Sample records for inelastic neutron scattering

  1. UNIVERSITY OF CALIFORNIA Inelastic Neutron Scattering Study of the

    E-Print Network [OSTI]

    Lawrence, Jon

    UNIVERSITY OF CALIFORNIA IRVINE Inelastic Neutron Scattering Study of the Intermediate Valence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Inelastic Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.a Neutron Scattering Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.b

  2. Inelastic neutron scattering, Raman and DFT investigations of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon Daniela M. Anjos a , Alexander I. Kolesnikov a , Zili Wu a...

  3. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect (OSTI)

    Lavelle, Christopher M [ORNL; Liu, C [Oak Ridge National Laboratory (ORNL); Stone, Matthew B [ORNL

    2013-01-01T23:59:59.000Z

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  4. Inelastic neutron scattering in valence fluctuation compounds

    SciTech Connect (OSTI)

    Jon M Lawrence

    2011-02-15T23:59:59.000Z

    The valence fluctuation compounds are rare earth intermetallics where hybridization of the nearly-localized 4f electrons with the conduction electrons leads to incorporation of the 4f's into the itinerant states. This hybridization slows down the conduction electrons and hence gives them a heavy effective mass, justifying application of the term 'heavy Fermion' (HF) to these materials. During the project period, we grew large single crystals of several such compounds and measured their properties using both standard thermodynamic probes and state-of-the-art inelastic neutron scattering. We obtained three main results. For the intermediate valence compounds CePd{sub 3} and YbAl{sub 3}, we showed that the scattering of neutrons by the fluctuations of the 4f magnetic moment does not have the momentum dependence expected for the itinerant heavy mass state; rather, the scattering is more typical of a localized spin fluctuation. We believe that incoherent scattering localizes the excitation. For the heavy Fermion compound Ce(Ni{sub 0.935}Pd{sub 0.065}){sub 2}Ge{sub 2}, which sits at a T = 0 critical point for transformation into an antiferromagnetic (AF) phase, we showed that the scattering from the AF fluctuations does not exhibit any of the divergences that are expected at a phase transition. We speculate that alloy disorder profoundly suppresses the growth of the fluctuating AF regions, leading to short range clusters rather than regions of infinite size. Finally, we explored the applicability of key concepts used to describe the behavior of rare earth heavy Fermions to uranium based HF compounds where the 5f electrons are itinerant as opposed to localized. We found that scaling laws relating the spin fluctuation energy measured in neutron scattering to the low temperature specific heat and susceptibility are valid for the uranium compounds, once corrections are made for AF fluctuations; however, the degeneracy of the high temperature moment is smaller than expected for rare-earth-like Hund's rule behavior, essentially because the orbital moment is suppressed for itinerant 5f electrons. We also found that the standard local-moment-based theory of the temperature dependence of the specific heat, susceptibility and neutron scattering fails badly for URu{sub 2}Zn{sub 20} and UCo{sub 2}Zn{sub 20}, even though the theory is phenomenally successful for the closely related rare earth compound YbFe{sub 2}Zn{sub 20}. Both these results highlight the distinction between the itineracy of the 5f's and the localization of the 4f's. It is our hope that these results are sufficiently significant as to stimulate deeper investigation of these compounds.

  5. Bulk effects in the coherent inelastic scattering of ultracold neutrons

    E-Print Network [OSTI]

    A. L. Barabanov; S. T. Belyaev

    2005-09-20T23:59:59.000Z

    With the use of theory developed earlier, bulk effects in ultracold neutron coherent inelastic scattering are considered both for solid and liquid target samples related to energy and momentum exchange with phonon and diffusion-like modes. For the neutron in a material trap, differential and integral probabilities for the energy transfer per bounce are presented in a simple analytic form which exhibits the parameter dependence. As an example, the theoretical values for the ultracold neutron loss rate from a storage bottle with Fomblin coated walls and stainless steel walls are evaluated. Possible contribution from incoherent inelastic scattering on hydrogen contamination is discussed.

  6. Liquid Argon Cryogenic Detector Calibration by Inelastic Scattering of Neutrons

    E-Print Network [OSTI]

    Sergey Polosatkin; Evgeny Grishnyaev; Alexander Dolgov

    2014-07-10T23:59:59.000Z

    A method for calibration of cryogenic liquid argon detector response to recoils with certain energy -8.2 keV - is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering cause sufficient (forty times) increase in count rate of useful events relative to traditional scheme exploited elastic scattering with the same recoil energy and compatible energy resolution. The benefits of the proposed scheme of calibration most well implemented with the use of tagged neutron generator as a neutron source that allows to eliminate background originated from casual coincidence of signals on cryogenic detector and additional detector of scattered neutrons.

  7. INELASTIC NEUTRON SCATTERING SELECTION RULES OF 03B1 HgI2 M. SIESKIND

    E-Print Network [OSTI]

    Boyer, Edmond

    899 INELASTIC NEUTRON SCATTERING SELECTION RULES OF 03B1 HgI2 M. SIESKIND Laboratoire de The inelastic neutron scattering selection rules of 03B1 HgI2 in the directions 0394, 03A3 and 039B are derived Abstracts 63.20D Introduction. - Inelastic neutron scattering is a powerful technique for the determination

  8. Inelastic scattering of fast neutrons from $^{56}$Fe

    E-Print Network [OSTI]

    Beyer, R; Hannaske, R; Junghans, A R; Massarczyk, R; Anders, M; Bemmerer, D; Ferrari, A; Kögler, T; Röder, M; Schmidt, K; Wagner, A

    2014-01-01T23:59:59.000Z

    Inelastic scattering of fast neutrons from $^{56}$Fe was studied at the photoneutron source nELBE. The neutron energies were determined on the basis of a timeof- flight measurement. Gamma-ray spectra were measured with a high-purity germanium detector. The total scattering cross sections deduced from the present experiment in an energy range from 0.8 to 9.6 MeV agree within 15% with earlier data and with predictions of the statistical-reaction code Talys.

  9. Parallel Computational Modelling of Inelastic Neutron Scattering in Multi-node and Multi-core Architectures 

    E-Print Network [OSTI]

    Garba, M.T.; Gonzales-Velez, H.; Roach, D.L.

    2010-11-26T23:59:59.000Z

    This paper examines the initial parallel implementation of SCATTER, a computationally intensive inelastic neutron scattering routine with polycrystalline averaging capability, for the General Utility Lattice Program (GULP). Of particular importance...

  10. Low-frequency Vibrational Anomalies in -Lactoglobulin: Contribution of Different Hydrogen Classes Revealed by Inelastic Neutron Scattering

    E-Print Network [OSTI]

    Tuscia, Università Degli Studi Della

    Revealed by Inelastic Neutron Scattering A. Orecchini, A. Paciaroni, A. R. Bizzarri, and S. Cannistraro -lactoglobulin has been investigated by inelastic neutron scattering, on both dry and D2O-hydrated samples. Both typically accessible energy and momentum transfers, inelastic thermal neutron scattering is probably

  11. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering from liquid para-hydrogen

    E-Print Network [OSTI]

    Liu, Jian

    2008-01-01T23:59:59.000Z

    Theory of Thermal Neutron Scattering. (Dover Publications,S. W. Lovesey, Theory of Neutron Scattering from Condensedwith the inelastic neutron scattering experiment results.

  12. PHYSICAL REVIEW B 85, 205440 (2012) Inelastic neutron scattering investigations of the quantum molecular dynamics of a H2 molecule

    E-Print Network [OSTI]

    Turro, Nicholas J.

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW B 85, 205440 (2012) Inelastic neutron scattering investigations of the quantum transfer arising from the neutron scattering event has also been investigated. The -dependence spectra investigations using infrared (IR),3,13­15 inelastic neutron scattering (INS),3,16,17 and nuclear magnetic

  13. Test of the consistency of various linearized semiclassical initial value time correlation functions in application to inelastic neutron scattering

    E-Print Network [OSTI]

    Miller, William H.

    functions in application to inelastic neutron scattering from liquid para-hydrogen Jian Liua and William H for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short

  14. The Nature of the Surface Species Formed on Au/TiO2 during the Reaction of H2 and O2: An Inelastic Neutron Scattering Study

    E-Print Network [OSTI]

    Goodman, Wayne

    Neutron Scattering Study Chinta Sivadinarayana, Tushar V. Choudhary, Luke L. Daemen, Juergen Eckert of obvious interest for understanding this process. Vibrational spectroscopy by inelastic neutron scattering

  15. Inelastic neutron and low-frequency Raman scattering in a niobium-phosphate glass for Raman gain applications

    E-Print Network [OSTI]

    Schirmacher, Walter

    Inelastic neutron and low-frequency Raman scattering in a niobium-phosphate glass for Raman gain: Raman scattering; Neutron scattering; Raman gain; Boson peak We present measurements of the vibrational, extracted from specific-heat or neutron scattering measurements [7,8]. Only very recently two of the present

  16. Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA

    E-Print Network [OSTI]

    H1 Collaboration

    2010-01-04T23:59:59.000Z

    The production of leading neutrons, where the neutron carries a large fraction x_L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb^{-1}. The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 neutron transverse momentum p_T neutron structure function, F_2^{LN(3)}(Q^2,x,x_L), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q^2, x and x_L. Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function.

  17. Inelastic neutron scattering spectrum of H2@C60 and its temperature dependence decoded using rigorous quantum calculations and a new

    E-Print Network [OSTI]

    Turro, Nicholas J.

    Inelastic neutron scattering spectrum of H2@C60 and its temperature dependence decoded using://jcp.aip.org/about/rights_and_permissions #12;THE JOURNAL OF CHEMICAL PHYSICS 139, 064309 (2013) Inelastic neutron scattering spectrum of H2@C60 quantum cal- culations of the inelastic neutron scattering (INS) spectra of this prototypical endohedral

  18. Leading neutron energy and pT distributions in deep inelastic scattering and photoproduction at HERA

    E-Print Network [OSTI]

    ZEUS Collaboration; S. Chekanov

    2007-03-09T23:59:59.000Z

    The production of energetic neutrons in $ep$ collisions has been studied with the ZEUS detector at HERA. The neutron energy and $p_T^2$ distributions were measured with a forward neutron calorimeter and tracker in a $40 \\pb^{-1}$ sample of inclusive deep inelastic scattering (DIS) data and a $6 \\pb^{-1}$ sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper $p_T^2$ distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data.

  19. Polarized Deep Inelastic Scattering Off the "Neutron" From Gauge/String Duality

    E-Print Network [OSTI]

    Jian-Hua Gao; Zong-Gang Mou

    2010-05-25T23:59:59.000Z

    We investigate deep inelastic scattering off the polarized "neutron" using gauge/string duality. The "neutron" corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in $\\textrm{AdS}_{5}$ space, we calculate the polarized deep inelastic structure functions of the "neutron" in supergravity approximation at large t' Hooft coupling $\\lambda$ and finite $x$ with $\\lambda^{-1/2}\\ll xneutron" are power suppressed at the same order as the ones of the "proton." Especially, we find the Burkhardt-Cottingham-like sum rule, which is satisfied in the work by Gao and Xiao, is broken due to the Pauli interaction term. We also illustrate how such a Pauli interaction term can arise naturally from higher dimensional fermion-graviton coupling through the usual Kaluza-Klein reduction.

  20. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2014-01-01T23:59:59.000Z

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  1. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-09-08T23:59:59.000Z

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  2. Inelastic neutron scattering study of hydrogen in d8-THF/D2O ice clathrate Kimberly T. Tait,a

    E-Print Network [OSTI]

    Downs, Robert T.

    Inelastic neutron scattering study of hydrogen in d8-THF/D2O ice clathrate Kimberly T. Tait,a Frans Trouw,b and Yusheng Zhao Manuel Lujan Jr. Neutron Scattering Center, Los Alamos National Laboratory, Los October 2007 In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated

  3. Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D. Huxley, and K. V. Kamenev

    E-Print Network [OSTI]

    Hall, Christopher

    Large volume high-pressure cell for inelastic neutron scattering W. Wang, D. A. Sokolov, A. D for inelastic neutron scattering measurements of quantum fluids and solids Rev. Sci. Instrum. 84, 015101 (2013) TOF-SEMSANS--Time-of-flight spin-echo modulated small-angle neutron scattering J. Appl. Phys. 112

  4. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect (OSTI)

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J. [Department of Physics, University of Dallas, Irving TX 75019 (United States); Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Vanhoy, J. R.; Watts, D. [Department of Physics, United States Naval Academy, Annapolis MD 21402 (United States); Yates, S. W. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States) and Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States)

    2013-04-19T23:59:59.000Z

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  5. Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA

    E-Print Network [OSTI]

    C. Adloff

    1998-11-09T23:59:59.000Z

    Deep--inelastic scattering events with a leading baryon have been detected by the H1 experiment at HERA using a forward proton spectrometer and a forward neutron calorimeter. Semi--inclusive cross sections have been measured in the kinematic region 2 neutron with energy E' >= 160 GeV. The measurements are used to test production models and factorization hypotheses. A Regge model of leading baryon production which consists of pion, pomeron and secondary reggeon exchanges gives an acceptable description of both semi-inclusive cross sections in the region 0.7 neutron data are used to estimate for the first time the structure function of the pion at small Bjorken--x.

  6. Discrimination of gamma rays due to inelastic neutron scattering in AGATA

    E-Print Network [OSTI]

    A. Ataç; A. Kas¸kas A; S. Akkoyun A; M. S¸enyi?git A; T. Hüyük A; S. O. Kara A; J. Nyberg B

    Possibilities of discriminating neutrons and ? rays in the AGATA ?-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and ? rays from the center of AGATA. Three different methods were developed and tested in order to find “fingerprints ” of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten ? rays with energies between 150 and 1450 keV, the peak-to-background ratio at a ?-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

  7. Discrimination of gamma rays due to inelastic neutron scattering in AGATA

    E-Print Network [OSTI]

    A. Ataç; A. Ka?ka?; S. Akkoyun; M. ?enyi?it; T. Hüyük; S. O. Kara; J. Nyberg

    2009-06-10T23:59:59.000Z

    Possibilities of discriminating neutrons and gamma rays in the AGATA gamma-ray tracking spectrometer have been investigated with the aim of reducing the background due to inelastic scattering of neutrons in the high-purity germanium crystals. This background may become a serious problem especially in experiments with neutron-rich radioactive ion beams. Simulations using the Geant4 toolkit and a tracking program based on the forward tracking algorithm were carried out by emitting neutrons and gamma rays from the center of AGATA. Three different methods were developed and tested in order to find 'fingerprints' of the neutron interaction points in the detectors. In a simulation with simultaneous emission of six neutrons with energies in the range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a factor of 2.4 after neutron rejection with a reduction of the photopeak efficiency at 1.0 MeV of only a factor of 1.25.

  8. Deep Inelastic Scattering from A=3 Nuclei and the Neutron Structure Function

    SciTech Connect (OSTI)

    I. Afnan; F. Bissey; J. Gomez; A. Katramatou; S. Liuti; W. Melnitchouk; G. Petratos; A.W. Thomas

    2003-03-01T23:59:59.000Z

    We present a comprehensive analysis of deep inelastic scattering from {sup 3}He and {sup 3}H, focusing in particular on the extraction of the free neutron structure function, F{sup n}{sub 2}. Nuclear corrections are shown to cancel to within 1-2% for the isospin-weighted ratio of {sup 3}He to {sup 3}H structure functions, which leads to more than an order of magnitude improvement in the current uncertainty on the neutron to proton ratio F{sup 2n}{sub 2}/F{sup p}{sub 2} at large x. Theoretical uncertainties originating tom the nuclear wave function, including possible non-nucleonic components, are evaluated. Measurement of the {sup 3}He and {sup 3}H structure functions will, in addition, determine the magnitude of the EMC effect in all A [lte] 3 nuclei.

  9. Inelastic neutron scattering of a quantum translator-rotator encapsulated in a closed fullerene cage: Isotope effects and translation-rotation coupling in H2@C60 and HD@C60

    E-Print Network [OSTI]

    Turro, Nicholas J.

    Inelastic neutron scattering of a quantum translator-rotator encapsulated in a closed fullerene, New York 10027, USA Received 1 July 2010; published 20 August 2010 We report an inelastic neutron-scattering inelastic neutron scattering INS ,6 and specific heat7 inves- tigations have recently been reported

  10. Refined model of the {Fe9} magnetic molecule from low-temperature inelastic neutron scattering studies

    SciTech Connect (OSTI)

    Engelhardt, Larry [Francis Marion University; Demmel, Franz [Rutherford Appleton Laboratory; Luban, Marshall [Ames Laboratory; Timco, Grigore A [The University of Manchester; Tuna, Floriana [The University of Manchester; Winpenny, Richard E [The University of Manchester

    2014-06-01T23:59:59.000Z

    We present a refined model of the {Fe9} tridiminished icosahedron magnetic molecule system. This molecule was originally modeled as being composed of two ({Fe3} and {Fe6}) clusters, with the Fe3+ ions within each cluster being coupled via exchange interactions, but with no coupling between the clusters. The present inelastic neutron scattering (INS) measurements were used to probe the low-lying energy spectrum of {Fe9}, and these results demonstrate that the previously published model of two uncoupled clusters is incomplete. To achieve agreement between the experiment and theory, we have augmented the model with relatively small exchange coupling between the clusters. A combination of Lanczos matrix diagonalization and quantum Monte Carlo simulations have been used to achieve good agreement between the experimental data and the improved model of the full {Fe9} system despite the complexity of this model (with Hilbert space dimension >107).

  11. A cryogenic high pressure cell for inelastic neutron scattering measurements of quantum fluids and solids

    SciTech Connect (OSTI)

    Carmichael, Justin R [ORNL; Omar Diallo, Souleymane [ORNL

    2013-01-01T23:59:59.000Z

    We present our new development of a high pressure cell for inelastic neutron scattering measurements of helium at ultra-low temperatures. The cell has a large sample volume of ~140 cm3, and a working pressure of ~70 bar, with a relatively thin wall-thickness (1.1 mm) - thanks to the high yield strength aluminum used in the design. Two variants of this cell have been developed; one with permanently joined components using electron-beam welding and explosion welding, methods that have little or no impact on the global heat treatment of the cell, and another with modular and interchangeable components, which include a capacitance pressure gauge, that can be sealed using traditional indium wire technique. The performance of the cell has been tested in recent measurements on superfluid liquid helium near the solidification line.

  12. Status report on the analysis of inelastic neutron scattering from carbon, iron, yttrium and lead at 96 MeV

    E-Print Network [OSTI]

    C. Gustavsson; C. Hellesen; S. Pomp; A. Öhrn; J. Blomgren; U. Tippawan

    2013-03-27T23:59:59.000Z

    This work is part of an effort to provide more experimental data for the (n,n'x) reaction. The experiments were carried out at The Svedberg Laboratory in Uppsala, Sweden, at the quasi-mono-energetic neutron beam of 96 MeV, before the facility was upgraded in 2004. Using an extended data analysis of data primarily intended for measuring elastic neutron scattering only, it was found to be possible to extract information on the inelastic scattering from several nuclei. In the preliminary data analysis, an iterative forward-folding technique was applied, in which a physically reasonable trial spectrum was folded with the response function of the detector system and the output was compared to the experimental data. As a result, double-differential cross sections and angular distributions of inelastic neutron scattering from 12-C, 56-Fe, 89-Y and 208-Pb could be obtained. In this paper, a status update on the efforts to improve the description of the detector response function is given.

  13. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18T23:59:59.000Z

    Understanding the interplay between magnetism and superconductivity continues to be a “hot” topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  14. Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry

    E-Print Network [OSTI]

    O. Waldmann

    2003-04-21T23:59:59.000Z

    For powder samples of polynuclear metal complexes the dependence of the inelastic neutron scattering intensity on the momentum transfer Q is known to be described by a combination of so called interference terms. They reflect the interplay between the geometrical structure of the compound and the spatial properties of the wave functions involved in the transition. In this work, it is shown that the Q-dependence is strongly interrelated with the molecular symmetry of molecular nanomagnets, and, if the molecular symmetry is high enough, is actually completely determined by it. A general formalism connecting spatial symmetry and interference terms is developed. The arguments are detailed for cyclic spin clusters, as experimentally realized by e.g. the octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.

  15. Neutron inelastic scattering in natural Pb as a background in neutrinoless

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering3

  16. Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations

    SciTech Connect (OSTI)

    Lan, Tian [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Li, Chen [ORNL] [ORNL; Niedziela, Jennifer L [ORNL] [ORNL; Smith, Hillary [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Abernathy, Douglas L [ORNL] [ORNL; Rossman, George [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Fultz, B. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena

    2014-01-01T23:59:59.000Z

    Inelastic neutron scattering measurements on silver oxide (Ag2O) with the cuprite structure were performed at temperatures from 40 to 400 K, and Fourier transform far-infrared spectra were measured from 100 to 300 K. The measured phonon densities of states and the infrared spectra showed unusually large energy shifts with temperature, and large linewidth broadenings. First principles molecular dynamics (MD) calculations were performed at various temperatures, successfully accounting for the negative thermal expansion (NTE) and local dynamics. Using the Fourier-transformed velocity autocorrelation method, the MD calculations reproduced the large anharmonic effects of Ag2O, and were in excellent agreement with the neutron scattering data. The quasiharmonic approximation (QHA) was less successful in accounting for much of the phonon behavior. The QHA could account for some of the NTE below 250 K, although not at higher temperatures. Strong anharmonic effects were found for both phonons and for the NTE. The lifetime broadenings of Ag2O were explained by anharmonic perturbation theory, which showed rich interactions between the Ag-dominated modes and the O-dominated modes in both up- and down-conversion processes.

  17. Deep Inelastic Scattering of Polarized Electrons by Polarized $^3$He and the Study of the Neutron Spin Structure

    E-Print Network [OSTI]

    The E142 Collaboration; P. L. Anthony et al

    1996-10-14T23:59:59.000Z

    The neutron longitudinal and transverse asymmetries $A^n_1$ and $A^n_2$ have been extracted from deep inelastic scattering of polarized electrons by a polarized $^3$He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions $g^n_1 (x,Q^2)$ and $g^n_2(x,Q^2)$ over the range $0.03 neutron spin structure function $g^n_1 (x,Q^2)$ is small and negative within the range of our measurement, yielding an integral ${\\int_{0.03}^{0.6} g_1^n(x) dx}= -0.028 \\pm 0.006 (stat) \\pm 0.006 (syst) $. Assuming Regge behavior at low $x$, we extract $\\Gamma_1^n=\\int^1_0 g^n_1(x)dx = -0.031 \\pm 0.006 (stat)\\pm 0.009 (syst) $. Combined with previous proton integral results from SLAC experiment E143, we find $\\Gamma_1^p - \\Gamma_1^n = 0.160 \\pm 0.015$ in agreement with the Bjorken sum rule prediction $\\Gamma^p_1 - \\Gamma ^n_1 = 0.176 \\pm 0.008$ at a $Q^2$ value of 3 (GeV$/c)^2$ evaluated using $\\alpha_s = 0.32\\pm 0.05$.

  18. Neutron inelastic scattering and reactions in natural Pb as a background in neutrinoless double-beta-decay experiments

    E-Print Network [OSTI]

    V. E. Guiseppe; M. Devlin; S. R. Elliott; N. Fotiades; A. Hime; D. -M. Mei; R. O. Nelson; D. V. Perepelitsa

    2009-09-24T23:59:59.000Z

    Inelastic neutron scattering and reactions on Pb isotopes can result in gamma rays near the signature endpoint energy in a number of double-beta decay isotopes. In particular, there are gamma-ray transitions in Pb-206,207,208 that might produce energy deposits at the 76-Ge Q value in Ge detectors used for double-beta decay searches. The levels that produce these gamma rays can be excited by (n,n'gamma) or (n,xngamma) reactions, but the cross sections are small and previously unmeasured. This work uses the pulsed neutron beam at the Los Alamos Neutron Science Center to directly measure reactions of interest to double-beta decay experiments. The cross section on natural Pb to produce the 2041-keV gamma ray from Pb-206 is measured to be 3.6 +/- 0.7 (stat.) +/- 0.3 (syst.) mb at ~9.6 MeV. The cross section on natural Pb to produce the 3062-keV gamma ray from Pb-207 and Pb-208 is measured to be 3.9 +/- 0.8 (stat.) +/- 0.4 (syst.) mb at the same energy. We report cross sections or place upper limits on the cross sections for exciting some other levels in Pb that have transition energies corresponding to Q value in other double-beta decay isotopes.

