National Library of Energy BETA

Sample records for inelastic x-ray scattering

  1. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  2. Multiplet resonance lifetimes in resonant inelastic x-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    shallow core levels Citation Details In-Document Search Title: Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Authors: ...

  3. Multiplet resonance lifetimes in resonant inelastic x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    involving shallow core levels (Journal Article) | SciTech Connect Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Citation Details In-Document Search Title: Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Authors: Wray, L. Andrew ; Yang, Wanli ; Eisaki, Hiroshi ; Hussain, Zahid ; Chuang, Yi-De Publication Date: 2012-11-19 OSTI Identifier: 1101794 Type: Publisher's Accepted Manuscript Journal

  4. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print...

  5. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  6. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print Thursday, 17 December 2009 13:47 Schematic representation of linear dichroism observed in KL x-ray emission. Coupling between the spin-orbit interaction and the molecular field, oriented along the chemical bond, leads to different spin-orbit ratios as a function of the angle between the incoming

  7. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  8. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  9. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; et al

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less

  10. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect (OSTI)

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  11. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  12. Inelastic X-ray Scattering Investigations of Lattice Dynamics in SmFeAsO1-xFy Superconductors

    SciTech Connect (OSTI)

    Hill, J.P.; Le Tacon, M.; Forrest, T.R.; Ruegg, Ch.; Bosak, A.; Noffsinger, J.; Walters, A.C.; Toulemonde, P.; Palenzona, A.; Zhigadlo, N.D.; Karpinski, J.; Krisch, M.; McMorrow, D.F.

    2010-05-23

    We report measurements of the phonon density of states as measured with inelastic x-ray scattering in SmFeAsO{sub 1-x}F{sub y} powders. An unexpected strong renormalization of phonon branches around 23 meV is observed as fluorine is substituted for oxygen. Phonon dispersion measurements on SmFeAsO{sub 1-x}F{sub y} single crystals allow us to identify the 21 meV A{sub 1g} in-phase (Sm,As) and the 26 meV B{sub 1g} (Fe,O) modes to be responsible for this renormalization, and may reaveal unusual electron-phonon coupling through the spin channel in iron-based superconductors.

  13. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L₃ edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO₄ with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La₂CuO₄ (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L₃ edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  14. On the absence of a positive sound dispersion in the THz dynamics of glycerol: an inelastic x-ray scattering study

    SciTech Connect (OSTI)

    Cunsolo, Alessandro

    2012-10-23

    The high frequency transport properties of glycerol are derived from inelastic x-ray scattering spectra measured at different pressures and compared with ultrasound absorption data. As a result, the presence of two distinct relaxation processes is inferred: a slow one, occurring in the GHz window and having an essentially structural character, and a fast one, related instead to microscopic degrees of freedom. While the former originates a neat increase of the apparent, i.e. frequency-dependent, sound velocity, the latter induces no visible dispersive effects on the acoustic propagation. The observed behavior is likely paradigmatic of all glass formers near or below the melting and it is here discussed and explained in some detail.

  15. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO₁₋y

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; et al

    2012-09-05

    We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO₀.₇ and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations,more » which are a prerequisite to the occurrence of these excitations at the Γ point, are still present in the superconducting state.« less

  16. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  17. Pressure-induced valence change in YbAl3: a combined high pressure inelastic x-ray scattering and theoretical investigation

    SciTech Connect (OSTI)

    Bauer, E D; Kumar, R S; Svane, A; Vaitheeswaran, G; Nicol, M F; Kanchana, V; Hu, M; Cornelius, A L

    2008-01-01

    High resolution x-ray absorption (XAS) experiments in the partial fluorescence yield mode (PFY) and resonant inelastic x-ray emission (RXES) measurements under pressure were performed on the intermediate valence compound YbAl{sub 3} up to 38 GPa. The results of the Yb L{sub 3} PFY-XAS and RXES studies show a smooth valence increase in YbAl{sub 3} from 2.75 to 2.93 at ambient to 38 GPa. In-situ angle dispersive synchrotron high pressure x-ray diffraction experiments carried out using a diamond cell at room temperature to study the equation of state showed the ambient cubic phase stable up to 40 GPa. The results obtained from self-interaction corrected local spin density functional calculations to understand the pressure effect on the Yb valence and compressibility are in good agreement with the experimental results.

  18. Total reflection inelastic x-ray scattering from a 10 nm thick La{sub 0.6}Sr{sub 0.2}CoO{sub 3} thin film.

    SciTech Connect (OSTI)

    Fister, T. T.; Fong, D. D.; Eastman, J. A.; Iddir, H.; Zapol, P.; Fuoss, P. H.; Balasubramanian, M.; Gordon, R. A.; Balasubramaniam, K. R.; Salvador, P. A.; Simon Fraser Univ.; Carnegie Mellon Univ.

    2011-01-18

    To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La{sub 0.6}Sr{sub 0.4}CoO{sub 3} thin film from that of the underlying SrTiO{sub 3} substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N{sub 4,5} edge with momentum transfer as an example.

  19. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  20. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  1. Sector 3 : High Resolution X-ray Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & workshops IXN Group Useful Links Current APS status ESAF System GUP System X-Ray Science Division My APS Portal Sector 3 : High Resolution X-ray Scattering Sector 3 is...

  2. Magnetic Nature of the 500 meV peak in La2−xSrxCuO4 Observed with Resonant Inelastic X-ray Scattering at the Cu K-edge

    SciTech Connect (OSTI)

    Hill, J.P.; Ellis, D.S.; Kim, J.; Wakimoto, S.; Birgeneau, R.J.; Shvyd’ko, Y.; Casa, D.; Gog, T.; Ishii, K.; Ikeuchi, K.; Paramekanti, A.; Kim, Y.-J.

    2010-02-15

    We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q = ({pi},0) in resonant inelastic x-ray scattering (RIXS) experiments on La{sub 2}CuO{sub 4}. The intensity of this peak persists above the Neel temperature (T{sub N} = 320 K), but decreases gradually with increasing temperature, reaching zero at around T = 500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B{sub 1g} Raman peak in La{sub 2}CuO{sub 4} and, with suitable rescaling, agrees with the Raman peak shifts in EuBa{sub 2}Cu{sub 3}O{sub 6} and K{sub 2}NiF{sub 4}. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin-correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation.

  3. Magnetism studies using resonant, coherent, x-ray scattering | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron lasers there has been interest in using coherent x-rays to probe condensed matter systems. Resonant scattering with x-rays allow elemental specificity with magnetic contrast, and coherent light leads to speckle in the scattered pattern due to interference from waves exiting the sample.

  4. Intensity Pattern of Diffuse X-Ray Scattering From Thermally...

    Office of Scientific and Technical Information (OSTI)

    Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc ... Sponsoring Org: DOE - BASIC ENERGY SCIENCESUNIVERSITY Country of Publication: United ...

  5. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  6. Resonant x-ray magnetic scattering in holmium

    SciTech Connect (OSTI)

    Gibbs, D.

    1991-01-01

    We review the results of resonant x-ray magnetic scattering experiments on the rare earth metal holmium. When the incident incident x-ray energy is tuned near the L{sub III} absorption edge, large resonant enhancements of the magnetic scattering and resonant integer harmonics are observed. These results are analyzed within the theory of x-ray resonance exchange scattering assuming electric dipole (2p {yields} 5d) and quadrupole (2p {yields} 4f) transitions among atomic orbitals. 30 refs., 5 figs.

  7. Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques | Stanford Synchrotron Radiation Lightsource Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to

  8. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, Clinton M.

    1995-01-01

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  9. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  10. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; Daemen, Luke L.; Cheng, Yongqiang; Li, Tao; Seifert, Soenke; Hong, Kunlun; Bonnesen, Peter V.; Keum, Jong Kahk; et al

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types of water molecules,more » the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  11. X-ray and Neutron Scattering Study of the Formation of Core-Shell Type Polyoxometalates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; Daemen, Luke L; Cheng, Yongqiang; Hong, Kunlun; Bonnesen, Peter V; Keum, Jong Kahk; Ramirez-Cuesta, Anibal J

    2016-01-01

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types of water molecules,morethe confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.less

  12. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  13. Operational properties of fluctuation X-ray scattering data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malmerberg, Erik; Kerfeld, Cheryl A.; Zwart, Petrus H.

    2015-03-20

    X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point.more » In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.« less

  14. Crystal defect studies using x-ray diffuse scattering

    SciTech Connect (OSTI)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  15. SXST 2014 - 7th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important techniques including small angle scattering, thin-film scattering, powder diffraction, structure refinement and surface x-ray scattering. The school will address topics...

  16. SSRL School 2007 on Hard X-ray Scattering Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15-17, 2007 SSRL School on Hard X-ray Scattering Techniques in Materials and Environmental Sciences Group photo taken at the SSRL School on Hard X-ray Scattering Techniques in...

  17. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

  18. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

  19. X-ray and neutron scattering from nano-mgantic clusters | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray and neutron scattering from nano-mgantic clusters The student will participate in hands on X-ray scattering experiments on bio-inspired inorganic materials (i.e., magnetic...

  20. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein...

    Office of Scientific and Technical Information (OSTI)

    Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Citation Details In-Document Search Title: Small-Angle X-Ray Scattering From RNA, Proteins, And Protein ...

  1. Combining THz laser excitation with resonant soft X-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    resonant soft X-ray scattering at the Linac Coherent Light Source Citation Details In-Document Search Title: Combining THz laser excitation with resonant soft X-ray scattering ...

  2. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    SciTech Connect (OSTI)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  3. Air-core grid for scattered x-ray rejection

    DOE Patents [OSTI]

    Logan, C.M.; Lane, S.M.

    1995-10-03

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

  4. Air-core grid for scattered x-ray rejection

    DOE Patents [OSTI]

    Logan, Clinton M.; Lane, Stephen M.

    1995-01-01

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.

  5. White dwarfs as the maximal soft x-ray scatterers

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum

    2013-09-15

    In this paper, we explore the effect of density on the structure formation and the electromagnetic wave (EMw) elastic scattering on quantum plasmas, using the generalized quantum hydrodynamic model valid for a wide range of the plasma density and relativistic degeneracy. It is found that the electron quantum diffraction effect caused by the Bohm potential has a fundamental effect on the ion correlations in a degenerate electron fluid and crystallization in quantum plasmas in the solid-density regime and beyond. The ion correlations and structure formation are shown to be fundamentally affected by the plasma density and the relativistic degeneracy parameters. Moreover, distinct behavior is shown to exist between the non-relativistic and relativistic matter density regimes, regarding the normalized EMw elastic scattering cross-sections. It is theoretically discovered that the maximal Thomson scattering coincides with the average density of a typical white dwarf corresponding to the soft X-ray wavelength regime. Current research can be very useful in plasma optical diagnostic methods for a wide range of electron number-density from warm dense matter and inertial confinement fusion to the astrophysical compact objects.

  6. 6th Annual SSRL School on Synchrotron X-ray Scattering, May 29...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation About 6th Annual SSRL School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application May 29-31 2012...

  7. Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.

    2015-11-03

    Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found tomore » be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.« less

  8. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure...

  9. Rapidity divergences and deep inelastic scattering in the endpoint...

    Office of Scientific and Technical Information (OSTI)

    Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search Title: Rapidity divergences and deep inelastic scattering in the ...

  10. Resonant Inelastic Scattering Spectra of Free Molecules with Vibrational Resolution

    SciTech Connect (OSTI)

    Hennies, Franz; Pietzsch, Annette; Berglund, Martin; Foehlisch, Alexander; Schmitt, Thorsten; Strocov, Vladimir; Karlsson, Hans O.; Andersson, Joakim; Rubensson, Jan-Erik

    2010-05-14

    Inelastic x-ray scattering spectra excited at the 1s{sup -1{pi}}* resonance of gas phase O{sub 2} have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B{sup '} {sup 3{Pi}}{sub g} final state is controlled.

  11. Resonant elastic soft x-ray scattering in oxygen-ordered YBa2Cu3O6...

    Office of Scientific and Technical Information (OSTI)

    Resonant elastic soft x-ray scattering in oxygen-ordered YBa2Cu3O6+ Citation Details In-Document Search Title: Resonant elastic soft x-ray scattering in oxygen-ordered...

  12. 16th National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-02

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  13. 16th National School on Neutron and X-ray Scattering

    ScienceCinema (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-23

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  14. Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Citation Details In-Document Search Title: Small-Angle X-Ray Scattering From RNA, Proteins, And Protein Complexes Small-angle X-ray scattering (SAXS) is increasingly used to characterize the structure and interactions of biological macromolecules and their complexes in solution. Although still a low-resolution technique, the advent of high-flux synchrotron sources and the development of

  15. Acquisition of an In-House X-ray Scattering Facility for Nanostructure Characterization and Student Training

    SciTech Connect (OSTI)

    Schuller, Ivan K [UC San Diego

    2013-08-02

    This equipment grant was specifically dedicated to the development of a "state of the art" x-ray scattering facility...

  16. 5th Annual SSRL School on Synchrotron X-ray Scattering Techniques...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web | People Search SSRL Go 5th Annual SSRL School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application June 1-3, 2010...

  17. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined...

  18. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a...

  19. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small-angle x-ray scattering (GISAXS) to characterize active-layer formation in real time and at multiple length scales. Watching the Ink Dry Flexible, lightweight, and...

  20. Ray tracing flux calculation for the small and wide angle x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    diffraction station at the SESAME synchrotron radiation facility (Journal Article) | SciTech Connect Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search Title: Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility The calculation for the optics of the synchrotron radiation small and

  1. Combining THz laser excitation with resonant soft X-ray scattering at the

    Office of Scientific and Technical Information (OSTI)

    Linac Coherent Light Source (Journal Article) | SciTech Connect Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source Citation Details In-Document Search Title: Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by

  2. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect (OSTI)

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V.; Vales, V.; Endres, J.; Holy, V.; Buljan, M.; Bernstorff, S.

    2013-01-14

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  3. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    SCATTERING; ISOTOPES; LEAD; LEAD 206; LEAD 207; LEVELS; NEUTRONS; SCATTERING Inelastic neutron scattering on Pb isotopes can result in gamma rays near the signature endpoint...

  4. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 21-23 2016 BL2-1 Registration closed Agenda 2016 Agenda Maps & Directions Visiting SLAC This school will provide a practical users' guide to planning and conducting scattering measurements at SSRL beam lines, and will cover important techniques including small angle scattering, thin-film scattering, powder diffraction, structure refinement and surface x-ray scattering. The school will address topics that are not commonly included in text books or class lectures, and typically obtained

  5. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This school will provide a practical users' guide to planning and conducting scattering measurements at SSRL beam lines, and will cover important techniques including small angle scattering, thin-film scattering, powder diffraction, structure refinement and surface x-ray scattering. The school will address topics that are not commonly included in text books or class lectures, and typically obtained only through on-the-experiment training. There will be: hands-on sessions at SSRL beam lines a

  6. Magnetism studies using resonant, coherent, x-ray scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    where the scattering vector q that can only be reached in reflection. The method is Fourier transform holography, where the exit wave from a sample interferes with a reference...

  7. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain

  8. Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated

    Office of Scientific and Technical Information (OSTI)

    Phonons in Fcc d-Pu-Ga (Conference) | SciTech Connect Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc d-Pu-Ga Citation Details In-Document Search Title: Intensity Pattern of Diffuse X-Ray Scattering From Thermally Populated Phonons in Fcc d-Pu-Ga Authors: Wong, J. ; Holt, M. ; Hong, H. ; Wall, M. ; Schwartz, A. ; Zschack, P. ; Chiang, T.-C. Publication Date: 2016-01-20 OSTI Identifier: 1235452 Resource Type: Conference Resource Relation: Conference:

  9. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks

  10. X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; Pak, A.; Ma, T.; Doppner, T.; Fortmann, C.; Divol, L.; Landen, O. L.; Vorberger, J.; et al

    2013-05-24

    Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm–3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less

  11. Kevin Yager on the Nanoscience of Studying Scattered X-Rays

    ScienceCinema (OSTI)

    Yager; Kevin

    2014-06-04

    Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

  12. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    SciTech Connect (OSTI)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  13. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  14. The diagnostic capability of x-ray scattering parameters for the characterization of breast cancer

    SciTech Connect (OSTI)

    Elshemey, Wael M.; Desouky, Omar S.; Fekry, Mostafa M.; Talaat, Sahar M.; Elsayed, Anwar A.

