network [OSTI]

    Schoff, Michael Elliott

    2009-01-01

    material. For Inertial Confinement Fusion research, a batchshells for Inertial Confinement Fusion (ICF), the sputteringperfect shell for Inertial Confinement Fusion. APPENDIX On

  15. Fusion utility in the Knudsen layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-09-15

    In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  16. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    E-Print Network [OSTI]

    Joglekar, A S; Fox, W; Bhattacharjee, A

    2015-01-01

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\\`enic flows. We find that this mechanism is only relevant in a high $\\beta$ plasma. However, the Hall parameter $\\omega_c \\tau_{ei}$ can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  17. Inertial confinement fusion target component fabrication and technology development support. Annual report, October 1, 1996--September 30, 1997

    SciTech Connect (OSTI)

    Gibson, J. [ed.

    1998-03-01

    This report documents the technical activities of the period October 1, 1996 through September 30, 1997. During this period, GA and their partner Schafer Corporation were assigned 13 formal tasks in support of the ICF program and its five laboratories. A portion of the effort on these tasks included providing direct {open_quotes}Onsite Support{close_quotes} at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), and Sandia National Laboratory Albuquerque (SNLA). Over 700 gold-plated hohlraum mandrels were fabricated and delivered to LLNL, LANL and SNLA. More than 1600 glass and plastic target capsules were produced for LLNL, LANL, SNLA and University of Rochester/Laboratory for Laser Energetics (UR/LLE). Nearly 2000 various target foils and films were delivered for Naval Research Lab (NRL) and UR/LLE in FY97. This report describes these target fabrication activities and the target fabrication and characterization development activities that made the deliveries possible. The ICF program is anticipating experiments at the OMEGA laser and the National Ignition Facility (NIF) which will require targets containing cryogenic layered D{sub 2} or deuterium-tritium (DT) fuel. This project is part of the National Cryogenic Target Program and support experiments at LLNL and LANL to generate and characterize cryogenic layers for these targets. During FY97, significant progress was made in the design and component testing of the OMEGA Cryogenic Target System that will field cryogenic targets on OMEGA. This included major design changes, reduction in equipment, and process simplifications. This report summarizes and documents the technical progress made on these tasks.

  18. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation.

  19. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    SciTech Connect (OSTI)

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  20. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect (OSTI)

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100?ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  1. Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures

    E-Print Network [OSTI]

    Anomalies in Thermonuclear Fuel Mixtures Peter Amendt, O. L. Landen, and H. F. Robey Lawrence Livermore. Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deu- terium fuels [J. D. Lindl with deuterium (D2 or DD) fuel [5] in direct-drive ICF implo- sions at the OMEGA laser facility [6]. Compared

  2. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    SciTech Connect (OSTI)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-07-15

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10{sup 4} T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ?50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities.

  3. Impeding Hohlraum Plasma Stagnation in Inertial-Confinement Fusion C. K. Li,1,* F. H. Seguin,1

    E-Print Network [OSTI]

    gold (Au) or uranium], which causes motion of the laser ab- sorption region and alters the spatial asymmetrically compress the capsule. To achieve the required drive symmetry, the motion of the laser-deposition

  4. Using Nuclear data and Monte-Carlo techniques to study areal density and mix in D˛ inertial confinement fusion implosions

    E-Print Network [OSTI]

    Kurebayashi, Shinya, 1976-

    2004-01-01

    Measurements from three classes of direct-drive implosions at the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] were combined with Monte-Carlo simulations to investigate models for determining ...

  5. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  6. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2010-11-15

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  7. EPS Conf. on Contr. Fusion and Plasma Physics, 2001, P3.11 Energy Confinement in Steady State ELMy H-modes in JET

    E-Print Network [OSTI]

    28 th EPS Conf. on Contr. Fusion and Plasma Physics, 2001, P3.11 Energy Confinement in Steady State Association, D-85748 Garching, GERMANY; 3Laboratory for Plasma Physics, ERM/KMS, Trilateral Euregio Cluster Jülich, Germany; 5EFDA-CSU, D-85748 Garching, Germany; 6PPPL, Princeton, Univ, NJ, USA. 1. INTRODUCTION

  8. LLE 1998 annual report, October 1997--September 1998. Inertial fusion program and National Laser Users` Facility program

    SciTech Connect (OSTI)

    NONE

    1999-01-01

    This report summarizes research at the Laboratory for Laser Energetics (LLE), the operation of the National Laser Users` Facility (NLUF), and programs involving the education of high school, undergraduate, and graduate students for FY98. Research summaries cover: progress in laser fusion; diagnostic development; laser and optical technology; and advanced technology for laser targets.

  9. Assess the key physics that underpins high-hydro coupling-efficiency in NDCX-II experiments and high-gain heavy ion direct drive target designs using proven hydro codes like HYDRA

    E-Print Network [OSTI]

    Barnard, J. J.