  19. Determination of Differential Elastic and Inelastic and Double-differential Neutron Scattering Cross Sections of Elemental Titanium at Energies between 7.93 MeV and 14.72 MeV

    E-Print Network [OSTI]

    Schmidt, Dankwart; Xichao, R

    2006-01-01T23:59:59.000Z

    Determination of Differential Elastic and Inelastic and Double-differential Neutron Scattering Cross Sections of Elemental Titanium at Energies between 7.93 MeV and 14.72 MeV

  20. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic $^2$H(e, e'p)X scattering with CLAS

    E-Print Network [OSTI]

    S. Tkachenko; N. Baillie; S. E. Kuhn; J. Zhang; J. Arrington; P. Bosted; S. Bültmann; M. E. Christy; D. Dutta; R. Ent; H. Fenker; K. A. Griffioen; M. Ispiryan; N. Kalantarians; C. E. Keppel; W. Melnitchouk; V. Tvaskis; K. P. Adhikari; M. Aghasyan; M. J. Amaryan; S. Anefalos Pereira; H. Avakian; J. Ball; N. A. Baltzell; M. Battaglieri; I. Bedlinskiy; A. S. Biselli; W. J. Briscoe; W. K. Brooks; V. D. Burkert; D. S. Carman; A. Celentano; S. Chandavar; G. Charles; P. L. Cole; M. Contalbrigo; O. Cortes; V. Crede; A. D'Angelo; N. Dashyan; R. De Vita; E. De Sanctis; A. Deur; C. Djalali; G. E. Dodge; D. Doughty; R. Dupre; H. Egiyan; A. El Alaoui; L. El Fassi; L. Elouadrhiri; P. Eugenio; G. Fedotov; J. A. Fleming; B. Garillon; N. Gevorgyan; Y. Ghandilyan; G. P. Gilfoyle; K. L. Giovanetti; F. X. Girod; J. T. Goetz; E. Golovatch; R. W. Gothe; M. Guidal; L. Guo; K. Hafidi; H. Hakobyan; C. Hanretty; N. Harrison; M. Hattawy; K. Hicks; D. Ho; M. Holtrop; C . E. Hyde; Y. Ilieva; D. G. Ireland; B. S. Ishkhanov; H. S. Jo; D. Keller; M. Khandaker; A. Kim; W. Kim; P. M. King; A. Klein; F. J. Klein; S. Koirala; V. Kubarovsky; S. V. Kuleshov; P. Lenisa; S. Lewis; K. Livingston; H. Lu; M. MacCormick; I. J. D. MacGregor; N. Markov; M. Mayer; B. McKinnon; T. Mineeva; M. Mirazita; V. Mokeev; R. A. Montgomery; H. Moutarde; C. Munoz Camacho; P. Nadel-Turonski; S. Niccolai; G. Niculescu; I. Niculescu; M. Osipenko; L. L. Pappalardo; R. Paremuzyan; K. Park; E. Pasyuk; J. J. Phillips; S. Pisano; O. Pogorelko; S. Pozdniakov; J. W. Price; S. Procureur; D. Protopopescu; A. J . R. Puckett; D. Rimal; M. Ripani; A. Rizzo; G. Rosner; P. Rossi; P. Roy; F. Sabatié; D. Schott; R. A. Schumacher; E. Seder; I. Senderovich; Y. G. Sharabian; A. Simonyan; G. D. Smith; D. I. Sober; D. Sokhan; S. Stepanyan; S. S. Stepanyan; S. Strauch; W. Tang; M. Ungaro; A. V. Vlassov; H. Voskanyan; E. Voutier; N. K. Walford; D. Watts; X. Wei; L. B. Weinstein; M. H. Wood; L. Zana; I. Zonta

    2014-10-03T23:59:59.000Z

    Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. The Barely Off-shell Nucleon Structure (BONuS) experiment at Jefferson Lab measured the inelastic electron deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model independent extraction of the neutron structure function. A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c. For the extraction of the free neutron structure function $F_{2n}$, spectator protons at backward angle and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer. The extracted neutron structure function $F_{2n}$ and its ratio to the deuteron structure function $F_{2d}$ are presented in both the resonance and deep inelastic regions. The dependence of the cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Our data set can be used to study neutron resonance excitations, test quark hadron duality in the neutron, develop more precise parametrizations of structure functions, as well as investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d/u as x goes to 1.

  1. Polarized inelastic neutron scattering of the partially ordered Tb2Sn2O7 K. C. Rule,1 G. Ehlers,2 J. R. Stewart,3 A. L. Cornelius,4 P. P. Deen,3 Y. Qiu,5,6 C. R. Wiebe,7,8 J. A. Janik,7 H. D. Zhou,7

    E-Print Network [OSTI]

    Weston, Ken

    Polarized inelastic neutron scattering of the partially ordered Tb2Sn2O7 K. C. Rule,1 G. Ehlers,2 J 17 August 2007; published 21 December 2007 We present inelastic neutron scattering results neutron scattering, susceptibility, and specific heat techniques have shown that below 0.87 K Tb2Sn2O7

  2. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01T23:59:59.000Z

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.

  3. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01T23:59:59.000Z

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with themore »previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.« less

  4. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru [Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Magurele (Romania)

    2012-11-20T23:59:59.000Z

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  5. Extraction of the Ratio of the Neutron to Proton Structure Functions from Deep Inelastic Scattering

    E-Print Network [OSTI]

    Simonetta Liuti; Franz Gross

    1995-06-05T23:59:59.000Z

    We study the nuclear ($A$) dependence of the European Muon Collaboration (EMC) effect at high values of $x$ ($x \\geq 0.6$). Our approach makes use of conventional nuclear degrees of freedom within the Relativistic Impulse Approximation. By performing a non-relativistic series expansion we demonstrate that relativistic corrections make a substantial contribution to the effect at $x \\gtrsim 0.6$ and show that the ratio of neutron to proton structure functions extracted from a global fit to all nuclei is not inconsistent with values obtained from the deuteron.

  6. Neutron Scattering Studies of Correlated Electron Systems

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron Scattering Studies of Correlated Electron Systems Lucy Helme Thesis submitted submitted for the Degree of Doctor of Philosophy, Trinity Term 2006 This thesis presents neutron scatteringO2, through inelastic neutron scattering studies of the crystal field transitions above and below

  7. Measurement of Feynman-x Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA

    E-Print Network [OSTI]

    H1 Collaboration

    2014-04-01T23:59:59.000Z

    Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $ep$ scattering at HERA are presented as a function of the Feynman variable $x_F$ and of the centre-of-mass energy of the virtual photon-proton system $W$. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $131 \\mathrm{pb}^{-1}$. The measurement is restricted to photons and neutrons in the pseudorapidity range $\\eta>7.9$ and covers the range of negative four momentum transfer squared at the positron vertex $6scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

  8. Neutron Scattering Stiudies

    SciTech Connect (OSTI)

    Kegel, Gunter H.R.; Egan, James J

    2007-04-18T23:59:59.000Z

    This project covers four principal areas of research: Elastic and inelastic neutron scattering studies in odd-A terbium, thulium and other highly deformed nuclei near A=160 with special regard to interband transitions and to the investigation of the direct-interaction versus the compound-nucleus excitation process in these nuclei. Examination of new, fast photomultiplier tubes suitable for use in a miniaturized neutron-time-of-flight spectrometer. Measurement of certain inelastic cross sections of 238U. Determination of the multiplicity of prompt fission gamma rays in even-A fissile actinides. Energies and mean lives of fission isomers produced by fast fission of even-Z, even-A actinides. Study of the mean life of 7Be in different host matrices and its possible astro-physical significance.

  9. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect (OSTI)

    Pavlou, Andrew Theodore [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ji, Wei [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2014-09-02T23:59:59.000Z

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(?,?) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(?,?) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  10. Neutron scattering and models: Titanium

    SciTech Connect (OSTI)

    Smith, A.B.

    1997-07-01T23:59:59.000Z

    Differential neutron elastic-scattering cross sections of elemental titanium were measured from 4.5 {r_arrow} 10.0 MeV in incident energy increments of {approx} 0.5 MeV. At each energy the measurements were made at forty or more scattering angles distributed between {approx} 17 and 160{degree}. Concurrently, differential neutron inelastic-scattering cross sections were measured for observed excitations of 0.975 {+-} 0.034, 1.497 {+-} 0.033, 2.322 {+-} 0.058, 3.252 {+-} 0.043, 3.700 {+-} 0.093, 4.317 {+-} 0.075 and 4.795 {+-} 0.100 MeV. All of the observed inelastically-scattered neutron groups were composites of contributions from several isotopes and/or levels. The experimental results were used to develop energy-average optical, statistical and coupled-channels models.

  11. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    SciTech Connect (OSTI)

    Vaknin, D. [Ames Laboratory; Garlea, Vasile O [ORNL; Demmel, F. [ISIS Facility, Rutherford Appleton Laboratory; Mamontov, Eugene [ORNL; Nojiri, H [Institute for Materials Research, Tohoku University, Sendai, Japan; Martin, Catalin [Florida State University; Chiorescu, Irinel [Florida State University; Qiu, Y. [National Institute of Standards and Technology (NIST); Luban, M. [Ames Laboratory; Kogerler, P. [Ames Laboratory; Fielden, J. [Ames Laboratory; Engelhardt, L [Francis Marion University, Florence, South Sarolina; Rainey, C [Francis Marion University, Florence, South Sarolina

    2010-01-01T23:59:59.000Z

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  12. Imaging with Scattered Neutrons

    E-Print Network [OSTI]

    H. Ballhausen; H. Abele; R. Gaehler; M. Trapp; A. Van Overberghe

    2006-10-30T23:59:59.000Z

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-resolution images by scattered neutron radiography and tomography are presented.

  13. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  14. Neutron scattering studies in the actinide region. Progress report, August 1, 1992--July 31, 1993

    SciTech Connect (OSTI)

    Kegel, G.H.R.; Egan, J.J.

    1993-09-01T23:59:59.000Z

    This report discusses the following topics: Prompt fission neutron energy spectra for {sup 235}U and {sup 239}Pu; Two-parameter measurement of nuclear lifetimes; ``Black`` neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in {sup 197}Au; Elastic and inelastic scattering studies in {sup 239}Pu; and neutron induced defects in silicon dioxide MOS structures.

  15. Electric dipole response of 208Pb from proton inelastic scattering: constraints on neutron skin thickness and symmetry energy

    E-Print Network [OSTI]

    A. Tamii; P. von Neumann-Cosel; I. Poltoratska

    2013-10-02T23:59:59.000Z

    The electric dipole (E1) response of 208Pb has been precisely determined by measuring Coulomb excitation induced by proton scattering at very forward angles. The electric dipole polarizability, defined as inverse energy-weighted sum rule of the E1 strength, has been extracted as 20.1+-0.6 fm^3. The data can be used to constrain the neutron skin thickness of 208Pb to 0.168(+-0.009)_expt(+-0.013)_theo(+-0.021)_est fm, where the subscript "expt" refers to the experimental uncertainty, "theor" to the theoretical confidence band and "est" to the uncertainty associated with the estimation of the symmetry energy at the saturation density. In addition, a constraint band has been extracted in the plane of the symmetry energy (J) and its slope parameter (L) at the saturation density.

  16. INELASTIC LIGHT SCATTERING STUDIES OF BOROCARBIDE SUPERCONDUCTORS

    E-Print Network [OSTI]

    Yang, In-Sang

    INELASTIC LIGHT SCATTERING STUDIES OF BOROCARBIDE SUPERCONDUCTORS IN­SANG YANG Department In recent years of studies in ``unconventional'' superconductivity, researchers have concentrated on exotic behavior of the heavy fermion and cuprate su­ perconductors. However, even superconductors that are thought

  17. Nitrogen Contamination in Elastic Neutron Scattering Songxue Chi,ab

    E-Print Network [OSTI]

    Lynn, Jeffrey W.

    Nitrogen Contamination in Elastic Neutron Scattering Songxue Chi,ab Jeffrey W. Lynn,a* Ying Chen a neutron scattering measurement is a contribution to the background, especially in inelastic measurements of having N2 in the sample environment system during elastic neutron scattering measurements on a single

  18. Nuclear effects in deep inelastic scattering

    SciTech Connect (OSTI)

    O. Benhar; V.R. Pandharipande; I. Sick

    1998-03-01T23:59:59.000Z

    The authors extend the approach used to treat quasi-elastic inclusive electron-nucleus scattering to the deep inelastic region. They provide a general approach to describe lepton scattering from an off-shell nucleon, and calculate the ratio of inclusive deep inelastic scattering cross sections to the deuteron for nuclear matter and helium (EMC-effect). They find that the consistent inclusion of the binding effects, in particular the ones arising from the short-range nucleon-nucleon interaction, allows to describe the data in the region of x > 0.15 where binding fully accounts for the deviation of the cross section ratios from one.

  19. ELSEVIER Physica B 213&214 11995J454 458 Neutron scattering from liquid 3He

    E-Print Network [OSTI]

    Glyde, Henry R.

    ELSEVIER Physica B 213&214 11995J454 458 HIYSICA[ Neutron scattering from liquid 3He at large Abstract Neutron inelastic scattering measurements have been made on liquid 3He at 1,4 K for wave vectors to investigate the neutron inelastic scattering from liquid 3He at T = 1.4 K for wave vec- tors between 9 and 20

  20. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent...

  1. Inelastic Scatterings of Entangled Mossbauer Gammas

    E-Print Network [OSTI]

    Yao Cheng; Zhongming Wang

    2006-10-12T23:59:59.000Z

    We report the observation of the temperature-dependent inelastic scattering of three entangled Mossbauer gammas in the time-resolved Mossbauer spectroscopy. Recently, the long-lived E3 Mossbauer transition of rhodium generated by bremsstrahlung irradiation has been reported. Two kinds of X-rays with the fast decay are attributed to the tri-photon effect. They are tri-photon pile-up of rhodium K X-rays and the high-Z impurity K X-rays. Energy of the particular K emission is higher than the sum energy of two Mossbauer gammas. This letter reports new discoveries by cooling down the sample using liquid nitrogen, namely the collective anomalous emission of entangled Mossbauer gammas. The enhancement of inelastic scatterings at low temperature such as rhodium K satellites is attributed to this entanglement.

  2. Inelastic Scatterings of Entangled Mossbauer Gammas

    E-Print Network [OSTI]

    Cheng, Y; Cheng, Yao; Wang, Zhongming

    2006-01-01T23:59:59.000Z

    We report the observation of the temperature-dependent inelastic scattering of three entangled Mossbauer gammas in the time-resolved Mossbauer spectroscopy. Recently, the long-lived E3 Mossbauer transition of rhodium generated by bremsstrahlung irradiation has been reported. Two kinds of x rays with the fast decay are attributed to the tri-photon effect. They are tri-photon pile-up of rhodium K x rays and the high-Z impurity K x rays. Energy of the particular K emission is greater than the sum energy of two Mossbauer gammas. This letter reports new discoveries by cooling down the sample using liquid nitrogen, namely the collective anomalous emission of entangled Mossbauer gammas. The enhancement of inelastic scatterings at low temperature such as rhodium K satellites is attributed to this entanglement.

  3. Deep-inelastic photon-neutrino scattering

    SciTech Connect (OSTI)

    Huq, M.

    1984-02-01T23:59:59.000Z

    The moments of the structure functions scrF/sub T//sup( N/), scrF/sub 3//sup( N/), and scrF/sub L//sup( N/) in deep-inelastic photon-neutrino scattering have been calculated. Exactly calculable leading-order QCD corrections to the box-diagram contributions are large for scrF/sub T//sup( N/) and scrF/sub 3//sup( N/) increasing with N. For scrF/sub L//sup( N/) the corrections are very small except for small N. Dependence of the results on the number of flavors of quarks is very small.

  4. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect (OSTI)

    Tomiyasu, Dr. Keisuke [Tohoku University, Japan; Fujita, Prof. Masaki [Tohoku University, Japan; Kolesnikov, Alexander I [ORNL; Bewley, Robert I. [ISIS Facility, Rutherford Appleton Laboratory; Bull, Dr. Martyn J. [ISIS Facility, Rutherford Appleton Laboratory; Bennington, Dr. Stephen M. [ISIS Facility, Rutherford Appleton Laboratory

    2009-01-01T23:59:59.000Z

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  5. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak Ridge, Tennessee

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak:30 Lecture Inelastic Neutron Scattering B. D. Gaulin McMaster University Lecture Magnetic Scattering B. D Break Break Break Break 9:45 - 10:45 Lecture Continued Inelastic Neutron Scattering B. D. Gaulin Mc

  6. JOURNAL DE PHYSIQUE Colloque C4, supplment au n" 4, Tome 40, avril 1979, page C4-142 Magnetic neutron scattering on intermetallic uranium compounds (*)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    neutron scattering on intermetallic uranium compounds (*) M. Loewenhaupt (f ), S. Horn (**), F. Steglich.- Abstract. -- We report on inelastic neutron scattering experiments performed in the temperature range 5 K quasielastic line. Using thermal neutrons, no inelastic contributions to the magnetic scattering could

  7. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect (OSTI)

    Ibraeva, E. T., E-mail: ibr@inp.kz [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Zhusupov, M. A. [Al-Farabi Kazakh National University (Kazakhstan); Imambekov, O. [National Nuclear Center of the Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan)

    2012-11-15T23:59:59.000Z

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  8. Requirements, possible alternatives & international NEUTRON SCATTERING

    E-Print Network [OSTI]

    Dimeo, Robert M.

    Requirements, possible alternatives & international NEUTRON SCATTERING DETECTORS for Rob Dimeo NIST neutron scattering instruments are the most demanding require background low #12;#12;The Helium-3 Supply Crisis ­ Alternative Techniques to Helium-3 based Detectors for Neutron Scattering Applications

  9. Simulation of a D-T Neutron Source for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Lou, T.P.; Ludewigt, B.A.; Vujic, J.L.; Leung, K.-N.

    2003-01-01T23:59:59.000Z

    T Neutron Source for Neutron Scattering Experiments T.P. Louor cold neutrons for neutron scattering experiments. Thisto simulate a neutron scattering setup and to estimate

  10. Search for: "neutron scattering" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Advanced Search All Fields: "neutron scattering" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search...

  11. 11th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11th LANSCE School on Neutron Scattering LANSCE 11th LANSCE School on Neutron Scattering Home Abstract Lecturers Lecturer Abstracts Hands-On Experiments Free Day About the...

  12. IBIS: An inverse geometry Brillouin inelastic neutron spectrometer for the SNS

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, Lee; Herwig, Kenneth W. [Instrument and Source Development Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wildgruber, Christoph U. [Chemical and Engineering Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-02-15T23:59:59.000Z

    The high power target station at the Spallation Neutron Source (SNS) currently has about 20 completed neutron scattering instruments. With a broad coverage of the momentum transfer (Q)-energy (E) space, these instruments serve an extensive user community. In an effort to further expand the scientific capabilities of the SNS instrument suites, we propose a low background, inverse geometry Brillouin inelastic spectrometer for the SNS which will expand the Q-E coverage of the current instrument suite and facilitate the study of inelastic and quasi-elastic scatterings at low Q values. The possible location for the proposed instrument is either beamline 8 which views the decoupled water moderator, or beamline 14A, which views a cold, coupled super critical hydrogen moderator. The instrument parameters, optimizations, and performances at these two beamline locations are discussed.

  13. Measurement of the nearly free neutron structure function using spectator tagging in inelastic 2H(e,e'p s)X scattering with CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tkachenko, Svyatoslav; Baillie, Nathan; Kuhn, Sebastian; Zhang, J; Arrington, John; Bosted, Peter; Bueltmann, Stephen; Christy, Michael; Fenker, Howard; Griffioen, Keith; Kalantarians, Narbe; Keppel, Cynthia; Melnitchouk, Wolodymyr; Tvaskis, Vladas; Adhikari, Krishna; Aghasyan, Mher; Amaryan, Moskov; Anefalos Pereira, Sergio; Avagyan, Harutyun; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bedlinskiy, Ivan; Biselli, Angela; Briscoe, William; Brooks, William; Burkert, Volker; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Charles, Gabriel; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; Egiyan, Hovanes; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Fleming, Jamie; Garillon, Brice; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Giovanetti, Kevin; Girod-Gard, Francois-Xavier; Goetz, John; Golovach, Evgeny; Gothe, Ralf; Guidal, Michel; Guo, Lei; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Jo, Hyon-Suk; Keller, Dustin; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuleshov, Sergey; Lenisa, Paolo; Lewis, Stefanie; Livingston, Kenneth; Lu, H; MacCormick, Marion; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, Kijun; Pasyuk, Eugene; Phillips, J J; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, J W; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Senderovich, Igor; Sharabian, Youri; Simonyan, Ani; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strauch, Steffen; Tang, Wei; Ungaro, Maurizio; Vlasov, Alexander; Voskanyan, Hakob; VOUTIER, Eric; Walford, Natalie; Watts, Daniel; Wei, Xiangdong; Weinstein, Lawrence; Wood, Michael; Zana, Lorenzo; Zonta, Irene

    2014-04-01T23:59:59.000Z

    Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  14. Leading proton production in deep inelastic scattering at HERA

    E-Print Network [OSTI]

    Leading proton production in deep inelastic 1 scattering at HERA 2 ZEUS Collaboration 3 Draft, with a #28;nal-state proton carrying a large fraction of the incoming proton energy, x L > 0 photon virtualities Q 2 > 3 GeV 2 and mass of the photon-proton sys- tem 45

  15. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized ³He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.

    2014-11-01T23:59:59.000Z

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized ³He target was performed at Jefferson Lab in the kinematic region of 0.16 ± on He3 and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  16. Coherence effects in deep inelastic scattering from nuclei

    SciTech Connect (OSTI)

    Ver Steeg, G. L. (Greg L.); Raufeisen, J. (Jorg)

    2001-01-01T23:59:59.000Z

    A complete theoretical picture of multiple scattering processes in QCD remains elusive. In deep inelastic scattering experiments (DIS), we hope to find out information about the internal structure of nuclei from inelastically scattering high-energy electrons off them. The electrons interact via virtual photon exchange with the target. In the target rest frame the virtual photon splits into a quark-antiquark pair which is then scattered off the target color field. At high energies, coherent multiple scattering within the nucleus takes place. We develop a model that uses a parameterization of scattering cross section of the quark-antiquark pair off the proton to predict the cross section suppression known as shadowing in larger nuclei. This model takes the possibility of multiple scattering into account using Glauber high-energy collision theory. In large nuclei we must also move beyond the eikonal approximation by correcting for the finite lifetime of the quark-antiquark pair inside the nucleus. Results and implications of this model in relation to available data will be discussed. Finally, application of this type of model to predicting gluon densities will be considered. Understanding this process can give us insights into the more oomplicated scattering taking place in heavy ion colliders such as RHIC and LHC.

  17. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22T23:59:59.000Z

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  18. DEEPLY INELASTIC SCATTERING OFF NUCLEI AT RHIC.

    SciTech Connect (OSTI)

    VENUGOPALAN, R.

    2001-09-14T23:59:59.000Z

    In this talk, we discussed the physics case for an eA collider. We emphasized the novel physics that might be studied at small x. The interesting physics at intermediate x's has been discussed elsewhere [3]. Plans for an electron-ion collider include, as a major part of the program, the possibility of doing polarized electron-polarized proton/light ion scattering. A discussion of the combined case for high energy electron nucleus and polarized electron-polarized proton scattering will be published separately [66].

  19. [Inelastic electron scattering from surfaces]. [Progress report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This program uses ab-initio and multiple scattering to study surface dynamical processes; high-resolution electron-energy loss spectroscopy is used in particular. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50--300 eV). The analyses have been extended to surfaces of ordered alloys. Phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross section calculations. Work on low-energy electron and positron holography is mentioned.

  20. Neutron Scattering: Condensed Matter and Magnetic Science, MPA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Neutron Scattering Capability description: Neutron scattering is a powerful probe of structure and collective modes of condensed matter. We are focused on direct...

  1. RisR1125(EN) Neutron Scattering

    E-Print Network [OSTI]

    Risø­R­1125(EN) Neutron Scattering Studies of Modulated Magnetic Structures Steen Aagaard Sørensen investigations of the magnetic systems DyFe4Al8 and MnSi by neutron scattering and in the former case also by X and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering

  2. 10th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10th LANSCE School on Neutron Scattering LANSCE 10th LANSCE School on Neutron Scattering Home Abstract Lecturers Hands-On Experiments Free Day About the School Sponsors FAQ's...

  3. Nucleon semimagic numbers and low-energy neutron scattering

    E-Print Network [OSTI]

    D. A. Zaikin; I. V. Surkova

    2010-04-09T23:59:59.000Z

    It is shown that experimental values of the cross sections of inelastic low-energy neutron scattering on even-even nuclei together with the description of these cross sections in the framework of the coupled channel optical model may be considered as a reliable method for finding nuclei with a semimagic number (or numbers) of nucleons. Some examples of the application of this method are considered.

  4. Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Laboratory [9/30/08

    E-Print Network [OSTI]

    Pennycook, Steve

    Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Ridge National Laboratory Dean Myles, Director ORNL Neutron Scattering Science Division 1 GROUPS [A,B,C,D,E,F,G,H,I] Iran Thomas Auditorium Lecture Inelastic Neutron Scattering R. Osborn, ANL ALL

  5. Neutron-deuteron breakup and quasielastic scattering

    E-Print Network [OSTI]

    Ohlson, Alice Elisabeth

    2009-01-01T23:59:59.000Z

    Quasielastic scattering and deuteron breakup in the 200 MeV region is studied by impinging a pulsed neutron beam on a deuterium target at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center. The ...

  6. Measurements of the Thermal Neutron Scattering Kernel

    E-Print Network [OSTI]

    Danon, Yaron

    Measurements of the Thermal Neutron Scattering Kernel Li (Emily) Liu, Yaron Danon, Bjorn Becker and discussions Problems and Future study Questions #12;3 M. Mattes and J. Keinert, Thermal Neutron Scattering experimental data used was from 1973-1974! M. Mattes and J. Keinert, Thermal Neutron Scattering Data

  7. advanced spallation neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments....

  8. absorber neutronics performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments....