    2010-08-15

    Purpose: The evaluation of the diagnostic capability of easy to measure x-ray scattering profile characterization parameters for the detection of breast cancer in excised samples. The selected parameters are the full width at half maximum (FWHM) and area under the x-ray scattering profile of breast tissue in addition to the ratio of scattering intensities (I{sub 2}/I{sub 1}%) at 1.6 nm{sup -1} to that at 1.1 nm{sup -1} (corresponding to scattering from soft and adipose tissues, respectively). Methods: A histopathologist is asked to classify 36 excised breast tissue samples into healthy or malignant. A conventional x-ray diffractometer is used to acquire the scattering profiles of the investigated samples. The values of three profile characterization parameters are calculated and the diagnostic capability of each is evaluated by determining the optimal cutoffs of scatter diagrams, calculating the diagnostic indices, and plotting the receiver operating characteristic (ROC) curves. Results: At the calculated optimal cutoff for each of the examined parameters, the sensitivity ranged from 78% (for area under curve) up to 94% (for FWHM), the specificity ranged from 94%[for I{sub 2}/I{sub 1}% and area under curve] up to 100% (for FWHM), and the diagnostic accuracy ranged from 86% (for area under curve) up to 97% (for FWHM). The area under the ROC curves is greater than 0.95 for all of the investigated parameters, reflecting a highly accurate diagnostic performance. Conclusions: The discussed tests offered a means to quantitatively evaluate the performance of the suggested breast tissue x-ray scattering characterization parameters. The performance results are promising, indicating that the evaluated parameters would be considered a tool for fast, on spot probing of breast cancer in excised tissue samples.

  15. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tainer, John [Scripps Research Institute; Hura, Greg [LBNL; Rambo, Robert P. [LBNL

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an experiment and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  16. Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters

    SciTech Connect (OSTI)

    Sarje, Abhinav; Pien, Jack; Li, Xiaoye; Chan, Elaine; Chourou, Slim; Hexemer, Alexander; Scholz, Arthur; Kramer, Edward

    2012-01-15

    X-ray scattering is a valuable tool for measuring the structural properties of materialsused in the design and fabrication of energy-relevant nanodevices (e.g., photovoltaic, energy storage, battery, fuel, and carbon capture andsequestration devices) that are key to the reduction of carbon emissions. Although today's ultra-fast X-ray scattering detectors can provide tremendousinformation on the structural properties of materials, a primary challenge remains in the analyses of the resulting data. We are developing novelhigh-performance computing algorithms, codes, and software tools for the analyses of X-ray scattering data. In this paper we describe two such HPCalgorithm advances. Firstly, we have implemented a flexible and highly efficient Grazing Incidence Small Angle Scattering (GISAXS) simulation code based on theDistorted Wave Born Approximation (DWBA) theory with C++/CUDA/MPI on a cluster of GPUs. Our code can compute the scattered light intensity from any givensample in all directions of space; thus allowing full construction of the GISAXS pattern. Preliminary tests on a single GPU show speedups over 125x compared tothe sequential code, and almost linear speedup when executing across a GPU cluster with 42 nodes, resulting in an additional 40x speedup compared to usingone GPU node. Secondly, for the structural fitting problems in inverse modeling, we have implemented a Reverse Monte Carlo simulation algorithm with C++/CUDAusing one GPU. Since there are large numbers of parameters for fitting in the in X-ray scattering simulation model, the earlier single CPU code required weeks ofruntime. Deploying the AccelerEyes Jacket/Matlab wrapper to use GPU gave around 100x speedup over the pure CPU code. Our further C++/CUDA optimization deliveredan additional 9x speedup.

  17. Wide angle x-ray scattering of proteins : effect of beam exposure on protein integrity.

    SciTech Connect (OSTI)

    Fischetti, R. F.; Rodi, D. J.; Mirza, A.; Makowski, L.; Illinois Inst. of Tech.

    2003-01-01

    Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2 {angstrom} (q = 2.8 {angstrom}-1). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein-ligand interactions and domain movement.

  18. SSRL School on Synchrotron X-Ray Scattering Techniques in Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL School on Synchrotron X-Ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application Tuesday 21 June 2016 - Thursday 23 June 2016 Tuesday, 21 June 2016 Building 053, Trinity Conference Room (1350) 8:00-8:50 Registration - Coffee and Light Refreshments 8:50-9:00 Introductory Remarks - Michael Toney 9:00-9:35 Introduction to Scattering and Reciprocal Space - Kevin Stone 9:35-10:05 What Does a Scattering Pattern Say About a Sample (Peak Shape, Position,

  19. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect (OSTI)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  20. Time-Resolved Small-Angle X-ray Scattering Studies Revealed Three Kinetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stages of a T=4 Virus Maturation June 2010 Time-Resolved Small-Angle X-ray Scattering Studies Revealed Three Kinetic Stages of a T=4 Virus Maturation Most eukaryotic viruses, including HIV, influenza and herpes viruses, undergo maturation when transitioning from the noninfectious provirion to the infectious virion. Maturation processes involve reorganization of viral quaternary structure to defend viral gene from the cellular defense mechanism and lead to effective transfection. Nudaurelia

  1. X-ray Diffuse Scattering Measurements of Nucleation Dynamics at Femtosecond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolution X-ray Diffuse Scattering Measurements of Nucleation Dynamics at Femtosecond Resolution Real-time measurement and control of the non-equilibrium properties of materials represents one of the 'grand challenges' in materials science and condensed matter physics. The ability to record snapshots of processes as they occur with atomic-scale spatial resolution and femtosecond temporal resolution extends these techniques to the level of atoms or electrons, with important applications to

  2. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  3. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  4. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  5. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  6. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  7. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  8. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments

  9. X-ray and neutron scattering studies of the complex compounds | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource X-ray and neutron scattering studies of the complex compounds Wednesday, September 25, 2013 - 1:00pm SLAC, Conference Room 137-322 Presented by Dr. Hoyoung Jang, Max Planck Institute for Solid State Research in Stuttgart, Germany In condensed matter physics, in particular a field of complex oxide materials, most of the research-activity is focusing on finding a new functionality in materials as well as its understanding. In this fashion, during past few

  10. Small-angle X-ray Scattering from Magnetic Clusters and Structural Grains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Magnetic Recording Media | Stanford Synchrotron Radiation Lightsource Small-angle X-ray Scattering from Magnetic Clusters and Structural Grains in Magnetic Recording Media Friday, July 31, 2015 Historically, areal density increases in longitudinal hard disk drive media technology have been driven by reduction of grain size. However, since its introduction in 2006, the perpendicular magnetic recording media grain size has remained more or less constant at around 9 nm. Perpendicular

  11. X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-29

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less

  12. X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents

    SciTech Connect (OSTI)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-29

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  13. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect (OSTI)

    Lavelle, Christopher M [ORNL; Liu, C [Oak Ridge National Laboratory (ORNL); Stone, Matthew B [ORNL

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  14. Inclusive Inelastic Electron Scattering from Nuclei

    SciTech Connect (OSTI)

    Fomin, Nadia

    2007-10-26

    Inclusive electron scattering from nuclei at large x and Q{sup 2} is the result of a reaction mechanism that includes both quasi-elastic scattering from nucleons and deep inelastic scattering from the quark consitituents of the nucleons. Data in this regime can be used to study a wide variety of topics, including the extraction of nuclear momentum distributions, the infiuence of final state interactions and the approach to y-scaling, the strength of nucleon-nucleon correlations, and the approach to x-scaling, to name a few. Selected results from the recent experiment E02-019 at the Thomas Jefferson National Accelerator Facility will be shown and their relevance discussed.

  15. Transmission X-ray scattering as a probe for complex liquid-surface structures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; Kuzmenko, Ivan

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less

  16. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep ...

  17. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    Inelastic neutron scattering on Pb isotopes can result in gamma rays near the signature ... Country of Publication: United States Language: English Subject: 73; CROSS SECTIONS; ...

  18. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect (OSTI)

    Luo, W.; College of Science, National University of Defense Technology, Changsha 410073 ; Zhuo, H. B.; Yu, T. P.; Ma, Y. Y.; Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 ; Song, Y. M.; Zhu, Z. C.; Yu, M. Y.; Theoretical Physics I, Ruhr University, D-44801 Bochum

    2013-10-21

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ≤200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ∼160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ≥5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  19. The accurate assessment of small-angle X-ray scattering data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targetsmore » for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.« less

  20. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect (OSTI)

    Grant, Thomas D. [HauptmanWoodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Luft, Joseph R. [HauptmanWoodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); SUNY Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne [Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025 (United States); Snell, Edward H., E-mail: esnell@hwi.buffalo.edu [HauptmanWoodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); SUNY Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States)

    2015-01-01

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  1. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect (OSTI)

    Grant, Thomas D.; Luft, Joseph R.; Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne; Snell, Edward H.

    2015-01-23

    Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  2. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    SciTech Connect (OSTI)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  3. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect (OSTI)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  4. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOE Patents [OSTI]

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  5. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  6. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  7. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  8. Time Resolved Collapse of a Folding Protein Observed with Small Angle X-Ray Scattering

    SciTech Connect (OSTI)

    Pollack, L.; Tate, M. W.; Finnefrock, A. C.; Kalidas, C.; Trotter, S.; Darnton, N. C.; Lurio, L.; Austin, R. H.; Batt, C. A.; Gruner, S. M. (and others)

    2001-05-21

    High-intensity, ''pink'' beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine {beta} -lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.

  9. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  10. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  11. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  12. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location The XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application is hosted by the SLAC National Accelerator Laboratory. Lectures will be held in the Trinity Conference Room 1350 in Building 53, with the Practical hands-on sessions to be held in building 120. SLAC is located at 2575 Sand Hill Rd, Menlo Park CA 94025, USA Please contact Michelle Steger steger@slac.stanford.edu if you need additional information or

  13. Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model

    SciTech Connect (OSTI)

    Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn [Department of Space Science and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China)

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ? 0.1 ?m) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  14. Bent crystal analyzer without grooves for inelastic scattering -- first experimental results

    SciTech Connect (OSTI)

    Kushnir, V.I.; Macrander, A.T.

    1996-11-01

    A new design of a bent crystal analyzer for high energy resolution inelastic X-ray scattering has been recently proposed. It has been theoretically predicted that an analyzer with reflecting planes at a certain angle with respect to a crystal surface, bent with two different radii of curvature, will have the same energy resolution as a perfect crystal. The first experimental measurement obtained at the Advanced Photon Source of a bandwidth of such an analyzer is presented. The overall energy resolution of the analyzer and monochromator observed with a narrow beam is equal to 16.4 meV (FWHM) at 13.84 KeV.

  15. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can operate in an x-ray beamline. With this capability, researchers can, for the first time, apply grazing-incidence x-ray diffraction (GIXD) and grazing-incidence...

  16. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    SciTech Connect (OSTI)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-07-15

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  17. Nematicity in stripe ordered cuprates probed via resonant x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Achkar, A. J.; Zwiebler, M.; McMahon, Christopher; He, F.; Sutarto, R.; Dijianto, Isaiah; Hao, Zhihao; Gingras, Michael J.P.; Hucker, M.; Gu, G. D.; et al

    2016-02-05

    We found that in underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. Ourmore » results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.« less

  18. Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections

    SciTech Connect (OSTI)

    Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 ; Jaffray, D. A.; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9; Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9

    2013-11-15

    Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup ?1} and 7/(2?) rad{sup ?1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and ?/7 rad (?25) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.

  19. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOE Patents [OSTI]

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  20. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    SciTech Connect (OSTI)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flckiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Mller, Thomas

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Borns approximation and is remarkably efficientopening up new routes in ultrafast nanophysics and free-electron laser science

  1. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; et al

    2015-02-04

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore » from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  2. Inelastic neutron scattering as a possible background for neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Conference) | SciTech Connect Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments Authors: Boswell, Melissa S [1] ; Devlin, Matthew J. [1] ; Elliott, Steven R [1] ; Fotiadis, Nikolaos [1] ; Hime, Andrew [1] ; Nelson, Ronald O. [1] ; Guiseppe, Vincente E. [2] ; Mei, D. M.

  3. Inelastic neutron scattering as a possible background for neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Conference) | SciTech Connect Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Inelastic neutron scattering as a possible background for neutrinoless double-beta decay experiments × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided

  4. Rapidity divergences and deep inelastic scattering in the endpoint region

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search Title: Rapidity divergences and deep inelastic scattering in the endpoint region Authors: Fleming, Sean ; Labun, Ou Z. Publication Date: 2015-05-12 OSTI Identifier: 1179737 Grant/Contract Number: FG02-06ER41449; FG02-04ER41338 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 91;

  5. Back-scattering channel-cut high-resolution monochromator for inelastic x-ray scattering

    SciTech Connect (OSTI)

    Kushnir, V.I.; Abbamonte, P.M.; Macrander, A.T.; Schwoerer-Boehning, M.

    1997-08-01

    We report on a design and on some experimental results for the performance of a new high energy resolution monochromator. It is a large channel-cut Si crystal with a 197 mm separation between the two faces designed to operate in a near-backscattering regime. The device was tested as a second monochromator on Sector 3 of the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT) at the Advanced Photon Source using the Si(777) reflection at a photon energy of 13.84 keV. The same monochromator can be used for other energies with reflections of the type (hhh). Special care has been taken to equalize the temperature of the two faces by employing a Peltier heat pump. A Si(111) double-crystal pre-monochromator designed to withstand the high heat load of the undulator radiation was used upstream on the beamline. The measured throughput efficiency of the Si(777) channel-cut monochromator was less ideal by a factor of 1.9. Dynamical diffraction theory was used to calculate the throughput of an ideally perfect crystal.

  6. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements

    SciTech Connect (OSTI)

    LeClair, Robert J.; Boileau, Michel M.; Wang Yinkun [Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada) and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada)

    2006-04-15

    The goal of this work is to develop a technique to measure the x-ray diffraction signals of breast biopsy specimens. A biomedical x-ray diffraction technology capable of measuring such signals may prove to be of diagnostic use to the medical field. Energy dispersive x-ray diffraction measurements coupled with a semianalytical model were used to extract the differential linear scattering coefficients [{mu}{sub s}(x)] of breast tissues on absolute scales. The coefficients describe the probabilities of scatter events occurring per unit length of tissue per unit solid angle of detection. They are a function of the momentum transfer argument, x=sin({theta}/2)/{lambda}, where {theta}=scatter angle and {lambda}=incident wavelength. The technique was validated by using a 3 mm diameter 50 kV polychromatic x-ray beam incident on a 5 mm diameter 5 mm thick sample of water. Water was used because good x-ray diffraction data are available in the literature. The scatter profiles from 6 deg. to 15 deg. in increments of 1 deg. were measured with a 3 mmx3 mmx2 mm thick cadmium zinc telluride detector. A 2 mm diameter Pb aperture was placed on top of the detector. The target to detector distance was 29 cm and the duration of each measurement was 10 min. Ensemble averages of the results compare well with the gold standard data of A. H. Narten [''X-ray diffraction data on liquid water in the temperature range 4 deg. C-200 deg. C, ORNL Report No. 4578 (1970)]. An average 7.68% difference for which most of the discrepancies can be attributed to the background noise at low angles was obtained. The preliminary measurements of breast tissue are also encouraging.

  7. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    SciTech Connect (OSTI)

    Chauchat, A.-S.; Brasile, J.-P; Le Flanchec, V.; Negre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-19

    In a scope of a collaboration between Thales Communications and Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 {mu}m width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  8. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55?GPa at 300?K in a diamond anvil cell. The bulk modulus of B{sub 0}?=?174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grneisen parameters of the TO and LO modes of zinc-blende structure, ?{sub G}{sup TO?}=?1.26 and ?{sub G}{sup LO?}=?1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which ?{sub G}{sup TO?}>??{sub G}{sup LO?}??1. We also established that the pressure dependence of the effective electro-optical constant ? is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO}???0.25 at 0.1?MPa to I{sub TO}/I{sub LO}???2.5 at 45?GPa, for which we also find excellent agreement between experiment and theory.

  9. Models of the elastic x-ray scattering feature for warm dense aluminum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Starrett, Charles Edward; Saumon, Didier

    2015-09-03

    The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment ofmore » Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.« less

  10. SSRL School 2008 on Hard X-ray Scattering Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 20-22, 2008 SSRL School on Synchrotron X-ray Absorption Spectroscopy Techniques in Environmental and Materials Sciences: Theory and Application Group photo from the 2008 SSRL...