    2010-01-01

    2] J. D . Lindl, Inertial Confinement Fusion, The Quest forConclusion In inertial confinement fusion energy experiments

  10. National Energy Research Scientific Computing Center 2007 Annual Report

    E-Print Network [OSTI]

    Hules, John A.

    2008-01-01

    concept for inertial confinement fusion (ICF). ICF is theStorage System Inertial confinement fusion Institute of

  11. Extreme-ultraviolet radiation transport in small scale length laser-produced tin plasmas

    E-Print Network [OSTI]

    Sequoia, Kevin Lamar Williams

    2009-01-01

    drive approach to inertial confinement fusion and the targetthe study of inertial confinement fusion [12, 13], soft X-

  12. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    E-Print Network [OSTI]

    Kaganovich, I.D.

    2010-01-01

    4,5,6,7 , inertial confinement fusion, in particular, fastfor example, in inertial confinement fusion applications ,

  13. Anomalous electron-ion energy coupling in electron drift wave turbulence

    E-Print Network [OSTI]

    Zhao, Lei

    a Century of Magnetic Confinement Fusion Research, Instituteto realize fusion are magnetic and inertial confinement. The

  14. Time-resolved visible and extreme ultraviolet spectroscopy of laser-produced tin plasma

    E-Print Network [OSTI]

    O'Shay, Joseph Fred

    2007-01-01

    application to inertial confinement fusion (ICF) [1], x-rayplasma [92 – 94], inertial confinement fusion [95], andconfinement of an expanding laser-produced plasma," Inertial Fusion

  15. Alternate Applications of Fusion - Production of Radioisotopes

    SciTech Connect (OSTI)

    Kulcinski, G.L.; Weidner, J.; Cipiti, B.; Ashley, R.P.; Santarius, J.F.; Murali, S.K.; Piefer, G.; Radel, R. [University of Wisconsin-Madison (United States)

    2003-09-15

    A major effort to find near-term, non-electric applications of fusion energy has shown that the production of radioisotopes is attractive. The use of the D{sup 3}He fusion reaction to produce Positron Emission Tomography (PET) isotopes is described. An Inertial Electrostatic Confinement (IEC) device is particularly well suited to produce low levels of high-energy (14.7 MeV) protons, which in turn, can produce short-lived PET isotopes. The IEC device at University of Wisconsin has been modified to investigate the potential of this process to be commercially attractive.

  16. Method and system to directly produce electrical power within the lithium blanket region of a magnetically confined, deuterium-tritium (DT) fueled, thermonuclear fusion reactor

    DOE Patents [OSTI]

    Woolley, Robert D. (Belle Mead, NJ)

    1999-01-01

    A method for integrating liquid metal magnetohydrodynamic power generation with fusion blanket technology to produce electrical power from a thermonuclear fusion reactor located within a confining magnetic field and within a toroidal structure. A hot liquid metal flows from a liquid metal blanket region into a pump duct of an electromagnetic pump which moves the liquid metal to a mixer where a gas of predetermined pressure is mixed with the pressurized liquid metal to form a Froth mixture. Electrical power is generated by flowing the Froth mixture between electrodes in a generator duct. When the Froth mixture exits the generator the gas is separated from the liquid metal and both are recycled.

  17. Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    in the boundary of the jet. Even though the magnetic pressure PB B2 /8 exceeded both the plasma ram pressure Pr nm evolution, astrophysical jets, etc. 1,2 . In the field of inertial fusion, confinement of an expanding of the plasma jet in the plane perpendicular to the B field as due to curvature of the polarization fields

  18. Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova

    E-Print Network [OSTI]

    Cesare, Bernardo

    the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING Universitŕ degli Studi di Padova in agreement

  19. Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    E-Print Network [OSTI]

    Prost, Lionel Robert

    2007-01-01

    Ion Injector for the Fusion Energy Research Program, inPotential of Magnetic Fusion Energy: The Interaction ofProgram, Inertial fusion energy: Opportunity for fusion

  20. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  1. The physics of antimatter induced fusion and thermonuclear explosions

    E-Print Network [OSTI]

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    1987-01-01

    The possibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either D or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. We conclude that the financial and energy investments needed to produce such amounts of antiprotons would confine applications of antimatter triggered thermonuclear devices to the military domain.