  9. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering Tutorials SHARE

  10. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    students calculate results About the LANSCE School on Neutron Scattering The annual Los Alamos Neutron Science Center (LANSCE) School on Neutron Scattering is 9- to 10-day school...

  11. Proton inelastic scattering on {sup 56}Ni in inverse kinematics

    SciTech Connect (OSTI)

    Kraus, G.; Egelhof, P.; Fischer, C.; Geissel, H.; Himmler, A.; Nickel, F.; Muenzenberg, G.; Schwab, W.; Weiss, A. [GSI, Darmstadt (Germany); Chulkov, L.; Golovkov, M.; Ogloblin, A. [I.V. Kurchatov Inst., Moscow (Russian Federation); Friese, J.; Gillitzer, A.; Koerner, H.J.; Peter, M. [TU, Munich (Germany); Henning, W.; Schiffer, J.P. [Argonne National Lab., IL (United States); Kratz, J.V. [Univ. of Mainz (Germany)

    1993-10-01T23:59:59.000Z

    Inelastic proton scattering to the first excited 2{sup +} state at 2.701 MeV in doubly magic {sup 56}Ni was studied at 101 MeV/u in inverse kinematics. The radioactive {sup 56}Ni ion beam was obtained from the SIS heavy ion synchrotron at GSI Darmstadt via fragmentation of a {sup 58}Ni beam, and separation by the fragment separator (FRS). A value B(E2, 0{sup +} {yields} 2{sup +}) = 600 {+-} 120 e{sup 2} fm{sup 4} was obtained which corresponds to a deformation parameter {beta} ({sup 56}Ni) = 0.173 {+-} 0.017.

  12. Nuclear resonant inelastic X-ray scattering and synchrotron Mossbauer spectroscopy

    E-Print Network [OSTI]

    Lin, Jung-Fu "Afu"

    Chapter 19 Nuclear resonant inelastic X-ray scattering and synchrotron Mo¨ssbauer spectroscopy with nuclear resonant inelastic X-ray scattering and synchrotron Mo¨ssbauer spectroscopy for studying magnetic to the Planck radiation function. Synchrotron Mo¨ssbauer spectra and partial phonon density of states (PDOS

  13. Scattered neutron tomography based on a neutron transport problem 

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01T23:59:59.000Z

    scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample. We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted...

  14. Scattered neutron tomography based on a neutron transport problem

    E-Print Network [OSTI]

    Scipolo, Vittorio

    2005-11-01T23:59:59.000Z

    scattering objects because it does not adequately account for the scattering component of the neutron beam intensity exiting the sample. We proposed a new method of computed tomography which employs an inverse problem analysis of both the transmitted...

  15. am-be isotopic neutron: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fast neutrons. Earlier studies characteristic gamma photons through inelastic scattering of an external neutron beam. These stable isotopes canNeutron Stimulated...

  16. Nuclear spin response studies in inelastic polarized proton scattering

    SciTech Connect (OSTI)

    Jones, K.W.

    1988-01-01T23:59:59.000Z

    Spin-flip probabilities S/sub nn/ have been measured for inelastic proton scattering at incident proton energies around 300 MeV from a number of nuclei. At low excitation energies S/sub nn/ is below the free value. For excitation energies above about 30 MeV for momentum transfers between about 0.35 fm/sup /minus/1/ and 0.65 fm/sup / minus/1/ S/sub nn/ exceeds free values significantly. These results suggest that the relative ..delta..S = 1(..delta..S = 0 + ..delta..S = 1) nuclear spin response approaches about 90% in the region of the enhancement. Comparison of the data with slab response calculations are presented. Decomposition of the measured cross sections into sigma(..delta..S = 0) and sigma(..delta..S = 1) permit extraction of nonspin-flip and spin-flip dipole and quadrupole strengths. 29 refs., 11 figs.

  17. Fully portable, highly flexible dilution refrigerator systems for neutron scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    775 Fully portable, highly flexible dilution refrigerator systems for neutron scattering P. A systems developed specifically for neutron scattering environ- ments. The refrigerators are completely relatively recently however, the lowest temperatures available in almost all neutron scattering laboratories

  18. Identification and rejection of scattered neutrons in AGATA

    E-Print Network [OSTI]

    M. ?enyi?it; A. Ataç; S. Akkoyun; A. Ka?ka?; D. Bazzacco; J. Nyberg; F. Recchia; S. Brambilla; F. Camera; F. C. L. Crespi; E. Farnea; A. Giaz; A. Gottardo; R. Kempley; J. Ljungvall; D. Mengoni; C. Michelagnoli; B. Million; M. Palacz; L. Pellegri; S. Riboldi; E. ?ahin; P. A. Söderström; J. J. Valiente Dobon; the AGATA collaboration

    2013-06-12T23:59:59.000Z

    Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were measured in an AGATA experiment performed at INFN Laboratori Nazionali di Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors (12 36-fold segmented high-purity germanium crystals), placed at a distance of 50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment was to study the interaction of neutrons in the segmented high-purity germanium detectors of AGATA and to investigate the possibility to discriminate neutrons and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were used for a time-of-flight measurement, which gave an independent discrimination of neutrons and gamma rays and which was used to optimise the gamma-ray tracking-based neutron rejection methods. It was found that standard gamma-ray tracking, without any additional neutron rejection features, eliminates effectively most of the interaction points due to recoiling Ge nuclei after elastic scattering of neutrons. Standard tracking rejects also a significant amount of the events due to inelastic scattering of neutrons in the germanium crystals. Further enhancements of the neutron rejection was obtained by setting conditions on the following quantities, which were evaluated for each event by the tracking algorithm: energy of the first and second interaction point, difference in the calculated incoming direction of the gamma ray, figure-of-merit value. The experimental results of tracking with neutron rejection agree rather well with Geant4 simulations.

  19. Final-state interactions in deep-inelastic scattering from a tensor polarized deuteron target

    E-Print Network [OSTI]

    Wim Cosyn; Misak Sargsian

    2014-07-07T23:59:59.000Z

    Deep-inelastic scattering (DIS) from a tensor polarized deuteron is sensitive to possible non-nucleonic components of the deuteron wave function. To accurately estimate the size of the nucleonic contribution, final-state interactions (FSIs) need to be accounted for in calculations. We outline a model that, based on the diffractive nature of the effective hadron-nucleon interaction, uses the generalized eikonal approximation to model the FSIs in the resonance region, taking into account the proton-neutron component of the deuteron. The calculation uses a factorized model with a basis of three resonances with mass $Wkinematics accessible in experiments at Jefferson Lab and Hermes. For inclusive DIS, sizeable effects are found when including FSIs for Bjorken $x>0.2$, but the overall size of $A_{zz}$ remains small. For tagged spectator DIS, FSIs effects are largest at spectator momenta around 300 MeV and for forward spectator angles.

  20. Excitation of Giant Monopole Resonance in $^{208}$Pb and $^{116}$Sn Using Inelastic Deuteron Scattering

    E-Print Network [OSTI]

    D. Patel; U. Garg; M. Itoh; H. Akimune; G. P. A. Berg; M. Fujiwara; M. N. Harakeh; C. Iwamoto; T. Kawabata; K. Kawase; J. T. Matta; T. Murakami; A. Okamoto; T. Sako; K. W. Schlax; K. Takahashi; M. White; M. Yosoi

    2014-06-26T23:59:59.000Z

    The excitation of the isoscalar giant monopole resonance (ISGMR) in $^{116}$Sn and $^{208}$Pb has been investigated using small-angle (including $0^\\circ$) inelastic scattering of 100 MeV/u deuteron and multipole-decomposition analysis (MDA). The extracted strength distributions agree well with those from inelastic scattering of 100 MeV/u $\\alpha$ particles. These measurements establish deuteron inelastic scattering at E$_d \\sim$ 100 MeV/u as a suitable probe for extraction of the ISGMR strength with MDA, making feasible the investigation of this resonance in radioactive isotopes in inverse kinematics.

  1. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Neutron Scattering School LANSCE 2012 LANSCE Neutron Scattering School Home About the School Hands-On Experiments Quick Links Application - Closed Schedule Poster...

  2. Proton Angular Distribution for 90 Mev Neutron-proton Scattering

    E-Print Network [OSTI]

    Hadley, James

    2010-01-01T23:59:59.000Z

    recoil protons in neutron -proton scattering at 90 Mev hasFOR 90 lWEV NEUTRON-PROTON SCATTERING James Hadley, Cecil E.

  3. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  4. 11th LANSCE School on Neutron Scattering | Lecturers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Rex Hjelm Rex P. Hjelm is the Instrument Scientist for the small-angle neutron scattering instrument, LQD, at the Lujan Neutron Scattering Center of LANSCE at...

  5. International Conference on Neutron Scattering 2005 Darling Harbour. Sydney. Australia

    E-Print Network [OSTI]

    International Conference on Neutron Scattering 2005 Darling Harbour. Sydney. Australia 27 November, Hillerød, Denmark Combined application of small-angle neutron scattering and oscillatory shear

  6. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 LANSCE Neutron Scattering School LANSCE 2011 LANSCE Neutron Scattering School Home NSS 2011 About the School Lecturers Hands-On Experiments Quick Links Application Schedule...

  7. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    SciTech Connect (OSTI)

    Sacci, Robert L [ORNL; Banuelos, Jose Leo [ORNL; Veith, Gabriel M [ORNL; Littrell, Ken [ORNL; Cheng, Yongqiang [ORNL; Wildgruber, Christoph U [ORNL; Jones, Lacy L [ORNL; Ramirez-Cuesta, Anibal J [ORNL; Rother, Gernot [ORNL; Dudney, Nancy J [ORNL

    2015-01-01T23:59:59.000Z

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  8. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    E-Print Network [OSTI]

    Wang, D.

    The parity-violating asymmetries between a longitudinally polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep-inelastic scattering ...

  9. Inclusive Aand Semi-Inclusive Deep Inelastic Scattering at Cebaf at Higher Energies

    E-Print Network [OSTI]

    B. Frois; P. J. Mulders

    1994-08-04T23:59:59.000Z

    We summarize the discussion on the possibilities of doing inclusive and semi-inclusive deep inelastic scattering experiments at CEBAF with beam energy of the order of 10 GeV.

  10. Hadronization in semi-inclusive deep-inelastic scattering on nuclei

    E-Print Network [OSTI]

    Hadronization in semi-inclusive deep-inelastic scattering on nuclei A. Airapetian p , N. Akopov aa , Z. Akopov aa , E.C. Aschenauer g , W. Augustyniak z , R. Avakian aa , A. Avetissian aa , E

  11. Nucleon binding corrections to lepton-nucleus deep inelastic scattering: Use of a realistic spectral function

    SciTech Connect (OSTI)

    Dieperink, A.E.L.; Miller, G.A. (Department of Physics, FM-15, University of Washington, Seattle, Washington (USA))

    1991-08-01T23:59:59.000Z

    Nuclear spectral functions computed with realistic nuclear forces are used to compute mean separation energies and to estimate the binding corrections to lepton-nucleus deep inelastic scattering. The separation energies are large and significant binding effects are obtained.

  12. Hadron attenuation in deep inelastic lepton-nucleus scattering

    SciTech Connect (OSTI)

    Falter, T.; Cassing, W.; Gallmeister, K.; Mosel, U. [Institut fuer Theoretische Physik, Universitaet Giessen, D-35392 Giessen (Germany)

    2004-11-01T23:59:59.000Z

    We present a detailed theoretical investigation of hadron attenuation in deep inelastic scattering off complex nuclei in the kinematic regime of the HERMES experiment. The analysis is carried out in the framework of a probabilistic coupled-channel transport model based on the Boltzmann-Uehling-Uhlenbeck equation, which allows for a treatment of the final-state interactions beyond simple absorption mechanisms. Furthermore, our event-by-event simulations account for the kinematic cuts of the experiments as well as the geometrical acceptance of the detectors. We calculate the multiplicity ratios of charged hadrons for various nuclear targets relative to deuterium as a function of the photon energy {nu}, the hadron energy fraction z{sub h}=E{sub h}/{nu}, and the transverse momentum p{sub T}. We also confront our model results on double-hadron attenuation with recent experimental data. Separately, we compare the attenuation of identified hadrons ({pi}{sup {+-}}, {pi}{sup 0}, K{sup {+-}}, p, and p) on {sup 20}Ne and {sup 84}Kr targets with the data from the HERMES Collaboration and make predictions for a {sup 131}Xe target. At the end we turn towards hadron attenuation on {sup 63}Cu nuclei at EMC energies. Our studies demonstrate that (pre-)hadronic final-state interactions play a dominant role in the kinematic regime of the HERMES experiment while our present approach overestimates the attenuation at EMC energies.

  13. Elastic and Inelastic Scattering of Alpha-Particles and Protons from Sm-144

    E-Print Network [OSTI]

    Barker, J. H.; Hiebert, John C.

    1971-01-01T23:59:59.000Z

    PH YSICA L REVIEW C VOLUME 4, NUMB ER 6 DECEMBER 1971 Elastic and Inelastic Scattering of o. Particles and Protons from Sm~ J. H. Barker* and J. C. Hiebert Texas ARM University, College Station, Texas 77843 (Received 14 June 1971) Differential... cross sections for the elastic scattering and inelastic scattering to the low-ly- ing states in Sm have been measured using 50-MeV e-particle and 30-MeV proton beams from the Texas ASM variable-energy cyclotron. Spin and parity assignments are checked...

  14. Flavor Decomposition of the Sea Quark Helicity Distributions in the Nucleon from Semi-inclusive Deep-inelastic Scattering

    E-Print Network [OSTI]

    -inclusive Deep-inelastic Scattering A. Airapetian,30 N. Akopov,30 Z. Akopov,30 M. Amarian,6, 30 V.V. Ammosov,22 A

  15. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    SciTech Connect (OSTI)

    Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL

    2008-10-01T23:59:59.000Z

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A concerted effort was made to involve representatives from historically black colleges and universities (HBCUs) and minority educational institutions (MEIs). The roadmap contained herein provides the path to a national infrastructure for education of students, faculty, and professional researchers who wish to make use of national neutron scattering facilities but do not have (or do not believe they have) the educational background to do so. Education of other stakeholders, including the public, students in kindergarten through twelfth grade (K-12), and policy makers is also included. The opening sessions of the workshop provided the current status of neutron scattering education in North America, Europe, and Australia. National neutron sources have individually developed outreach and advertising programs aimed at increasing awareness among researchers of the potential applications of neutron scattering. However, because their principal mission is to carry out scientific research, their outreach efforts are necessarily self-limiting. The opening session was designed to build awareness that the individual programs need to be coupled with, and integrated into, a broader education program that addresses the complete range of experience, from the student to the experienced researcher, and the wide range of scientific disciplines covered by neutron scattering. Such a program must also take full advantage of existing educational programs and expertise at universities and expand them using modern distance learning capabilities, recognizing that the landscape of education is changing.

  16. The Neutron Scattering Society www.neutronscattering.org

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    The Neutron Scattering Society of America www.neutronscattering.org Press Release, February 4, 2008 The Neutron Scattering Society of America is pleased to announce the 2008 recipients of its 3 major prizes. The Neutron Scattering Society of America (NSSA) established the Clifford G. Shull Prize in Neutron Science

  17. Neutron and X-ray Scattering Study of Magnetic Manganites

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron and X-ray Scattering Study of Magnetic Manganites Graeme Eoin Johnstone A Thesis submitted are performed using a variety of neutron scattering and x-ray scattering techniques. The electronic ground for analysing the results of the polarised neutron scattering experiment. There are a large number of people who

  18. Neutron scattering at high pressure D. B. McWhan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    715 Neutron scattering at high pressure D. B. McWhan Room 1D-234, Murray Hill, New Jersey 07974, U scattering at steady-state and pulsed sources are reviewed. The pressure cells available at most neutron 10 GPa have been made. For elastic scattering, a comparison is made between neutron scattering and X

  19. Temperature Dependent Neutron Scattering Sections for Polyethylene

    E-Print Network [OSTI]

    Roger E. Hill; C. -Y. Liu

    2003-09-05T23:59:59.000Z

    This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

  20. Neutron Interactions: Q-Equation, Elastic Scattering

    E-Print Network [OSTI]

    unknown authors

    Since a neutron has no charge it can easily enter into a nucleus and cause a reaction. Neutrons interact primarily with the nucleus of an atom, except in the special case of magnetic scattering where the interaction involves the neutron spin and the magnetic moment of the atom. Because magnetic scattering is of no interest in this class, we can neglect the interaction between neutrons and electrons and think of atoms and nuclei interchangeably. Neutron reactions can take place at any energy, so one has to pay particular attention to the energy variation of the interaction cross section. In a nuclear reactor neutrons can have energies ranging from 10-3 ev (1 mev) to 10 7 ev (10 Mev). This means our study of neutron interactions, in principle, will have to cover an energy range of 10 ten orders of magnitude. In practice we will limit ourselves to two energy ranges, the slowing down region (ev to Kev) and the thermal region (around 0.025 ev). For a given energy region – thermal, epithermal, resonance, fast – not all the possible reactions are equally important. Which reaction is important depends on the target nucleus and the neutron energy. Generally speaking the important types of interactions, in the order of increasing complexity from the standpoint of theoretical

  1. Measurement of the nearly free neutron structure function using spectator tagging in inelastic 2H(e,e'p s)X scattering with CLAS

    SciTech Connect (OSTI)

    Tkachenko, Svyatoslav; Baillie, Nathan; Kuhn, Sebastian; Zhang, J; Arrington, John; Bosted, Peter; Bueltmann, Stephen; Christy, Michael; Fenker, Howard; Griffioen, Keith; Kalantarians, Narbe; Keppel, Cynthia; Melnitchouk, Wolodymyr; Tvaskis, Vladas; Adhikari, Krishna; Aghasyan, Mher; Amaryan, Moskov; Anefalos Pereira, Sergio; Avagyan, Harutyun; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bedlinskiy, Ivan; Biselli, Angela; Briscoe, William; Brooks, William; Burkert, Volker; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Charles, Gabriel; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; Egiyan, Hovanes; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Fleming, Jamie; Garillon, Brice; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Giovanetti, Kevin; Girod-Gard, Francois-Xavier; Goetz, John; Golovach, Evgeny; Gothe, Ralf; Guidal, Michel; Guo, Lei; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Jo, Hyon-Suk; Keller, Dustin; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuleshov, Sergey; Lenisa, Paolo; Lewis, Stefanie; Livingston, Kenneth; Lu, H; MacCormick, Marion; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, Kijun; Pasyuk, Eugene; Phillips, J J; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, J W; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Senderovich, Igor; Sharabian, Youri; Simonyan, Ani; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strauch, Steffen; Tang, Wei; Ungaro, Maurizio; Vlasov, Alexander; Voskanyan, Hakob; VOUTIER, Eric; Walford, Natalie; Watts, Daniel; Wei, Xiangdong; Weinstein, Lawrence; Wood, Michael; Zana, Lorenzo; Zonta, Irene

    2014-04-01T23:59:59.000Z

    Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  2. Photoluminescence due to inelastic exciton-exciton scattering in ZnMgO-alloy thin film

    SciTech Connect (OSTI)

    Chia, C. H.; Chen, J. N.; Hu, Y. M. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan (China)

    2011-09-26T23:59:59.000Z

    We studied the photoluminescence of ZnMgO thin film, grown by the radiofrequency sputtering method, as a function of excitation intensity and temperature. As the excitation intensity increases, a nonlinear emission band caused by the radiative recombination of the inelastic exciton-exciton scattering was detected at low temperature. We found that the inelastic exciton-exciton scattering process can only persist up to T {approx} 260 K. The nonlinear emission band observed at room temperature is due to the radiative recombination of the electron-hole plasma.

  3. Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Matter ResearchPSI Summer School on Condensed Matter Research

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Concepts of Neutron ScatteringConcepts of Neutron Scattering 66thth PSI Summer School on Condensed Andrew Boothroyd University of Oxford Basic features of neutron scattering Neutron diffraction Neutron on the lattice * * * #12;ScatteringScattering ``nuts and boltsnuts and bolts'' Neutrons, photons, electrons

  4. Neutron scattering measurements at intermediate energies

    E-Print Network [OSTI]

    N. Olsson; J. Blomgren; E. Ramstrom

    The study of elastic neutron scattering at intermediate energies is essential for the understanding of the isovector term in the nucleon-nucleus interaction, as well as for the development of macroscopic and microscopic optical potentials at these energies. The techniques used for neutron scattering measurements is presented in this paper, as well as the di culties encountered. The few facilities that have been used are reviewed, and a newly installed setup for such measurements in Uppsala is described. Finally, the normalization problem is speci cally addressed. 1

  5. Cold neutron scattering in imperfect deuterium crystals

    E-Print Network [OSTI]

    Andrzej Adamczak

    2010-12-10T23:59:59.000Z

    The differential cross sections for cold neutron scattering in mosaic deuterium crystals have been calculated for various target temperatures. The theoretical results are compared with the recent experimental data for the neutron wavelengths $\\lambda\\approx$~1--9~\\AA. It is shown that the structures of observed Bragg peaks can be explained by the mosaic spread of about $3^{\\circ}$ and contributions from a~limited number of crystal orientations. Such a~crystal structure should be also taken into account in ultracold neutron upscattering due to the coherent phonon annihilation in solid deuterium.

  6. Forward Helion Scattering and Neutron Polarization

    SciTech Connect (OSTI)

    Buttimore, N. H. [Trinity College Dublin (Ireland)

    2009-03-23T23:59:59.000Z

    The elastic scattering of spin half helium-3 nuclei at small angles can show a sufficiently large analyzing power to enable the level of helion polarization to be evaluated. As the helion to a large extent inherits the polarization of its unpaired neutron the asymmetry observed in helion collisions can be transformed into a measurement of the polarization of its constituent neutron. Neutron polarimetry therefore relies upon understanding the spin dependence of the electromagnetic and hadronic interactions in the region of interference where there is an optimal analyzing power.

  7. Attosecond neutron Compton scattering from protons

    E-Print Network [OSTI]

    C. Aris Chatzidimitriou-Dreismann

    2007-02-01T23:59:59.000Z

    The effect of "anomalous" scattering of neutrons and electrons from protons in the electron-volt energy-transfer range is considered, and related experimental results are mentioned. A recent independent confirmation of this effect with a new data analysis procedure is presented. Due to the very short characteristic scattering time, there is no well defined separation of time scales of electronic and protonic motions. An outline of a proposed theoretical interpretation is presented, which is based on the fact that scattering protons represent \\textit{open} quantum systems, thus being subject to decoherence.

  8. Beam-Target Double Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.422

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meziani, Z -E; Michaels, R; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C; Phillips, S K; Posik, M; Puckett, A.J. R; Qiang, Y; Rakhman, A; Ransome, R D; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X

    2012-01-30T23:59:59.000Z

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function gq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production on 3He and the neutron, while our ?+ asymmetries are consistent with zero.

  9. Neutron Scattering Society of America Purpose and New Initiatives

    E-Print Network [OSTI]

    Pennycook, Steve

    1 Neutron Scattering Society of America (NSSA) Purpose and New Initiatives www.neutronscattering.org SNS/ANL School on Neutron and X-Ray Scattering June 2010 Visit us now on Facebook #12;2 What and provide a focal point for the neutron scattering community in the USA To identify the needs

  10. Fourteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Fourteenth National School on Neutron and X-ray Scattering August 12 - 25, 2012 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

  11. Tenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Tenth National School on Neutron and X-ray Scattering September 24 - October 11, 2008 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  12. Neutron Scattering Society of America Purpose and New Initiatives

    E-Print Network [OSTI]

    1 Neutron Scattering Society of America (NSSA) Purpose and New Initiatives www.neutronscattering.org SNS/ANL School on Neutron and X-Ray Scattering June 2011 Visit us now on Facebook #12;2 What and provide a focal point for the neutron scattering community in the USA To identify the needs

  13. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    15th National School on Neutron and X-ray Scattering August 10 - 24, 2013 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

  14. TUTORIAL / ARTICLE DIDACTIQUE Neutron scattering study of the classical

    E-Print Network [OSTI]

    Ryan, Dominic

    TUTORIAL / ARTICLE DIDACTIQUE Neutron scattering study of the classical antiferromagnet MnF2: a perfect hands-on neutron scattering teaching course1 Z. Yamani, Z. Tun, and D.H. Ryan Abstract: We present of neutron scattering concepts. The nature of antiferromagnetism and the magnetic Hamiltonian in this classi

  15. Thirteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Thirteenth National School on Neutron and X-ray Scattering June 11 ­ June 25, 2011 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  16. LANSCE School on Neutron Scattering: Materials at the Mesoscale

    E-Print Network [OSTI]

    1 11th LANSCE School on Neutron Scattering: Materials at the Mesoscale Lujan Center Los Alamos. Please name the applicant for admission to the 11th LANSCE School on Neutron Scattering: Last, First LANSCE School on Neutron Scattering including: drive and motivation, ability to work with others

  17. The Neutron Scattering Society www.neutronscattering.org

    E-Print Network [OSTI]

    Homes, Christopher C.