  11. Grazing-incidence small-angle X-ray scattering: application to the study of quantum dot lattices

    SciTech Connect (OSTI)

    Buljan, Maja Radi?, Nikola; Bernstorff, Sigrid; Drai?, Goran; Bogdanovi?-Radovi?, Iva; Hol, Vclav

    2012-01-01

    The modelling of grazing-incidence small-angle X-ray scattering (GISAXS) from three-dimensional quantum dot lattices is described. The ordering of quantum dots in three-dimensional quantum dot lattices is investigated by grazing-incidence small-angle X-ray scattering (GISAXS). Theoretical models describing GISAXS intensity distributions for three general classes of lattices of quantum dots are proposed. The classes differ in the type of disorder of the positions of the quantum dots. The models enable full structure determination, including lattice type, lattice parameters, the type and degree of disorder in the quantum dot positions and the distributions of the quantum dot sizes. Applications of the developed models are demonstrated using experimentally measured data from several types of quantum dot lattices formed by a self-assembly process.

  12. Phase-based x-ray scatteringA possible method to detect cancer cells in a very early stage

    SciTech Connect (OSTI)

    Feye-Treimer, U. Treimer, W.

    2014-05-15

    Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleusplasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with matter is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cellcell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or diseased. Conclusions: With this proposed method it should be in principle possible to detect cancer cells in apparently healthy tissues in biopsies and/or in samples of the far border region of abscised or excised tissues. Thus this method could support established methods in diagnostics of cancer-suspicious samples.

  13. Ultrabright x-ray laser scattering for dynamic warm dense matter physics

    SciTech Connect (OSTI)

    Fletcher, L. B.; Lee, H. J.; Doppner, T.; Galtier, E.; Nagler, B.; Heimann, P.; Fortmann, C.; Mao, T.; Millot, M.; Pak, A.; Turnbull, D.; Chapman, D. A.; Gericke, D. O.; Vorberger, J.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.; Kao, C. -C.; Nuhn, H.; Welch, J.; Zastrau, U.; Neumayer, P.; Hastings, J. B.; Glenzer, S. H.

    2015-03-23

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ngstrm) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  14. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    SciTech Connect (OSTI)

    Zastrau, Ulf; Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja; Frster, Eckhart; Marschner, Heike; Wehrhan, Ortrud

    2014-09-15

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ?10{sup ?4} and wave-number resolution of ?k/k = 3 ?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/ in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  15. The Investigation of Decomposition of Supersaturated Si Solid Solution by X-Ray Diffuse Scattering

    SciTech Connect (OSTI)

    Shcherbachev, Kirill; Privezentsev, Vladimir

    2010-04-06

    The results of investigation of microstructure of Zn doped n-type Si by X-ray Diffuse Scattering (XRDS) are presented. Experimental samples were made by a high-temperature Zn diffusion annealing with subsequent quenching and tempering. Reciprocal space maps of XRDS were obtained. They resulted in that crystal lattice of the samples contains spherical MDs of vacancy type and plane shape MDs of interstitial type. The MDs average radius and their type depend on Zn doping level and thermal treatment after Zn diffusion.

  16. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Deutsches Elektronen-Synchrotron, Hamburg; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; et al

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  17. Polarization periodicity in the B1 columnar phase determined by resonant x-ray scattering

    SciTech Connect (OSTI)

    Folcia, C.L.; Pindak, R.; Ortega, J.; Etxebarria, J.; Pan, L.; Wang, S.; Huang, C.C.; Ponsinet, V.; Barois, P. and Gimeno, N.

    2011-07-14

    We report structural results that evidence the polarization distribution of the blocks in the columnar phase of an achiral bent-core liquid crystal. The study was performed using resonant x-ray diffraction at the sulfur K edge on oriented samples aligned on substrates. The extra periodicity is revealed through the violation of the systematic extinction rule of the structural symmetry group along the experimentally accessible diffraction direction. Further data obtained from the polarization analysis of a resonant reflection give information concerning the transition mechanism between B{sub 1} and B{sub 2} phases.

  18. Polarization Periodicity in the B(1) Columnar Phase Determined by Resonant X-ray Scattering

    SciTech Connect (OSTI)

    C Folcia; J Ortega; J Etxebarria; L Pan; S Wang; C Huang; V Ponsinet; P Barois; R Pindak; N Gimeno

    2011-12-31

    We report structural results that evidence the polarization distribution of the blocks in the columnar phase of an achiral bent-core liquid crystal. The study was performed using resonant x-ray diffraction at the sulfur K edge on oriented samples aligned on substrates. The extra periodicity is revealed through the violation of the systematic extinction rule of the structural symmetry group along the experimentally accessible diffraction direction. Further data obtained from the polarization analysis of a resonant reflection give information concerning the transition mechanism between B{sub 1} and B{sub 2} phases.

  19. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  20. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect (OSTI)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  1. Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops

    SciTech Connect (OSTI)

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu

    2014-01-10

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path ? associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that ? ? (10{sup 8}-10{sup 9}) cm for ?30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  2. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches

    SciTech Connect (OSTI)

    Ruehrnschopf, Ernst-Peter; Klingenbeck, Klaus

    2011-07-15

    Since scattered radiation in cone-beam volume CT implies severe degradation of CT images by quantification errors, artifacts, and noise increase, scatter suppression is one of the main issues related to image quality in CBCT imaging. The aim of this review is to structurize the variety of scatter suppression methods, to analyze the common structure, and to develop a general framework for scatter correction procedures. In general, scatter suppression combines hardware techniques of scatter rejection and software methods of scatter correction. The authors emphasize that scatter correction procedures consist of the main components scatter estimation (by measurement or mathematical modeling) and scatter compensation (deterministic or statistical methods). The framework comprises most scatter correction approaches and its validity also goes beyond transmission CT. Before the advent of cone-beam CT, a lot of papers on scatter correction approaches in x-ray radiography, mammography, emission tomography, and in Megavolt CT had been published. The opportunity to avail from research in those other fields of medical imaging has not yet been sufficiently exploited. Therefore additional references are included when ever it seems pertinent. Scatter estimation and scatter compensation are typically intertwined in iterative procedures. It makes sense to recognize iterative approaches in the light of the concept of self-consistency. The importance of incorporating scatter compensation approaches into a statistical framework for noise minimization has to be underscored. Signal and noise propagation analysis is presented. A main result is the preservation of differential-signal-to-noise-ratio (dSNR) in CT projection data by ideal scatter correction. The objective of scatter compensation methods is the restoration of quantitative accuracy and a balance between low-contrast restoration and noise reduction. In a synopsis section, the different deterministic and statistical methods are discussed with respect to their properties and applications. The current paper is focused on scatter compensation algorithms. The multitude of scatter estimation models will be dealt with in a separate paper.

  3. SSRL School 2007 on Hard X-ray Scattering: Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    peak intensities, A. Vailionis SAXS, J. Pople Tuesday Afternoon, Bulk-Structure Techniques Structure characterization, A. Mehta In-situ scattering, S. Webb Amorphous...

  4. Inelastic magnetic neutron scattering in CePd{sub 3}.

    SciTech Connect (OSTI)

    Lawrence, J. M.; Fanelli, V. R.; Goremychkin, E. A.; Osborn, R.; Bauer, E. D.; McClellan, K. J.; Christianson, A. D.; Univ. of California at Irvine; LANL; ORNL

    2008-01-01

    We have performed time-of-flight neutron scattering measurements on a single crystal of the intermediate valence compound CePd{sub 3}. At 10 K, a Kondo-esque inelastic magnetic scattering peak occurs near {Delta}E = 60 meV with maximum intensity for momentum transfer Q near the (1/2, 1/2, 0) zone boundary. Spectral weight is transferred to lower energy as Q varies until at zone center the intensity at 60 meV is considerably weaker. These results are in qualitative accord with predictions of the Anderson lattice. The Q-dependence may resolve an older controversy concerning the low-temperature scattering. We discuss the relationship of these results to our recent results in YbAl{sub 3}.

  5. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. Inmore » these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average distance between branches of type 2 or 3 aggregates. Furthermore, this direct comparison of X-ray scattering data to the atomistic MD simulations is a substantive step toward providing a comprehensive, predictive model for ionomer morphology, gives substantial support for this atomistic MD model, and provides new credibility to the presence of stringy, branched, and percolated ionic aggregates in precise ionomer melts.« less

  6. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; et al

    2016-01-13

    Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature ofmore » 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less

  7. Neutron inelastic scattering in natural Pb as a background in neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Inelastic neutron scattering on Pb isotopes can result in {gamma} rays near the signature endpoint energy in a number of

  8. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  9. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    SciTech Connect (OSTI)

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-?s MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that proteinsolvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  10. Small-angle x-ray scattering measurements of the microstructure of liquid helium mixtures adsorbed in aerogel

    SciTech Connect (OSTI)

    Lurio, L. B.; Mulders, N.; Paetkau, M.; Chan, M. H. W.; Mochrie, S. G. J. [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Department of Physics, University of Delaware, Newark, Delaware 19716 (United States); Department of Physics and Astronomy, Okanagan College, British Columbia V1Y4X8 (Canada); Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2007-07-15

    Small-angle x-ray scattering (SAXS) was used to measure the microstructure of isotopic mixtures of {sup 3}He and {sup 4}He adsorbed into silica aerogels as a function of temperature and {sup 3}He concentration. The SAXS measurements could be well described by the formation of a nearly pure film of {sup 4}He which separates from the bulk mixture onto the aerogel strands and which thickens with decreasing temperature. Previous observations of a superfluid {sup 3}He-rich phase are consistent with superfluidity existing within this film phase. Observed differences between different density aerogels are explained in terms of the depletion of {sup 4}He from the bulk mixture due to film formation.

  11. Electron-electron correlations in fullerene C{sub 60} probed by incoherent scattering of x rays

    SciTech Connect (OSTI)

    Petrillo, C.; Sacchetti, F.; Orecchini, A.; De Renzi, R.; Ricco, M.

    2006-08-15

    The static structure factor of electrons in fullerene has been obtained by a properly designed x-ray diffraction experiment. Due to the intense diffuse scattering caused by the orientational disorder of the C{sub 60} molecules in fullerene, the experiment presented several difficulties. Nonetheless, the data were accurate enough to provide an estimate of the exchange-correlation energy and to make a valuable comparison of the static structure factors of fullerene and diamond. The observed value of the exchange-correlation energy, which is larger in fullerene than in diamond, suggests a clear link between carbon polymorphism and dynamic electron correlations. The experimental data of static structure factor of fullerene, together with the derived exchange-correlation contribution to the cohesion and the pair-correlation function, offer an interesting test on the validity of the local-density treatment of the electron correlations in solids.

  12. Full multiple scattering analysis of XANES at the Cd L3 and O K edges in CdO films combined with a soft-x-ray emission investigation

    SciTech Connect (OSTI)

    Demchenko, I. N.; Denlinger, J. D.; Chernyshova, M.; Yu, K. M.; Speaks, D. T.; Olalde-Velasco, P.; Hemmers, O.; Walukiewicz, W.; Derkachova, A.; Lawniczak-Jablonska, K.

    2010-07-05

    X-ray absorption near edge structure (XANES) at the cadmium L3 and oxygen K edges for CdO thin films grown by pulsed laser deposition method, is interpreted within the real-space multiple scattering formalism, FEFF code. The features in the experimental spectra are well reproduced by calculations for a cluster of about six and ten coordination shells around the absorber for L3 edge of Cd and K edge of O, respectively. The calculated projected electronic density of states is found to be in good agreement with unoccupied electronic states in experimental data and allows to conclude that the orbital character of the lowest energy of the conductive band is Cd-5s-O-2p. The charge transfer has been quantified and not purely ionic bonding has been found. Combined XANES and resonant inelastic x-ray scattering measurements allow us to determine the direct and indirect band gap of investigated CdO films to be {approx}2.4-eV and {approx}0.9-eV, respectively.

  13. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ?18?K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ?3?K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  14. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect (OSTI)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  15. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  16. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  17. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect (OSTI)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  18. Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique

    SciTech Connect (OSTI)

    Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

    2007-03-30

    The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

  19. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    SciTech Connect (OSTI)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.; Haverkamp, Richard G.; Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T.

    2015-01-28

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined from SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.

  20. Interrogation of Surface, Skin, and Core Orientation in Thermotropic Liquid-Crystalline Copolyester Moldings by Near-Edge X-ray Absorption Fine Structure and Wide-Angle X-ray Scattering

    SciTech Connect (OSTI)

    Rendon,S.; Bubeck, R.; Thomas, L.; Burghardt, W.; Hexemer, A.; Fischer, D.

    2007-01-01

    Injection molding thermotropic liquid-crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. 'Skin-core' morphologies are often observed in TLCP moldings. Given that both 'core' and 'skin' orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two-dimensional wide-angle X-ray scattering (WAXS) in transmission and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4'-dihydroxy-{alpha}-methylstilbene (DH{alpha}MS)-based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on- and off- axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature.

  1. Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption

    SciTech Connect (OSTI)

    Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

    2005-01-01

    A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

  2. Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry

    SciTech Connect (OSTI)

    Vollet, D. R.; Donatti, D. A.; Ibanez Ruiz, A.; Gatto, F. R. [Departamento de Fisica, Unesp-Univerisdade Estadual Paulista, IGCE, P.O. Box 178 CEP 13500-970 Rio Claro, SP (Brazil)

    2006-07-01

    Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 deg. C/min from -120 deg. C up to 30 deg. C. Aerogels were obtained by CO{sub 2} supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 deg. C up to practically 0 deg. C, was associated to the melting of ice nanocrystals with a crystal size distribution with 'pore' diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 deg. C, was attributed to the melting of macroscopic crystals. The DSC incremental 'nanopore' volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20{+-}0.01 in a characteristic length scale below {xi}=7.9{+-}0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental ''pore'' volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

  3. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: In situ synchrotron small angle and wide angle X-ray scattering study

    SciTech Connect (OSTI)

    Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen

    2013-01-10

    A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.

  4. A short note on physical properties to irradiated nuclear fuel by means of X-ray diffraction and neutron scattering techniques

    SciTech Connect (OSTI)

    Abdullah, Yusof Husain, Hishamuddin; Hak, Cik Rohaida Che; Alias, Nor Hayati; Yusof, Mohd Reusmaazran; Kasim, Norasiah Ab; Zali, Nurazila Mat; Mohamed, Abdul Aziz

    2015-04-29

    For nuclear reactor applications, understanding the evolution of the fuel materials microstructure during irradiation are of great importance. This paper reviews the physical properties of irradiated nuclear fuel analysis which are considered to be of most importance in determining the performance behavior of fuel. X-rays diffraction was recognize as important tool to investigate the phase identification while neutron scattering analyses the interaction between uranium and other materials and also investigation of the defect structure.

  5. Microstructure of amorphous-silicon-based solar cell materials by small-angle x-ray scattering. Annual subcontract report, 6 April 1994--5 April 1995

    SciTech Connect (OSTI)

    Williamson, D.L.

    1995-08-01

    The general objective of this research is to provide detailed microstructural information on the amorphous-silicon-based, thin-film materials under development for improved multijunction solar cells. The experimental technique used is small-angle x-ray scattering (SAXS) providing microstructural data on microvoid fractions, sizes, shapes, and their preferred orientations. Other microstructural features such as alloy segregation, hydrogen-rich clusters and alloy short-range order are probed.

  6. Neutron inelastic scattering in natural Pb as a background in neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Journal Article) | SciTech Connect Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and

  7. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-04-11

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm⁻¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  8. Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering

    SciTech Connect (OSTI)

    Kim, Min Gyu

    2012-08-28

    The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

  9. A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences

    SciTech Connect (OSTI)

    Bryant, Rebecca

    2010-12-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

  10. An In-situ X-ray Scattering Study During Uniaxial Stretching of Ionic Liquid/Ultra-high Molecular Weight Polyethylene Blends

    SciTech Connect (OSTI)

    X Li; Y Mao; H Ma; F Zuo; B Hsiao; B Chu

    2011-12-31

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at high temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.

  11. Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory

    SciTech Connect (OSTI)

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-11-21

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

  12. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray

  13. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray

  14. BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments

    SciTech Connect (OSTI)

    Round, Adam, E-mail: around@embl.fr; Felisaz, Franck [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Fodinger, Lukas; Gobbo, Alexandre [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Huet, Julien [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Villard, Cyril [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Blanchet, Clement E., E-mail: around@embl.fr [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Pernot, Petra; McSweeney, Sean [ESRF, 6 Rue Jules Horowitz, 38000 Grenoble (France); Roessle, Manfred; Svergun, Dmitri I. [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Cipriani, Florent, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Universit Grenoble AlpesEMBLCNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France)

    2015-01-01

    A robotic sample changer for solution X-ray scattering experiments optimized for speed and to use the minimum amount of material has been developed. This system is now in routine use at three high-brilliance European synchrotron sites, each capable of several hundred measurements per day. Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 l with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.