  2. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01

    approaches to fusion are magnetic confinement fusion (MCF)inertial confinement fusion (ICF), which use magnetic fields

  3. Prospects for fusion neutron NPLs

    SciTech Connect (OSTI)

    Petra, M.; Miley, G.H.; Batyrbekov, E.; Jassby, D.L.; McArthur, D. [Fusion Studies Laboratory, University of Illinois, 100 NEL, 103 South Goodwin Avenue, Urbana, Illinois 61801-2984 (United States)

    1996-05-01

    To date, nuclear pumped lasers (NPLs) have been driven by neutrons from pulsed research fission reactors. However, future applications using either a Magnetic Confinement Fusion (MCF) neutron source or an Inertial Confinement Fusion (ICF) source appear attractive. One unique combination proposed earlier would use a neutron feedback NPL driver in an ICF power plant. 14-MeV D-T neutrons (and 2.5-MeV D-D neutrons) provide a unique opportunity for a neutron recoil pumped NPL. Alternatively, these neutrons can be thermalized to provide thermal-neutron induced reactions for pumping. Initial experience with a fusion-pumped NPL can possibly be obtained using the D-T burn experiments in progress/planning at the Tokamak Fusion Test Reactor (TFTR) and Joint European Torus (JET) tokamak devices or at the planned National Ignition Facility (NIF) high-gain ICF target experimental facility. With neutron fluxes presently available, peak thermalized fluxes at a test laser in the shield region could exceed 10{sup 14} n/cm{sup 2}/sec. Several low-threshold NPLs might be utilized in such an experiment, including the He-Ne-H{sub 2} NPL and the Ar-Xe NPL. Experimental set-ups for both the tokamak and the NIF will be described. {copyright} {ital 1996 American Institute of Physics.}

  4. MagnetoInertial Fusion Description

    E-Print Network [OSTI]

    field reversed configuration (FRC) plasma to achieve kilovolt temperatures. The Univ. of Rochester has, imploded by the Z-machine, which will compress a laser-preheated magnetized DT target plasma (MagLIF). Los array of gun-driven plasma jets to achieve assembly and implosion of a plasma liner (PLX) without

  5. Laser Inertial Fusion-based

    E-Print Network [OSTI]

    as thermal insulator to protect capsule during injection: --Radiation heating to capsule: ­ Polyimide transmits in the IR ­ Radiation shield (Al/polyimide/Al) gives 99% reflectivity --Convective heating of polyimide window dominates: ­ Heat transfer coefficient ~8 W/m2-K at window edge ­ Window heats to ~80

  6. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  7. Nuclear fusion. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1993-08-01

    The bibliography contains citations concerning research, development, and assessment of nuclear fusion for applications in reactor engineering and technology. Citations discuss various engineering problems associated with reactor design, magnetic systems, nuclear materials, plasma generation and control, blankets, environments, economics, and safety. Also discussed are tokamak devices, stellarators, inertial confinement, reflectometry, and magnetohydrodynamics. Studies sponsored by the Department of Energy are not included. (Contains a minimum of 249 citations and includes a subject term index and title list.)

  8. How much laser power can propagate through fusion plasma?

    E-Print Network [OSTI]

    Pavel M. Lushnikov; Harvey A. Rose

    2006-03-28

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data, and suggest a way to increase that maximum by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and suggests the indirect control of backscatter through manipulation of plasma ionization state or acoustic damping.

  9. Fokker–Planck kinetic modeling of suprathermal ?-particles in a fusion plasma

    SciTech Connect (OSTI)

    Peigney, B.E.

    2014-12-01

    We present an ion kinetic model describing the transport of suprathermal ?-particles in inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (?-particles) at a kinetic level. The model assumes spherical symmetry in configuration space and axial symmetry in velocity space around the mean flow velocity. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal ?-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are then validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  10. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect (OSTI)

    Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2008-01-21

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  11. Field-reversed Configuration Plasma for Magnetized Target Fusion Manuscript received September 8, 2005. Revised January 16, 2006. This work was supported by the Department of Energy--

    E-Print Network [OSTI]

    . INTRODUCTION Approaches to plasma fusion research are usually categorized as either Magnetic confinement Fusion

  12. Uniformity of fuel target implosion in Heavy Ion Fusion

    E-Print Network [OSTI]

    Kawata, S; Suzuki, T; Karino, T; Barada, D; Ogoyski, A I; Ma, Y Y

    2015-01-01

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling he...

  13. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01

    Lithium- Injection Fusion-Energy (HYLIFE)Reactor," UCRL-Aspects of Magnetic Fusion Energy," Lawrence Livermorefor the Inertial Fusion Energy Experiments," proceedings of

  14. Comments on the Status of and Future Possibilities for the U. S. Magnetic Confinement Fusion Research Program

    E-Print Network [OSTI]

    the plasma interacts with a wall that is closely located to the body of the plasma. This area may also, it is dominated by research on the tokamak approach. That particular approach has now been studied for nearly that the cross-field diffusion constants in the best tokamak confinement studies are four to five orders larger

  15. Method and apparatus to produce and maintain a thick, flowing, liquid lithium first wall for toroidal magnetic confinement DT fusion reactors

    DOE Patents [OSTI]

    Woolley, Robert D. (Hillsborough, NJ)

    2002-01-01

    A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.

  16. Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF (Inertial-Confinement-Fusion) driver

    SciTech Connect (OSTI)

    Kim, C.H.