    The Neutron Scattering Society of America www.neutronscattering.org Press Release February 11, 2008 The Neutron Scattering Society of America is pleased to announce the election as Fellows of the Society of in application of neutron scattering to studies of surfaces and crystal field excitations as well as his

  18. Sixteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Sixteenth National School on Neutron and X-ray Scattering June 14-28, 2014 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major's Neutron Scattering Science Division. Scientific Directors: Suzanne G.E. te Velthuis, Esen Ercan Alp

  19. Neutron scattering in magnetic fields (*) W. C. Koehler

    E-Print Network [OSTI]

    Boyer, Edmond

    691 Neutron scattering in magnetic fields (*) W. C. Koehler Solid State Division, Oak Ridge. Abstract 2014 The use of magnetic fields in neutron scattering experimentation is reviewed briefly. Two of the scattering sample ; in the second the field acts on the neutron itself. Several examples are discussed

  20. Twelfth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Twelfth National School on Neutron and X-ray Scattering June 12 ­ June 26, 2010 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  1. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering May 30 ­ June 13, 2009 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  2. A Java-based Science Portal for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    A Java-based Science Portal for Neutron Scattering Experiments Sudharshan S. Vazhkudai James A scattering facility recently commissioned by the US Department of Energy (DOE). The neutron beam produced (SNS) [14] is a large-scale leading- edge neutron scattering facility that hopes to fundamen- tally

  3. ORNL Neutron Scattering School May 30 -June 5, 2009

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL Neutron Scattering School May 30 - June 5, 2009 Oak Ridge National Laboratory Oak Ridge, 2009, for the first week of the Neutron Xray Scattering School. Please be certain to bring photo for Neutron Scattering Users · Radiological Worker Training for HFIR and SNS Users In addition

  4. Beyond mean-field study of elastic and inelastic electron scattering off nuclei

    E-Print Network [OSTI]

    J. M. Yao; M. Bender; P. -H. Heenen

    2015-01-21T23:59:59.000Z

    Electron scattering provides a powerful tool to determine charge distributions and transition densities of nuclei. This tool will soon be available for short-lived neutron-rich nuclei. [Purpose] Beyond mean-field methods have been successfully applied to the study of excitation spectra of nuclei in the whole nuclear chart. These methods permit to determine energies and transition probabilities starting from an effective in-medium nucleon-nucleon interaction but without other phenomenological ingredients. Such a method has recently been extended to calculate the charge density of nuclei deformed at the mean-field level of approximation [J. M. Yao et al., Phys. Rev. C86, 014310 (2012)]. The aim of this work is to further extend the method to the determination of transition densities between low-lying excited states. [Method] The starting point of our method is a set of Hartree-Fock-Bogoliubov wave functions generated with a constraint on the axial quadrupole moment and using a Skyrme energy density functional. Correlations beyond the mean field are introduced by projecting mean-field wave functions on angular-momentum and particle number and by mixing the symmetry restored wave functions.[Results] We give in this paper detailed formulae derived for the calculation of densities and form factors. These formulae are rather easy to obtain when both initial and final states are $0^+$ states but are far from being trivial when one of the states has a finite $J$-value. Illustrative applications to $^{24}$Mg and to the even-mass $^{58-68}$Ni have permitted to analyse the main features of our method, in particular the effect of deformation on densities and form factors. An illustration calculation of both elastic and inelastic scattering form factors is presented....

  5. Comparison of longitudinal polarization of $?$ and $\\bar?$ in deep-inelastic scattering at COMPASS

    E-Print Network [OSTI]

    M. G. Sapozhnikov

    2006-02-01T23:59:59.000Z

    The longitudinal polarization of Lambda and anti-Lambda hyperons produced in deep-inelastic scattering of 160 GeV/c polarized muons is studied in the COMPASS experiment. Preliminary results on x- and y- dependence of the longitudinal polarization of Lambda and anti-Lambda from data collected during the 2003 run are presented.

  6. Distorted spin dependent spectral function of {sup 3}He and semi-inclusive deep inelastic scattering processes

    SciTech Connect (OSTI)

    Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)

    2014-03-01T23:59:59.000Z

    The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.

  7. Neutron Scattering Experiment Automation with Python

    SciTech Connect (OSTI)

    Zolnierczuk, Piotr A [ORNL] [ORNL; Riedel, Richard A [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory currently holds the Guinness World Record as the world most powerful pulsed spallation neutron source. Neutrons scattered off atomic nuclei in a sample yield important information about the position, motions, and magnetic properties of atoms in materials. A neutron scattering experiment usually involves sample environment control (temperature, pressure, etc.), mechanical alignment (slits, sample and detector position), magnetic field controllers, neutron velocity selection (choppers) and neutron detectors. The SNS Data Acquisition System (DAS) consists of real-time sub-system (detector read-out with custom electronics, chopper interface), data preprocessing (soft real-time) and a cluster of control and ancillary PCs. The real-time system runs FPGA firmware and programs running on PCs (C++, LabView) typically perform one task such as motor control and communicate via TCP/IP networks. PyDas is a set of Python modules that are used to integrate various components of the SNS DAS system. It enables customized automation of neutron scattering experiments in a rapid and flexible manner. It provides wxPython GUIs for routine experiments as well as IPython command line scripting. Matplotlib and numpy are used for data presentation and simple analysis. We will present an overview of SNS Data Acquisition System and PyDas architectures and implementation along with the examples of use. We will also discuss plans for future development as well as the challenges that have to be met while maintaining PyDas for 20+ different scientific instruments.

  8. Neutron Scattering Investigation of Phonon Scattering Rates in Ag1-xSb1+xTe2+x (x = 0, 0.1, and 0.2)

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Budai, John D [ORNL; Delaire, Olivier A [ORNL; Ehlers, Georg [ORNL; Hong, Tao [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL); Ma, Jie [ORNL; May, Andrew F [ORNL; McGuire, Michael A [ORNL; Specht, Eliot D [ORNL

    2014-01-01T23:59:59.000Z

    The phonon dispersions and scattering rates of the thermoelectric material AgSbTe$_{2}$ were measured as a function of temperature with inelastic neutron scattering. The results show that phonon scattering rates are large and weakly dependent on temperature. The lattice thermal conductivity was calculated from the measured phonon lifetimes and group velocities, providing good agreement with bulk transport measurements. The measured phonon scattering rates and their temperature dependence are compared with models of phonon scattering by anharmonicity and point defect. We find that these processes cannot account for the large total phonon scattering rates observed, and their lack of temperature dependence. Neutron and synchrotron diffraction measurements on single crystals revealed an extensive nanostructure from cation ordering, which is likely responsible for the strong phonon scattering.

  9. Phonon dispersion of graphite by inelastic x-ray scattering * J. Maultzsch,1, E. Dobardzi,2 S. Reich,3 I. Milosevi,2 M. Damnjanovi,2 A. Bosak,4 M. Krisch,4 and

    E-Print Network [OSTI]

    Nabben, Reinhard

    , University of Belgrade, POB 368, 11011 Belgrade, Serbia 3Department of Materials Science and Engineering quality. It has been partly measured by inelastic neutron scattering INS , electron- energy loss, e.g., the crossing between the acoustic and optical bands near the M point or the energy

  10. Nuclear medium effects in $?(\\bar?)$-nucleus deep inelastic scattering

    E-Print Network [OSTI]

    H. Haider; I. Ruiz Simo; M. Sajjad Athar; M. J. Vicente Vacas

    2011-08-16T23:59:59.000Z

    We study the nuclear medium effects in the weak structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ in the deep inelastic neutrino/antineutrino reactions in nuclei. We use a theoretical model for the nuclear spectral functions which incorporates the conventional nuclear effects, such as Fermi motion, binding and nucleon correlations. We also consider the pion and rho meson cloud contributions calculated from a microscopic model for meson-nucleus self-energies. The calculations have been performed using relativistic nuclear spectral functions which include nucleon correlations. Our results are compared with the experimental data of NuTeV and CDHSW.

  11. 2011 U.S. National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Lang, Jonathan [Argonne National Laboratory (ANL); te Vethuis, Suzanne [Argonne National Laboratory (ANL); Ekkebus, Allen E [ORNL; Chakoumakos, Bryan C [ORNL; Budai, John D [ORNL

    2012-01-01T23:59:59.000Z

    The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

  12. Total Cross Sections for Neutron Scattering

    E-Print Network [OSTI]

    C. R. Chinn; Ch. Elster; R. M. Thaler; S. P. Weppner

    1994-10-19T23:59:59.000Z

    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from $^{16}$O and $^{40}$Ca are calculated as a function of energy from $50-700$~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.

  13. Neutron scattering and extra short range interactions

    E-Print Network [OSTI]

    V. V. Nesvizhevsky; G. Pignol; K. V. Protasov

    2007-11-14T23:59:59.000Z

    The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.

  14. Nuclear Effects in Deep Inelastic Scattering of Charged-Current Neutrino off Nuclear

    E-Print Network [OSTI]

    Duan ChunGui; Li GuangLie; Shen PengNian

    2006-04-18T23:59:59.000Z

    Nuclear effect in the neutrino-nucleus charged-Current inelastic scattering process is studied by analyzing the CCFR and NuTeV data. Structure functions $F_2(x,Q^2)$ and $xF_3(x,Q^2)$ as well as differential cross sections are calculated by using CTEQ parton distribution functions and EKRS and HKN nuclear parton distribution functions, and compared with the CCFR and NuTeV data. It is found that the corrections of nuclear effect to the differential cross section for the charged-current anti-neutrino scattering on nucleus are negligible, the EMC effect exists in the neutrino structure function $F_2(x,Q^2)$ in the large $x$ region, the shadowing and anti-shadowing effect occurs in the distribution functions of valence quarks in the small and medium $x$ region,respectively. It is also found that shadowing effects on $F_2(x,Q^2)$ in the small $x$ region in the neutrino-nucleus and the charged-lepton-nucleus deep inelastic scattering processes are different. It is clear that the neutrino-nucleus deep inelastic scattering data should further be employed in restricting nuclear parton distributions.

  15. Nuclear level density as a tool for probing the inelastic scattering of 6He

    E-Print Network [OSTI]

    Bora Canbula; Halil Babacan

    2014-10-23T23:59:59.000Z

    The cross sections are calculated for the both elastic and inelastic scattering of 6He from 12C and 4He. A phenomenological optical potential is used to describe the elastic scattering. 4He is taken as spherical and inelastic couplings to the first excited states of 6He and 12C are described with collective rotational model and coupled-channels method. Deformation lengths for 6He and 12C are determined from semi-classical nuclear level density model by using Laplace-like formula for the nuclear level density parameter. The comparison of the predicted and the measured cross sections are presented to test the applicability of nuclear level density model to the light exotic nuclei reactions. Good agreement is achieved between the predicted and measured cross sections.

  16. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

    SciTech Connect (OSTI)

    Escher, J E; Dietrich, F S

    2008-05-23T23:59:59.000Z

    In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

  17. Deep Inelastic Electron Scattering Off the Helium and Tritium Mirror Nuclei

    SciTech Connect (OSTI)

    Holt, Roy J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Petratos, Gerassimos G. [Department of Physics, Kent State University, Kent, OH 44242 (United States)

    2011-09-21T23:59:59.000Z

    We discuss a possible measurement of the ratio of nucleon structure functions, F{sub 2}{sup n}/F{sub 2}{sup p}, and the ratio of up to down quark distributions, u/d, at large Bjorken x, by performing deep inelastic electron scattering from the {sup 3}H and {sup 3}He mirror nuclei with the 11 GeV upgraded beam of Jefferson Lab. The measurement is expected to be almost free of nuclear effects, which introduce a significant uncertainty in the extraction of these two ratios from deep inelastic scattering off the proton and deuteron. The results are expected to test perturbative and non-perturbative mechanisms of spin-flavor symmetry breaking in the nucleon, and constrain the structure function parametrizations needed for the interpretation of high energy collider and neutrino oscillations data. The precision of the expected data can also test models of the nuclear EMC effect and provide valuable input for its full explanation.

  18. Double spin asymmetry AL?T? in charged pion production from deep inelastic scattering on a transversely polarized ³He target

    E-Print Network [OSTI]

    Huang, Jin, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    In this thesis I discuss the first measurement of the beam-target double-spin asymmetry ALT for charged pion electroproduction in deep inelastic electron scattering on a transversely polarized 3He target. These data were ...

  19. Hadron Formation in Deep-Inelastic Positron Scattering in a Nuclear Environment

    E-Print Network [OSTI]

    Airapetian, A; Akushevich, I V; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Felawka, L; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Iarygin, G; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; Oganesyan, K A; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, T; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shin, T; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Taroian, S P; Terkulov, A R; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Yen, S; Yoneyama, S; Zohrabyan, H G

    2001-01-01T23:59:59.000Z

    The influence of the nuclear medium on the production of charged hadrons in semi-inclusive deep-inelastic scattering has been studied by the HERMES experiment at DESY using a 27.5 GeV positron beam. The differential multiplicity of charged hadrons and identified charged pions from nitrogen relative to that from deuterium has been measured as a function of the virtual photon energy \

  20. Measurements of transverse momentum in semi-inclusive deep-inelastic scattering at CLAS

    SciTech Connect (OSTI)

    K.A. Griffioen

    2012-12-01T23:59:59.000Z

    With mounting experimental evidence that only a small fraction of the proton's spin comes from the spins of its quarks and gluons, the quest for orbital angular momentum has begun. The parton distributions relevant to this depend on transverse quark momenta. Recent CLAS semi-inclusive deep-inelastic scattering measurements probe these new transverse-momentum-dependent parton distributions using longitudinally polarized beams and targets and detecting {pi}{sup +},{pi}{sup -} and {pi}{sup 0} in the final state.

  1. Tagging emc effects and hadronization mechanisms by semi-inclusive deep inelastic scattering off nuclei

    E-Print Network [OSTI]

    Claudio Ciofi Degli Atti; Leonid P. Kaptari; Chiara Benedetta Mezzetti

    2011-03-18T23:59:59.000Z

    The semi-inclusive deep inelastic scattering of electrons off a nucleus A with detection of a slow nucleus (A-1) in the ground or low excitation states, i.e. the process A(e,e'(A-1))X, can provide useful information on the origin of the EMC effect and the mechanisms of hadronization. The theoretical description of the process is reviewed and the results of several calculations on few-body systems and complex nuclei are presented.

  2. Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra

    E-Print Network [OSTI]

    J. Laverock; A. R. H. Preston; D. Newby Jr; K. E. Smith; S. B. Dugdale

    2012-02-10T23:59:59.000Z

    Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here, we show that the Maximum Entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio.

  3. antineutrino nucleon scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the nucleon Nuclear Theory (arXiv) Summary: We calculate the ratio of proton and neutron yields in NC induced neutrino(antineutrino)-nucleus inelastic scattering at...

  4. Coulomb and Nuclear-Excitation of Giant-Dipole Resonances in (Alpha,alpha') Inelastic-Scattering

    E-Print Network [OSTI]

    Shlomo, S.; Lui, YW; Youngblood, David H.; Udagawa, T.; Tamura, T.

    1987-01-01T23:59:59.000Z

    PHYSICAL REVIEW C VOLUME 36, NUMBER 4 OCTOBER 1987 Coulomb and nuclear excitation of giant dipole resonances in (a, a') inelastic scattering S. Sh-lomo Center for Theoretical Physics, Department of Physics, and Cyclotron Institute, Texas A... January 1987) Cross sections of inelastic a-particle scattering to isovector giant dipole resonances are calculat- ed including both nuclear and Coulomb excitation. It is shown that the calculated cross sections are rather small and can be safely...

  5. Neutron Stimulated Emission Computed Tomography of Stable Isotopes

    E-Print Network [OSTI]

    on the development of a new molecular imaging technique using inelastic scattering of fast neutrons. Earlier studies characteristic gamma photons through inelastic scattering of an external neutron beam. These stable isotopes canNeutron Stimulated Emission Computed Tomography of Stable Isotopes Carey E. Floyd Jr.*ab , Calvin

  6. Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon

    E-Print Network [OSTI]

    T. Al-Abdullah; F. Carstoiu; C. A. Gagliardi; G. Tabacaru; L. Trache; R. E. Tribble

    2014-03-31T23:59:59.000Z

    A study of interaction of neutron rich oxygen isotopes $^{17,18}$O with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction $^{13}$C($^{17}$O,$^{18}$O)$^{12}$C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the $^{17}$F(p,$\\gamma$)$^{18}$Ne which is essential to estimate the production of $^{18}$F at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the DWBA cross section calculations are warranted and stable against OMP used. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams before extending the procedures to rare ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of $^{17}$O, $^{18}$O and $^{16}$O projectiles is made.

  7. Instrumentation development for neutron scattering at high pressure 

    E-Print Network [OSTI]

    Fang, Junwei

    2012-11-29T23:59:59.000Z

    Neutron scattering at extremes of pressure is a powerful tool for studying the response of structural and magnetic properties of materials on microscopic level to applied stresses. However, experimental neutron studies ...

  8. Systematics of the Giant Monopole Resonance from Inelastic Alpha Scattering

    E-Print Network [OSTI]

    Youngblood, David H.; Bogucki, P.; Bronson, J. D.; Garg, U.; Lui, YW; Rozsa, C. M.

    1981-01-01T23:59:59.000Z

    , and the isovector GDR in '44Sm are shown in Fig. 2. The curves correspond to the full energy weighted sum rule (EWSR) for each. The techniques used in the calculation are de- scribed in Ref. 5. It is clear that the DWBA cal- culation has preserved the features... in Figs. 4 and 5. For heavier targets, such as Sm and Pb, second- ary scattering from the solid-angle defining slits produced a continuum background discernible in the spectra for 8~ ~ 5', and measurements below 3' were practical only at 0 where...

  9. assesment neutronics analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    throughout (more) Goralski, Craig 2008-01-01 19 MCNP benchmarking of an inelastic neutron scattering system for soil carbon analysis Physics Websites Summary: MCNP...

  10. Quasielastic neutron scattering study of water confined in carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quasielastic neutron scattering study of water confined in carbon nanopores This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011...

  11. 11th LANSCE School on Neutron Scattering | Lecturers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a window into the internal structure of Layer-by-Layer grown films. The dependence of neutron refractive index on nuclear rather than electronic scattering allows one to...

  12. ORNL study uses neutron scattering, supercomputing to demystify...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Morgan McCorkle Communications and Media Relations 865.574.7308 ORNL study uses neutron scattering, supercomputing to demystify forces at play in biofuel production This graphical...

  13. 11th LANSCE School on Neutron Scattering | School Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials at the Mesoscale The 11th LANSCE School on Neutron Scattering will focus on science of Materials at the Mesoscale: the influence of surfaces, interfaces, and...

  14. Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X

    SciTech Connect (OSTI)

    Katich, Joseph; Qian, Xin; Zhao, Yuxiang; Allada, Kalyan; Aniol, Konrad; Annand, John; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Bradshaw, Elliott; Bosted, Peter; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Chen, Wei; Chirapatpimol, Khem; Chudakov, Eugene; Cisbani, Evaristo; Cornejo, Juan; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; De Leo, Raffaele; Deng, Xiaoyan; Deur, Alexandre; Ding, Huaibo; Dolph, Peter; Dutta, Chiranjib; Dutta, Dipangkar; El Fassi, Lamiaa; Frullani, Salvatore; Gao, Haiyan; Garibaldi, Franco; Gaskell, David; Gilad, Gilad; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Guo, Lei; Hamilton, David; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, Jijun; Huang, Min; Ibrahim Abdalla, Hassan; Iodice, Mauro; Jin, Ge; Jones, Mark; Kelleher, Aidan; Kim, Wooyoung; Kolarkar, Ameya; Korsch, Wolfgang; LeRose, John; Li, Xiaomei; Li, Y.; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lu, Hai-jiang; Margaziotis, Demetrius; Markowitz, Pete; Marrone, Stefano; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Munoz Camacho, Carlos; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Oh, Yoomin; Osipenko, Mikhail; Parno, Diana; Peng, Jen-chieh; Phillips, Sarah; Posik, Matthew; Puckett, Andrew; Qiang, Yi; Rakhman, Abdurahim; Ransome, Ronald; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Schulte, Elaine; Shahinyan, Albert; Hashemi Shabestari, Mitra; Sirca, Simon; Stepanyan, Stepan; Subedi, Ramesh; Sulkosky, Vincent; Tang, Liguang; Tobias, William; Urciuoli, Guido; Vilardi, Ignazio; Wang, Kebin; Wang, Y.; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Z.; Yuan, Lulin; Zhan, Xiaohui; Zhang, Yi; Zhang, Y.-W.; Zhao, Bo; Zheng, Xiaochao; Zhu, Lingyan; Zhu, Xiaofeng; Zong, Xing

    2014-07-01T23:59:59.000Z

    We report the first measurement of the target single-spin asymmetry in deep-inelastic scattering from the inclusive reaction 3He{uparrow}(e,e')X on a 3He gas target polarized normal to the lepton plane. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of 1.7Neutron asymmetries were extracted using the effective nucleon polarization and measured proton-to-3He cross section ratios. The measured neutron asymmetries are negative with an average value of (?1.04+/-0.38)×10?2 for invariant mass W>2 GeV, which is non-zero at the 2.75sigma level. Theoretical calculations, which assume two-photon exchange with quasi-free quarks, predict a neutron asymmetry of O(10?4) when both photons couple to one quark, and O(10?2) for the photons coupling to different quarks. Our measured asymmetry agrees both in sign and magnitude with the prediction that uses input based on the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.

  15. Deeply Virtual Compton Scattering off the neutron

    E-Print Network [OSTI]

    M. Mazouz; A. Camsonne; C. Muñoz Camacho; for the Jefferson Lab Hall A collaboration

    2007-12-12T23:59:59.000Z

    The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\\vec e},e'\\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

  16. o r est la coordonne du neutron s celle du nuclon optique. La formule (1) conduit une distribution

    E-Print Network [OSTI]

    Boyer, Edmond

    . Szteinsznaider and myself. We have measured the angular distribution of the inelastic scattered neutrons on 56Fe neu- trons the number of neutrons scattered at 30° is the same as at 150° with 20 % approximation. To conclude, we have not detected any direct interaction in the inelastic scattering of neutrons at low energy

  17. [Inelastic electron scattering from surfaces]. [Annual] progress report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This program is aimed at the quantitative study of surface dynamical processes (vibrational, magnetic excitations) in crystalline slabs, ultrathin-layered materials, and chemisorbed systems on substrates, and of the geometric structure connected to these dynamical excitations. High-resolution electron-energy loss spectroscopy (HREELS) is a powerful probe. Off-specular excitation cross sections are much larger if electron energies are in the LEED range (50-300 eV). The analyses has been used to study surfaces of ordered alloys (NiAl). Ab-initio surface lattice dynamical results were combined with phonon-loss cross sections to achieve a more accurate microscopic description. First-principles phonon eigenvectors and eigenfrequencies were used as inputs to electron-energy-loss multiple scattering cross-section calculations. The combined microscopic approach was used to analyze EELS data of Cu(0001) and Ag(001) at two points. Positron diffraction is discussed as a structural and imaging tool. The relation between geometric structure of a film and its local magnetic properties will be studied in the future, along with other things.

  18. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory, E-mail: gregory.downing@nist.gov [National Institute of Standards and Technology, Chemical Sciences Division, Gaithersburg, Maryland 20899 (United States)

    2014-04-15T23:59:59.000Z

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  19. Quantum correlations in bulk properties of solids obtained from neutron scattering

    E-Print Network [OSTI]

    Ben-Qiong Liu; Lian-Ao Wu; Guo-Mo Zeng; Jian-Ming Song; Wei Luo; Yang Lei; Guang-Ai Sun; Bo Chen; Shu-Ming Peng

    2014-07-02T23:59:59.000Z

    We demonstrate that inelastic neutron scattering technique can be used to indirectly detect and measure the macroscopic quantum correlations quantified by both entanglement and discord in a quantum magnetic material, VODPO4 . 1D2O. The amount of quantum correlations is obtained 2 by analyzing the neutron scattering data of magnetic excitations in isolated V4+ spin dimers. Our quantitative analysis shows that the critical temperature of this material can reach as high as Tc = 82.5 K, where quantum entanglement drops to zero. Significantly, quantum discord can even survive at Tc = 300 K and may be used in room temperature quantum devices. Taking into account the spin-orbit (SO) coupling, we also predict theoretically that entanglement can be significantly enhanced and the critical temperature Tc increases with the strength of spin-orbit coupling.

  20. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, D.; et. al.,; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; et al

    2015-04-01T23:59:59.000Z

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore »earlier, but are presented here in more detail.« less

  1. Measurement of Charm and Beauty Jets in Deep Inelastic Scattering at HERA

    E-Print Network [OSTI]

    H1 Collaboration

    2010-08-10T23:59:59.000Z

    Measurements of cross sections for events with charm and beauty jets in deep inelastic scattering at HERA are presented. Events with jets of transverse energy E_T^jet > 6 GeV and pseudorapidity -1.0 6 GeV^2 and inelasticity variable 0.07 6 GeV. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb^-1. The numbers of charm and beauty jets are determined using variables reconstructed using the H1 vertex detector with which the impact parameters of the tracks to the primary vertex and the position of secondary vertices are measured. The measurements are compared with QCD predictions and with previous measurements where heavy flavours are identified using muons.

  2. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, D. [UVA; et. al.,; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deng, X.; Deur, A.; Dutta, C.; Fassi, L. El; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Mesick, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman,; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.