  15. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at

    Office of Scientific and Technical Information (OSTI)

    Next-to-Next-to-Leading Order in QCD (Journal Article) | SciTech Connect Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD Citation Details In-Document Search This content will become publicly available on May 24, 2017 Title: Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD Authors: Berger, Edmond L. ; Gao, Jun ; Li, Chong Sheng ; Liu, Ze Long ; Zhu, Hua Xing Publication Date: 2016-05-24

  16. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect (OSTI)

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  17. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  18. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results

  19. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Nimore » $$_{50}$$Co$$_{50}$$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.« less

  20. Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse X-ray scattering and electron microscopy

    SciTech Connect (OSTI)

    Olsen, Raina J.; Jin, Ke; Lu, Chenyang; Beland, Laurent K.; Wang, Lumin M.; Bei, Hongbin; Specht, Eliot D.; Larson, Bennett C.

    2016-01-01

    The nature of defect clusters in Ni and Ni$_{50}$Co$_{50}$ (NiCo) irradiated at room temperature with 2–16 MeV Ni ions is studied using asymptotic diffuse X-ray scattering and transmission electron microscopy (TEM). Analysis of the scattering data provides separate size distributions for vacancy and interstitial type defect clusters, showing that both types of defect clusters have a smaller size and higher density in NiCo than in Ni. Diffuse scattering results show good quantitative agreement with TEM results for cluster sizes greater than 4 nm diameter, but find that the majority of vacancy clusters are under 2 nm in NiCo, which, if not detected, would lead to the conclusion that defect density was actually lower in the alloy. Interstitial dislocation loops and stacking fault tetrahedra are identified by TEM. Lastly comparison of diffuse scattering lineshapes to those calculated for dislocation loops and SFTs indicates that most of the vacancy clusters are SFTs.

  1. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect (OSTI)

    Salah, Wa'el; Sanchez del Rio, M.; Hoorani, H.

    2009-09-15

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  2. Vacancy-induced nanoscale phase separation in KxFe2–ySe₂ single crystals evidenced by Raman scattering and powder x-ray diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lazarević, N.; Abeykoon, M.; Stephens, P. W.; Lei, Hechang; Bozin, E. S.; Petrovic, C.; Popović, Z. V.

    2012-08-06

    Polarized Raman scattering spectra of KxFe2–ySe₂ were analyzed in terms of peculiarities of both I4/m and I4/mmm space group symmetries. The presence of the Raman active modes from both space group symmetries (16 Raman-active modes of the I4/m phase and two Raman-active modes of the I4/mmm phase) confirmed the existence of two crystallographic domains with different space group symmetry in a KxFe2–ySe₂ sample. High-resolution synchrotron powder x-ray diffraction structural refinement of the same sample confirmed the two-phase description, and determined the atomic positions and occupancies for both domains.

  3. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    SciTech Connect (OSTI)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J.

    2015-10-15

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

  4. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including film developing and scanning, and image plate scanning. Related images X-ray framing camera being loaded into the TIM in the Trident North Target Area. X-ray framing...

  5. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  6. Dipole model analysis of the newest diffractive deep inelastic scattering data

    SciTech Connect (OSTI)

    Golec-Biernat, K.; Luszczak, A.

    2009-06-01

    We analyze the newest diffractive deep inelastic scattering data from the DESY collider HERA with the help of dipole models. We find good agreement with the data on the diffractive structure functions provided the diffractive open charm contribution is taken into account. However, the region of large diffractive mass (small values of a parameter {beta}) needs some refinement with the help of an additional gluon radiation.

  7. Measurements of transverse momentum in semi-inclusive deep-inelastic scattering at CLAS

    SciTech Connect (OSTI)

    K.A. Griffioen

    2012-12-01

    With mounting experimental evidence that only a small fraction of the proton's spin comes from the spins of its quarks and gluons, the quest for orbital angular momentum has begun. The parton distributions relevant to this depend on transverse quark momenta. Recent CLAS semi-inclusive deep-inelastic scattering measurements probe these new transverse-momentum-dependent parton distributions using longitudinally polarized beams and targets and detecting {pi}{sup +},{pi}{sup -} and {pi}{sup 0} in the final state.

  8. Single-shot measurements of plasmons in compressed diamond with an x-ray laser

    SciTech Connect (OSTI)

    Gamboa, E. J.; Fletcher, L. B.; Lee, H. J.; Galtier, E.; Gauthier, M.; Granados, E.; Hastings, J. B.; Glenzer, S. H.; Zastrau, U.; MacDonald, M. J.; Vorberger, J.; Gericke, D. O.

    2015-05-15

    Strong plasmon resonances characteristics of electron density fluctuations have recently been observed in dynamically compressed diamond for the first time at the Linac Coherent Light Source. These experiments observe the forward scattering spectra from 8 keV x-ray pulses at record peak brightness to probe laser-compressed diamond foils at the Matter in Extreme Conditions instrument. We demonstrate single-shot measurements of the x-ray scattering spectrum, which are sensitive to the temperatures and densities of the compressed samples. The inferred values from the inelastic scattering are compared to simulations, finding good agreement with the temperature and demonstrating the need to include solid state effects in the modeling of the plasmon oscillation.

  9. Morphological transformations in the magnetite biomineralizing protein Mms6 in iron solutions: A small-angle x-ray scattering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Honghu; Liu, Xunpei; Feng, Shuren; Wang, Wenjie; Schmidt-Rohr, Klaus; Akinc, Mufit; Nilsen-Hamilton, Marit; Vaknin, David; Mallapragada, Surya

    2015-02-10

    In this study, magnetotactic bacteria that produce magnetic nanocrystals of uniform size and well-defined morphologies have inspired the use of biomineralization protein Mms6 to promote formation of uniform magnetic nanocrystals in vitro. Small angle X-ray scattering (SAXS) studies in physiological solutions reveal that Mms6 forms compact globular three-dimensional (3D) micelles (approximately 10 nm in diameter) that are, to a large extent, independent of concentration. In the presence of iron ions in the solutions, the general micellar morphology is preserved, however, with associations among micelles that are induced by iron ions. Compared with Mms6, the m2Mms6 mutant (with the sequence ofmore » hydroxyl/carboxyl containing residues in the C-terminal domain shuffled) exhibits subtle morphological changes in the presence of iron ions in solutions. The analysis of the SAXS data is consistent with a hierarchical core–corona micellar structure similar to that found in amphiphilic polymers. The addition of ferric and ferrous iron ions to the protein solution induces morphological changes in the micellar structure by transforming the 3D micelles into objects of reduced dimensionality of 2, with fractal-like characteristics (including Gaussian-chain-like) or, alternatively, platelet-like structures.« less

  10. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    SciTech Connect (OSTI)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav; Wang, Tianhan; Wu, Benny; Graves, Catherine; Dürr, Hermann A.; Scherz, Andreas; Stöhr, Jo

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5 nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5 nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8 nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5 nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  11. Characterization of nanostructured zirconia prepared by hydrolysis and reverse micelle synthesis by small-angle neutron and X-ray scattering

    SciTech Connect (OSTI)

    Thiyagarajan, P.; Li, X.; Littrell, K.; Seifert, S.; Csencsits, R.; Loong, C.

    1999-12-07

    Low temperature techniques such as hydrolysis and reverse micelle syntheses provide the opportunity to determine the relationship between the structural properties and preparation conditions of zirconia powders as well as to tailor their physicochemical properties. The authors have performed small-angle neutron and synchrotron X-ray scattering (SANS and SAXS) experiments to study the nucleation and organization of zirconia nanoparticles via different preparation routes. First, the formation of reverse micelles in individual and mixed solutions of (ZrOCl{sub 2}+D{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3}, and (NH{sub 4}OH+H{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3} systems at water/AOT molar ratio of 20 was characterized. Second, the aggregation of zirconia gels obtained from the reaction of the reverse micelle solutions after heat treatments was studied. Third, the nanostructure of zirconia powders prepared by the reverse micelle method is compared with the corresponding powders prepared by hydrolysis after different heat treatments.

  12. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; et al

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  13. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  14. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  15. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  16. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  17. X-ray generator

    DOE Patents [OSTI]

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  18. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  19. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  20. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  1. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  2. Partonic Transverse Motion in Unpolarized Semi-Inclusive Deep Inelastic Scattering Processes

    SciTech Connect (OSTI)

    M. Boglione, S. Melis, A. Prokudin

    2011-08-01

    We analyse the role of partonic transverse motion in unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes. Imposing appropriate kinematical conditions, we find some constraints which fix an upper limit to the range of allowed k_perp values. We show that, applying these additional requirements on the partonic kinematics, we obtain different results with respect to the usual phenomenological approach based on the Gaussian smearing with analytical integration over an unlimited range of k_perp values. These variations are particularly interesting for some observables, like the < cos phi_h > azimuthal modulation of the unpolarized SIDIS cross section or the average transverse momentum of the final, detected hadron.

  3. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  4. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  5. In-Situ Monitoring of the Microstructure of TATB-based Explosive Formulations During Temperature Cycling using Ultra-small Angle X-ray Scattering

    SciTech Connect (OSTI)

    Willey, T M; Hoffman, D M; van Buuren, T; Lauderbach, L; Ilavsky, J; Gee, R H; Maiti, A; Overturf, G; Fried, L

    2008-02-06

    TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in plastic-bonded explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). With both PBXs and UFTATB, an irreversible expansion occurs with temperature cycling known as ratchet growth. In TATB-based explosives using Kel-F 800 as binder (LX-17 and PBX-9502), additional voids, sizes hundreds of nanometers to a few microns account for much of the volume expansion caused by temperature cycling. These voids are in the predicted size regime for hot-spot formation during ignition and detonation, and thus an experimental measure of these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding the mechanism of ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes to explosives, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between -55 C and 70 C. These void size distributions are derived from ultra-small angle x-ray scattering (USAXS), a technique sensitive to structures from about 10 nm to about 2 mm. Structures with these sizes do not appreciably change in UFTATB, indicating voids or cracks larger than a few microns appear in UFTATB during temperature cycling. Compared to Kel-F 800 binders, Cytop M and Cytop A show relatively small increases in void volume from 0.9% to 1.3% and 0.6% to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2% to 4.6%). Computational mesoscale models of ratchet growth and binder wetting and adhesion properties point to mechanisms of ratchet growth, and are discussed in combination with the experimental results.

  6. AdS Black Disk Model for Small-x Deep Inelastic Scattering

    SciTech Connect (OSTI)

    Cornalba, Lorenzo; Costa, Miguel S.; Penedones, Joao

    2010-08-13

    Using the approximate conformal invariance of QCD at high energies we consider a simple anti-de Sitter black disk model to describe saturation in deep inelastic scattering. Deep inside saturation the structure functions have the same power law scaling, F{sub T}{approx}F{sub L}{approx}x{sup -{omega}}, where {omega} is related to the expansion rate of the black disk with energy. Furthermore, the ratio F{sub L}/F{sub T} is given by the universal value (1+{omega}/3+{omega}), independently of the target. For {gamma}*-{gamma}* scattering at high energies we obtain explicit expressions and ratios for the total cross sections of transverse and longitudinal photons in terms of the single parameter {omega}.

  7. 6 GeV Parity Violating Deep Inelastic Scattering at Jefferson Laboratory

    SciTech Connect (OSTI)

    Subedi, Ramesh R.; Deng Xiaoyan; Wang Diancheng; Zheng Xiaochao; Michaels, Robert; Pan Kai; Reimer, Paul E.

    2011-10-24

    The 6 GeV Parity Violating Deep Inelastic Scattering (PVDIS) experiment has measured a 10{sup -4} level asymmetry through polarized electron scattering off a liquid deuterium target with a beam energy of 6 GeV. This experiment has a goal of measuring a combination of the product of the weak neutral couplings of the electron and the quark with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment took place in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) and data collection was completed in the end of 2009. A highly specialized counting data acquisition system with an inherent particle identification was developed and utilized. We have taken data at two Q{sup 2} points in order to possibly address the hadronic correction due to higher twist effects. An overview of the experiment will be presented.

  8. X-Ray Detection

    Office of Scientific and Technical Information (OSTI)

    ratio, I I on I off , recorded with plus (+, blue) and minus (-, red) x-ray helicities. This measurement was taken at -5 mA, which corresponds to a current...

  9. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  10. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    SciTech Connect (OSTI)

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  11. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect (OSTI)

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-19

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  12. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  13. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mousseau, J.

    2016-04-19

    Here, the MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5–50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy.more » However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.« less

  14. Unpolarised TMD Distribution and Fragmentation Functions from recent HERMES and COMPASS Semi-inclusive Deep Inelastic Scattering Multiplicities

    SciTech Connect (OSTI)

    Prokudin, Alexey; Anselmino, Mauro; Boglione, Mariaelena; Melis, Stefano; Gonzalez, J. O.

    2014-10-01

    The unpolarised transverse momentum dependent distribution and fragmentation functions (TMDs) are extracted from HERMES and COMPASS experimental measurements of semi- inclusive deep inelastic scattering multiplicities for charged hadron production. A simple factorised functional form of the TMDs is adopted, with a Gaussian dependence on the intrinsic transverse momentum, which turns out to be quite adequate in shape.

  15. Measurement of pretzelosity asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.

    2014-11-01

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized He target was performed at Jefferson Lab in the kinematic region of 0.16 on He3 and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  16. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  17. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 104 achieved routinely today to well above 105. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. Thesemoreexcitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.less

  18. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  19. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  20. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  1. Characterization of a Fe/Y{sub 2}O{sub 3} metal/oxide interface using neutron and x-ray scattering

    SciTech Connect (OSTI)

    Watkins, E. B.; Majewski, J. E-mail: jarek@lanl.gov; Kashinath, A.; Wang, P.; Baldwin, J. K.; Demkowicz, M. J. E-mail: jarek@lanl.gov

    2014-07-28

    The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y{sub 2}O{sub 3} metal/oxide heterophase interface using neutron and x-ray reflectometry. These findings suggest that the Fe/Y{sub 2}O{sub 3} interface is a transitional zone approximately ?64?-thick containing mixtures or compounds of Fe, Y, and O. Our results illustrate the complex chemical and magnetic nature of Fe/oxide interfaces and demonstrate the utility of combined neutron and x-ray techniques as tools for characterizing them.

  2. Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab

    SciTech Connect (OSTI)

    Sulkosky, Vincent A.; et. al.,

    2015-03-01

    We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.

  3. Final-state interactions in inclusive deep-inelastic scattering from the deuteron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, Wim; Melnitchouk, Wally; Sargsian, Misak M.

    2014-01-16

    We explore the role of final-state interactions (FSI) in inclusive deep-inelastic scattering from the deuteron. Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three resonances with mass W~<2 GeV and a continuum contribution for larger W as the relevant set of effective hadron states entering the final-state interaction amplitude. The results show sizeable on-shell FSI contributions for Bjorken x ~> 0.6 andmore » Q2 < 10 GeV2 increasing in magnitude for lower Q2, but vanishing in the high-Q2 limit due to phase space constraints. The off-shell rescattering contributes at x ~> 0.8 and is taken as an uncertainty on the on-shell result.« less

  4. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect (OSTI)

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  5. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  6. Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; Ehlers, Georg; Yamamuro, Osamu; Moriya, Yosuke

    2015-07-26

    Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (EBP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among EBP, the anion radius, andmore » the glass transition temperature Tg, we conclude that both EBP and Tg in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the EBP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less

  7. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q on Nucleons and Nuclei

    SciTech Connect (OSTI)

    Vladas Tvaskis

    2004-12-09

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F{sub 2}(x,Q{sup 2}) is known with high precision over about four orders of magnitude in x and Q{sup 2}. In the region of Q{sup 2} > 1 (GeV/c){sup 2} the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q{sup 2} becomes of the order of 1 (GeV/c){sup 2}, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q{sup 2}, since they include a factor 1/(Q{sup 2}{sup n}) (n {ge} 1).

  8. Focus characterization at an X-ray free-electron laser by coherent...

    Office of Scientific and Technical Information (OSTI)

    Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis Citation Details In-Document Search Title: Focus characterization at an X-ray...

  9. Measurement of pretzelosity asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He target

    SciTech Connect (OSTI)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.