    1987-04-01

    This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing.

  17. Species separation in inertial confinement fusion fuels C. Bellei, P. A. Amendt, S. C. Wilks, M. G. Haines, D. T. Casey et al.

    E-Print Network [OSTI]

    ) High-temperature inert gas plasma magnetohydrodynamic energy conversion by using linear-shaped Faraday- terium and tritium (DT) to ion temperatures >10 keV and ar- eal densities qR > 0:3 g=cm2 . Compression

  18. A novel method for modeling the neutron time of flight (nTOF) detector response in current mode to inertial confinement fusion experiments.

    SciTech Connect (OSTI)

    Nelson, Alan J.; Cooper, Gary Wayne; Ruiz, Carlos L.; Chandler, Gordon Andrew; Fehl, David Lee; Hahn, Kelly Denise; Leeper, Ramon Joe; Smelser, Ruth Marie; Torres, Jose A.

    2013-09-01

    There are several machines in this country that produce short bursts of neutrons for various applications. A few examples are the Zmachine, operated by Sandia National Laboratories in Albuquerque, NM; the OMEGA Laser Facility at the University of Rochester in Rochester, NY; and the National Ignition Facility (NIF) operated by the Department of Energy at Lawrence Livermore National Laboratory in Livermore, California. They all incorporate neutron time of flight (nTOF) detectors which measure neutron yield, and the shapes of the waveforms from these detectors contain germane information about the plasma conditions that produce the neutrons. However, the signals can also be %E2%80%9Cclouded%E2%80%9D by a certain fraction of neutrons that scatter off structural components and also arrive at the detectors, thereby making analysis of the plasma conditions more difficult. These detectors operate in current mode - i.e., they have no discrimination, and all the photomultiplier anode charges are integrated rather than counted individually as they are in single event counting. Up to now, there has not been a method for modeling an nTOF detector operating in current mode. MCNPPoliMiwas developed in 2002 to simulate neutron and gammaray detection in a plastic scintillator, which produces a collision data output table about each neutron and photon interaction occurring within the scintillator; however, the postprocessing code which accompanies MCNPPoliMi assumes a detector operating in singleevent counting mode and not current mode. Therefore, the idea for this work had been born: could a new postprocessing code be written to simulate an nTOF detector operating in current mode? And if so, could this process be used to address such issues as the impact of neutron scattering on the primary signal? Also, could it possibly even identify sources of scattering (i.e., structural materials) that could be removed or modified to produce %E2%80%9Ccleaner%E2%80%9D neutron signals? This process was first developed and then applied to the axial neutron time of flight detectors at the ZFacility mentioned above. First, MCNPPoliMi was used to model relevant portions of the facility between the source and the detector locations. To obtain useful statistics, variance reduction was utilized. Then, the resulting collision output table produced by MCNPPoliMi was further analyzed by a MATLAB postprocessing code. This converted the energy deposited by neutron and photon interactions in the plastic scintillator (i.e., nTOF detector) into light output, in units of MeVee%D1%84 (electron equivalent) vs time. The time response of the detector was then folded into the signal via another MATLAB code. The simulated response was then compared with experimental data and shown to be in good agreement. To address the issue of neutron scattering, an %E2%80%9CIdeal Case,%E2%80%9D (i.e., a plastic scintillator was placed at the same distance from the source for each detector location) with no structural components in the problem. This was done to produce as %E2%80%9Cpure%E2%80%9D a neutron signal as possible. The simulated waveform from this %E2%80%9CIdeal Case%E2%80%9D was then compared with the simulated data from the %E2%80%9CFull Scale%E2%80%9D geometry (i.e., the detector at the same location, but with all the structural materials now included). The %E2%80%9CIdeal Case%E2%80%9D was subtracted from the %E2%80%9CFull Scale%E2%80%9D geometry case, and this was determined to be the contribution due to scattering. The time response was deconvolved out of the empirical data, and the contribution due to scattering was then subtracted out of it. A transformation was then made from dN/dt to dN/dE to obtain neutron spectra at two different detector locations.

  19. Inertial-confinement fusion-reactor dry-wall study. Final report, 13 August 1981-31 March 1983. Report WAESD-TR-83-0010

    SciTech Connect (OSTI)

    Sucov, E.W.

    1983-04-01

    The Westinghouse ICF Dry Wall Study was undertaken (1) to explore the practical implications of using a Ta coating to protect the steel first wall of an ICF reactor against the power pulses from the explosions of a pellet containing Ta as the heavy element and (2) to determine if a feasible design for improved safety and lower cost in a blanket could be developed using solid lithium compound in place of liquid lithium as the tritium breeder. Three coating techniques were examined; plasma spray, chemical vapor deposition and explosive bonding. An evaporation code and a sputtering code which were developed at LANL, were used to calculate the loss rate of Ta due to these processes after each pellet explosion. A simulation experiment to verify the CHART D calculations was investigated. Sources of pulsed x-rays and ions to simulate the debris from each pellet explosion were identified. The CANDID code was developed to permit evaluation of candidate metals for coating the steel based on criteria such as surface and bulk temperature rise, thermal stress in the creating layer and evaporation rate. Material properties were stored in the memory and were called upon to calculate evaluation algorithms. Of twenty original candidates, six remain: Re, Ir, Mo, Cr, W, Ta and Nb. Further evaluation would include parameters such as cost, manufacturability, radioactive decay rate, etc.