    2015-04-01T23:59:59.000Z

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  3. Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering

    E-Print Network [OSTI]

    D. Wang; K. Pan; R. Subedi; Z. Ahmed; K. Allada; K. A. Aniol; D. S. Armstrong; J. Arrington; V. Bellini; R. Beminiwattha; J. Benesch; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; J. -P. Chen; E. Chudakov; E. Cisbani; M. M. Dalton; C. W. de Jager; R. De Leo; W. Deconinck; X. Deng; A. Deur; C. Dutta; L. El Fassi; J. Erler; D. Flay; G. B. Franklin; M. Friend; S. Frullani; F. Garibaldi; S. Gilad; A. Giusa; A. Glamazdin; S. Golge; K. Grimm; K. Hafidi; J. -O. Hansen; D. W. Higinbotham; R. Holmes; T. Holmstrom; R. J. Holt; J. Huang; C. E. Hyde; C. M. Jen; D. Jones; Hoyoung Kang; P. M. King; S. Kowalski; K. S. Kumar; J. H. Lee; J. J. LeRose; N. Liyanage; E. Long; D. McNulty; D. J. Margaziotis; F. Meddi; D. G. Meekins; L. Mercado; Z. -E. Meziani; R. Michaels; M. Mihovilovic; N. Muangma; K. E. Mesick; S. Nanda; A. Narayan; V. Nelyubin; A. Nuruzzaman; Y. Oh; D. Parno; K. D. Paschke; S. K. Phillips; X. Qian; Y. Qiang; B. Quinn; A. Rakhman; P. E. Reimer; K. Rider; S. Riordan; J. Roche; J. Rubin; G. Russo; K. Saenboonruang; A. Saha; B. Sawatzky; A. Shahinyan; R. Silwal; S. Širca; P. A. Souder; R. Suleiman; V. Sulkosky; C. M. Sutera; W. A. Tobias; G. M. Urciuoli; B. Waidyawansa; B. Wojtsekhowski; L. Ye; B. Zhao; X. Zheng

    2014-11-12T23:59:59.000Z

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.

  4. X-ray and Neutron Scattering Studies of Magnetic Domain Dynamics and Spin Structures /

    E-Print Network [OSTI]

    Chen, San-Wen

    2014-01-01T23:59:59.000Z

    Stanley. X-ray and neutron scattering from rough surfaces.1988. [3] R. Pynn. Neutron scattering by rough surfaces at39] V. F. Sears. Neutron scattering lengths and cross

  5. angle neutron scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neutron scattering First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 SANS -Small Angle Neutron Scattering...

  6. Comparison of inclusive inelastic scattering of. pi. sup + and. pi. sup minus from nuclei at 100 MeV

    SciTech Connect (OSTI)

    Rosenzweig, D.P.; Amann, J.F.; Boudrie, R.L.; Doss, K.G.R.; Drake, D.M.; Halpern, I.; Khandaker, M.A.; Nelson, J.; Storm, D.W.; Tieger, D.R.; Wood, S.A. (Department of Physics, University of Washington, FM-15 Seattle, Washington 98195 (United States) Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) Saskatchewan Accelerator Laboratory, Saskatoon, Saskatchewan, S7N 0W0 (Canada) Bates Linear Accelerator Center, Massachusetts Institute of Technology, Middleton, Massachusetts 01949 (United States))

    1992-11-01T23:59:59.000Z

    Inclusive inelastic scattering spectra from C, Ca, Sn, and Pb were measured for 100-MeV pions at a number of angles. The observed ratios of the {pi}{sup {minus}} and {pi}{sup +} total inelastic cross sections for the different targets are explained in terms of a simple model which is based on the assumption that the scattered pion has interacted with only one nucleon. This model also accounts for the ratio between normal and charge-exchange scattering cross sections at 100 MeV.

  7. Neutron Scattering Study on spin dynamics in superconducting (TlRb)2Fe4Se5

    SciTech Connect (OSTI)

    Chi, Songxue [ORNL; Ye, Feng [ORNL; Bao, Wei [Renmin University of China; Fang, Dr. Minghu [Zhejiang University; Wang, H.D. [Zhejiang University; Dong, C.H. [Zhejiang University; Savici, Andrei T [ORNL; Granroth, Garrett E [ORNL; Stone, Matthew B [ORNL; Fishman, Randy Scott [ORNL

    2013-01-01T23:59:59.000Z

    Spin dynamics in superconducting (Tl,Rb)2Fe4Se5 was investigated using the inelastic neutron scattering technique. Spin wave branches that span an energy range from 6.5 to 209 meV are success- fully described by a Heisenberg model whose dominant interactions include only the in-plane nearest (J1 and J0 1) and next nearest neighbor (J2 and J0 2) exchange terms within and between the tetramer spin blocks, respectively. These exchange constants, experimentally determined in this work, would crucially constrain the diverse theoretical viewpoints on magnetism and superconductivity in the Fe-based materials.

  8. Multiplicity of Charged and Neutral Pions in Deep-Inelastic Scattering of 27.5 GeV Positrons on Hydrogen

    E-Print Network [OSTI]

    Airapetian, A; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hoffmann-Rothe, P; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Hoprich, W; Iarygin, G; Ihssen, H; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Nowak, Wolf-Dieter; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, F; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schmitt, M; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Shibata, T A; Shin, T; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Tallini, H A; Taroian, S P; Terkulov, A R; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Woller, K; Yoneyama, S; Zohrabyan, H G

    2001-01-01T23:59:59.000Z

    Multiplicity of Charged and Neutral Pions in Deep-Inelastic Scattering of 27.5 GeV Positrons on Hydrogen

  9. Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron

    E-Print Network [OSTI]

    in Deep-Inelastic Scattering on the Deuteron A. Airapetian,16 N. Akopov,27 Z. Akopov,27 A. Andrus,15 E

  10. SANS -Small Angle Neutron Scattering Tcnica de difrao

    E-Print Network [OSTI]

    Loh, Watson

    SANS - Small Angle Neutron Scattering Técnica de difração informações sobre tamanho e forma de- Neutrons are created in the centre of the target station when the beam of high energy protons collides by evaporating nuclear particles, mainly neutrons, in all directions. Each proton produces approximately 15

  11. Lujan Neutron Scattering Center (Lujan Center) | U.S. DOE Office...

    Office of Science (SC) Website

    Lujan Neutron Scattering Center (Lujan Center) Scientific User Facilities (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering...

  12. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities High...

  13. Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in orthorhombic ammonia borane. Quasielastic neutron scattering of -NH3 and -BH3 rotational dynamics in...

  14. Investigating Neutron Polarizabilities through Compton Scattering on $^3He$

    E-Print Network [OSTI]

    Deepshikha Choudhury; Andreas Nogga; Daniel R. Phillips

    2007-06-11T23:59:59.000Z

    We examine manifestations of neutron electromagnetic polarizabilities in coherent Compton scattering from the Helium-3 nucleus. We calculate $\\gamma ^3He$ elastic scattering observables using chiral perturbation theory to next-to-leading order (${\\mathcal O}(e^2 Q)$). We find that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities.

  15. Shadowing in inelastic scattering of muons on carbon, calcium and lead at low x$_{Bj}$

    E-Print Network [OSTI]

    Adams, M R; Anthony, P L; Averill, D A; Baker, M D; Baller, B R; Banerjee, A; Bhatti, A A; Bratzler, U; Braun, H M; Breidung, H; Busza, W; Carroll, T J; Clark, H L; Conrad, J M; Davisson, R; Derado, I; Dhawan, S K; Dietrich, F S; Dougherty, W; Dreyer, T; Eckardt, V; Ecker, U; Erdmann, M; Fang, G Y; Figiel, J; Finlay, R W; Gebauer, H J; Geesaman, D F; Griffioen, K A; Guo, R S; Haas, J; Halliwell, C; Hantke, D; Hicks, K H; Hughes, V W; Jackson, H E; Jaffe, D E; Jancso, G; Jansen, D M; Jin, Z; Kaufman, S; Kennedy, R D; Kinney, E R; Kirk, T; Kobrak, H G E; Kotwal, A V; Kunori, S; Lord, J J; Lubatti, H J; McLeod, D; Madden, P; Magill, S; Manz, A; Melanson, H; Michael, D G; Montgomery, H E; Morfín, J G; Nickerson, R B; Novák, J; O'Day, S; Olkiewicz, K; Osborne, L; Otten, R; Papavassiliou, V; Pawlik, B; Pipkin, F M; Potterveld, D H; Ramberg, E J; Röser, A; Ryan, J J; Salgado, C W; Salvarani, A; Schellman, H; Schmitt, M; Schmitz, N; Schüler, K P; Siegert, G; Skuja, A; Snow, G A; Soldner, S; Rembold, U; Spentzouris, P; Stier, H E; Stopa, P; Swanson, R A; Venkataramania, H; Wilhelm, M; Wilson, R; Wittek, W; Wolbers, S A; Zghiche, A; Zhao, T

    1995-01-01T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  16. Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    E-Print Network [OSTI]

    Fermilab E665 Collaboration

    1995-05-10T23:59:59.000Z

    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.

  17. EMC effect in semi-inclusive deep-inelastic scattering process

    E-Print Network [OSTI]

    Baogui Lu; Bo-Qiang Ma

    2007-05-15T23:59:59.000Z

    By considering the $x$-dependence of $\\pi^+$, $\\pi^-$, $K^+$, $K^-$, $\\Lambda$, $\\bar{\\Lambda}$, $p$, $\\bar{p}$ hadron productions in charged lepton semi-inclusive deep inelastic scattering off nuclear target (using Fe as an example) and deuteron D target, % at $Q^2=5$ GeV$^2$, we find that $(\\bar{\\Lambda}^A/\\Lambda^A)/(\\bar{\\Lambda}^D/\\Lambda^D)$ and $({\\bar{p}}^A/{p}^A)/({\\bar{p}}^A/p^A)$ are ideal to figure out the nuclear sea content, which is predicted to be different by different models accounting for the nuclear EMC effect.

  18. EMC effect in semi-inclusive deep-inelastic scattering processes

    SciTech Connect (OSTI)

    Lu Baogui; Ma Boqiang [Department of Physics, Peking University, Beijing 100871 (China); CCAST (World Laboratory), P.O. Box 8730, Beijing 100080 (China) and Department of Physics, Peking University, Beijing 100871 (China)

    2006-11-15T23:59:59.000Z

    By considering the x-dependence of {pi}{sup +},{pi}{sup -},K{sup +},K{sup -},{lambda},{lambda},p,p hadron productions in charged lepton semi-inclusive deep-inelastic scattering off nuclear target (using Fe as an example) and deuteron D target, we find that ({lambda}{sup A}/{lambda}{sup A})/({lambda}{sup D}/{lambda}{sup D}) and (p{sup A}/p{sup A})/(p{sup A}/p{sup A}) are ideal to figure out the nuclear sea content, which is predicted to be different by different models accounting for the nuclear EMC effect.

  19. Faddeev calculation for breakup neutron-deuteron scattering at 14.1 MeV lab energy

    E-Print Network [OSTI]

    V M Suslov; I Filikhin; B Vlahovic; M A Braun; I Slaus

    2013-04-03T23:59:59.000Z

    A new computational method for solving the nucleon-deuteron breakup scattering problem has been applied to study the inelastic neutron-deuteron scattering on the basis of the configuration-space Faddeev equations. This method is based on the spline-decomposition in the angular variable and on a generalization of the Numerov method for the hyperradius. The Merkuriev-Gignoux-Laverne approach has been generalized for arbitrary nucleon-nucleon potentials and with an arbitrary number of partial waves. Neutron-deuteron observables at the incident nucleon energy 14.1 MeV have been calculated using the charge-independent AV14 nucleon-nucleon potential. Results have been compared with those of other authors and with experimental neutron-deuteron scattering data.

  20. Quantum Monte Carlo calculations of neutron-alpha scattering

    E-Print Network [OSTI]

    Kenneth M. Nollett; Steven C. Pieper; R. B. Wiringa; J. Carlson; G. M. Hale

    2006-12-09T23:59:59.000Z

    We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.

  1. Excitation of states of medium-mass nuclei in the region of giant resonances in inelastic deuteron scattering

    SciTech Connect (OSTI)

    Grantsev, V. I.; Davydovskyy, V. V., E-mail: odavi@kinr.kiev.ua; Kisurin, K. K.; Omelchuk, S. E.; Palkin, G. P.; Roznyuk, Yu. S.; Rudenko, B. A.; Saltykov, L. S.; Semenov, V. S.; Slusarenko, L. I., E-mail: slus@kinr.kiev.ua; Struzhko, B. G.; Tartakovsky, V. K.; Shytiuk, V. A. [National Academy of Sciences of Ukraine, Institute for Nuclear Research (Ukraine)

    2008-10-15T23:59:59.000Z

    Results are presented that were obtained by measuring a continuum in the inelastic scattering of 37-MeV deuterons on {sup 12}C, {sup 48}Ti, and {sup 58,64}Ni nuclei in the angular range 16{sup o} {<=} {theta} {<=} 61{sup o}. Broad excitation maxima are found for deuteron scattering angles in the range {theta} {<=} 21{sup o}. The region of a broad maximum includes giant resonances of target nuclei, whose levels are excited quite readily at E{sub d} = 37 MeV. Summation of the inelastic-scattering cross sections over all final states of the excited vertical bar nucleus and the use of completeness of the wave functions for these states make it possible to express the total cross section for inelastic (incoherent) deuteron scattering only in terms of the wave functions for the ground state of the target nucleus. The corresponding quasielastic-scattering amplitude is taken in the diffraction approximation. Nucleon correlations in the target nucleus are disregarded. Upon disregarding a small contribution of multiple quasielastic scattering at small scattering angles, the cross section for incoherent deuteron scattering is represented approximately as the product of known factors-the square of the absolute value of the amplitude for diffractive quasielastic scattering and the effective number of target nucleons scattering deuterons. The results of these calculations agree qualitatively with experimental data.

  2. E-Print Network 3.0 - alkali ion scattering Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Floppy modes and the Boson peak in crystalline and amorphous silicates: an inelastic neutron scattering study Summary: ion from Li+ to K+ in the alkali disilicate glasses,...

  3. Beam-Target Double Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.422

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meziani, Z -E; Michaels, R; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; et al

    2012-01-30T23:59:59.000Z

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function gq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production onmore »3He and the neutron, while our ?+ asymmetries are consistent with zero.« less

  4. Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized $^3$He target

    E-Print Network [OSTI]

    Y. Zhang; X. Qian; K. Allada; C. Dutta; J. Huang; J. Katich; Y. Wang; K. Aniol; J. R. M. Annand; T. Averett; F. Benmokhtar; W. Bertozzi; P. C. Bradshaw; P. Bosted; A. Camsonne; M. Canan; G. D. Cates; C. Chen; J. -P. Chen; W. Chen; K. Chirapatpimol; E. Chudakov; E. Cisbani; J. C. Cornejo; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; R. De Leo; X. Deng; A. Deur; H. Ding; P. A. M. Dolph; D. Dutta; L. El Fassi; S. Frullani; H. Gao; F. Garibaldi; D. Gaskell; S. Gilad; R. Gilman; O. Glamazdin; S. Golge; L. Guo; D. Hamilton; O. Hansen; D. W. Higinbotham; T. Holmstrom; M. Huang; H. F. Ibrahim; M. Iodice; X. Jiang; G. Jin; M. K. Jones; A. Kelleher; W. Kim; A. Kolarkar; W. Korsch; J. J. LeRose; X. Li; Y. Li; R. Lindgren; N. Liyanage; E. Long; H. -J. Lu; D. J. Margaziotis; P. Markowitz; S. Marrone; D. McNulty; Z. -E. Meziani; R. Michaels; B. Moffit; C. Muñoz Camacho; S. Nanda; A. Narayan; V. Nelyubin; B. Norum; Y. Oh; M. Osipenko; D. Parno; J. C. Peng; S. K. Phillips; M. Posik; A. J. R. Puckett; Y. Qiang; A. Rakhman; R. D. Ransome; S. Riordan; A. Saha; B. Sawatzky; E. Schulte; A. Shahinyan; M. H. Shabestari; S. Sirca; S. Stepanyan; R. Subedi; V. Sulkosky; L. -G. Tang; W. A. Tobias; G. M. Urciuoli; I. Vilardi; K. Wang; B. Wojtsekhowski; X. Yan; H. Yao; Y. Ye; Z. Ye; L. Yuan; X. Zhan; Y. -W. Zhang; B. Zhao; X. Zheng; L. Zhu; X. Zhu; X. Zong

    2013-12-15T23:59:59.000Z

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized $^3$He target was performed at Jefferson Lab in the kinematic region of $0.16neutron asymmetries from the measured $^3$He asymmetries and cross-section ratios between the proton and $^3$He. Our results show that for both $\\pi^{\\pm}$ on $^3$He and on the neutron the pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  5. Final-state interactions in inclusive deep-inelastic scattering from the deuteron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, Wim; Melnitchouk, Wally; Sargsian, Misak M.

    2014-01-01T23:59:59.000Z

    We explore the role of final-state interactions (FSI) in inclusive deep-inelastic scattering from the deuteron. Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three resonances with mass W~ 0.6 andmore »Q2 2 increasing in magnitude for lower Q2, but vanishing in the high-Q2 limit due to phase space constraints. The off-shell rescattering contributes at x ~> 0.8 and is taken as an uncertainty on the on-shell result.« less

  6. Final-state interactions in inclusive deep-inelastic scattering from the deuteron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, Wim [FL Intl U.; Melnitchouk, Wally [JLAB; Sargsian, Misak M. [JLAB

    2014-01-01T23:59:59.000Z

    We explore the role of final-state interactions (FSI) in inclusive deep-inelastic scattering from the deuteron. Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three resonances with mass W~ 0.6 and Q2 2 increasing in magnitude for lower Q2, but vanishing in the high-Q2 limit due to phase space constraints. The off-shell rescattering contributes at x ~> 0.8 and is taken as an uncertainty on the on-shell result.

  7. NEUTRONS AND 2 D ADSORBED PHASES. NEUTRON SCATTERING FROM 36ArAND 4HeFILMS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NEUTRONS AND 2 D ADSORBED PHASES. NEUTRON SCATTERING FROM 36ArAND 4HeFILMS K. CARNEIRO Physics. - The technique of neutron scattering is well established as a unique tool to investigate the details technique to physisorbed phases is quite natural. But on the other hand since neutron scattering, compared

  8. Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Blok, H P; Borissov, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Kobayashi, N; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Maiheu, B; Makins, N C R; Manaenkov, S I; Manfré, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2012-01-01T23:59:59.000Z

    Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of \\pi^\\pm and K^\\pm mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x_B, Q^2, z, and P_h\\perp. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.

  9. Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron

    E-Print Network [OSTI]

    HERMES Collaboration; A. Airapetian; N. Akopov; Z. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; S. Belostotski; H. P. Blok; A. Borissov; J. Bowles; I. Brodski; V. Bryzgalov; J. Burns; M. Capiluppi; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; L. De Nardo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Düren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; R. Fabbri; A. Fantoni; L. Felawka; S. Frullani; D. Gabbert; G. Gapienko; V. Gapienko; F. Garibaldi; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Golembiovskaya; C. Hadjidakis; M. Hartig; D. Hasch; A. Hillenbrand; M. Hoek; Y. Holler; I. Hristova; Y. Imazu; A. Ivanilov; A. Izotov; H. E. Jackson; H. S. Jo; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; N. Kobayashi; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapikás; I. Lehmann; P. Lenisa; A. López Ruiz; W. Lorenzon; B. -Q. Ma; D. Mahon; B. Maiheu; N. C. R. Makins; S. I. Manaenkov; L. Manfré; Y. Mao; B. Marianski; A. Martinez de la Ossa; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; M. Murray; A. Mussgiller; E. Nappi; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; M. Raithel; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; F. Sanftl; A. Schäfer; G. Schnell; B. Seitz; T. -A. Shibata; V. Shutov; M. Stancari; M. Statera; E. Steffens; J. J. M. Steijger; J. Stewart; F. Stinzing; S. Taroian; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; Y. Van Haarlem; C. Van Hulse; D. Veretennikov; I. Vilardi; C. Vogel; S. Wang; S. Yaschenko; Z. Ye; S. Yen; W. Yu; V. Zagrebelnyy; D. Zeiler; B. Zihlmann; P. Zupranski

    2013-04-24T23:59:59.000Z

    Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of \\pi^\\pm and K^\\pm mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x_B, Q^2, z, and P_h\\perp. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.

  10. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect (OSTI)

    Grazzi, F.; Scherillo, A.; Zoppi, M. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2009-09-15T23:59:59.000Z

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  11. Dynamic Properties of Materials: Phonons from Neutron Scattering

    E-Print Network [OSTI]

    Cope, Elizabeth Ruth

    2010-01-01T23:59:59.000Z

    A detailed understanding of fundamental material properties can be obtained through the study of atomic vibrations, performed experimentally with neutron scattering techniques and coupled with the two powerful new computational methodologies I have...

  12. 11th LANSCE School on Neutron Scattering | FAQ's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Who can apply? The LANSCE School on Neutron Scattering is intended primarily for graduate students & post-docs in the topical area of that year's school....

  13. Can one extract the pi-neutron scattering length from pi-deuteron scattering?

    E-Print Network [OSTI]

    A. Nogga; C. Hanhart

    2005-11-02T23:59:59.000Z

    We give a prove of evidence that the original power counting by Weinberg can be applied to estimate the contributions of the operators contributing to the pi-deuteron scattering length. As a consequence, pi-deuteron observables can be used to extract neutron amplitudes--in case of pi-deuteron scattering this means that the pi-neutron scattering length can be extracted with high accuracy. This result is at variance with recent claims. We discuss the origin of this difference.

  14. NEUTRON SPECTROSCOPY BY DOUBLE SCATTER AND ASSOCIATED PARTICLE TECHNIQUES.

    SciTech Connect (OSTI)

    DIOSZEGI,I.

    2007-10-28T23:59:59.000Z

    Multiple detectors can provide [1,2] both directional and spectroscopic information. Neutron spectra may be obtained by neutron double scatter (DSNS), or the spontaneous fission associated particle (AP) technique. Spontaneous fission results in the creation of fission fragments and the release of gamma rays and neutrons. As these occur at the same instant, they are correlated in time. Thus gamma ray detection can start a timing sequence relative to a neutron detector where the time difference is dominated by neutron time-of-flight. In this paper we describe these techniques and compare experimental results with Monte Carlo calculations.

  15. LA DIFFUSION DES NEUTRONS Physique des Solides, Universit Paris-Sud, 91405 Orsay, France

    E-Print Network [OSTI]

    Boyer, Edmond

    , topographie de Lang aux neutrons. Abstract. 2014 The physical basis of the scattering of neutrons is discussed. In particular, the energy spectrum of the inelastically scattered neutrons may be determined experimentally. The possibilities of the neutron scattering due to their weak absorption coefficient in matter

  16. Folding model analysis of pion elastic and inelastic scattering from {sup 6}Li and {sup 12}C

    SciTech Connect (OSTI)

    Ebrahim, A. A., E-mail: aebrahim@aun.edu.eg [Assiut University, Physics Department (Egypt)

    2013-04-15T23:59:59.000Z

    {pi}{sup {+-}}-Nucleus scattering cross sections are calculated applying the Watanabe superposition model with a phenomenological Woods-Saxon potential. The phenomenological potential parameters are searched for {pi}{sup {+-}} scattering from {sup 6}Li and {sup 12}C to reproduce not only differential elastic cross sections but also inelastic and total and reaction cross sections at pion kinetic energies from 50 to 672 MeV. The optical potentials of {sup 6}Li and {sup 12}C are calculated in terms of the alpha particle and deuteron optical potentials. Inelastic scattering has been analyzed using the distorted waves from elastic-scattering data. The values of deformation lengths thus obtained compare very well with the ones reported earlier.

  17. Entangling neutrons via successive scattering from a substrate

    E-Print Network [OSTI]

    M. Avellino; S. Bose; A. J. Fisher

    2008-08-18T23:59:59.000Z

    This letter details a simple scheme to entangle two neutrons by successive scattering from a macroscopic sample. In zero magnetic field the entanglement falls as the sample size increases. However, by applying a field and tuning the momentum of the neutrons, one can achieve a substantial degree of entanglement irrespective of the size of the sample.

  18. Neutron-deuteron elastic scattering and three-nucleon force

    E-Print Network [OSTI]

    Chtangeev, Maxim B

    2005-01-01T23:59:59.000Z

    The differential cross section for neutron-deuteron elastic scattering was measured at six angles over the center-of-mass angular range 65? - 1300? and incident neutron energies 140 - 240 MeV at the LANSCE/WNR facility of ...

  19. Azimuthal single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarised hydrogen target

    E-Print Network [OSTI]

    Markus Diefenthaler

    2006-12-06T23:59:59.000Z

    Azimuthal single-spin asymmetries (SSA) in semi-inclusive electroproduction of charged pions and kaons in deep-inelastic scattering of positrons on a transversely polarised hydrogen target were observed. SSA amplitudes for both the Collins and the Sivers mechanism are presented.

  20. High-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed-Symmetry 2

    E-Print Network [OSTI]

    Ponomarev, Vladimir

    , University of Cape Town, Rondebosch 7700, South Africa 3 School of Physics, University of the Witwatersrand, Johannesburg 2050, South Africa 4 iThemba LABS, PO Box 722, Somerset West 7129, South Africa 5 Institut fuHigh-Energy-Resolution Inelastic Electron and Proton Scattering and the Multiphonon Nature of Mixed

  1. Unpolarised TMD Distribution and Fragmentation Functions from recent HERMES and COMPASS Semi-inclusive Deep Inelastic Scattering Multiplicities

    SciTech Connect (OSTI)

    Prokudin, Alexey; Anselmino, Mauro; Boglione, Mariaelena; Melis, Stefano; Gonzalez, J. O.