    2014-11-01

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q < 2.7 GeV. Our results show that both ? on He3 and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  10. Crystal structure of fluorite-related Ln{sub 3}SbO{sub 7} (Ln=LaDy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    SciTech Connect (OSTI)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-07-15

    Ln{sub 3}SbO{sub 7} (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (LaNd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (SmDy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222{sub 1} space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La{sub 3}SbO{sub 7} ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: Ln{sub 3}SbO{sub 7} ceramics belonging to the space groups Cmcm and Ccmm are synthesized. SXRD, SHG and Raman scattering confirmed the orthorhombic structures. Ccmm instead of C222{sub 1} is the correct one based on SHG and Raman data.

  11. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  12. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  13. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    SciTech Connect (OSTI)

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated with the phase transition.

  14. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm→Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated withmore » the phase transition.« less

  15. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and angles of x rays scattered from the sample rather than transmitted through it). Shapiro et al. have now chimed in with the first lensless imaging of a sample as complex as a...

  16. Direct detection of x-rays for protein crystallography employing a thick, large area CCD

    DOE Patents [OSTI]

    Atac, Muzaffer; McKay, Timothy

    1999-01-01

    An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

  17. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  18. Peripheral elastic and inelastic scattering of {sup 17,18}O on light targets at 12 MeV/nucleon

    SciTech Connect (OSTI)

    Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.

    2015-02-24

    The elastic and inelastic scattering of {sup 17,18}O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction {sup 13}C({sup 17}O,{sup 18}O){sup 12}C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the {sup 17}F(p,γ){sup 18}Ne which is essential to estimate the production of {sup 18}F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of {sup 17}O, {sup 18}O and {sup 16}O projectiles is made.

  19. Structural characterization of Green River oil-shale at high-pressure using pair distribution function analysis and small angle x-ray scattering.

    SciTech Connect (OSTI)

    Locke, D. R.; Chupas, P. J.; Chapman, K. W.; Pugmire, R. J.; Winans, R. E.; Univ. of Utah

    2008-01-01

    The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances (6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R 30.7%). Indeed the features in the PDF beyond 6 {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component.

  20. X-Ray Science Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TV Network external link DNA Interactive external link Reciprocal Net external link X-ray Science Courses and Programs Various educational efforts are closely related to the...

  1. Design and performance of AERHA, a high acceptance high resolution soft x-ray spectrometer

    SciTech Connect (OSTI)

    Chiuzbăian, Sorin G. Hague, Coryn F.; Brignolo, Stefania; Baumier, Cédric; Lüning, Jan; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris; Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, B.P. 48, F-91192 Gif-sur-Yvette ; Avila, Antoine; Delaunay, Renaud; Mariot, Jean-Michel; CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 11 rue Pierre et Marie Curie, F-75005 Paris ; Jaouen, Nicolas; Polack, François; Thomasset, Muriel; Lagarde, Bruno; Nicolaou, Alessandro; Sacchi, Maurizio; Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05; CNRS, UMR 7588, Institut des NanoSciences de Paris, 4 place Jussieu, F-75252 Paris Cedex 05

    2014-04-15

    A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 − 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm{sup 2} focal spot source with full polarization control.

  2. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Alonso-Mori, R.; Bergmann, U.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  3. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    SciTech Connect (OSTI)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  4. Large-angle elastic and inelastic scattering of Pi(+) and Pi(-) from (28)Si and (40)Ca. Master's thesis

    SciTech Connect (OSTI)

    Snell, M.P.

    1989-05-01

    Differential cross sections were measured for Pi(+) and Pi(-) elastic scattering of Calcium 40 and Silicon 28 at incident pion energies ranging from 100 to 260 MeV at a scattering angle of 175 degs. Differential cross sections were also measured for Pi(+) and Pi(-) inelastic scattering to the 2(+), 1.78 MeV, 4(+), 4.62 MeV, and 3(-) 6.88 MeV states of 28Si at incident pion energies of 130, 180, and 226 MeV and scattering angles between 115 and 175{degrees} in 6{degrees} increments. The data are compared to previously obtained forward angle data through 120{degrees} and agree quite well. The data show a generally flat angular dependence for angles greater than 100{degrees}. Several theoretical codes are reviewed for their ability to predict large angle scattering. Coordinate-space and momentum-space models generally thought to be sufficient for predicting forward angle scattering have proved to be inappropriate for use at large angles. A new phenomenological delta-hole model, currently under modification, shows a greatly enhanced ability to predict scattering at back angles.

  5. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  6. Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering

    SciTech Connect (OSTI)

    Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

    2006-06-05

    We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

  7. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect (OSTI)

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  8. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    SciTech Connect (OSTI)

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo; Vitev, Ivan

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semiinclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off diagonal contribution from the three-gluon correlation functions.

  9. Measurement of cross sections for inelastic cold-neutron scattering in metals and polymers by the method of (n, {gamma}) analysis

    SciTech Connect (OSTI)

    Arzumanov, S. S.; Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Panin, Yu. N.; Chernyavsky, S. M.

    2008-11-15

    The results obtained by measuring the cross sections for the inelastic scattering of very cold neutrons for a number of metals and polymers by the method of a neutron-irradiation analysis are presented. The method is based on simultaneously measuring events of inelastic scattering and neutron capture in the sample under investigation via recording gamma radiation with a semiconductor germanium detector. Neutron capture by a nucleus of the sample is accompanied by the prompt radiation of gamma rays having a known spectrum. Upon inelastic scattering, a neutron acquires thermal energy. Upon leaving the sample, this neutron is absorbed in a special converter that contains the isotope {sup 10}B. The capture of the neutron by a {sup 10}B nucleus is followed by the emission of a 477-keV gamma ray. The probabilities of capture and inelastic scattering are proportional to the respective neutron-interaction cross sections, and the ratio of the recorded detector counts corresponding to events of the two types does not depend on the spectrum of the incident flux of very cold neutrons or on the trajectory of neutron motion in the sample. The sought inelastic-scattering cross section at a fixed sample temperature is calculated by using this ratio and the known cross section for neutron capture by the sample isotope having a known gamma-radiation spectrum.

  10. Ray tracing flux calculation for the small and wide angle x-ray...

    Office of Scientific and Technical Information (OSTI)

    Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility Citation Details In-Document Search ...

  11. CHESS X-rays show how to grow crystals from crystals > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    done one at the time. Wide-angle X-ray scattering is used for relatively smaller-scale characterization, revealing information on how atomic planes within individual...

  12. A scaler-based data acquisition system for measuring parity-violating asymmetry in deep inelastic scattering

    SciTech Connect (OSTI)

    Subedi, Ramesh R.; Wang, Diancheng; Pan, Kai; Deng, Xiaoyan; Michaels, Robert W.; Shahinyan, Albert; Wojtsekhowski, Bogdan B.; Zheng, Xiaochao

    2013-10-01

    An experiment that measured the parity violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10^-4 level needed to be measured at event rates up to 500 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: The pion contamination in the electron samples was controlled at the order of 2 10^-4 or below with an electron efficiency of higher than 91% throughout the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.2%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.

  13. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect (OSTI)

    Wang, Diancheng

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q{sup 2} values of 1.1 and 1.9 (GeV/c){sup 2}. The asymmetry at Q{sup 2}=1.9 (GeV/c){sup 2} can be used to extract the weak coupling combination 2C{sub 2u} - C{sub 2d}, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q{sup 2} values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A{sub PV} data in the resonance region beyond the {Delta}#1;(1232). They provide evidence that the quark hadron duality works for A{sub PV} at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  14. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  15. X-Ray Interactions with Matter from the Center for X-Ray Optics...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) Title: X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) The primary interactions of ...

  16. Electromechanical x-ray generator

    DOE Patents [OSTI]

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  17. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

  18. X-Ray Microscopy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy X-Ray Microscopy This group exploits the unique capabilities of hard X-ray microscopy to visualize and understand the structure and behavior of hybrid,...

  19. Energy dissipation in heavy systems: the transition from quasi-elastic to deep-inelastic scattering

    SciTech Connect (OSTI)

    Rehm, K.E.; van den Berg, A.; Kolata, J.J.; Kovar, D.G.; Kutschera, W.; Rosner, G.; Stephans, G.S.F.; Yntema, J.L.; Lee, L.L.

    1984-01-01

    The interaction of medium mass projectiles (A = 28 - 64) with /sup 208/Pb has been studied using a split-pole spectrograph which allows single mass and charge identification. The reaction process in all systems studied so far is dominated by quasi-elastic neutron transfer reactions, especially at incident energies in the vicinity of the Coulomb barrier. In addition to the quasi-elastic component deep inelastic contributions are present in all reaction channels. The good mass and charge separation allows to generate Wilczynski plots for individual channels; for the system /sup 48/Ti + /sup 208/Pb we observe that the transition between the quasi-elastic and deep-inelastic reactions occurs around Q = -(30 to 35) MeV.

  20. Neutron and resonant x-ray scattering studies of RNi{sub 2}B{sub 2}C (R = rare earth) single crystals

    SciTech Connect (OSTI)

    Stassis, C.; Goldman, A.I. |

    1996-06-01

    This family of intermetallic compounds is ideal for the study of the interplay between superconductivity and magnetism since, in several of these compounds (Ho, Er, Tm, Dy), superconductivity coexists with magnetic ordering. The most important findings of the scattering studies are (a) in the Ho-compound, a complex magnetic structure characterized by two incommensurate wave vectors, {rvec k}{sub a} = 0.585 {rvec a}* and {rvec k}{sub c} = 0.915 {rvec c}*, exists in the vicinity of 5 K, where the almost reentrant behavior of this compound occurs; (b) an incommensurate magnetic structure with wave vector along {rvec a}*, close to the zone boundary, is observed in several of these compounds; and (c) pronounced soft-phonon behavior was observed for both the acoustic and first optical {Delta}{sub 4}[{xi}00] branches in the superconducting Lu and Ho compounds, a behavior characteristic of strongly coupled conventional superconductors. Furthermore, these phonon anomalies occur at wave vectors close to those of the incommensurate magnetically ordered structures observed in the magnetic compounds of this family. This observation suggests that both the magnetic ordering and phonon softening originate from common nesting features of the Fermi surfaces of these compounds. Band theoretical calculations are in qualitative agreement with these results.

  1. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

  2. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOE Patents [OSTI]

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  3. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOE Patents [OSTI]

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  4. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    SciTech Connect (OSTI)

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander; Ghirlando, Rodolfo; Clore, G. Marius (NIH)

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidine and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.

  5. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    SciTech Connect (OSTI)

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  6. Numerical simulation of scattering of acoustic waves by inelastic bodies using hypersingular boundary integral equation

    SciTech Connect (OSTI)

    Daeva, S.G.; Setukha, A.V.

    2015-03-10

    A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.

  7. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme ismore » much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  8. Communication: The H{sub 2}@C{sub 60} inelastic neutron scattering selection rule: Expanded and explained

    SciTech Connect (OSTI)

    Poirier, Bill

    2015-09-14

    Recently [M. Xu et al., J. Chem. Phys. 139, 064309 (2013)], an unexpected selection rule was discovered for the title system, contradicting the previously held belief that inelastic neutron scattering (INS) is not subject to any selection rules. Moreover, the newly predicted forbidden transitions, which emerge only in the context of coupled H{sub 2} translation-rotation (TR) dynamics, have been confirmed experimentally. However, a simple physical understanding, e.g., based on group theory, has been heretofore lacking. This is provided in the present paper, in which we (1) derive the correct symmetry group for the H{sub 2}@C{sub 60} TR Hamiltonian and eigenstates; (2) complete the INS selection rule, and show that the set of forbidden transitions is actually much larger than previously believed; and (3) evaluate previous theoretical and experimental results, in light of the new findings.

  9. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    SciTech Connect (OSTI)

    Zhao, Y X; Wang, Y; Allada, K; Aniol, K; Annand, J R; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A; Dutta, C; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  10. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Y X; Wang, Y; Allada, K; Aniol, K; Annand, J R; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; et al

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  11. Pressure dependence of the exchange interaction in the dimeric single-molecule magnet [Mn{sub 4}O{sub 3}Cl{sub 4}(O{sub 2}CEt){sub 3}(py){sub 3}]{sub 2} from inelastic neutron scattering

    SciTech Connect (OSTI)

    Sieber, A.; Waldmann, O.; Ochsenbein, S. T.; Carver, G.; Guedel, H. U.; Foguet-Albiol, D.; Christou, G.; Mutka, H.; Fernandez-Alonso, F.; Mezouar, M.; Weber, H. P.

    2006-07-01

    The low-lying magnetic excitations in the dimers of single-molecule magnets [Mn{sub 4}O{sub 3}Cl{sub 4}(O{sub 2}CEt){sub 3}(py){sub 3}]{sub 2}, or (Mn{sub 4}){sub 2}, are studied by inelastic neutron scattering as a function of hydrostatic pressure. The anisotropy parameters D and B{sub 0}{sup 4}, which describe each Mn{sub 4} subunit, are essentially pressure independent, while the antiferromagnetic exchange coupling J between the two Mn{sub 4} subunits strongly depends on pressure, with an increase of 42% at 17 kbar. Additional pressure-dependent powder x-ray measurements allow a structural interpretation of the findings.

  12. SMB, Small Angle X-Ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ligula metus convallis tellus, sit amet consequat ante neque iaculis augue. Cras ut erat id diam aliquam volutpat quis ac tellus. Ut eget vulputate sem, nec lobortis...

  13. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to design, discover, and control materials. This research is in anticipation of MaRIE, Los Alamos National Laboratory's proposed Matter-Radiation Interactions in Extremes...

  14. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  15. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  16. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  17. Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations

    SciTech Connect (OSTI)

    Lan, Tian [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Li, Chen [ORNL] [ORNL; Niedziela, Jennifer L [ORNL] [ORNL; Smith, Hillary [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Abernathy, Douglas L [ORNL] [ORNL; Rossman, George [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Fultz, B. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena

    2014-01-01

    Inelastic neutron scattering measurements on silver oxide (Ag2O) with the cuprite structure were performed at temperatures from 40 to 400 K, and Fourier transform far-infrared spectra were measured from 100 to 300 K. The measured phonon densities of states and the infrared spectra showed unusually large energy shifts with temperature, and large linewidth broadenings. First principles molecular dynamics (MD) calculations were performed at various temperatures, successfully accounting for the negative thermal expansion (NTE) and local dynamics. Using the Fourier-transformed velocity autocorrelation method, the MD calculations reproduced the large anharmonic effects of Ag2O, and were in excellent agreement with the neutron scattering data. The quasiharmonic approximation (QHA) was less successful in accounting for much of the phonon behavior. The QHA could account for some of the NTE below 250 K, although not at higher temperatures. Strong anharmonic effects were found for both phonons and for the NTE. The lifetime broadenings of Ag2O were explained by anharmonic perturbation theory, which showed rich interactions between the Ag-dominated modes and the O-dominated modes in both up- and down-conversion processes.

  18. Evaluation of partial coherence correction in X-ray ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burdet, Nicolas; Shi, Xiaowen; Parks, Daniel; Clark, Jesse N.; Huang, Xiaojing; Kevan, Stephen D.; Robinson, Ian K.

    2015-02-23

    Coherent X-ray Diffraction Imaging (CDI) and X-ray ptychography both heavily rely on the high degree of spatial coherence of the X-ray illumination for sufficient experimental data quality for reconstruction convergence. Nevertheless, the majority of the available synchrotron undulator sources have a limited degree of partial coherence, leading to reduced data quality and a lower speckle contrast in the coherent diffraction patterns. It is still an open question whether experimentalists should compromise the coherence properties of an X-ray source in exchange for a higher flux density at a sample, especially when some materials of scientific interest are relatively weak scatterers. Amoreprevious study has suggested that in CDI, the best strategy for the study of strong phase objects is to maintain a high degree of coherence of the illuminating X-rays because of the broadening of solution space resulting from the strong phase structures. In this article, we demonstrate the first systematic analysis of the effectiveness of partial coherence correction in ptychography as a function of the coherence properties, degree of complexity of illumination (degree of phase diversity of the probe) and sample phase complexity. We have also performed analysis of how well ptychographic algorithms refine X-ray probe and complex coherence functions when those variables are unknown at the start of reconstructions, for noise-free simulated data, in the case of both real-valued and highly-complex objects.less

  19. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a hot topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  20. Soft X-ray techniques to study mesoscale magnetism

    SciTech Connect (OSTI)

    Kortright, Jeffrey B.