  20. Vision-Aided Inertial Navigation for Flight Control

    E-Print Network [OSTI]

    Johnson, Eric N.

    wu@ae.gatech.edu. Lockheed Martin Assistant Professor of Avionics Integration, Aerospace Engineering from the fusion of this information with inertial and heading measurements. Simulation and flight test

  1. The search for solid state fusion lasers

    SciTech Connect (OSTI)

    Weber, M.J. )

    1989-04-01

    Inertial confinement fusion (ICF) research puts severe demands on the laser driver. In recent years large, multibeam Nd:glass lasers have provided a flexible experimental tool for exploring fusion target physics because of their high powers, variable pulse length and shape, wavelength flexibility using harmonic generation, and adjustable that Nd:glass lasers can be scaled up to provide a single-phase, multi-megajoule, high-gain laboratory microfusion facility, and gas-cooled slab amplifiers with laser diode pump sources are viable candidates for an efficient, high repetition rate, megawatt driver for an ICF reactor. In both applications requirements for energy storage and energy extraction drastically limit the choice of lasing media. Nonlinear optical effects and optical damage are additional design constraints. New laser architectures applicable to ICF drivers and possible laser materials, both crystals and glasses, are surveyed. 20 refs., 2 figs.

  2. Fusion of WiFi, Smartphone Sensors and Landmarks Using the Kalman Filter for Indoor Localization

    E-Print Network [OSTI]

    Chen, Zhenghua; Zou, Han; Jiang, Hao; Zhu, Qingchang; Soh, Yeng; Xie, Lihua

    2015-01-01

    T.T. GPS/MEMS INS Data Fusion and Map Matching in UrbanP. ; Besada, J.A. ; Casar, J.R. Fusion of RSS and inertialConference on Information Fusion (FUSION), Istanbul, Turkey,

  3. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  4. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01

    critical issues in magnetic confinement fusion research. TheMHD) equations in magnetic fusion confinement geometries 8 .Fusion Simulation Program (FSP) mission will be to provide predictive capability for the behavior of magnetic confinement

  5. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01

    1.1 Concept of Inertial Confinement Fusion . 1.2 FastFigure 1.3: Inertial Confinement Fusion: (a) Direct laser4] J. D. Lindl, Inertial Confinement Fusion. New York, NY:

  6. Multiple excitation regenerative amplifier inertial confinement system

    DOE Patents [OSTI]

    George, Victor E. [Livermore, CA; Haas, Roger A. [Pleasanton, CA; Krupke, William F. [Pleasanton, CA; Schlitt, Leland G. [Livermore, CA

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation.

  7. Multiple excitation regenerative amplifier inertial confinement system

    DOE Patents [OSTI]

    George, V.E.; Haas, R.A.; Krupke, W.F.; Schlitt, L.G.

    1980-05-27

    The invention relates to apparatus and methods for producing high intensity laser radiation generation which is achieved through an optical amplifier-storage ring design. One or two synchronized, counterpropagating laser pulses are injected into a regenerative amplifier cavity and amplified by gain media which are pumped repetitively by electrical or optical means. The gain media excitation pulses are tailored to efficiently amplify the laser pulses during each transit. After the laser pulses have been amplified to the desired intensity level, they are either switched out of the cavity by some switch means, as for example an electro-optical device, for any well known laser end uses, or a target means may be injected into the regenerative amplifier cavity in such a way as to intercept simultaneously the counterpropagating laser pulses. One such well known end uses to which this invention is intended is for production of high density and temperature plasmas suitable for generating neutrons, ions and x-rays and for studying matter heated by high intensity laser radiation. 11 figs.

  8. Laboratory for Laser Energetics annual report, 1 October 1991--30 September 1992. Inertial Fusion Program and National Laser Users Facility Program

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This is an annual report covering research progress on laser fusion and the OMEGA Upgrade design and development. In laser fusion, line-spectroscopy methods were demonstrated to be useful in diagnosing the core temperature and densities of polymer-shell targets; a theoretical analysis of nonlocal heat transport effects on filamentation of light in plasmas confirms that the principle mechanism driving filamentation is kinetic thermal rather than ponderomotive; a new method (spatial beam deflection) to produce laser pulses of arbitrary shape was developed; laser-plasma x-ray emission was measured using photodiode arrays; experiments on long-scale-length plasmas have shown that smoothing by spectral dispersion has proven effective in reducing Raman scattering; a method for increasing the gas-retention time of polymer shell targets was developed by overcoating them with aluminum. Experiments relating to the OMEGA Upgrade are described.