    2014-10-01T23:59:59.000Z

    The unpolarised transverse momentum dependent distribution and fragmentation functions (TMDs) are extracted from HERMES and COMPASS experimental measurements of semi- inclusive deep inelastic scattering multiplicities for charged hadron production. A simple factorised functional form of the TMDs is adopted, with a Gaussian dependence on the intrinsic transverse momentum, which turns out to be quite adequate in shape.

  2. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    SciTech Connect (OSTI)

    Ellis, John [Theory Division, Physics Department, CERN, 1211 Geneva 23 (Switzerland); Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Kotzinian, Aram [CEA DAPNIA/SPhN Saclay, 91191 Gif-sur-Yvette (France); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation); Yerevan Physics Institute, 375036 Yerevan (Armenia)

    2009-10-01T23:59:59.000Z

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for {pi}{sup +} production at HERMES, and qualitative agreement for {pi}{sup 0} and K{sup +} production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  3. Effects of transversity in deep-inelastic scattering by polarized protons

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Bacchetta, A; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Brodski, I; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dueren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Kobayashi, N; Korotkov, V; Kozlov, V; Kravchenko, P; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Linden-Levy, L A; Ruiz, A Lopez; Lorenzon, W; Lu, X -G; Lu, X -R; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfre, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schaefer, A; Schnell, G; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Trzcinski, A; Tytgat, M; van der Nat, P B; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P

    2010-01-01T23:59:59.000Z

    Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles of the target polarization (phi_S)and the produced hadron (phi) is found to have a substantial sin(phi+phi_S) modulation for the production of pi+, pi- and K+. This Fourier component can be interpreted in terms of non-zero transversity distribution functions and non-zero favored and disfavored Collins fragmentation functions with opposite sign. For pi0 and K- production the amplitude of this Fourier component is consistent with zero.

  4. Effects of transversity in deep-inelastic scattering by polarized protons

    E-Print Network [OSTI]

    HERMES collaboration; A. Airapetian; N. Akopov; Z. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; A. Bacchetta; S. Belostotski; N. Bianchi; H. P. Blok; A. Borissov; J. Bowles; I. Brodski; V. Bryzgalov; J. Burns; M. Capiluppi; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; L. De Nardo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Dueren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; U. Elschenbroich; R. Fabbri; A. Fantoni; L. Felawka; S. Frullani; D. Gabbert; G. Gapienko; V. Gapienko; F. Garibaldi; V. Gharibyan; F. Giordano; S. Gliske; M. Golembiovskaya; C. Hadjidakis; M. Hartig; D. Hasch; G. Hill; A. Hillenbrand; M. Hoek; Y. Holler; I. Hristova; Y. Imazu; A. Ivanilov; A. Izotov; H. E. Jackson; H. S. Jo; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; N. Kobayashi; V. Korotkov; V. Kozlov; P. Kravchenko; L. Lagamba; R. Lamb; L. Lapikas; I. Lehmann; P. Lenisa; L. A. Linden-Levy; A. Lopez Ruiz; W. Lorenzon; X. -G. Lu; X. -R. Lu; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; L. Manfre; Y. Mao; B. Marianski; A. Martinez de la Ossa; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; M. Murray; A. Mussgiller; E. Nappi; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; N. Pickert; M. Raithel; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; F. Sanftl; A. Schaefer; G. Schnell; B. Seitz; T. -A. Shibata; V. Shutov; M. Stancari; M. Statera; E. Steffens; J. J. M. Steijger; H. Stenzel; J. Stewart; F. Stinzing; S. Taroian; A. Terkulov; A. Trzcinski; M. Tytgat; P. B. van der Nat; Y. Van Haarlem; C. Van Hulse; D. Veretennikov; V. Vikhrov; I. Vilardi; C. Vogel; S. Wang; S. Yaschenko; H. Ye; Z. Ye; S. Yen; W. Yu; D. Zeiler; B. Zihlmann; P. Zupranski

    2010-06-22T23:59:59.000Z

    Single-spin asymmetries for pions and charged kaons are measured in semi-inclusive deep-inelastic scattering of positrons and electrons off a transversely nuclear-polarized hydrogen target. The dependence of the cross section on the azimuthal angles of the target polarization (phi_S)and the produced hadron (phi) is found to have a substantial sin(phi+phi_S) modulation for the production of pi+, pi- and K+. This Fourier component can be interpreted in terms of non-zero transversity distribution functions and non-zero favored and disfavored Collins fragmentation functions with opposite sign. For pi0 and K- production the amplitude of this Fourier component is consistent with zero.

  5. Longitudinal Spin Transfer to the $\\Lambda$ Hyperon in Semi-Inclusive Deep-Inelastic Scattering

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Beckmann, M; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Chen, T; Chen, X; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Grebenyuk, O; Gregor, I M; Hadjidakis, C; Hafidi, K; Hartig, M; Hasch, D; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, H; Lü, J; Lu, S; Lü, X; Ma, B Q; Maiheu, B; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Osborne, A; Pickert, N; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Sommer, W; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Vikhrov, V; Vincter, M G; Vogel, C; Volmer, J; Wang, S; Wendland, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2006-01-01T23:59:59.000Z

    The transfer of polarization from a high-energy positron to a \\lam hyperon produced in semi-inclusive deep-inelastic scattering has been measured. The data have been obtained by the HERMES experiment at DESY using the 27.6 GeV longitudinally polarized positron beam of the HERA collider and unpolarized gas targets internal to the positron (electron) storage ring. The longitudinal spin transfer coefficient is found to be $\\dll = 0.11 \\pm 0.10 \\mathrm{(stat)} \\pm 0.03 \\mathrm{(syst)}$ at an average fractional energy carried by the \\lam hyperon $= 0.45$. The dependence of \\dll on both the fractional energy $z$ and the fractional longitudinal momentum $x_F$ is presented.

  6. Measurement of inclusive diffractive deep inelastic scattering using VFPS at H1

    E-Print Network [OSTI]

    Tomas Hreus

    2010-08-16T23:59:59.000Z

    Performances of the Very Forward Proton Spectrometer (VFPS) of the H1 detector at HERA using data collected during the 2006/2007 running period are discussed, including the description of acceptance, reconstruction of proton energy loss and estimation of the amount of the beam-gas background. The first physics result obtained with the VFPS detector - a preliminary measurement of the semi-inclusive reduced cross section is presented for the diffractive deep inelastic scattering process with the leading final state proton measured by the VFPS. Results of this measurement are found to be in agreement with other measurements by the H1 Collaboration and with a theoretical prediction based on a NLO DGLAP QCD fit. They provide a higher precision and therefore allow a deeper inside to the nature of diffraction.

  7. Study of ?(1385) and ?(1321) hyperon and antihyperon production in deep inelastic muon scattering

    E-Print Network [OSTI]

    C. Adolph; M. Alekseev; V. Yu. Alexakhin; Yu. Alexandrov; G. D. Alexeev; A. Amoroso; A. Austregesilo; B. Badelek; F. Balestra; J. Barth; G. Baum; Y. Bedfer; A. Berlin; J. Bernhard; R. Bertini; K. Bicker; J. Bieling; R. Birsa; J. Bisplinghoff; P. Bordalo; F. Bradamante; C. Braun; A. Bravar; A. Bressan; M. Buechele; E. Burtin; L. Capozza; M. Chiosso; S. U. Chung; A. Cicuttin; M. L. Crespo; S. Dalla Torre; S. S. Dasgupta; S. Dasgupta; O. Yu. Denisov; S. V. Donskov; N. Doshita; V. Duic; W. Duennweber; M. Dziewiecki; A. Efremov; C. Elia; P. D. Eversheim; W. Eyrich; M. Faessler; A. Ferrero; A. Filin; M. Finger; M. Finger jr.; H. Fischer; C. Franco; N. du Fresne von Hohenesche; J. M. Friedrich; V. Frolov; R. Garfagnini; F. Gautheron; O. P. Gavrichtchouk; S. Gerassimov; R. Geyer; M. Giorgi; I. Gnesi; B. Gobbo; S. Goertz; S. Grabmueller; A. Grasso; B. Grube; R. Gushterski; A. Guskov; T. Guthoerl; F. Haas; D. von Harrach; F. H. Heinsius; F. Herrmann; C. Hess; F. Hinterberger; Ch. Hoeppner; N. Horikawa; N. d'Hose; S. Huber; S. Ishimoto; Yu. Ivanshin; T. Iwata; R. Jahn; V. Jary; P. Jasinski; R. Joosten; E. Kabuss; D. Kang; B. Ketzer; G. V. Khaustov; Yu. A. Khokhlov; Yu. Kisselev; F. Klein; K. Klimaszewski; J. H. Koivuniemi; V. N. Kolosov; K. Kondo; K. Koenigsmann; I. Konorov; V. F. Konstantinov; A. M. Kotzinian; O. Kouznetsov; M. Kraemer; Z. V. Kroumchtein; N. Kuchinski; F. Kunne; K. Kurek; R. P. Kurjata; A. A. Lednev; A. Lehmann; S. Levorato; J. Lichtenstadt; A. Maggiora; A. Magnon; N. Makke; G. K. Mallot; A. Mann; C. Marchand; A. Martin; J. Marzec; H. Matsuda; T. Matsuda; G. Meshcheryakov; W. Meyer; T. Michigami; Yu. V. Mikhailov; Y. Miyachi; A. Morreale; A. Nagaytsev; T. Nagel; F. Nerling; S. Neubert; D. Neyret; V. I. Nikolaenko; J. Novy; W. -D. Nowak; A. S. Nunes; A. G. Olshevsky; M. Ostrick; R. Panknin; D. Panzieri; B. Parsamyan; S. Paul; G. Piragino; S. Platchkov; J. Pochodzalla; J. Polak; V. A. Polyakov; J. Pretz; M. Quaresma; C. Quintans; S. Ramos; G. Reicherz; E. Rocco; V. Rodionov; E. Rondio; N. S. Rossiyskaya; D. I. Ryabchikov; V. D. Samoylenko; A. Sandacz; M. G. Sapozhnikov; S. Sarkar; I. A. Savin; G. Sbrizzai; P. Schiavon; C. Schill; T. Schlueter; A. Schmidt; K. Schmidt; L. Schmitt; H. Schmieden; K. Schoenning; S. Schopferer; M. Schott; O. Yu. Shevchenko; L. Silva; L. Sinha; S. Sirtl; S. Sosio; F. Sozzi; A. Srnka; L. Steiger; M. Stolarski; M. Sulc; R. Sulej; H. Suzuki; P. Sznajder; S. Takekawa; J. Ter Wolbeek; S. Tessaro; F. Tessarotto; F. Thibaud; S. Uhl; I. Uman; M. Vandenbroucke; M. Virius; L. Wang; T. Weisrock; M. Wilfert; R. Windmolders; W. Wislicki; H. Wollny; K. Zaremba; M. Zavertyaev; E. Zemlyanichkina; N. Zhuravlev; M. Ziembicki

    2013-10-16T23:59:59.000Z

    Large samples of \\Lambda, \\Sigma(1385) and \\Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \\Sigma(1385)^+, \\Sigma(1385)^-, \\bar{\\Sigma}(1385)^-, \\bar{\\Sigma}(1385)^+, \\Xi(1321)^-, and \\bar{\\Xi}(1321)^+ hyperons decaying into \\Lambda(\\bar{\\Lambda})\\pi were measured. The heavy hyperon to \\Lambda and heavy antihyperon to \\bar{\\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

  8. Measurement of Isolated Photon Production in Deep-Inelastic Scattering at HERA

    E-Print Network [OSTI]

    H1 Collaboration

    2007-11-28T23:59:59.000Z

    The production of isolated photons in deep-inelastic scattering $ep\\to e \\gamma X$ is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared $450$ GeV. The analysis is based on a total integrated luminosity of 227~pb$^{-1}$. The production cross section of isolatedphotons with a transverse energy in the range $3 measured as a function of $E_T^\\gamma$, $\\eta^\\gamma$ and $Q^2$. Isolated photon cross sections are also measured for events with no jets or at least one hadronic jet. The measurements are compared with predictions from Monte Carlo generators modelling the photon radiation from the quark and the electron lines, as well as with calculations at leading and next to leading order in the strong coupling. The predictions significantly underestimate the measured cross sections.

  9. Proposal for a 30-T Pulsed Magnet Suitable for Neutron Scattering Experiments

    E-Print Network [OSTI]

    Robinson Eyssa Schneider-Muntau; R. A. Robinson (a; Y. M. Eyssa (b; H. J. Schneider-muntau (b; H. J. Boenig (a

    this paper, we describe a conceptual design for a 30-T pulsed magnet that could be used in conjunction with neutron-scattering apparatus, along with the scientific opportunities that such a magnet might open up. Neutron diffraction has long been the technique of choice for determining the arrangements (magnetic structures) of magnetic moments in solids, the spatial extent of the magnetic electrons around their parent ions (form factors) and the full moment-density distribution function in real space. The proposed 30-T magnet would enable one to study such spatial aspects of many field-induced phase transitions for the first time, whether they are driven by competing exchange interactions, single-ion anisotropy, or a more radical change, say from an itinerant to a localised state. Inelastic Neutron Scattering, on the other hand, is the best general-purpose tool for the study of magnetic excitations like spin waves, crystal-field levels and spin fluctuations. These excitations manifest themselves in the imaginary part of the generalised magnetic susceptibility c"(Q,w), which is measured directly in a neutron scattering experiment. A field of 30T acting on a moment of 1 B corresponds to an energy of 1.7 meV, and we should be able to generate splittings or close gaps of this order. The present generation of spectrometers at spallation neutron sources have both sufficient resolution (as good as 10 eV) and sufficient dynamic range (up to 2 eV) to cover the effects that might be induced by such a field.

  10. Realization of adiabatic Aharonov-Bohm scattering with neutrons

    E-Print Network [OSTI]

    Erik Sjöqvist; Martin Almquist; Ken Mattsson; Zeynep Nilhan Gürkan; Björn Hessmo

    2015-03-08T23:59:59.000Z

    The adiabatic Aharonov-Bohm (AB) effect is a manifestation of the Berry phase acquired when some slow variables take a planar spin around a loop. While the effect has been observed in molecular spectroscopy, direct measurement of the topological phase shift in a scattering experiment has been elusive in the past. Here, we demonstrate an adiabatic AB effect for neutrons that scatter on a long straight current-carrying wire. We propose an experiment to verify the effect and demonstrate its feasibility by explicit simulation of the dynamics of unpolarized very slow neutrons that scatter on the wire under realistic conditions.

  11. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    SciTech Connect (OSTI)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  12. Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data

    E-Print Network [OSTI]

    Nagle, John F.

    Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data electron and neutron scattering density profiles. A key result of the analysis is the molecular surface

  13. Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli

    E-Print Network [OSTI]

    Montfrooij, Wouter

    Instrumentation for Neutron Scattering at the Missouri University Research Reactor Paul F. Miceli Research Reactor (MURR) provides significant thermal neutron flux, which enables neutron scattering]. There are presently 5 instruments located on the beam port floor that are dedicated to neutron scattering: (1) TRIAX

  14. 2010 American Conference on Neutron Scattering (ACNS 2010)

    SciTech Connect (OSTI)

    Billinge, Simon

    2011-06-17T23:59:59.000Z

    The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as “would-be” neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a “super-user” meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local organization and planning assistance. Additional logistical support is being provided this year through a partnership with the conferencing office of the Materials Research Society (MRS). The ACNS, targeting the entire potential neutron North American user community, complements the annual NIST, ANL and LANSCE neutron and scattering schools which give hands-on experience primarily to graduate students who anticipate using neutron scattering in their thesis research. The summer schools are promoted at the ACNS and represent a natural path for students to take after being inspired by the activities of the ACNS.

  15. Polarization transfer in inelastic scattering and pionic models of the EMC effect

    SciTech Connect (OSTI)

    Carey, T.A.; Jones, K.W.; McClelland, J.B.; Moss, J.M.; Rees, L.B.; Tanaka, N.; Bacher, A.D.

    1985-01-01T23:59:59.000Z

    The aim of the experiment reported was to make a precise test of the enhanced pion field model in a medium-energy scattering experiment. The quantity probed is the spin-longitudinal response function, a measure of the nuclear pion density which is used explicitly in the pion-excess models of the EMC effect. The point of reference used is deuterium. The spin-dependent response functions for heavy targets and /sup 2/H are compared using identical experimental techniques. The technique of complete polarization transfer is used to separate the spin-longitudinal and spin-transverse response in the continuum. The experiment consisted of precise determinations of the polarization transfer coefficients for 500 MeV protons inelastically scattered from Pb, Ca, and /sup 2/H. The experiment utilized longitudinal, sideways, and normal polarized beams in conjunction with final polarization analysis from the focal-plane polarimeter of the high-resolution spectrometer. Quantities constructed from these data are the longitudinal and transverse spin-flip probabilities. Calculations were performed of the ratio of longitudinal to transverse response functions and of the EMC effect with the same model. No evidence was found for collectivity in the isovector spin-longitudinal response function. 10 refs. (LEW)

  16. Quasi-Differential Neutron Scattering in Zirconium from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    Quasi-Differential Neutron Scattering in Zirconium from 0.5 to 20 MeV D. P. Barry,* G. Leinweber, R-3590 Received January 10, 2012 Accepted August 10, 2012 Abstract ­ High-energy-neutron-scattering experiments of the neu- tron scattering cross sections for zirconium. The neutron differential scattering cross

  17. Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions

    E-Print Network [OSTI]

    Dubin, Paul D.

    Small-Angle Neutron Scattering Studies of Charged Carboxyl-Terminated Dendrimers in Solutions Q. R-angle neutron scattering was used to characterize the solution behavior of charged carboxylic acid terminated- copy,16 small-angle X-ray scattering,17 and small-angle neutron scattering (SANS),18-25 have been used

  18. hal-00154048,version1-12Jun2007 The new very small angle neutron scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00154048,version1-12Jun2007 The new very small angle neutron scattering spectrometer The design and characteristics of the new very small angle neutron scattering spectrometer under construction in order to fill the gap between light scattering and classical small angle neutron scattering (SANS

  19. MAGNETIC NEUTRON SCATTERING. And Recent Developments in the Triple Axis Spectroscopy

    E-Print Network [OSTI]

    Johnson, Peter D.

    Chapter 1 MAGNETIC NEUTRON SCATTERING. And Recent Developments in the Triple Axis Spectroscopy Igor.................................................................................... 2 2. Neutron interaction with matter and scattering cross-section ........ 6 2.1 Basic scattering theory and differential cross-section................ 7 2.2 Neutron interactions and scattering lengths

  20. Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell A. Ewings 2008 #12;Abstract Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell-ray scattering and neutron scattering experiments on several strongly correlated transition metal oxides

  1. New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    E-Print Network [OSTI]

    K. B. Grammer; R. Alarcon; L. Barrón-Palos; D. Blyth; J. D. Bowman; J. Calarco; C. Crawford; K. Craycraft; D. Evans; N. Fomin; J. Fry; M. Gericke; R. C. Gillis; G. L. Greene; J. Hamblen; C. Hayes; S. Kucuker; R. Mahurin; M. Maldonado-Velázquez; E. Martin; M. McCrea; P. E. Mueller; M. Musgrave; H. Nann; S. I. Penttilä; W. M. Snow; Z. Tang; W. S. Wilburn

    2014-12-12T23:59:59.000Z

    Slow neutron scattering provides quantitative information on the structure and dynamics of materials of interest in physics, chemistry, materials science, biology, geology, and other fields. Liquid hydrogen is a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. In particular the rapid drop of the slow neutron scattering cross section of liquid parahydrogen below 14.5~meV is especially interesting and important. We have measured the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. At 1~meV this measurement is a factor of 3 below the data from previous work which has been used in the design of liquid hydrogen moderators at slow neutron sources. We describe our measurements, compare them with previous work, and discuss the implications for designing more intense slow neutron sources.

  2. 11th LANSCE School on Neutron Scattering | Hands-On Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of various exemplary neutron experiments in the areas of materials at the mesoscale. They will use several instruments utlizing different neutron scattering and...

  3. The Algebraic Approach to the Phase Problem for Neutron Scattering

    E-Print Network [OSTI]

    A. Cervellino; S. Ciccariello

    2004-01-27T23:59:59.000Z

    The algebraic approach to the phase problem for the case of X-ray scattering from an ideal crystal is extended to the case of the neutron scattering, overcoming the difficulty related to the non-positivity of the scattering density. In this way, it is proven that the atomicity is the crucial assumption while the positiveness of the scattering density only affects the method for searching the basic sets of reflections. We also report the algebraic expression of the determinants of the Karle-Hauptman matrices generated by the basic sets with the most elongated shape along one of the reciprocal crystallographic axes.

  4. Constraints on new interactions from neutron scattering experiments

    E-Print Network [OSTI]

    Yu. N. Pokotilovski

    2006-01-19T23:59:59.000Z

    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.

  5. Neutron cross sections of the isomeric nuclei KPrn, Sr81m,and Nbgam

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    ,, owing to multiple inelastic scattering. For the calculation of neutron spectra in real systemsNeutron cross sections of the isomeric nuclei KPrn, Sr81m,and Nbgam NJ. V. Petrov and A. I. Fiz. 23, 1186-1189 (June 1976) Inelastic neutron acceleration and retardation cross sections

  6. Improved di-neutron cluster model for 6He scattering

    E-Print Network [OSTI]

    A. M. Moro; K. Rusek; J. M. Arias; J. Gomez-Camacho; M. Rodriguez-Gallardo

    2007-03-01T23:59:59.000Z

    The structure of the three-body Borromean nucleus 6He is approximated by a two-body di-neutron cluster model. The binding energy of the 2n-\\alpha system is determined to obtain a correct description of the 2n-\\alpha coordinate, as given by a realistic three-body model calculation. The model is applied to describe the break-up effects in elastic scattering of 6He on several targets, for which experimental data exist. We show that an adequate description of the di-neutron-core degree of freedom permits a fairly accurate description of the elastic scattering of 6He on different targets.

  7. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized [superscript 3]He target

    E-Print Network [OSTI]

    Zhao, Y. X.

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized [superscript 3]He target. Both the Collins ...

  8. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized [superscript 3]He target

    E-Print Network [OSTI]

    Zhang, Y.

    An experiment to measure single-spin asymmetries of semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized [superscript 3]He target was performed at Jefferson Laboratory in the ...

  9. Simultaneous extraction of transversity and Collins functions from new semi-inclusive deep inelastic scattering and e + e ? data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anselmino, M.; Boglione, M.; D’Alesio, U.; Melis, S.; Murgia, F.; Prokudin, A.

    2013-05-01T23:59:59.000Z

    We present a global reanalysis of the most recent experimental data on azimuthal asymmetries in semi-inclusive deep inelastic scattering, from the HERMES and COMPASS Collaborations, and in e?e??h?h?X processes, from the Belle Collaboration. The transversity and the Collins functions are extracted simultaneously, in the framework of a revised analysis in which a new parametrization of the Collins functions is also tested.

  10. Coulomb-Excitation of the Giant-Dipole Resonance in Light-Ion Inelastic-Scattering from Pb-208

    E-Print Network [OSTI]

    Izumoto, T.; Lui, YW; Youngblood, David H.; Udagawa, T.; Tamura, T.

    1981-01-01T23:59:59.000Z

    PHYSICAL REVIE%' C VOLUME 24, NUMBER 5 NOVEMBER 1981 Coulomb excitation of the giant dipole resonance in light-ion inelastic scattering from Pb T. Izumoto, Y. -%. Lui, and D. H. Youngblood Cyclotron Institute, Texas A&M University, College... Station, Texas 77843 T. Udagawa and T. Tamura Department of Physics, Uniuersity of Texas at Austin, Austin, Texas 78712 (Received 26 May 1981) A coupled-channel calculation including Coulomb excitation has been done for excita- tion of the isovector...

  11. SciTech Connect: Neutron Scattering of CeNi at the SNS-ORNL:...

    Office of Scientific and Technical Information (OSTI)

    Conference: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary...

  12. Parity Violating Deep Inelastic Electron Scattering from the Deuteron at 6 GeV

    SciTech Connect (OSTI)

    Pan, Kai [MIT

    2013-02-01T23:59:59.000Z

    An experiment that measured the parity violating (PV) asymmetry A{sub d} in e-{sup 2}H deep inelastic scattering (DIS) at Q{sup 2} ~#25; 1.10 and 1.90 (GeV/c){sup 2} and x{sub B} ~#25; 0.3 was completed in experimental Hall A at the Thomas Jefferson National Accelerator Facility. The asymmetry can be used to extract the neutral weak coupling combination (2C{sub 2u}-C{sub 2d}), providing a factor of five to six improvement over the current world data. To achieve this precision, asymmetries of the 10{sup -4} level needed to be measured at event rates up to 500 kHz with high electron detection efficiency and high pion background rejection capability. A specialized scaler-based counting data acquisition system (DAQ) with hardware-based particle identification was successfully implemented. The statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes and the experimental goal of 3-4% statistical uncertainty was achieved. The design and performance of the new DAQ system is presented with the preliminary asymmetry results given in the end.