    2003-06-26

    Heterogeneity in magnetization (M) is ubiquitous in modern systems. Even in nominally homogeneous materials, domains or pinning centers typically mediate magnetization reversal. Fundamental lengths determining M structure include the domain wall width and the exchange stiffness length, typically in the 4-400 nm range. Chemical heterogeneity (phase separation, polycrystalline microstructure, lithographic or other patterning, etc.) with length scales from nanometers to microns is often introduced to influence magnetic properties. With 1-2 nm wavelengths {lambda}, soft x-rays in principle can resolve structure down to {lambda}/2, and are well suited to study these mesoscopic length scales [1, 2]. This article highlights recent advances in resonant soft x-ray methods to resolve lateral magnetic structure [3], and discusses some of their relative merits and limitations. Only techniques detecting x-ray photons (rather than photo-electrons) are considered [4], since they are compatible with strong applied fields to probe relatively deeply into samples. The magneto-optical (MO) effects discovered by Faraday and Kerr were observed in the x-ray range over a century later, first at ''hard'' wavelengths in diffraction experiments probing interatomic magnetic structure [5]. In the soft x-ray range, magnetic linear [6] and circular [7] dichroism spectroscopies first developed that average over lateral magnetic structure. These large resonant MO effects enable different approaches to study magnetic structure or heterogeneity that can be categorized as microscopy or scattering [1]. Direct images of magnetic structure result from photo-emission electron microscopes [4, 8] and zone-plate microscopes [9, 10]. Scattering techniques extended into the soft x-ray include familiar specular reflection that laterally averages over structure but can provide depth-resolved information, and diffuse scattering and diffraction that provide direct information about lateral magnetic structure. Scattering techniques are further classified as partially for fully coherent according to the extent of transverse coherence of the incident beam.

  1. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray emission...

  2. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics Citation Details In-Document Search Title: Femtosecond X-ray...

  3. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  4. X-ray characterization of solid small molecule organic materials

    SciTech Connect (OSTI)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  5. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  6. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  7. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more » F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  8. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission

  9. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless...

  12. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods X-Ray Nanoimaging: Instruments and Methods Print To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  13. SMB, X-ray Fluorescence Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam line 14-3b is a bending magnet side station dedicated to X-ray imaging and micro X-ray absorption spectroscopy of biological, biomedical, materials, and geological samples. ...

  14. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron

    Office of Scientific and Technical Information (OSTI)

    Scattering Studies and First-Principles Calculations (Journal Article) | SciTech Connect Journal Article: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search This content will become publicly available on August 3, 2016 Title: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations The pressure-induced structural

  15. Determination of phonon dispersion relations by X-ray thermal diffuse

    Office of Scientific and Technical Information (OSTI)

    scattering (Journal Article) | SciTech Connect Determination of phonon dispersion relations by X-ray thermal diffuse scattering Citation Details In-Document Search Title: Determination of phonon dispersion relations by X-ray thermal diffuse scattering Authors: Xu, R. ; Chiang, T.-C. [1] + Show Author Affiliations (UIUC) Publication Date: 2015-02-19 OSTI Identifier: 1171204 Resource Type: Journal Article Resource Relation: Journal Name: Z. Kristallogr.; Journal Volume: 220; Journal Issue:

  16. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    SciTech Connect (OSTI)

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; Liang, Mengning; Boutet, Sbastien; Coe, Jesse; Spence, John C. H.; Weierstall, Uwe; Liu, Wei; Fromme, Petra; Cherezov, Vadim; Hogue, Brenda G.

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  17. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; et al

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  18. Hadron mass corrections in semi-inclusive deep-inelastic scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; Casper, Steven W.; Melnitchouk, Wally

    2015-09-24

    We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.

  19. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  1. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  2. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He3 target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; et al

    2014-11-24

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized ³He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q² < 2.7 GeV². Our results show that both π± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  3. Cryotomography x-ray microscopy state

    DOE Patents [OSTI]

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  4. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect (OSTI)

    Kojima, Sadaoki Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi; Nishimura, Yasuhiko; Togawa, Hiromi; Ozaki, Tetsuo; Kato, Ryukou

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is 0.5 MeV for 6.0 MeV electrons.

  5. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  6. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  7. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  8. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  9. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K.; Boyer, Keith; Solem, Johndale C.; Haddad, Waleed S.

    1990-01-01

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  10. Pressure-Induced Structural Phase Transition in CeNi: X-ray and...

    Office of Scientific and Technical Information (OSTI)

    Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search Title: ...

  11. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  12. X-Ray Diffraction > Analytical Resources > Research > The Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytical Resources In This Section Differential Electrochemical Mass Spectroscopy (DEMS) Electron Microscopy X-Ray Diffraction X-Ray Diffraction...

  13. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  14. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  15. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less

  16. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-01-01

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  17. X-ray microscopy. Beyond ensemble averages

    SciTech Connect (OSTI)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  18. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are

  19. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  20. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrate for the first time a lensless x-ray imaging technique involving holographic principles and carried out in reflection (as opposed to transmission) geometry. The...

  2. Compound refractive X-ray lens

    DOE Patents [OSTI]

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  3. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  4. A criterion for the dynamical to kinematical transition of x-ray diffraction on a bent crystal

    SciTech Connect (OSTI)

    Kushnir, V.I.; Macrander, A.T.

    1993-09-01

    It is well known that the peak reflectivity of a bent crystal, generally speaking, is smaller than that of a plane crystal, and it goes to zero when the crystal curvature goes to infinity. The reason for this is the transition between dynamical and kinematical diffraction that takes place as the crystal curvature increases. The physical explanation is as follows: the deviation from exact Bragg position along the beam changes so fast that the thickness over which the beam is within a Darwin width becomes too small to reflect the beam. Bent crystals are widely used as focusing elements in X-ray optics, and estimation of whether or not a bent crystal is still perfect enough to provide good reflectivity is of great importance. Currently the Advanced Photon Source (APS) is considering a number of bent crystals as focusing elements for future APS beamlines, including a sagittaly focusing monochromator and bent backscattering analyzer for inelastic X-ray scattering experiments. A criterion is given in answer to the question: To what extent is it possible to bend a crystal without loss of X-ray peak reflectivity? An expression based on the work of Chukhovskii, Gabrielyan and Petrashen, is formulated that applies to anisotropic cubic crystal and that can be used not only for conventional asymmetric Bragg diffraction, but also for inclined crystal diffraction. The following special cases are treated as examples: isotropic crystal, standard symmetrical Bragg diffraction, extremely asymmetric diffraction, and backscattering with Bragg angles near 90{degree}. In addition, an asymptotic behavior for high energies is detailed.

  5. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser

    Office of Scientific and Technical Information (OSTI)

    Fluences (Journal Article) | SciTech Connect Journal Article: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Citation Details In-Document Search Title: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Authors: Schreck, Simon ; Beye, Martin ; Sellberg, Jonas A. ; McQueen, Trevor ; Laksmono, Hartawan ; Kennedy, Brian ; Eckert, Sebastian ; Schlesinger, Daniel ; Nordlund, Dennis ; Ogasawara, Hirohito ; Sierra, Raymond G. ; Segtnan,

  6. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  7. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functions as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  8. Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X

    SciTech Connect (OSTI)

    Katich, Joseph; Qian, Xin; Zhao, Yuxiang; Allada, Kalyan; Aniol, Konrad; Annand, John; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Bradshaw, Elliott; Bosted, Peter; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Chen, Wei; Chirapatpimol, Khem; Chudakov, Eugene; Cisbani, Evaristo; Cornejo, Juan; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; De Leo, Raffaele; Deng, Xiaoyan; Deur, Alexandre; Ding, Huaibo; Dolph, Peter; Dutta, Chiranjib; Dutta, Dipangkar; El Fassi, Lamiaa; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gaskell, David; Gilad, Gilad; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Guo, Lei; Hamilton, David; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jijun; Huang, Min; Ibrahim Abdalla, Hassan; Iodice, Mauro; Jin, Ge; Jones, Mark; Kelleher, Aidan; Kim, Wooyoung; Kolarkar, Ameya; Korsch, Wolfgang; LeRose, John; Li, Xiaomei; Li, Y; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lu, Hai-jiang; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Munoz Camacho, Carlos; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Oh, Yoomin; Osipenko, Mikhail; Parno, Diana; Peng, Jen-chieh; Phillips, Sarah; Posik, Matthew; Puckett, Andrew; Qiang, Yi; Rakhman, Abdurahim; Ransome, Ronald; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Schulte, Elaine; Shahinyan, Albert; Hashemi Shabestari, Mitra; Sirca, Simon; Stepanyan, Stepan; Subedi, Ramesh; Sulkosky, Vincent; Tang, Liguang; Tobias, William; Urciuoli, Guido; Vilardi, Ignazio; Wang, Kebin; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Z; Yuan, Lulin; Zhan, Xiaohui; Zhang, Yi; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao; Zhu, Lingyan; Zhu, Xiaofeng; Zong, Xing

    2014-07-01

    We report the first measurement of the target single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3He{uparrow}(e,e')X on a 3He gas target polarized normal to the lepton plane. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.72 GeV, which is non-zero at the 2.75sigma level. Theoretical calculations, which assume two-photon exchange with quasi-free quarks, predict a neutron asymmetry of O(10−4) when both photons couple to one quark, and O(10−2) for the photons coupling to different quarks. Our measured asymmetry agrees both in sign and magnitude with the prediction that uses input based on the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.

  9. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen

    SciTech Connect (OSTI)

    Miller, William; Liu, Jian; Miller, William H.

    2008-03-15

    The linearized approximation to the semiclassical initial value representation (LSC-IVR) is used to calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is approximate. Some of the correlation functions involve only linear operators, and others involve non-linear operators. The consistency of the results obtained with the various time correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic systems. The good agreement of the results obtained from different correlation functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, and their semi-quantitative agreement with the inelastic neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation functions.

  10. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functionsö as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  11. X-Ray Analysis Software

    Energy Science and Technology Software Center (OSTI)

    2007-03-09

    XRAYS is a suite of prgrams related to scientific software in general and exray and neutron scattering problems in particular. It is expected to bean ongoing progam involving collaboration with other facilities. It is expected to include legacy and other existing software as well as new applications and new interfaces for existing applications.

  12. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  13. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, Charles J.; Ziock, Klaus-Peter

    1992-01-01

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

  14. Chandra X-ray Observations of WZ Sge in Superoutburst

    SciTech Connect (OSTI)

    Wheatley, P J; Mauche, C W

    2004-10-13

    We present seven separate Chandra observations of the 2001 superoutburst of WZ Sge. The high-energy outburst was dominated by intense EUV emission lines, which we interpret as boundary layer emission scattered into our line of sight in an accretion disc wind. The direct boundary layer emission was hidden from view, presumably by the accretion disc. The optical outburst orbital hump was detected in the EUV, but the common superhump was not, indicating a geometric mechanism in the former and a dissipative mechanism in the latter. X-rays detected during outburst were not consistent with boundary layer emission and we argue that there must be a second source of X-rays in dwarf novae in outburst.

  15. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  16. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sbastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  17. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  18. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    SciTech Connect (OSTI)

    Yongbin Lee

    2006-05-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB{sub 14}.

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  20. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  1. NMR studies of chiral P,S-chelate platinum, rhodium, and iridium complexes and the X-ray structure of a palladium(II) allyl derivative

    SciTech Connect (OSTI)

    Albinati, A. [Univ. of Milan (Italy)] [Univ. of Milan (Italy); Eckert, J. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Pregosin, P.; Ruegger, H.; Salzmann, R.; Stoessel, C. [ETH-Zentrum, Zuerich (Switzerland)] [ETH-Zentrum, Zuerich (Switzerland)

    1997-02-18

    Several Rh(I), Ir(III), and Pt(II) complexes of the chiral P,S-bidentate ligand 2 have been prepared and characterized. Detailed two-dimensional NMR studies show that (i) the boat-type chelate ring and the stereogenic sulfur center can invert rapidly at ambient temperature and (ii) the sulfur donor may dissociate, essentially destroying the chiral pocket. The solid-state structure of [Pt({eta}{sup 3}-C{sub 3}H{sub 5})(2)]PF{sub 6} (3) has been determined and the sulfur substituent shown to have an axial orientation. The six-membered chelate ring takes up a boat-like conformation. As shown by an X-ray diffraction study for 3, and via incoherent inelastic neutron scattering (IINS) measurements for the Pd analog, 4, the OH group is remote from the metal atom. 42 refs., 11 figs., 6 tabs.

  2. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be reconstructed by a single Fourier transform; this is known as Fourier transform holography. The problem of getting sufficiently coherent x-rays onto and off of the sample in a...

  3. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  4. X-ray image intensifier phosphor

    DOE Patents [OSTI]

    D'Silva, A.P.; Fassel, V.A.

    1975-12-01

    Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

  5. Femtosecond X-ray protein nanocrystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Femtosecond X-ray protein nanocrystallography Authors: Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P.,...

  6. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  7. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  8. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  9. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

  10. X-ray diffraction study of the structure of detonation nanodiamonds

    SciTech Connect (OSTI)

    Ozerin, A. N. Kurkin, T. S.; Ozerina, L. A.; Dolmatov, V. Yu.

    2008-01-15

    The spatial structure of aggregates formed by detonation nanodiamonds is investigated using the wide-angle and small-angle X-ray scattering techniques. The effective sizes of crystallites and the crystallite size distribution function are determined. The shape of scattering aggregates is restored from the small-angle X-ray scattering data. An analysis of the results obtained allowed the conclusion that the nanodiamond aggregates have an extended spatial structure composed of nine to ten clusters, each involving four to five crystallites with a crystal lattice of the diamond type.

  11. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron

    Office of Scientific and Technical Information (OSTI)

    Scattering Studies and First-Principles Calculations (Journal Article) | SciTech Connect Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search Title: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Authors: Mirmelstein, A ; Podlesnyak, A ; dos Santos, A M ; Ehlers, G ; Kerbel, O ; Matvienko, V ; Sefat, A S ;

  12. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  13. Femtosecond Time-Delay X-ray Holography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow...

  14. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect (OSTI)

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  15. Generation of Coherent X-Ray Radiation through Modulation Compression...

    Office of Scientific and Technical Information (OSTI)

    Generation of Coherent X-Ray Radiation through Modulation Compression Citation Details In-Document Search Title: Generation of Coherent X-Ray Radiation through Modulation Compression ...

  16. Direct synchrotron x-ray measurements of local strain fields...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Direct synchrotron x-ray measurements of local strain fields in ... September 3, 2016 Title: Direct synchrotron x-ray measurements of local strain fields in ...

  17. Experimental X-ray characterization of Gekko XII laser propagation...

    Office of Scientific and Technical Information (OSTI)

    Experimental X-ray characterization of Gekko XII laser propagation through very low ... Citation Details In-Document Search Title: Experimental X-ray characterization of Gekko ...

  18. Experimental X-ray characterization of Gekko XII laser propagation...

    Office of Scientific and Technical Information (OSTI)

    Experimental X-ray characterization of Gekko XII laser propagation through very low ... Title: Experimental X-ray characterization of Gekko XII laser propagation through very low ...

  19. Category:X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the X-Ray Diffraction (XRD) page? For detailed information on...

  20. X-Ray Microcomputed Tomography for the Durability Characterization...

    Office of Scientific and Technical Information (OSTI)

    Conference: X-Ray Microcomputed Tomography for the Durability Characterization of Limestone Aggregate Citation Details In-Document Search Title: X-Ray Microcomputed Tomography for...

  1. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays X-Ray Characterization of Diesel Sprays 2005 Diesel Engine Emissions Reduction ... More Documents & Publications X-Ray Characterization of Diesel Sprays and the Effects of ...

  2. Elemental and Chemically Specific X-ray Fluorescence Imaging...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems Title: Elemental and Chemically Specific X-ray Fluorescence Imaging of ...

  3. Studies of magnetic microstructures with soft x-ray transmissionmicros...

    Office of Scientific and Technical Information (OSTI)

    Studies of magnetic microstructures with soft x-ray transmissionmicroscopy Citation Details In-Document Search Title: Studies of magnetic microstructures with soft x-ray ...

  4. X-ray transient absorption and picosecond IR spectroscopy of...

    Office of Scientific and Technical Information (OSTI)

    X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation Citation Details In-Document Search Title: X-ray transient ...

  5. Simultaneous cryo X-ray ptychographic and fluorescence microscopy...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae Prev Next Title: Simultaneous cryo X-ray ptychographic and fluorescence ...