  9. PHYSICS, COMPUTER SCIENCE AND MATHEMATICS DIVISION. ANNUAL REPORT

    E-Print Network [OSTI]

    Birge, Robert W.

    2011-01-01

    Ion Beams for Inertial Confinement Fusion, A. Faltens, D. L.systems for inertial-confinement fusion power plants. (D. L.

  10. Effects of self-heating and phase change on the thermal profile of hydrogen isotopes in confined geometries

    SciTech Connect (OSTI)

    Baxamusa, S. Field, J.; Dylla-Spears, R.; Kozioziemski, B.; Suratwala, T.; Sater, J.

    2014-03-28

    Growth of high-quality single-crystal hydrogen in confined geometries relies on the in situ formation of seed crystals. Generation of deuterium-tritium seed crystals in a confined geometry is governed by three effects: self-heating due to tritium decay, external thermal environment, and latent heat of phase change at the boundary between hydrogen liquid and vapor. A detailed computation of the temperature profile for liquid hydrogen inside a hollow shell, as is found in inertial confinement fusion research, shows that seeds are likely to form at the equatorial plane of the shell. Radioactive decay of tritium to helium slowly alters the composition of the hydrogen vapor, resulting in a modified temperature profile that encourages seed formation at the top of the shell. We show that the computed temperature profile is consistent with a variety of experimental observations.

  11. Efficient evaluation of beam ion confinement in spherical tokamaks Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, Massachusetts 02139

    E-Print Network [OSTI]

    Egedal, Jan

    of the beam confinement. Losses due to nonadiabatic changes in the magnetic moment are also evaluated. Due: 10.1063/1.1569490# I. INTRODUCTION One of the important methods for heating magnetically confinedEfficient evaluation of beam ion confinement in spherical tokamaks J. Egedal Massachusetts

  12. Efficient evaluation of beam ion confinement in spherical tokamaks Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, Massachusetts 02139

    E-Print Network [OSTI]

    Egedal, Jan

    of the beam confinement. Losses due to nonadiabatic changes in the magnetic moment are also evaluated. Due: 10.1063/1.1569490 I. INTRODUCTION One of the important methods for heating magnetically confinedEfficient evaluation of beam ion confinement in spherical tokamaks J. Egedal Massachusetts

  13. Nuclear Fusion: ITER Project Update

    E-Print Network [OSTI]

    Magnetic Fusion Research is a World-wide Endeavor... #12;U.S. ITER / Sauthoff Slide 3 Roadmap · Overview Slide 13 Roadmap · Overview of fusion and magnetic confinement systems · Demonstrating the scientific

  14. Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory

    E-Print Network [OSTI]

    Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

    1994-01-01

    California 9~516 This work explores the economy of scale for multi- unit inertial fusion energy power plants

  15. Workshop on Accelerators for Heavy Ion Fusion Summary Report of the Workshop

    E-Print Network [OSTI]

    Seidl, P.A.

    2013-01-01

    Molten-Salt Inertial Fusion Energy Power Plant Design— FinalTargets for Heavy Ion Fusion Energy," http:// ahif.lbl.gov/to develop heavy-ion fusion energy. 3. Economy of scale

  16. Scaling law of electron confinement in a zero beta polywell device

    SciTech Connect (OSTI)

    Gummersall, David V.; Carr, Matthew; Cornish, Scott; Kachan, Joe [Department of Plasma Physics, School of Physics A28, University of Sydney, NSW 2006 (Australia)] [Department of Plasma Physics, School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2013-10-15

    Orbital theory simulation was applied to an electron trap that uses a cube shaped magnetic cusp known as a Polywell device. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement. Analytical expressions of the electron confinement time and average position within the device were obtained in terms of the current in the field coils, the dimensions of the device, and the kinetic energy of the electrons. Comparisons with numerical simulations showed good agreement over a parameter range that spanned several orders of magnitude for the current. In addition, power loss from electrons exiting the trap was estimated in order to obtain minimum power requirement to maintain a virtual cathode within the device.

  17. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOE Patents [OSTI]

    Lasche, G.P.