  13. Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

    E-Print Network [OSTI]

    The HERMES Collaboration; A. Airapetian; N. Akopov; Z. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; S. Belostotski; N. Bianchi; H. P. Blok; A. Borissov; J. Bowles; V. Bryzgalov; J. Burns; M. Capiluppi; G. P. Capitani; E. Cisbani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; L. De Nardo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Dueren; M. Ehrenfried; G. Elbakian; F. Ellinghaus; R. Fabbri; A. Fantoni; L. Felawka; S. Frullani; D. Gabbert; G. Gapienko; V. Gapienko; F. Garibaldi; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Golembiovskaya; C. Hadjidakis; M. Hartig; D. Hasch; G. Hill; A. Hillenbrand; M. Hoek; Y. Holler; I. Hristova; Y. Imazu; A. Ivanilov; H. E. Jackson; H. S. Jo; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; R. Lamb; L. Lapikas; I. Lehmann; P. Lenisa; L. A. Linden-Levy; A. Lopez Ruiz; W. Lorenzon; X. -G. Lu; X. -R. Lu; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; L. Manfre; Y. Mao; B. Marianski; A. Martinez de la Ossa; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; V. Muccifora; M. Murray; A. Mussgiller; E. Nappi; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; N. Pickert; M. Raithel; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; F. Sanftl; A. Schaefer; G. Schnell; K. P. Schueler; B. Seitz; T. -A. Shibata; V. Shutov; M. Stancari; M. Statera; E. Steffens; J. J. M. Steijger; H. Stenzel; J. Stewart; F. Stinzing; S. Taroian; A. Trzcinski; M. Tytgat; A. Vandenbroucke; Y. Van Haarlem; C. Van Hulse; D. Veretennikov; V. Vikhrov; I. Vilardi; C. Vogel; S. Wang; S. Yaschenko; H. Ye; Z. Ye; S. Yen; W. Yu; D. Zeiler; B. Zihlmann; P. Zupranski

    2011-05-02T23:59:59.000Z

    Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\\leq x\\leq 0.9$ and 0.1 GeV$^2\\leq Q^2\\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

  14. Inclusive Measurements of Inelastic Electron and Positron Scattering from Unpolarized Hydrogen and Deuterium Targets

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dueren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Linden-Levy, L A; Ruiz, A Lopez; Lorenzon, W; Lu, X -G; Lu, X -R; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfre, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schaefer, A; Schnell, G; Schueler, K P; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Taroian, S; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P

    2011-01-01T23:59:59.000Z

    Results of inclusive measurements of inelastic electron and positron scattering from unpolarized protons and deuterons at the HERMES experiment are presented. The structure functions $F_2^p$ and $F_2^d$ are determined using a parameterization of existing data for the longitudinal-to-transverse virtual-photon absorption cross-section ratio. The HERMES results provide data in the ranges $0.006\\leq x\\leq 0.9$ and 0.1 GeV$^2\\leq Q^2\\leq$ 20 GeV$^2$, covering the transition region between the perturbative and the non-perturbative regimes of QCD in a so-far largely unexplored kinematic region. They are in agreement with existing world data in the region of overlap. The measured cross sections are used, in combination with data from other experiments, to perform fits to the photon-nucleon cross section using the functional form of the ALLM model. The deuteron-to-proton cross-section ratio is also determined.

  15. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    SciTech Connect (OSTI)

    Vladas Tvaskis

    2004-12-09T23:59:59.000Z

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F{sub 2}(x,Q{sup 2}) is known with high precision over about four orders of magnitude in x and Q{sup 2}. In the region of Q{sup 2} > 1 (GeV/c){sup 2} the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q{sup 2} becomes of the order of 1 (GeV/c){sup 2}, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q{sup 2}, since they include a factor 1/(Q{sup 2}{sup n}) (n {ge} 1).

  16. Vector meson dominance and deep inelastic scattering at low and medium Q squared

    E-Print Network [OSTI]

    Edgar Bugaev; Boris Mangazeev

    2014-07-09T23:59:59.000Z

    We argued that deep inelastic scattering (DIS) at small values of Q squared is an essentially nonperturbative process and can be described, partially at least, by the vector meson dominance (VMD) model. We showed by the straightforward calculation that VMD model alone can successfully explain data on structure functions of DIS in a broad interval of x (5e-2 - 1e-4) for the region Q squared < 1 GeV squared. For a description of data at larger Q squared we used the two-component (VMD + perturbative QCD) approach. We showed that these two components can be separated if VMD is used in the aligned jet version. We took into account, in calculations of VMD component of structure functions, the excited states of the rho-meson and nondiagonal transitions between different members of the rho-meson family. Amplitudes of these transitions were obtained using a formalism of the light-front Bethe-Salpeter equation and the method of diffraction-scattering eigenstates. The perturbative QCD component was calculated using a framework of the colour dipole model with the dipole cross section having a Regge-type energy dependence. We presented results of the detailed comparison of our predictions with experimental data for structure functions of the nucleon. We obtained also approximate predictions for the structure functions in the region of very small x, up to 1e-9, and showed that nonperturbative component at such values of x is still relatively large and must be taken into account if Q squared is about few GeV squared or less.

  17. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01T23:59:59.000Z

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  18. Low frequency scattering excess in supercooled confined water F. Venturini, P. Gallo, and M. A. Riccia)

    E-Print Network [OSTI]

    Tuscia, Università Degli Studi Della

    Received 9 January 2001; accepted 1 March 2001 Inelastic neutron scattering data on water confined in Vycor quasielastic neutron scattering QENS and neutron resonance spin­echo NRSE studies of the slow relaxation regionLow frequency scattering excess in supercooled confined water F. Venturini, P. Gallo, and M. A

  19. alpha-particle inelastic scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is studied in a coupled channel method by using a double folding model with microscopic wave functions of 12C. Experimental angular distributions in elastic and inelastic...

  20. Small angle neutron scattering from high impact polystyrene

    SciTech Connect (OSTI)

    Pringle, O.A.

    1981-01-01T23:59:59.000Z

    High impact polystyrene (HIPS) is a toughened plastic composed of a polystyrene matrix containing a few percent rubber in the form of dispersed 0.1 to 10 micron diameter rubber particles. Some commercial formulations of HIPS include the addition of a few percent mineral oil, which improves the toughness of the plastic. Little is known about the mechanism by which the mineral oil helps toughen the plastic. It is hypothesized that the oil is distributed only in the rubber particles, but whether this hypothesis is correct was not known prior to this work. The size of the rubber particles in HIPS and their neutron scattering length density contrast with the polystyrene matrix cause HIPS samples to scatter neutrons at small angles. The variation of this small angle neutron scattering (SANS) signal with mineral oil content has been used to determine the location of the oil in HIPS. The SANS spectrometer at the University of Missouri Research Reactor Facility (MURR) was used to study plastic samples similar in composition to commercial HIPS. The MURR SANS spectrometer is used to study the small angle scattering of a vertical beam of 4.75 A neutrons from solid and liquid samples. The scattered neutrons are detected in a 54 x 60 cm/sup 2/ position sensitive detector designed and built at MURR. A series of plastic samples of varying rubber and oil content and different rubber domain sizes and shapes were examined on the MURR SANS spectrometer. Analysis of the scattering patterns showed that the mineral oil is about eight to ten times more likely to be found in the rubber particles than in the polystyrene matrix. This result confirmed the hypothesis that the mineral oil is distributed primarily in the rubber particles.

  1. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    SciTech Connect (OSTI)

    William Charlton

    2007-07-01T23:59:59.000Z

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  2. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    SciTech Connect (OSTI)

    Mirmelstein, A. [Russian Federal Nuclear Center VNIITF, Snezhinsk, Russia; Podlesnyak, Andrey A [ORNL; Kolesnikov, Alexander I [ORNL; Saporov, B. [Oak Ridge National Laboratory (ORNL); Sefat, A.S. [Oak Ridge National Laboratory (ORNL); Tobin, J. G. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01T23:59:59.000Z

    This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce.

  3. A workshop on enhanced national capability for neutron scattering

    SciTech Connect (OSTI)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.

  4. alamos neutron scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alamos neutron scattering First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Los Alamos National...

  5. Helium in confinement: the filling A Neutron Scattering investigation.

    E-Print Network [OSTI]

    Glyde, Henry R.

    Helium in confinement: the filling parameter. A Neutron Scattering investigation. Francesco Albergamo Institut Laue-Langevin, France Helium in confinement: the filling parameter. ­ p.1/13 #12;outline introduction and motivation Helium in confinement: the filling parameter. ­ p.2/13 #12;outline introduction

  6. Neutron-Proton High-Energy Charge Exchange Scattering

    E-Print Network [OSTI]

    Y. Yan; R. Tegen; T. Gutsche; V. E. Lyubovitskij; Amand Faessler

    2002-04-18T23:59:59.000Z

    The high energy proton-neutron charge exchange scattering reaction is studied in an effective hadron model for the energy range of s from 45.9 to 414.61 GeV*GeV. The main features of the observed differential cross section, the forward peak and the scaling behavior over a large energy region, are well reproduced.

  7. Time Reversal Invariance Violation in Neutron Deuteron Scattering

    E-Print Network [OSTI]

    Young-Ho Song; Rimantas Lazauskas; Vladimir Gudkov

    2011-04-15T23:59:59.000Z

    Time reversal invariance violating (TRIV) effects for low energy elastic neutron deuteron scattering are calculated for meson exchange and EFT-type of TRIV potentials in a Distorted Wave Born Approximation, using realistic hadronic strong interaction wave functions, obtained by solving three-body Faddeev equations in configuration space. The relation between TRIV and parity violating observables are discussed.

  8. National School on Neutron and X-ray Scattering August 10-24, 2013

    E-Print Network [OSTI]

    Kemner, Ken

    National School on Neutron and X-ray Scattering August 10-24, 2013 Argonne National Laboratory National Laboratory 3:15 ­ 3:30 Break #12;National School on Neutron and X-ray Scattering August 10 Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering August 10-24, 2012 Oak

  9. Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    957 Spin-dependent scattering and absorption of thermal neutrons on dynamically polarized nuclei H neutrons and polarized nuclei have been used to measure spin-dependent scattering lengths and absorption cross sections of slow (S-wave) neutrons on nuclei. In order to obtain those scattering lengths

  10. SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS

    E-Print Network [OSTI]

    Boyer, Edmond

    L-263 SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS vu par les noyaux. Abstract. - The spin-dependent scattering length of slow neutrons by the nuclei 23 can be of practical importance in many thermal neutron scattering experiments. A new method, called

  11. Micellar structure from comparison of X-ray and neutron small-angle scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    249 Micellar structure from comparison of X-ray and neutron small-angle scattering T. Zemb and P according to the method developed by Hayter and Penfold. Both X-ray and neutron scattering signals, or by a combination of both. It has been shown recent- ly [1, 2] that it is possible in neutron scattering studies

  12. Dynamics of Different Hydrogen Classes in -lactoglobulin: A Quasielastic Neutron Scattering Investigation

    E-Print Network [OSTI]

    Tuscia, Università Degli Studi Della

    Dynamics of Different Hydrogen Classes in -lactoglobulin: A Quasielastic Neutron Scattering investigated by means of quasielastic neutron scattering. To discriminate the possibly different dynamical- thods,11-13 molecular dynamics (MD) simulations,14 X-ray crys- tallography,15 and neutron scattering.6

  13. Neutron scattering evidence of a boson peak in protein hydration water Alessandro Paciaroni,1

    E-Print Network [OSTI]

    Tuscia, Università Degli Studi Della

    Neutron scattering evidence of a boson peak in protein hydration water Alessandro Paciaroni,1 Anna Viterbo, Italy Received 24 February 1999 Measurement of the low temperature neutron excess of scattering, has been detected by neutron scattering and Raman spectros- copy in a large variety of glassy systems

  14. Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde

    E-Print Network [OSTI]

    Glyde, Henry R.

    Naysaying the Neutron Scattering Society Lawrence Cranberg, Jill Trewhella, and Henry R. Glyde, Austin Naysaying the Neutron Scattering Society The news story announcing the estab- lishment of the Neutron Scattering Society of America (June, page 73) raises a number of questions, and further

  15. TTOTT Ris0-R-986(EN) A Neutron Scattering Study of Triblock

    E-Print Network [OSTI]

    TTOTT Ris0-R-986(EN) DK9800004 A Neutron Scattering Study of Triblock Copolymer Micelles Michael C. Gerstenberg Ris0 National Laboratory, Roskilde, Denmark November 1997 #12;Ris0-R-986(EN) A Neutron Scattering, Denmark November 1997 #12;Abstract The thesis describes the neutron scattering experiments performed

  16. Small angle neutron scattering on periodically deformed polymers A. R. Rennie

    E-Print Network [OSTI]

    Boyer, Edmond

    765 Small angle neutron scattering on periodically deformed polymers A. R. Rennie Institut für Phys-768 SEPTEMBRE 1984, 1. Introduction. Neutron scattering has proved a useful tool for the investigation of a wide time for a small angle neutron scattering spectrum is several minutes. Obser- vation on rapidly

  17. THE JOURNAL OF CHEMICAL PHYSICS 139, 175101 (2013) Dynamic neutron scattering from conformational dynamics. I. Theory

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    #12;THE JOURNAL OF CHEMICAL PHYSICS 139, 175101 (2013) Dynamic neutron scattering from, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, follow- ing our previous spectroscopy (dynamic neutron scattering) probes time correlations on the sub pico- to microsec- ond timescales

  18. Effective Long-Range Attraction between Protein Molecules in Solutions Studied by Small Angle Neutron Scattering

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    Neutron Scattering Yun Liu,1 Emiliano Fratini,2 Piero Baglioni,1,2 Wei-Ren Chen,1 and Sow-Hsin Chen1,* 1, Italy (Received 8 February 2005; published 8 September 2005) Small angle neutron scattering intensity neutron and x-ray scattering investigations of proteins suggest the presence of a short-range attractive

  19. PHYSICAL REVIEW B VOLUME 25, NUMBER 7 Neutron scattering from paramagnetic bcc 'He

    E-Print Network [OSTI]

    Glyde, Henry R.

    PHYSICAL REVIEW B VOLUME 25, NUMBER 7 Neutron scattering from paramagnetic bcc 'He 1 APRIL 1982 H is calculated using the self-consistent-phonon (SCP) theory for comparison with proposed neutron scattering excitations or critical scattering will be observable only at very small neutron energy transfers (-0.1 pev

  20. The Neutron Scattering Society of America http:///www.neutronscattering.org

    E-Print Network [OSTI]

    The Neutron Scattering Society of America http:///www.neutronscattering.org Page 8 of 9 Dr. Claire of the Neutron Scattering Society of America (NSSA) with the citation "For pioneering a new methodology and computational chemistry" The Neutron Scattering Society of America (NSSA) established the Prize for Outstanding

  1. High temperature furnaces for small and large angle neutron scattering of disordered materials

    E-Print Network [OSTI]

    Boyer, Edmond

    725 High temperature furnaces for small and large angle neutron scattering of disordered materials and small angle neutron scattering (SANS) experiments respectively. They are vacuum furnaces with a thin maintained in a tantalum box. In a neutron beam, the furnaces produce a very low scattering level (without

  2. Ris-PhD-7(EN) Neutron scattering studies of two-

    E-Print Network [OSTI]

    Risø-PhD-7(EN) Neutron scattering studies of two- dimensional antiferromagnetic spin fluctuations Denmark January 2005 #12;Neutron scattering studies of two-dimensional antiferromagnetic spin fluctuations Laboratory 4000 Roskilde, Denmark #12;#12;Abstract: In this thesis, neutron scattering techniques are used

  3. 2015 LaCNS Neutron Scattering Seed Funding Request for White Papers

    E-Print Network [OSTI]

    pg. 1 2015 LaCNS Neutron Scattering Seed Funding Request for White Papers DEADLINE: January 12, 2015 The Louisiana Consortium for Neutron Scattering (LaCNS), a Department of Energy ­ EPSCo projects involving neutron scattering. These projects can be in any area of Materials Science

  4. neutron scattering shows magnetic excitation mechanism at work in new materials.

    E-Print Network [OSTI]

    neutron scattering shows magnetic excitation mechanism at work in new materials. In 2008 dai of orNl and the university of tennes- see led early neutron scattering studies of the pnictides. dai ticks off four main things neutron scattering has revealed about superconducting iron com- pounds

  5. A comparison of neutron scattering studies and computer simulations of polymer melts

    E-Print Network [OSTI]

    Utah, University of

    A comparison of neutron scattering studies and computer simulations of polymer melts G.D. Smith a; in ®nal form 22 May 2000 Abstract Neutron scattering and computer simulations are powerful tools in particular. When neutron scattering studies and quan- titative atomistic molecular dynamics simulations

  6. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect (OSTI)

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24T23:59:59.000Z

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  7. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15T23:59:59.000Z

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  8. Fast neutron scattering on Gallium target at 14.8 MeV

    E-Print Network [OSTI]

    R. Han; R. Wada; Z. Chen; Y. Nie; X. Liu; S. Zhang; P. Ren; B. Jia; G. Tian; F. Luo; W. Lin; J. Liu; F. Shi; M. Huang; X. Ruan; J. Ren; Z. Zhou; H. Huang; J. Bao; K. Zhang; B. Hu

    2014-11-03T23:59:59.000Z

    Benchmarking of evaluated nuclear data libraries was performed for $\\sim 14.8$ MeV neutrons on Gallium targets. The experiments were performed at China Institute of Atomic Energy(CIAE). Solid samples of natural Gallium (3.2 cm and 6.4 cm thick) were bombarded by $\\sim 14.8$ MeV neutrons and leakage neutron energy spectra were measured at 60$^{\\circ}$ and 120$^{\\circ}$. The measured spectra are rather well reproduced by MCNP-4C simulations with the CENDL-3.1, ENDF/B-VII and JENDL-4.0 evaluated nuclear data libraries, except for the inelastic contributions around $E_{n} = 10-13$ MeV. All three libraries significantly underestimate the inelastic contributions. The inelastic contributions are further studied, using the Talys simulation code and the experimental spectra are reproduced reasonably well in the whole energy range by the Talys calculation, including the inelastic contributions.

  9. Fast neutron scattering on Gallium target at 14.8 MeV

    E-Print Network [OSTI]

    Han, R; Chen, Z; Nie, Y; Liu, X; Zhang, S; Ren, P; Jia, B; Tian, G; Luo, F; Lin, W; Liu, J; Shi, F; Huang, M; Ruan, X; Ren, J; Zhou, Z; Huang, H; Bao, J; Zhang, K; Hu, B

    2014-01-01T23:59:59.000Z

    Benchmarking of evaluated nuclear data libraries was performed for $\\sim 14.8$ MeV neutrons on Gallium targets. The experiments were performed at China Institute of Atomic Energy(CIAE). Solid samples of natural Gallium (3.2 cm and 6.4 cm thick) were bombarded by $\\sim 14.8$ MeV neutrons and leakage neutron energy spectra were measured at 60$^{\\circ}$ and 120$^{\\circ}$. The measured spectra are rather well reproduced by MCNP-4C simulations with the CENDL-3.1, ENDF/B-VII and JENDL-4.0 evaluated nuclear data libraries, except for the inelastic contributions around $E_{n} = 10-13$ MeV. All three libraries significantly underestimate the inelastic contributions. The inelastic contributions are further studied, using the Talys simulation code and the experimental spectra are reproduced reasonably well in the whole energy range by the Talys calculation, including the inelastic contributions.

  10. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors

    SciTech Connect (OSTI)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08T23:59:59.000Z

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermaliation is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.

  11. JOURNAL DE PHYSIQUE Colloque C6, suppldment au no 8, Tome 39, aolit 1978, page C6-1334 RECENT NEUTRON STUDIES OF ELEMENTARY EXCITATIONS IN LIQUID 3 ~ eAND 4 ~ e

    E-Print Network [OSTI]

    Boyer, Edmond

    . INTRODUCTION.- After more than twenty years ofin- tensive study by neutron inelastic scattering (N. I. S, there is the innate attraction of this unique substance. The hope that neutron scattering would help provide-atomic distances are very similar to the wavelengths of thermal neutrons. Although neutron scattering yields

  12. 2009 International Conference on Neutron Scattering (ICNS 2009)

    SciTech Connect (OSTI)

    Gopal Rao, PhD; Donna Gillespie

    2010-08-05T23:59:59.000Z

    The ICNS provides a focal point for the worldwide neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as �¢����would-be�¢��� neutron users. The International Conference on Neutron Scattering thus serves a dual role as an international user meeting and a scientific meeting. As a venue for scientific exchange, the ICNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. Each of the major national neutron facilities (NIST, LANSCE, ANL, HFIR and SNS), along with their international counterparts, has an opportunity to exchange information with each other and to update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities.

  13. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H [ORNL; Coates, Leighton [ORNL; Herwig, Kenneth W [ORNL; Kidder, Michelle [ORNL

    2011-10-01T23:59:59.000Z

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  14. Neutron Scattering | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at3,Neutron Scattering TutorialsNeutron

  15. [49] INTERSUBUNIT MEASUREMENTS BY NEUTRON SCATTERING 629 ribosomal 30 S subparticle in its lateral view. The amount of the particles

    E-Print Network [OSTI]

    [49] INTERSUBUNIT MEASUREMENTS BY NEUTRON SCATTERING 629 ribosomal 30 S subparticle in its lateral Neutron Scattering By PETER B. MOOREand DONALDM. ENGELMAN Several years ago we suggested that neutron.28 " The scattering lengths are taken from G. E. Bacon, "Neutron Scattering." Oxford Univ. Press (Clarendon

  16. Causality bounds for neutron-proton scattering

    E-Print Network [OSTI]

    Serdar Elhatisari; Dean Lee

    2012-07-25T23:59:59.000Z

    We consider the constraints of causality and unitarity for the low-energy interactions of protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We define and calculate interaction length scales which we call the causal range and the Cauchy-Schwarz range for all spin channels up to J = 3. For some channels we find that these length scales are as large as 5 fm. We investigate the origin of these large lengths and discuss their significance for the choice of momentum cutoff scales in effective field theory and universality in many-body Fermi systems.

  17. Resonant Cyclotron Scattering and Comptonization in Neutron Star Magnetospheres

    E-Print Network [OSTI]

    Maxim Lyutikov; Fotis P. Gavriil

    2006-02-10T23:59:59.000Z

    Resonant cyclotron scattering of the surface radiation in the magnetospheres of neutron stars may considerably modify the emergent spectra and impede efforts to constraint neutron star properties. Resonant cyclotron scattering by a non-relativistic warm plasma in an inhomogeneous magnetic field has a number of unusual characteristics: (i) in the limit of high resonant optical depth, the cyclotron resonant layer is half opaque, in sharp contrast to the case of non-resonant scattering. (ii) The transmitted flux is on average Compton up-scattered by ~ $1+ 2 beta_T$, where $\\beta_T$ is the typical thermal velocity in units of the velocity of light; the reflected flux has on average the initial frequency. (iii) For both the transmitted and reflected fluxes the dispersion of intensity decreases with increasing optical depth. (iv) The emergent spectrum is appreciably non-Plankian while narrow spectral features produced at the surface may be erased. We derive semi-analytically modification of the surface Plankian emission due to multiple scattering between the resonant layers and apply the model to anomalous X-ray pulsar 1E 1048.1--5937. Our simple model fits just as well as the ``canonical'' magnetar spectra model of a blackbody plus power-law.

  18. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect (OSTI)

    Kojda, Danny [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany) [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Freie Universität Berlin, 14195 Berlin (Germany); Wallacher, Dirk; Hofmann, Tommy, E-mail: tommy.hofmann@helmholtz-berlin.de [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany)] [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin (Germany); Baudoin, Simon; Hansen, Thomas [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)] [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Huber, Patrick [Technische Universität Hamburg-Harburg, 21073 Hamburg (Germany)] [Technische Universität Hamburg-Harburg, 21073 Hamburg (Germany)

    2014-01-14T23:59:59.000Z

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic ?-, orthorhombic ?- and monoclinic ?-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic ?-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  19. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect (OSTI)

    Hawari, Ayman; Dunn, Michael

    2014-06-10T23:59:59.000Z

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  20. Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially-manufactured superconducting magnets and limited to 17 T. A

    E-Print Network [OSTI]

    Weston, Ken

    Previously, DC Magnets located at Neutron-Scattering Beamlines were commercially, this was the first designed specifically for neutron scattering and the first to include resistive suitable for neutron scattering, diffraction and spectroscopy experiments with the neutron beam passing

  1. Radiation damage studies using small-angle neutron scattering

    SciTech Connect (OSTI)

    Albertini, G.; Rustichelli, F. [INFM, Ancona (Italy); Carsughi, F. [INFM, Ancona (Italy). Ist. di Scienze Fisiche; [KFA, Juelich (Germany). Inst. fuer Festkoerperforschung; Coppola, R. [ENEA-Casaccia, Roma (Italy); Stefanon, M. [ENEA, Bologna (Italy)

    1996-12-31T23:59:59.000Z

    This contribution reviews a number of small-angle neutron scattering (SANS) studies of irradiated metals and steels of relevance to fission and fusion technology. Information obtainable by SANS measurements is recalled with special reference to the determination of the size distribution function of the microstructural inhomogeneities. The selected examples concern studies of the main kinds of radiation defects: voids, precipitates, He-bubbles. Some recent results obtained on structural materials for the first-wall of fusion reactors are also presented.