  6. Recent Measurements of the cos(n{phi}{sub h}) Azimuthal Modulations of the Unpolarized Deep Inelastic Scattering Cross-section at HERMES

    SciTech Connect (OSTI)

    Lamb, Rebecca; Giordano, Francesca [University of Illinois (United States)

    2009-12-17

    The cross section for hadron production in deep-inelastic lepton scattering contains azimuthal modulations which can be related to transverse momentum dependent (TMD) distribution and fragmentation functions. The former provide a picture of how the quarks are moving within nucleons. Specifically, the cos{phi}{sub h} and cos2{phi}{sub h} modulations of the unpolarized cross section relate quark spin and quark transverse momentum. These moments have been carefully measured at the HERMES experiment in a fully differential way, as a function of x, y, z, and P{sub hperpendicular} for positive and negative hadrons produced from hydrogen and deuterium targets. These measurements give new access to the flavor dependent TMDs via their charge and target dependence. These data must be compared to comprehensive models to determine which terms contribute significantly to the cos{phi}{sub h} and cos2{phi}{sub h} moments and allow access to the underlying structure functions.

  7. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized He3 target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R.M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; et al

    2014-11-03

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1 < xbj<0.4 for K+ and K– production. While the Collins and Sivers moments for K+ are consistent with zero within the experimental uncertainties, both moments for K– favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. Whilemore » the K+ Sivers moments are consistent with the prediction, the K– results differ from the prediction at the 2-sigma level.« less

  8. Measurement of charged and neutral current {ital e}{sup {minus}}{ital p} deep inelastic scattering cross sections at high {ital Q}{sup 2}

    SciTech Connect (OSTI)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R.L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.; Katz, U.F.; Mari, S.M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, C.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G.P.; Heath, H.F.; Llewellyn, T.J.; Morgado, C.J.S.; Norman, D.J.P.; O`Mara, J.A.; Tapper, R.J.; Wilson, S.S.; Yoshida, R.; Rau, R.R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J.A.; Ritz, S.; Sciulli, F.; Straub, P.B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kotanski, A.; Przybycien, M.; Bauerdick, L.A.T.; Behrens, U.; Beier, H.; Bienlein, J.K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasinski, M.; Gilkinson, D.J.; Glasman, C.; Goettlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Koepke, L.; Koetz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Loehr, B.; Loewe, M.; Lueke, D.; Manczak, O.; Ng, J.S.T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.

    1995-08-07

    Deep inelastic {ital e}{sup {minus}}{ital p} scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared {ital Q}{sup 2} above 400GeV{sup 2} using the ZEUS detector at the HERA {ital ep} collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections {ital d}{sigma}/{ital dQ}{sup 2} are presented. From the {ital Q}{sup 2} dependence of the CC cross section, the mass term in the CC propagator is determined to be {ital M}{sub {ital W}}=76{plus_minus}16{plus_minus}13 GeV.

  9. Beam-Target Double Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.422

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meziani, Z -E; Michaels, R; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; et al

    2012-01-30

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function gq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production onmore3He and the neutron, while our ?+ asymmetries are consistent with zero.less

  10. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    SciTech Connect (OSTI)

    Vaknin, D.; Garlea, Vasile O; Demmel, F.; Mamontov, Eugene; Nojiri, H; Martin, Catalin; Chiorescu, Irinel; Qiu, Y.; Luban, M.; Kogerler, P.; Fielden, J.; Engelhardt, L; Rainey, C

    2010-01-01

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  11. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  12. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  13. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  14. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    SciTech Connect (OSTI)

    Niemann, Christoph

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  15. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  16. PROPX: An X-ray Manipulation Program

    SciTech Connect (OSTI)

    Kyrala, G.A.

    1992-05-01

    An interactive micro-computer program that performs some manipulations on an input x-ray spectrum is introduced and described. The program is used to calculate the effect of absorption of filters, transmission through fibers, responsivity of photocathodes, responsivity of absorptive detectors, folding of responses, plotting of cross sections, and calculation, as a function of electron temperature, of the response due to a bremsstrahlung spectrum. Fluorescence from the targets is not included. Two different x-ray libraries are offered, one covers the x-ray range 30--10,000 eV with 288 energy points, and the other covers the energy range 10 eV to 1 MeV with 250 energy points per decade. 7 refs.

  17. High resolution monochromator for inelastic scattering studies of high energy phonons using undulator radiation at the advanced photon source

    SciTech Connect (OSTI)

    Macrander, A.T.; Schwoerer-Boehning, M.; Abbamonte, P.M.; Hu, M.

    1997-08-01

    A monochromator for use at 13.84 keV with a calculated bandpass of 5.2 meV was designed built, and tested. Tuning was performed by rotating the inner crystal of a pair of nested silicon channel-cut crystals. The inner crystal employs the (884) reflection, and the outer crystal employs a collimating asymmetric (422) reflection (dynamical asymmetry factor, b, equal to {minus}17.5). Tests were done with a double-crystal Si(111) pre-monochromator situated upstream of the high resolution monochromator and a Si(777) backscattering crystal situated downstream. For this optical arrangement an ideal value of 6.3 meV as calculated by x-ray dynamical diffraction theory applies for the FWHM of the convolution of the net monochromator reflectivity function with that of the Si(777) reflection. This calculated value is to be compared to the value of 7.1 meV measured by tuning the high resolution monochromator. Measured efficiencies were less than ideal by a factor of 3.2 to 4.9, where the larger flux reduction factors were found with higher positron storage ring currents.

  18. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, Szymon; Skinner, Charles H.; Rosser, Roy

    1993-01-01

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  19. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  20. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  1. X-rays Illuminate Ancient Archimedes Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of

  2. Energy resolved X-ray grating interferometry

    SciTech Connect (OSTI)

    Thuering, T.; Stampanoni, M.; Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich ; Barber, W. C.; Iwanczyk, J. S.; Seo, Y.; Alhassen, F.

    2013-05-13

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  3. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  4. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    SciTech Connect (OSTI)

    Nowak, G. Strmer, M.; Horstmann, C.; Kampmann, R.; Hche, D.; Lorenz, U.; Mller, M.; Schreyer, A.; Becker, H.-W.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Hall-Wilton, R.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2??m thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  5. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W.

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  6. X-ray spectroscopy of manganese clusters

    SciTech Connect (OSTI)

    Grush, M.M.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  7. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  8. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  9. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  10. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect (OSTI)

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(?,?) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(?,?) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  11. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  12. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  13. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  14. X-ray microscopy at CNM | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray microscopy at CNM X-Ray Nanoprobe Beamline 1 of 5 X-Ray Nanoprobe Beamline Jörg Maser (left) and Robert Winarski, of Argonne's Center for Nanoscale Materials, X-Ray Microscopy Group, at the hard X-ray nanoprobe beamline on Advanced Photon Source (APS) Sector 26. The nanoprobe uses brilliant X-rays with photon energies from 3 to 30 keV to probe the properties of nanoscale materials with a spatial resolution of 30 nm. The system provides a combination of scanning-probe and full-field

  15. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  16. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  17. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I.; Morris, Christopher L.

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  18. Sample holder for X-ray diffractometry

    DOE Patents [OSTI]

    Hesch, Victor L.

    1992-01-01

    A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

  19. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect (OSTI)

    Nuruzzaman, nfn

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has also proven valuable for tracking changes in the beamline optics, such as dispersion at the target.

  20. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    SciTech Connect (OSTI)

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei; Vitev, Ivan

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(αem2αs), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for the transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.

  1. Next-to-leading order transverse momentum-weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: The role of the three-gluon correlator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Ling -Yun; Kang, Zhong -Bo; Prokudin, Alexei; Vitev, Ivan

    2015-12-22

    Here, we study the Sivers asymmetry in semi-inclusive hadron production in deep inelastic scattering. We concentrate on the contribution from the photon-gluon fusion channel at O(αem2αs), where three-gluon correlation functions play a major role within the twist-3 collinear factorization formalism. We establish the correspondence between such a formalism with three-gluon correlation functions and the usual transverse momentum-dependent (TMD) factorization formalism at moderate hadron transverse momenta. We derive the coefficient functions used in the usual TMD evolution formalism related to the quark Sivers function expansion in terms of the three-gluon correlation functions. We further perform the next-to-leading order calculation for themore » transverse momentum-weighted spin-dependent differential cross section and identify the off-diagonal contribution from the three-gluon correlation functions to the QCD collinear evolution of the twist-3 Qiu-Sterman function.« less

  2. Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n? ( e,e' pi{sup +}) X at Jefferson Lab

    SciTech Connect (OSTI)

    Kalyan Allada

    2010-06-01

    What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets. The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n?(e, e??{sup }/K{sup })X using transversely polarized {sup 3}He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q{sup 2} = 1.77 to 2.73 (GeV/c){sup 2}. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u and d-quarks in the valence region. In this work we report on the single spin asymmetries in the SIDIS n?(e, e??{sup +})X reaction.

  3. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary You are accessing a document from the Department of ...

  4. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of ...

  5. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322...

  6. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can be controlled by varying the properties of the optical control beam. Problems arise, however, when the probe pulse lies in the x-ray regime because x rays interact...

  7. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  8. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  9. X-ray Science Division (XSD) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD Groups XSD Safety and Training XSD Strategic Plan XSD Visitor Program XSD Intranet X-ray Science Division (XSD) XSD enables world-class research using x-rays by developing...

  10. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis ALS X-Rays Shine a New Light on Catalysis Print Thursday, 21 May 2015 11:16 Electrocatalysts are responsible for expediting reactions in...

  11. Enabling X-ray free electron laser crystallography for challenging...

    Office of Scientific and Technical Information (OSTI)

    Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals Citation Details In-Document Search Title: Enabling X-ray ...

  12. X-ray crystallographic analysis of adipocyte fatty acid binding...

    Office of Scientific and Technical Information (OSTI)

    X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal Citation Details In-Document Search Title: X-ray crystallographic ...

  13. NIF and OMEGA X-Ray Environments Summary (Technical Report) ...

    Office of Scientific and Technical Information (OSTI)

    NIF and OMEGA X-Ray Environments Summary Citation Details In-Document Search Title: NIF and OMEGA X-Ray Environments Summary Abstract not provided. Authors: Fournier, K. B. 1 + ...

  14. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    SciTech Connect (OSTI)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order which are all consistent with a solid-state transformation formation of maskelynite.

  15. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-24

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.

  16. An x-ray setup to investigate the atomic order of confined liquids in slit geometry

    SciTech Connect (OSTI)

    Lippmann, M.; Ehnes, A.; Seeck, O. H.

    2014-01-15

    A setup has been designed to investigate thin films of confined liquids with the use of X-ray scattering methods. The confinement is realized between the flat culets of a pair of diamonds by positioning and orienting the lower diamond with nanometer and micro radian accuracy. We routinely achieve gaps between 5 and 50 nm at culet diameters of 200 ?m. With this setup and a micro focused X-ray beam we have investigated the in-plane and the out-off-plane atomic order of benzene with atomic resolution.

  17. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  18. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  19. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  20. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  1. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  2. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations

  4. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  5. X-ray studies of concentrated aqueous solutions

    SciTech Connect (OSTI)

    Ludwig, K.F. Jr.; Warburton, W.K.; Fontaine, A.

    1987-07-01

    Concentrated aqueous solutions of three transition metal bromides (ZnBr/sub 2/, CuBr/sub 2/, and NiBr/sub 2/) and an alkali bromide (RbBr) have been studied with differential anomalous scattering (DAS) and extended x-ray absorption fine structure (EXAFS). The aq-ZnBr/sub 2/ solutions exhibit considerable inner-shell ion complexing with the formation of tetrahedral complexes about the Zn/sup 2 +/. In aq-CuBr/sub 2/, the Cu/sup 2 +/ has an octahedral coordination shell. Most of the anions are bound directly to the cations in both solutions. In contrast, there are only a few Ni--Br nearest neighbors in aq-NiBr/sub 2/. Instead, cations and anions share hydrating water molecules. Preliminary data show that any ion complexing in aq-RbBr must be weak. These results are in good agreement with published thermodynamic studies.

  6. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    SciTech Connect (OSTI)

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  7. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  8. Digital X-ray Pipe Inspector Software

    Energy Science and Technology Software Center (OSTI)

    2009-10-29

    The Digital X-ray Pipe Inspector software requires a digital x-ray image of a pipe as input to the program, such as the image in Attachment A Figure 1. The image may be in a variety of software formats such as bitmap, jpeg, tiff, DICOM or DICONDE. The software allows the user to interactively select a region of interest from the image for analysis. This software is used to analyze digital x-ray images of pipes tomore » evaluate loss of wall thickness. The software specifically provides tools to analyze the image in (a) the pipe walls, (b) between the pipe walls. Traditional software uses only the information at the pipe wall while this new software also evaluates the image between the pipewalls. This makes the inspection process faster, more thorough, more efficient, and reduces expensive reshots. Attachment A Figure 2 shows a region of interest (a green box) drawn by the user around an anomaly in the pipe wall. This area is automatically analyzed by the external pipe wall tool with the result shown in Attachment A Figure 3. The edges of the pipe wall are detected and highlighted in yellow and areas where the wall thickness in less the the minimum wall threshold are shown in red. These measurements are typically made manually in other software programs, which lead to errors and inconsistency because the location of the edges are estimated by the user. Attachment A Figure 4 shows a region of interest (a green box) drawn by the user between the pipe walls. As can be seen there are intensity anomalies that correspond to wall defects. However, this information is not used directly by other software programs. In order to fully investigate these anomalies, the pipe would be reinspected in a different orientation to attempt to obtain a view of the anomaly in the pipe wall rather than the interior of the pipe. The pipe may need to be x-rayed a number of times to obtain the correct orientation. This is very costly and time consuming. The new software can perform the analysis directly on the intensity information in the original image. Figures 5 through 9 in Attachment A show wall defects in red for various percents of wall thickness loss. For example, Figure 5 show defects (in red) where the wall thickness is 95% or less than the nominal wall thickness (or a 5% or greater wall thickness loss). Wall thicknesses can be given in absolute terms as well.« less

  9. Holographic Methods in X-ray Crystallography

    Energy Science and Technology Software Center (OSTI)

    1995-07-28

    The holographic method makes use of partially modeled electron density and experimentally-measured structure factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density, and can incorporate a target electron density, making it similar to solvent flattening. Using both synthetic and experimental data,more » we assess the potential for applying the holographic method to macromolecular x-ray crystallography.« less

  10. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    SciTech Connect (OSTI)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak; Smith, Randall; Chandra, Poonam; Pooley, David

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  11. Subject: Ames Blue Alert - X-ray Shutter Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Blue Alert - X-ray Shutter Maintenance Statement: This lesson learned involves an Ames Laboratory x-ray system. Prior to starting x- ray experiments checking the operability of safety interlocks and x-ray shutter systems will decrease the likelihood of an unplanned exposure incident. Discussion: At the end of a sample run the shutter for an x-ray system at the Ames Laboratory did not close automatically as expected. The researcher followed the approved safety procedures and did not access

  12. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  13. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  14. New Directions in X-ray Scattering - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS | LUSI | PULSE | SSRL Summary Agenda On-site Travel Visitor Information Transportaion Local Attractions...

  15. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resolve to Save Energy This Year Resolve to Save Energy This Year January 2, 2014 - 8:50am Addthis Looking for ways to save energy? Check out these tips that every homeowner should try. | Infographic by Sarah Gerrity, Energy Department. Updated January 2, 2014. Looking for ways to save energy? Check out these tips that every homeowner should try. | Infographic by Sarah Gerrity, Energy Department. Updated January 2, 2014. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist,

  16. Probing Spatial, Electronic Structures with X-ray Scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a single axis is demonstrated. The ability to follow the charge separation and the redox process in the light absorber and catalyst is crucial for the design of an efficient...

  17. Time-resolved x-ray scattering instrumentation

    DOE Patents [OSTI]

    Borso, C.S.

    1985-11-21

    An apparatus and method for increased speed and efficiency of data compilation and analysis in real time is presented in this disclosure. Data is sensed and grouped in combinations in accordance with predetermined logic. The combinations are grouped so that a simplified reduced signal results, such as pairwise summing of data values having offsetting algebraic signs, thereby reducing the magnitude of the net pair sum. Bit storage requirements are reduced and speed of data compilation and analysis is increased by manipulation of shorter bit length data values, making real time evaluation possible.