    1983-09-29

    The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

  18. Design, fabrication and measurement of a novel cooling arm for fusion energy source

    E-Print Network [OSTI]

    Jiang, Shui-Dong; Mei, Jia-Bin; Yang, Bin; Yang, Chun-Sheng

    2012-01-01

    The issues of energy and environment are the main constraint of sustainable development in worldwide. Nuclear energy source is one important optional choice for long term sustainable development. The nuclear energy consists of fusion energy and fission energy. Compared with fission, inertial confinement fusion (ICF) is a kind of clean fusion energy and can generate large energy and little environmental pollution. ICF mainly consists of peripheral driver unit and target. The cooling arm is an important component of the target, which cools the hohlraum to maintain the required temperature and positions the thermal-mechanical package (TMP) assembly. This paper mainly investigates the cooling arm, including the structural design, the verticality of sidewall and the mechanical properties. The TMP assembly is uniformly clamped in its radial when using (111) crystal orientation silicon to fabricate cooling arm. The finite element method is used to design the structure of cooling arm with 16 clamping arms, and the ME...

  19. Antimatter induced fusion and thermonuclear explosions

    E-Print Network [OSTI]

    Gsponer, A; Gsponer, Andre; Hurni, Jean-Pierre

    1987-01-01

    The feasibility of using antihydrogen for igniting inertial confinement fusion pellets or triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations required to start a thermonuclear burn wave in either DT or Li_2DT is found to be about 10^{21}/k^2, where k is the compression factor of the fuel to be ignited. In the second part, the technologies for producing antiprotons with high energy accelerator systems and the means for manipulating and storing microgram amounts of antihydrogen are examined. While there seems to be no theoretical obstacles to the production of 10^{18} antiprotons per day (the amount required for triggering one thermonuclear bomb), the construction of such a plant involves several techniques which are between 3 and 4 orders of magnitude away from present day technology.

  20. Study of internal magnetic field via polarimetry in fusion plasmas

    E-Print Network [OSTI]

    Zhang, Jie

    2013-01-01

    process that powers the stars: the fusion of atomic nuclei2011]. In a star the confinement of the fusion plasma is

  1. Laser Fusion Energy The High Average Power

    E-Print Network [OSTI]

    Laser Fusion Energy and The High Average Power Program John Sethian Naval Research Laboratory Dec for Inertial Fusion Energy with lasers, direct drive targets and solid wall chambers Lasers DPPSL (LLNL) Kr posters Snead Payne #12;Laser(s) Goals 1. Develop technologies that can meet the fusion energy

  2. Fusion Development Path Panel Preliminary Report

    E-Print Network [OSTI]

    demonstration devices will be built around the world. In order for a future US fusion industry to be competitive facilities around the world, and include both magnetic fusion energy (MFE) and inertial fusion energy (IFE Laboratory, New Mexico · Stewart Prager, University of Wisconsin · Ned Sauthoff, Princeton Plasma Physics

  3. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Micro-engineered first wall tungsten armor for high average power laser fusion energy systems is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first is a coordinated effort to develop laser inertial fusion energy [1]. The first stage of the HAPL program

  4. Fusion Engineering and Design 81 (2006) 16391645 Thermo-mechanical analysis of a micro-engineered

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2006-01-01

    Fusion Engineering and Design 81 (2006) 1639­1645 Thermo-mechanical analysis of a micro laser (HAPL) program goal is to develop a laser inertial fusion reactor using a solid first wall (FW). The FW of the inertial fusion energy (IFE) chamber is exposed to high energy photon, particle

  5. Suggested Path to Develop Inertial Fusion Energy

    E-Print Network [OSTI]

    experiments NIF Polar DD and LPI experiments Nike LPI and hydro experiments 3-5 kJ full intensity KrF IFE beamline ~20 kJ on target full intensity & large plasma Simulations & Theory 2D hydro-implosions Develop better physics models. Simulations & theory 3D hydro-implosions Improved LPI simulations Present & near

  6. U. S. inertial fusion program overview

    SciTech Connect (OSTI)

    Schriever, R.L.

    1986-01-21

    The status of laser and light ion beam research and development is discussed in the context of the recently completed review of the U.S. program by a committee of the National Academy of Sciences.

  7. Professor Richard D. Hazeltine, Chair Fusion Energy Sciences Advisory Committee

    E-Print Network [OSTI]

    Professor Richard D. Hazeltine, Chair Fusion Energy Sciences Advisory Committee Institute, and include both magnetic fusion energy (MFE) and inertial fusion energy (IFE), as both MFE and IFE provide major opportunities for moving forward with fusion energy. The report would be most helpful if it could

  8. NIF: A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2007-06-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-{micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury uses state-of-the-art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  9. Computational and experimental investigation of magnetized target fusion

    SciTech Connect (OSTI)

    Sheehey, P.T.; Guzik, J.A.; Kirkpatrick, R.C.; Lindemuth, I.R.; Scudder, D.W.; Shlachter, J.S.; Wysocki, F.J. [Los Alamos National Lab., NM (United States)

    1996-12-31

    In Magnetized Target Fusion (MTF), a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions. Because the magnetic field suppresses losses by electron thermal conduction in the fuel during the target implosion heating process, the compression may be over a much longer time scale than in traditional inertial confinement fusion (ICF). Bigger targets and much lower initial target densities than in ICF can be used, reducing radiative energy losses. Therefore, `liner-on-plasma` compressions, driven by relatively inexpensive electrical pulsed power, may be practical. Potential MTF target plasmas must meet minimum temperature, density, and magnetic field starting conditions, and must remain relatively free of high-Z radiation-cooling-enhancing contaminants. At Los Alamos National Laboratory, computational and experimental research is being pursued into MTF target plasmas, such as deuterium-fiber-initiated Z-pinches, and the Russian-originated `MAGO` plasma. In addition, liner-on-plasma compressions of such target plasmas to fusion conditions are being computationally modeled, and experimental investigation of such heavy liner implosions has begun. The status of the research will be presented. 9 refs., 4 figs.

  10. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    SciTech Connect (OSTI)

    Lasche, G.P.

    1988-04-05

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy.

  11. Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    E-Print Network [OSTI]

    Prost, Lionel Robert

    2007-01-01

    illumination geometry, Nuclear Fusion [25] M. Tabak and D.radiator target for inertial fusion driven from two sidesPlasma Phys. Control. Fusion [27] D. A. Callahan-Miller and

  12. Quasi-spherical direct drive fusion simulations for the Z machine and future accelerators.

    SciTech Connect (OSTI)

    VanDevender, J. Pace; McDaniel, Dillon Heirman; Roderick, Norman Frederick; Nash, Thomas J.

    2007-11-01

    We explored the potential of Quasi-Spherical Direct Drive (QSDD) to reduce the cost and risk of a future fusion driver for Inertial Confinement Fusion (ICF) and to produce megajoule thermonuclear yield on the renovated Z Machine with a pulse shortening Magnetically Insulated Current Amplifier (MICA). Analytic relationships for constant implosion velocity and constant pusher stability have been derived and show that the required current scales as the implosion time. Therefore, a MICA is necessary to drive QSDD capsules with hot-spot ignition on Z. We have optimized the LASNEX parameters for QSDD with realistic walls and mitigated many of the risks. Although the mix-degraded 1D yield is computed to be {approx}30 MJ on Z, unmitigated wall expansion under the > 100 gigabar pressure just before burn prevents ignition in the 2D simulations. A squeezer system of adjacent implosions may mitigate the wall expansion and permit the plasma to burn.

  13. Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual

    E-Print Network [OSTI]

    architecture for a high yield facility Maturity Double-Ended Hohlraum Ready for Next Step ~400 MJ ~100 MJ Prime · Linear Transformer Driver technology · Pulsed power IFE #12;3 We were required to demonstrate 3 and exciting experiments in high-pressure material dynamics · Future direction will be to couple advanced

  14. Production of ultradense deuterium: A compact future fusion fuel

    SciTech Connect (OSTI)

    Badiei, Shahriar; Andersson, Patrik U.; Holmlid, Leif [Department of Chemistry, Atmospheric Science, University of Gothenburg, SE-412 96 Goeteborg (Sweden)

    2010-03-22

    Ultradense deuterium as a nuclear fuel in laser-ignited inertial confinement fusion appears to have many advantages. The density of ultradense deuterium D(-1) is as high as 140 kg cm{sup -3} or 10{sup 29} cm{sup -3}. This means that D(-1) will be very useful as a target fuel, circumventing the complex and unstable laser compression stage. We show that the material is stable apart from the oscillation between two forms, and can exist for days in the laboratory environment. We also demonstrate that an amount of D(-1) corresponding to tens of kilojoules is produced in each experiment. This may be sufficient for break-even.

  15. Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC

    Office of Scientific and Technical Information (OSTI)

    Selected component failure rate values from fusion safety assessment tasks Cadwallader, L.C. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; MAGNETIC CONFINEMENT; THERMONUCLEAR DEVICES;...

  16. The National Ignition Facility and the Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-07-26

    The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

  17. Interplay between confinement, turbulence and magnetic topology

    E-Print Network [OSTI]

    Basse, Nils Plesner

    Alcator C-Mod Interplay between confinement, turbulence and magnetic topology Nils P. Basse, S. Zoletnik1, W. L. Rowan2 et al. MIT Plasma Science and Fusion Center 1KFKI-RMKI, Euratom Association, Budapest, Hungary 2Fusion Research Center, University of Texas at Austin This idea originates from density

  18. Superconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini and Miklos Porkolab

    E-Print Network [OSTI]

    enabling technology for magnetic confinement fusion devices. Powerful magnetsSuperconducting Magnets Research for a Viable US Fusion Program Joseph V are required for plasma confinement, and, depending on the magnetic configuration

  19. Superconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini1

    E-Print Network [OSTI]

    are the ultimate enabling technology for magnetic confinement fusion devices. PowerfulSuperconducting Magnets Research for a Viable US Fusion Program Joseph V. Minervini1 , Leslie magnetic fields are required for confinement of the plasma, and, depending

  20. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.