  18. Advancing Renewable Materials by Light and X-ray Scattering

    SciTech Connect (OSTI)

    Akpalu, Yvonne A

    2014-03-26

    With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have completed systematic study of the influence of cooling rate [Xie et al, J. Appl. Poly. Sci., 2008] and nanofiller [Xie et al, Polymer 2009] characteristics on model bionanocomposites. Structure-property relationships for a model bionanocomposites system were investigated. These results yielded new fundamental knowledge that supports the discovery of cost-effective manufacturing technologies for a family of promising polyhydroxyalkanoates (PHAs) polyesters, with the potential to replace polyethylene and polypropylene (see Noda letter). Our results show that simple two-phase composite models do not account for the data. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Instead, improvement depends on the molecular weight of the polymer matrix and unknown filler-matrix interactions.

  19. The Role of Surface X-ray Scattering in Electrocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have resulted in highly selective multicomponent gas mixture sensors, human blood component sensors, new electrocatalysts for oxidationreduction of inorganic and...

  20. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect (OSTI)

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ?5 keV to ?10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  1. Call issued for Lujan Neutron Scattering Center proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (polarized and unpolarized) Inelastic neutron scattering spectroscopy Small angle neutron scattering Neutron radiographytomography The Lujan instruments webpage...

  2. Results from the NSTX X-ray Crystal Spectrometer

    SciTech Connect (OSTI)

    M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

    2003-01-14

    A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

  3. Gray scale x-ray mask

    DOE Patents [OSTI]

    Morales, Alfredo M.; Gonzales, Marcela

    2006-03-07

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  4. Gated monochromatic x-ray imager

    SciTech Connect (OSTI)

    Oertel, J.A.; Archuleta, T.; Clark, L.

    1995-09-01

    We have recently developed a gated monochromatic x-ray imaging diagnostic for the national Inertial-Confinement Fusion (ICF) program. This new imaging system will be one of the primary diagnostics to be utilized on University of Rochester`s Omega laser fusion facility. The new diagnostic is based upon a Kirkpatrick-Baez (KB) microscope dispersed by diffraction crystals, as first described by Marshall and Su. The dispersed images are gated by four individual proximity focused microchannel plates and recorded on film. Spectral coverage is tunable up to 8 keV, spectral resolution has been measured at 20 eV, temporal resolution is 80 ps, and spatial resolution is better than 10 {mu}m.

  5. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect (OSTI)

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methodsray tracing, a one-zone model, and X-ray background modelingto investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  6. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOE Patents [OSTI]

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  7. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOE Patents [OSTI]

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  8. Boosting the Light: X-ray Physics in Confinement

    ScienceCinema (OSTI)

    Rhisberger, Ralf [HASYLAB/ DESY

    2010-01-08

    Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.

  9. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  10. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  11. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  12. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  13. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  14. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  15. Legacy of the X-Ray Laser Program

    SciTech Connect (OSTI)

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  16. Ultra-short wavelength x-ray system

    DOE Patents [OSTI]

    Umstadter, Donald; He, Fei; Lau, Yue-Ying

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  17. X-ray transmission movies of spontaneous dynamic events

    SciTech Connect (OSTI)

    Smilowitz, L.; Henson, B. F.; Holmes, M.; Novak, A.; Oschwald, D.; Dolgonos, P.; Qualls, B.

    2014-11-15

    We describe a new x-ray radiographic imaging system which allows for continuous x-ray transmission imaging of spontaneous dynamic events. We demonstrate this method on thermal explosions in three plastic bonded formulations of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. We describe the x-ray imaging system and triggering developed to enable the continuous imaging of a thermal explosion.

  18. X-ray interferometry with spherically bent crystals (abstract)

    SciTech Connect (OSTI)

    Koch, Jeffrey A.

    2001-01-01

    Recent progress in manufacturing high-quality spherically bent crystals allows highly monochromatic x-ray beams to be produced, and allows efficient x-ray imaging with {mu}m-scale resolution. This article explores some of the constraints for x-ray interferometry utilizing spherically bent crystals and laser-produced plasma sources, and discusses several shearing interferometer concepts that might be experimentally investigated.

  19. Characterization of spatially resolved high resolution x-ray spectrometers

    Office of Scientific and Technical Information (OSTI)

    for high energy density physics and light source experiments (Journal Article) | SciTech Connect Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments Citation Details In-Document Search Title: Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments A high resolution 1D imaging x-ray spectrometer concept comprising a spherically

  20. 14.05.14 RH Synchrotron X-ray - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Throughput Synchrotron X-Ray Experimentation for Combinatorial Phase Matching Gregoire, J. M. et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. Journal of Synchrotron Radiation 21, 1262-1268, DOI: 10.1107/s1600577514016488 (2014). Scientific Achievement Development of new synchrotron X-ray diffraction and fluorescence methods for rapid characterization of material libraries. Significance & impact First demonstration of prototype facility capable of

  1. ANL CT Reconstruction Algorithm for Utilizing Digital X-ray

    Energy Science and Technology Software Center (OSTI)

    2004-05-01

    Reconstructs X-ray computed tomographic images from large data sets known as 16-bit binary sinograms when using a massively parallelized computer architecture such as a Beowuif cluster by parallelizing the X-ray CT reconstruction routine. The algorithm uses the concept of generation of an image from carefully obtained multiple 1-D or 2-D X-ray projections. The individual projections are filtered using a digital Fast Fourier Transform. The literature refers to this as filtered back projection.

  2. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic

  3. High intensity x-ray source using liquid gallium target

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL); Knapp, Gordon S. (Cupertino, CA); Westbrook, Edwin M. (Chicago, IL); Forster, George A. (Westmont, IL)

    1990-01-01

    A high intensity x-ray source that uses a flowing stream of liquid gallium as a target with the electron beam impinging directly on the liquid metal.

  4. X-Ray Diffraction Microscopy of Magnetic Structures (Journal...

    Office of Scientific and Technical Information (OSTI)

    Prev Next Title: X-Ray Diffraction Microscopy of Magnetic Structures Authors: Turner, Joshua J. ; Huang, Xiaojing ; Krupin, Oleg ; Seu, Keoki A. ; Parks, Daniel ; Kevan,...

  5. XRMS: X-Ray Spectroscopy of Magnetic Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XRMS: X-Ray Spectroscopy of Magnetic Solids October 22-23, 2011 SLAC National Accelerator Laboratory, Menlo Park, CA More information...

  6. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes

  7. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods (see previous highlight, "Demonstration of Coherent X-Ray Diffraction Imaging"). Experimental diffraction data used as input to the difference map algorithm....

  8. X-ray image reconstruction from a diffraction pattern alone

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marchesini, Stefano

    2015-03-16

    X-ray diffraction pattern of a sample of 50 nm colloidal gold particles, recorded at a wavelength of 2.1 nm.

  9. X-Ray Microscopy Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial...

  10. X-Ray Fluorescence (XRF) | Open Energy Information

    Open Energy Info (EERE)

    Dispersive Spectroscopy (WDS) typically performed using a SEM or EPMA, and X-Ray Diffraction (XRD) analyses. Rock Lab Analysis Core Analysis Cuttings Analysis Isotopic...

  11. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme...

  12. Portable X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    X-ray powder diffraction, which has traditionally been used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline...

  13. X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances...

  14. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were able to directly observe redox processes in thin-film iron and cobalt perovskite oxide electrocatalysts using surface-sensitive, x-ray absorption spectroscopy while...

  15. Stimulated X-Ray Emission for Spectroscopy | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room 108A Speaker: Clemens Weninger, Max Planck Institute for the Physics of Complex Systems Program Description The recent advance of x-ray free electron lasers (XFELs)...

  16. Femtosecond nanocrystallography using X-ray lasers for membrane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Authors: Fromme, P., and Spence, J. C. H. Title: Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Source: Current Opinion in ...

  17. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the microscopic world, can have unwanted consequences for the materials they probe. Radiation damage due to x-ray absorption is, for instance, an unwanted consequence of using...

  18. Staff Research Physicist (X-Ray Spectroscopy) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of X-ray spectrometers for high energy density plasma at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL, Livermore, California). In...

  19. Diagnostics Implemented on NIF - X-ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray Diagnostics Diagnostic acronym Diangostic Port location Built and commisioned by Description of function Published references ARIANE Active Readout in a Neutron Environment (gated x-ray imager) 90-89 (but uses DIM) LLNL ARIANE is a gated x-ray detector measuring x-ray output at yields up to ~1E16 neutrons from TCC. ARIANE uses gated MCP technology adapted to operate in this neutron regime by moving the detector to a position just outside of the target chamber wall. ARIANE is typically used

  20. X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex...

    Office of Scientific and Technical Information (OSTI)

    Vortex Core Motion in Circular Permalloy Disks Citation Details In-Document Search Title: X-ray imaging of Nonlinear Resonant Gyrotropic Magnetic Vortex Core Motion in ...

  1. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  2. Normal incidence x-ray mirror for chemical microanalysis

    DOE Patents [OSTI]

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  3. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  4. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  5. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  6. Integrated X-ray Reflectivity Measurements for Elliptically Curved...

    Office of Scientific and Technical Information (OSTI)

    The elliptically curved pentaerythritol (PET) crystals used in the Supersnout 2 X-ray spectrometer on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory ...

  7. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He3 target

    SciTech Connect (OSTI)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J. -P.; Chen, W.; Chirapatpimol, K.; Chudakov, E.; Cisbani, E.; Cornejo, J. C.; Cusanno, F.; Dalton, M. M.; Deconinck, W.; de Jager, C. W.; De Leo, R.; Deng, X.; Deur, A.; Ding, H.; Dolph, P. A. M.; Dutta, D.; El Fassi, L.; Frullani, S.; Gao, H.; Garibaldi, F.; Gaskell, D.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Guo, L.; Hamilton, D.; Hansen, O.; Higinbotham, D. W.; Holmstrom, T.; Huang, M.; Ibrahim, H. F.; Iodice, M.; Jiang, X.; Jin, G.; Jones, M. K.; Kelleher, A.; Kim, W.; Kolarkar, A.; Korsch, W.; LeRose, J. J.; Li, X.; Li, Y.; Lindgren, R.; Liyanage, N.; Long, E.; Lu, H. -J.; Margaziotis, D. J.; Markowitz, P.; Marrone, S.; McNulty, D.; Meziani, Z. -E.; Michaels, R.; Moffit, B.; Muñoz Camacho, C.; Nanda, S.; Narayan, A.; Nelyubin, V.; Norum, B.; Oh, Y.; Osipenko, M.; Parno, D.; Peng, J. C.; Phillips, S. K.; Posik, M.; Puckett, A. J. R.; Qiang, Y.; Rakhman, A.; Ransome, R. D.; Riordan, S.; Saha, A.; Sawatzky, B.; Schulte, E.; Shahinyan, A.; Shabestari, M. H.; Širca, S.; Stepanyan, S.; Subedi, R.; Sulkosky, V.; Tang, L. -G.; Tobias, W. A.; Urciuoli, G. M.; Vilardi, I.; Wang, K.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yuan, L.; Zhan, X.; Zhang, Y. -W.; Zhao, B.; Zheng, X.; Zhu, L.; Zhu, X.; Zong, X.

    2014-11-24

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized ³He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q² < 2.7 GeV². Our results show that both π± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  8. Determination of partial-wave inelasticities for elastic pion-nucleon scattering with the aid of experimental data on {pi}N {yields} {pi}{pi}N processes in the beam-momentum range 300 < P{sub beam} < 500 MeV/c

    SciTech Connect (OSTI)

    Kozhevnikov, V. A.; Sherman, S. G.

    2008-11-15

    The partial-wave inelasticity parameters of the amplitude for elastic pion-nucleon scattering are determined with the aid of the phenomenological amplitude for inelastic {pi}N {yields} {pi}{pi}N processes in the energy range extending to the threshold for the production of two pions. The resulting inelasticity parameters are compared with their counterparts derived from modern partial-wave analyses. The largest inelastic-scattering cross section in the P11 wave is in excellent agreement with the analogous value from the analysis performed at the George Washington University in 2006. For other waves, however, the present results differ in the majority of cases from respective values given by partial-wave analyses (the distinctions are especially large for the isospin-3/2 amplitudes).

  9. X-ray laser system, x-ray laser and method

    DOE Patents [OSTI]

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  10. Dispersive x-ray synchrotron studies of Pt-C multilayers

    SciTech Connect (OSTI)

    Smither, R.K.; Rodricks, B.; Lamelas, F.; Medjahed, D.; Dos Passos, W.; Clarke, R.; Ziegler, E.; Fontaine, A.

    1989-02-01

    We demonstrate the simultaneous acquisition of high-resolution x-ray absorption spectra and scattering data, using a combination of energy-dispersive optics and a two-dimensional CCD detector. Results are presented on the optical constants of Pt and on the reflectivity of a platinum-carbon multilayer at the L/sub III/ absorption edge of Pt. 12 refs., 5 figs.

  11. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect (OSTI)

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (ΔE/E ∼ 5 × 10{sup −3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ∼3 × 10{sup −3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  12. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    SciTech Connect (OSTI)

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  13. Advanced Elastic/Inelastic Nuclear Data Development Project (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Advanced Elastic/Inelastic Nuclear Data Development Project Citation Details In-Document Search Title: Advanced Elastic/Inelastic Nuclear Data Development Project The optical model is used to analyze the elastic and inelastic scattering of nucleons, deuterons, hellions, tritons, and alpha particles by the nuclei. Since this paper covers primarily neutron-nucleus scattering, the focus will be limited to only that interaction. For the sake of this model, the nucleus

  14. A paediatric X-ray exposure chart

    SciTech Connect (OSTI)

    Knight, Stephen P

    2014-09-15

    The aim of this review was to develop a radiographic optimisation strategy to make use of digital radiography (DR) and needle phosphor computerised radiography (CR) detectors, in order to lower radiation dose and improve image quality for paediatrics. This review was based on evidence-based practice, of which a component was a review of the relevant literature. The resulting exposure chart was developed with two distinct groups of exposure optimisation strategies – body exposures (for head, trunk, humerus, femur) and distal extremity exposures (elbow to finger, knee to toe). Exposure variables manipulated included kilovoltage peak (kVp), target detector exposure and milli-ampere-seconds (mAs), automatic exposure control (AEC), additional beam filtration, and use of antiscatter grid. Mean dose area product (DAP) reductions of up to 83% for anterior–posterior (AP)/posterior–anterior (PA) abdomen projections were recorded postoptimisation due to manipulation of multiple-exposure variables. For body exposures, the target EI and detector exposure, and thus the required mAs were typically 20% less postoptimisation. Image quality for some distal extremity exposures was improved by lowering kVp and increasing mAs around constant entrance skin dose. It is recommended that purchasing digital X-ray equipment with high detective quantum efficiency detectors, and then optimising the exposure chart for use with these detectors is of high importance for sites performing paediatric imaging. Multiple-exposure variables may need to be manipulated to achieve optimal outcomes.

  15. X-RAY ECLIPSE DIAGNOSIS OF THE EVOLVING MASS LOSS IN THE RECURRENT NOVA U SCORPII 2010

    SciTech Connect (OSTI)

    Takei, D.; Drake, J. J.; Tsujimoto, M.; Ness, J.-U.; Osborne, J. P.; Starrfield, S.; Kitamoto, S.

    2013-05-20

    We report the Suzaku detection of the earliest X-ray eclipse seen in the recurrent nova U Scorpii 2010. A target-of-opportunity observation 15 days after the outburst found a 27% {+-} 5% dimming in the 0.2-1.0 keV energy band at the predicted center of an eclipse. In comparison with the X-ray eclipse depths seen at two later epochs by XMM-Newton, the source region shrank by about 10%-20% between days 15 and 35 after the outburst. The X-ray eclipses appear to be deeper than or similar to contemporaneous optical eclipses, suggesting the X-ray and optical source region extents are comparable on day 15. We raise the possibility of the energy dependency in the photon escape regions, and that this would be a result of the supersoft X-ray opacity being higher than the Thomson scattering opacity at the photosphere due to bound-free transitions in abundant metals that are not fully ionized. Assuming a spherically symmetric model, we constrain the mass-loss rate as a function of time. For a ratio of actual to Thomson opacity of 10-100 in supersoft X-rays, we find an ejecta mass of about 10{sup -7}-10{sup -6} M{sub Sun }.

  16. Scattering Workshop May 16-17, 2006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Annual SSRL Workshop on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application Tuesday, May 16 & Wednesday, May 17, 2006...

  17. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  18. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  19. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    SciTech Connect (OSTI)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-08-05

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  20. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis:Advantages and Limitations

    SciTech Connect (OSTI)

    A Frenkel; Q Wang; N Marinkovic; J Chen; L Barrio; R Si; A Lopez Camara; A Estella; J Rodriquez; J Hanson

    2011-12-31

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.