  2. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    E-Print Network [OSTI]

    HERMES Collaboration; A. Airapetian; N. Akopov; Z. Akopov; E. C. Aschenauer; W. Augustyniak; R. Avakian; A. Avetissian; E. Avetisyan; S. Belostotski; H. P. Blok; A. Borissov; J. Bowles; V. Bryzgalov; J. Burns; M. Capiluppi; G. P. Capitani; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; W. Deconinck; R. De Leo; L. De Nardo; E. De Sanctis; M. Diefenthaler; P. Di Nezza; M. Düren; G. Elbakian; F. Ellinghaus; A. Fantoni; L. Felawka; S. Frullani; G. Gapienko; V. Gapienko; F. Garibaldi; G. Gavrilov; V. Gharibyan; F. Giordano; S. Gliske; M. Golembiovskaya; C. Hadjidakis; M. Hartig; D. Hasch; A. Hillenbrand; M. Hoek; Y. Holler; I. Hristova; Y. Imazu; A. Ivanilov; H. E. Jackson; H. S. Jo; S. Joosten; R. Kaiser; G. Karyan; T. Keri; E. Kinney; A. Kisselev; V. Korotkov; V. Kozlov; P. Kravchenko; V. G. Krivokhijine; L. Lagamba; L. Lapikás; I. Lehmann; P. Lenisa; A. López Ruiz; W. Lorenzon; B. -Q. Ma; D. Mahon; N. C. R. Makins; S. I. Manaenkov; L. Manfré; Y. Mao; B. Marianski; A. Martinez de la Ossa; H. Marukyan; C. A. Miller; Y. Miyachi; A. Movsisyan; M. Murray; E. Nappi; Y. Naryshkin; A. Nass; M. Negodaev; W. -D. Nowak; L. L. Pappalardo; R. Perez-Benito; A. Petrosyan; M. Raithel; P. E. Reimer; A. R. Reolon; C. Riedl; K. Rith; G. Rosner; A. Rostomyan; J. Rubin; D. Ryckbosch; Y. Salomatin; F. Sanftl; A. Schäfer; G. Schnell; K. P. Schüler; B. Seitz; T. -A. Shibata; M. Stancari; M. Statera; J. J. M. Steijger; J. Stewart; F. Stinzing; A. Terkulov; R. Truty; A. Trzcinski; M. Tytgat; A. Vandenbroucke; Y. Van Haarlem; C. Van Hulse; D. Veretennikov; V. Vikhrov; I. Vilardi; S. Wang; S. Yaschenko; Z. Ye; S. Yen; W. Yu; V. Zagrebelnyy; D. Zeiler; B. Zihlmann; P. Zupranski

    2013-01-18T23:59:59.000Z

    The azimuthal cos{\\phi} and cos2{\\phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  3. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Elbakian, G; Ellinghaus, F; Fantoni, A; Felawka, L; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfré, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T -A; Stancari, M; Statera, M; Steijger, J J M; Stewart, J; Stinzing, F; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2012-01-01T23:59:59.000Z

    The azimuthal cos{\\phi} and cos2{\\phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  4. Scientific opportunities with advanced facilities for neutron scattering

    SciTech Connect (OSTI)

    Lander, G.H.; Emery, V.J. (eds.)

    1984-01-01T23:59:59.000Z

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10/sup 15/ n cm/sup -2/s/sup -1/ steady state source or a 10/sup 17/ n cm/sup -2/s/sup -1/ peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee.

  5. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    SciTech Connect (OSTI)

    Li, Chen [ORNL] [ORNL; Ma, Jie [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Cao, Huibo [ORNL] [ORNL; Christianson, Andrew D [ORNL] [ORNL; Ehlers, Georg [ORNL] [ORNL; Singh, David J [ORNL] [ORNL; Sales, Brian C [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

  6. Novel Boron-10-based detectors for Neutron Scattering Science

    E-Print Network [OSTI]

    Piscitelli, Francesco

    2015-01-01T23:59:59.000Z

    Nowadays neutron scattering science is increasing its instrumental power. Most of the neutron sources in the world are pushing the development of their technologies to be more performing. The neutron scattering development is also pushed by the European Spallation Source (ESS) in Sweden, a neutron facility which has just started construction. Concerning small area detectors (1m^2), the 3He technology, which is today cutting edge, is reaching fundamental limits in its development. Counting rate capability, spatial resolution and cost-e?ectiveness, are only a few examples of the features that must be improved to ful?fill the new requirements. On the other hand, 3He technology could still satisfy the detector requirements for large area applications (50m^2), however, because of the present 3He shortage that the world is experiencing, this is not practical anymore. The recent detector advances (the Multi-Grid and the Multi-Blade prototypes) developed in the framework of the collaboration between the Institut Laue...

  7. Present status and plans for upgrading the Lujan neutron scattering center

    SciTech Connect (OSTI)

    Rhyne, James J [LANSCE-LC

    2010-01-01T23:59:59.000Z

    The Lujan Center, part of the LANSCE accelerator complex at Los Alamos National Laboratory, operates a comprehensive neutron scattering facility for the U.S. Department of Energy that serves approximately 300 users per year. This paper will discuss the current instruments and status of the facility and also focus on the plans for a major upgrade of the Center including new instruments and enhancements to specific existing instruments. The instrument suite currently includes two reflectometers (one with full polarization), an engineering diffraction machine, a diffractometer specialized to pair-distribution analysis, 2 general purpose powder diffractometers, and 2 inelastic spectrometers. To complement these spectrometers, a full range of pressure, temperature, and magnetic field sample environments is available for users. As part of the planning for a forthcoming enhancement of Lujan Center, a series of workshops have been held over the past year to encourage user input to the design for new instruments as well as major upgrades of existing machines. Many of the planned facilities are designed to take advantage of the Lujan Center 20 Hz pulse repetition rate and cold source moderators, both of which are beneficial for high-resolution instruments using long neutron wavelengths.

  8. National School on Neutron and X-ray Scattering June 14-28, 2014

    E-Print Network [OSTI]

    Kemner, Ken

    National School on Neutron and X-ray Scattering June 14-28, 2014 Argonne National Laboratory:00 Dinner Dinner Dinner Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering Restaurant 9:45 - 10:45 Lecture Interaction of X-rays and Neutrons with Matter Roger Pynn University

  9. The Ramsauer model for the total cross sections of neutron nucleus scattering

    E-Print Network [OSTI]

    R. S. Gowda; S. S. V. Suryanarayana; S. Ganesan

    2005-06-02T23:59:59.000Z

    Theoretical study of systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are of practical importance. In this paper, we analysed the experimental neutron scattering total cross sections from 20MeV to 550MeV using Ramsauer model for nuclei ranging from Be to Pb.

  10. Total cross section of neutron-proton scattering at low energies in quark-gluon model

    E-Print Network [OSTI]

    V. A. Abramovsky; N. V. Radchenko

    2011-07-30T23:59:59.000Z

    We show that analysis of nonrelativistic neutron-proton scattering in a framework of relativistic QCD based quark model can give important information about QCD vacuum structure. In this model we describe total cross section of neutron-proton scattering at kinetic energies of projectile neutron from 1 eV up to 1 MeV.

  11. Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated

    E-Print Network [OSTI]

    Wang, Howard "Hao"

    Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated online: Abstract We report small angle neutron scattering (SANS) from dilute suspensions of purified University, Houghton, MI 49931, USA e NIST Center for Neutron Research, National Institute of Standards

  12. American Conference on Neutron Scattering M4-C4 (5:15 pm)

    E-Print Network [OSTI]

    Danon, Yaron

    50 American Conference on Neutron Scattering M4-C4 (5:15 pm) aCORN: A New MeasurementBeamlineatSnS.Inthistalk,theprinciple oftheexperiment,andthestatusofongoingR&d willbereviewedanddiscussed. M4-C6 (5:45 pm) Neutron-proton Scattering of the Electron- antineutrino Correlation Coefficient in Neutron Decay M. Leuschner (Indiana University Cyclotron

  13. NEUTRON SCATTERING SHOWS THAT CYTOCHROME b5 PENETRATES DEEPLY INTO THE LIPID BILAYER

    E-Print Network [OSTI]

    NEUTRON SCATTERING SHOWS THAT CYTOCHROME b5 PENETRATES DEEPLY INTO THE LIPID BILAYER E. P. GOGOL to lipid vesicles using neutron small-angle scattering methods. To increase scat- tering contrast between of a highly deuterated phospholipid. Small-angle neutron diffraction patterns were collected in a series of H

  14. Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthr

    E-Print Network [OSTI]

    Boyer, Edmond

    663 Small angle neutron scattering (SANS) under non-equilibrium conditions R. C. Oberthür Institut with the times obtained from quasi- elastic neutron and light scattering, which yield information about neutrons aux petits angles (DNPA) pour l'étude des systèmes hors d'équi- libre thermodynamique est

  15. Some major achievements of the Doster group (Bioneutron Scattering) F. Post, F. Demmel, M. Bachleitner, M. Settles, M. Diehl, R. Gebhardt, A.M. Gaspar, M. S.

    E-Print Network [OSTI]

    Doster, Wolfgang

    , H. Leyser.. Many neutron scattering experiments of proteins, were first performed by the Munich). 1988-1989: First wide temperature-, wide frequency-, wide Q- range inelastic neutron scattering study and the elastic scattering function of alanine peptide and MD simulations (with Smith Kneller) Dynamic neutron

  16. Synaptic Arrangement of the Neuroligin/b-Neurexin ComplexRevealedbyX-RayandNeutronScattering

    E-Print Network [OSTI]

    Sandini, Giulio

    Structure Article Synaptic Arrangement of the Neuroligin/b-Neurexin ComplexRevealedbyX-RayandNeutronScattering away from the dimer in- terface. X-ray scattering and neutron contrast variation data show that two that associate with their presynaptic part- ners, the neurexins. Using small-angle X-ray scattering, we

  17. Solvent Entrainment in and Flocculation of Asphaltenic Aggregates Probed by Small-Angle Neutron Scattering

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    -Angle Neutron Scattering Keith L. Gawrys, George A. Blankenship, and Peter K. Kilpatrick* Department of ChemicalVed September 14, 2005. In Final Form: January 30, 2006 While small-angle neutron scattering (SANS) has proven to the scattering intensity curves were performed using the Guinier approximation, the Ornstein- Zernike (or Zimm

  18. A High Count Rate Neutron Beam Monitor for Neutron Scattering Facilities

    SciTech Connect (OSTI)

    Barnett, Amanda [University of Tennessee, Knoxville (UTK); Crow, Lowell [ORNL; Diawara, Yacouba [ORNL; Hayward, J P [University of Tennessee, Knoxville (UTK); Hayward, Jason P [ORNL; Menhard, Kocsis [European Synchrotron Radiation Facility (ESRF); Sedov, Vladislav N [ORNL; Funk, Loren L [ORNL

    2013-01-01T23:59:59.000Z

    Abstract Beam monitors are an important diagnostic tool in neutron science facilities. Present beam monitors use either ionization chambers in integration mode, which are slow and have no timing information, or pulse counters which can easily be saturated by high beam intensities. At high flux neutron scattering facilities, neutron beam monitors with very low intrinsic efficiency (10-5) are presently selected to keep the counting rate within a feasible range, even when a higher efficiency would improve the counting statistics and yield a better measurement of the incident beam. In this work, we report on a high count rate neutron beam monitor. This beam monitor offers good timing with an intrinsic efficiency of 10-3 and a counting rate capability of over 1,000,000 cps without saturation.

  19. Single-spin Azimuthal Asymmetries in Electroproduction of Neutral Pions in Semi-inclusive Deep-inelastic Scattering

    E-Print Network [OSTI]

    Airapetian, A; Amarian, M; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baturin, V; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouhali, O; Bouwhuis, M; Brack, J; Brauksiepe, S; Brückner, W; Brüll, A; Brunn, I; Bulten, H J; Capitani, G P; Chumney, P; Cisbani, E; Ciullo, G; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Ehrenfried, M; Elbakian, G M; Ellinghaus, F; Ely, J; Fantoni, A; Feshchenko, A; Felawka, L; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Iarygin, G; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krauss, B; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Liebing, P; Lindemann, T; Lorenzon, W; Maas, A; Makins, N C R; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; Meissner, F; Menden, F; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; Oganesyan, K A; O'Neill, T G; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Raithel, M; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sanjiev, I; Sato, F; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Taroian, S P; Terkulov, A R; Teryaev, O V; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Yen, S; Yoneyama, S; Zohrabyan, H G

    2000-01-01T23:59:59.000Z

    A single-spin asymmetry in the azimuthal distribution of neutral pions relative to the lepton scattering plane has been measured for the first time in deep-inelastic scattering of positrons off longitudinally polarized protons. The analysing power in the sin(phi) moment of the cross section is 0.019 +/- 0.007(stat.) +/- 0.003(syst.). This result is compared to single-spin asymmetries for charged pion production measured in the same kinematic range. The pi^0 asymmetry is of the same size as the pi^+ asymmetry and shows a similar dependence on the relevant kinematic variables. The asymmetry is described by a phenomenological calculation based on a fragmentation function that represents sensitivity to the transverse polarization of the struck quark.

  20. New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    E-Print Network [OSTI]

    K. B. Grammer; R. Alarcon; L. Barrón-Palos; D. Blyth; J. D. Bowman; J. Calarco; C. Crawford; K. Craycraft; D. Evans; N. Fomin; J. Fry; M. Gericke; R. C. Gillis; G. L. Greene; J. Hamblen; C. Hayes; S. Kucuker; R. Mahurin; M. Maldonado-Velázquez; E. Martin; M. McCrea; P. E. Mueller; M. Musgrave; H. Nann; S. I. Penttilä; W. M. Snow; Z. Tang; W. S. Wilburn

    2015-04-24T23:59:59.000Z

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function $g(r)$ inferred from neutron scattering measurements of the differential cross section $d\\sigma \\over d\\Omega$ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.

  1. A scaler-based data acquisition system for measuring parity-violating asymmetry in deep inelastic scattering

    SciTech Connect (OSTI)

    Subedi, Ramesh R. [Virginia U.; Wang, Diancheng [Virginia U.; Pan, Kai [MIT; Deng, Xiaoyan [Virginu U.; Michaels, Robert W. [JLAB; Shahinyan, Albert [Yerevan Institute; Wojtsekhowski, Bogdan B. [JLAB; Zheng, Xiaochao [JLAB

    2013-10-01T23:59:59.000Z

    An experiment that measured the parity violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10^-4 level needed to be measured at event rates up to 500 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: The pion contamination in the electron samples was controlled at the order of 2 × 10^-4 or below with an electron efficiency of higher than 91% throughout the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.2%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.

  2. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect (OSTI)

    Wang, Diancheng [UVA

    2013-12-01T23:59:59.000Z

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q{sup 2} values of 1.1 and 1.9 (GeV/c){sup 2}. The asymmetry at Q{sup 2}=1.9 (GeV/c){sup 2} can be used to extract the weak coupling combination 2C{sub 2u} - C{sub 2d}, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q{sup 2} values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A{sub PV} data in the resonance region beyond the {Delta}#1;(1232). They provide evidence that the quark hadron duality works for A{sub PV} at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  3. Safety & Security Guidelines Annual U.S. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Safety & Security Guidelines 15th Annual U.S. National School on Neutron and X-ray Scattering-574-4600. Neutron Sciences User Programs and Outreach Office Oak Ridge National Laboratory #12;

  4. Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors

    E-Print Network [OSTI]

    Liu, Dazhi

    Small-angle neutron scattering (SANS) is the most significant neutron technique in terms of impact on science and engineering. However, the basic design of SANS facilities has not changed since the technique’s inception ...

  5. The bound coherent neutron scattering length of the oxygen isotopes

    SciTech Connect (OSTI)

    Fischer, Henry E [Institut Laue-Langevin (ILL); Simonson, J Michael {Mike} [ORNL; Neuefeind, Joerg C [ORNL; Lemmel, Hartmut [Technical University Vienna; Rauch, Helmut [E141 Atominstitut der Österreichischen Universitäten,; Zeidler, Anita [University of Bath; Salmon, Phil [University of Bath

    2012-01-01T23:59:59.000Z

    The technique of neutron interferometry was used to measure the bound coherent neutron scattering length bcoh of the oxygen isotopes 17O and 18O. From the measured difference in optical path between two water samples, either H2 17O or H2 18O versus H2 natO, where nat denotes the natural isotopic composition, we obtain bcoh , 17O = 5.867(4) fm and bcoh , 18O = 6.009(5) fm, based on the accurately known value of bcoh , natO = 5.805(4) fm which is equal to bcoh , 16O within the experimental uncertainty. Our results for bcoh , 17O and bcoh , 18O differ appreciably from the standard tabulated values of 5.6(5) fm and 5.84(7) fm, respectively. In particular, our measured scattering length contrast of 0.204(3) fm between 18O and natO is nearly a factor of 6 greater than the tabulated value, which renders feasible neutron diffraction experiments using 18O isotope substitution and thereby offers new possibilites for measuring the partial structure factors of oxygen-containing compounds, such as water.

  6. Electron Scattering From High-Momentum Neutrons in Deuterium

    SciTech Connect (OSTI)

    A.V. Klimenko; S.E. Kuhn

    2005-10-12T23:59:59.000Z

    We report results from an experiment measuring the semi-inclusive reaction D(e,e'p{sub s}) where the proton p{sub s} is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W*, backward proton momentum {rvec p}{sub s} and momentum transfer Q{sup 2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ''bound neutron structure function'' F{sub 2n}{sup eff} was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where effects of FSI appear to be smaller. For p{sub s} > 400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F{sub 2n}{sup eff} in the region of x* between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  7. Electron Scattering From High-Momentum Neutrons in Deuterium

    E-Print Network [OSTI]

    A. V. Klimenko; S. E. Kuhn; for the CLAS collaboration

    2005-10-12T23:59:59.000Z

    We report results from an experiment measuring the semi-inclusive reaction $d(e,e'p_s)$ where the proton $p_s$ is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass $W^{*}$, backward proton momentum $\\vec{p}_{s}$ and momentum transfer $Q^{2}$. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' $F_{2n}^{eff}$ was extracted as a function of $W^{*}$ and the scaling variable $x^{*}$ at extreme backward kinematics, where effects of FSI appear to be smaller. For $p_{s}>400$ MeV/c, where the neutron is far off-shell, the model overestimates the value of $F_{2n}^{eff}$ in the region of $x^{*}$ between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.

  8. Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction

    E-Print Network [OSTI]

    Maikel C. Rheinstädter; Tilo Seydel; Tim Salditt

    2006-07-20T23:59:59.000Z

    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times $\\tau$, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics.

  9. Precision Measurement of the n-3He Incoherent Scattering Length Using Neutron Interferometry

    E-Print Network [OSTI]

    M. G. Huber; M. Arif; T. C. Black; W. C. Chen; T. R. Gentile; D. S. Hussey; D. Pushin; F. E. Wietfeldt; L. Yang

    2009-05-12T23:59:59.000Z

    We report the first measurement of the low-energy neutron-$^3$He incoherent scattering length using neutron interferometry: $b_i' = (-2.512\\pm 0.012{statistical}\\pm0.014{systematic})$ fm. This is in good agreement with a recent calculation using the AV18+3N potential. The neutron-$^3$He scattering lengths are important for testing and developing nuclear potential models that include three nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.

  10. 11th LANSCE School on Neutron Scattering | Free-Day Excursion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Integrated Nanotechnologies Bandelier Cave dwelling at Bandelier National Monument... - Image courtesy of J. Rhyne (former LANSCE School on Neutron Scattering Co-Director)...

  11. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources...

  12. Lambda-Neutron Scattering Lengths from Radiative K-minus Capture

    E-Print Network [OSTI]

    W. R. Gibbs; S. A. Coon; H. K. Han; B. F. Gibson

    2000-01-02T23:59:59.000Z

    Radiative capture of the K-minus by the deuteron as a reaction for measurement of the Lambda-neutron scattering lengths. The use of spin information to separate the singlet and triplet scattering lengths is treated.

  13. A system for differential neutron scattering experiments in the energy range from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    A system for differential neutron scattering experiments in the energy range from 0.5 to 20 MeV F 2010 Accepted 15 April 2010 Available online 27 May 2010 Keywords: Scattering Neutron Benchmark dependent scattered neutron distributions. Scattering measurements were performed on carbon and molybdenum

  14. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Cold Neutron Triple-Axis Spectrometer CallforProposals neutrons.ornl.gov Neutron Scattering Science Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EDT, (NOON

  15. Comparison of collimation systems for small-angle neutron scattering

    SciTech Connect (OSTI)

    Seeger, P.A.

    1985-01-01T23:59:59.000Z

    It is shown by simple first-order geometric arguments that for a given resolution, the flux on sample in a small-angle scattering instrument is independent of the form of the collimator or of the length of the instrument. Count rate may be increased by increasing the sample size, through the use of multi-aperture systems. In second order, it is shown to be advantageous to place the beam defining elements as close as possible to the source and the sample. The multiple-pinhole system gives maximum flux on small samples but has non-uniform illumination so that intensity increases only about half as fast as sample area. Soller slits and continuous tubes from source to sample were also considered, but neutron scattering and reflection from surfaces generate a large halo. Monte-Carlo simulations confirm these results, with the conclusion that the optimum collimator configuration is the multiple-pinhole system. 4 refs., 4 figs.

  16. Inelastic x-ray scattering study of supercooled liquid and solid silicon.

    SciTech Connect (OSTI)

    Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

    2006-01-01T23:59:59.000Z

    Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

  17. Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n? ( e,e' pi{sup +}) X at Jefferson Lab

    SciTech Connect (OSTI)

    Kalyan Allada

    2010-06-01T23:59:59.000Z

    What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets. The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n?(e, e??{sup ±}/K{sup ±})X using transversely polarized {sup 3}He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q{sup 2} = 1.77 to 2.73 (GeV/c){sup 2}. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u and d-quarks in the valence region. In this work we report on the single spin asymmetries in the SIDIS n?(e, e??{sup +})X reaction.

  18. A New Measurement of the 1S0 Neutron-Neutron Scattering Length using the Neutron-Proton Scattering Length as a Standard

    E-Print Network [OSTI]

    D. E. Gonzalez Trotter; F. Salinas; Q. Chen; A. S. Crowell; W. Gloeckle; C. R. Howell; C. D. Roper; D. Schmidt; I. Slaus; H. Tang; W. Tornow; R. L. Walter; H. Witala; Z. Zhou

    1999-08-11T23:59:59.000Z

    The present paper reports high-accuracy cross-section data for the 2H(n,nnp) reaction in the neutron-proton (np) and neutron-neutron (nn) final-state-interaction (FSI) regions at an incident mean neutron energy of 13.0 MeV. These data were analyzed with rigorous three-nucleon calculations to determine the 1S0 np and nn scattering lengths, a_np and a_nn. Our results are a_nn = -18.7 +/- 0.6 fm and a_np = -23.5 +/- 0.8 fm. Since our value for a_np obtained from neutron-deuteron (nd) breakup agrees with that from free np scattering, we conclude that our investigation of the nn FSI done simultaneously and under identical conditions gives the correct value for a_nn. Our value for a_nn is in agreement with that obtained in pion-deuteron capture measurements but disagrees with values obtained from earlier nd breakup studies.

  19. Inelastic scattering in a monolayer graphene sheet: A weak-localization study Dong-Keun Ki, Dongchan Jeong, Jae-Hyun Choi, and Hu-Jong Lee*

    E-Print Network [OSTI]

    Lee, Hu-Jong

    ,7 II. SAMPLE PREPARATION AND MEASUREMENTS A monolayer graphene sheet used in this study was meInelastic scattering in a monolayer graphene sheet: A weak-localization study Dong-Keun Ki in a graphene sheet, a single layer of graphite, exhibit distinct characteristics from those in other two

  20. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Y X; Wang, Y; Allada, K; Aniol, K; Annand, J R; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A; Dutta, C; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2014-11-01T23:59:59.000Z

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  1. Measurement of pretzelosity asymmetry of charged pion production in Semi-Inclusive Deep Inelastic Scattering on a polarized 3He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y; Qian, X; Allada, K; Dutta, C; Huang, J; Katich, J; Wang, Y; Aniol, K; Annand, J R.; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C.; Bosted, P; Camsonne, A; Canan, M; Cates, G D.; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C.; Cusanno, F; Dalton, M M.; Deconinck, W; de Jager, C W.; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A.; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W.; Holmstrom, T; Huang, M; Ibrahim, H F.; Iodice, M; Jiang, X; Jin, G; Jones, M K.; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J.; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J.; Margaziotis, D J.; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E.; Michaels, R; Moffit, B; Mu??oz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J C.; Phillips, S K.; Posik, M; Puckett, A J.; Qiang, Y; Rakhman, A; Ransome, R D.; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H.; ??irca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G.; Tobias, W A.; Urciuoli, G M.; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y -W.; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2014-11-01T23:59:59.000Z

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized 3He target was performed at Jefferson Lab in the kinematic region of 0.16

  2. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    SciTech Connect (OSTI)

    Zhao, Y X; Wang, Y; Allada, K; Aniol, K; Annand, J R; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A; Dutta, C; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2014-11-01T23:59:59.000Z

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  3. Neutron observables from inclusive lepton scattering on nuclei

    SciTech Connect (OSTI)

    Rinat, A. S.; Taragin, M. F. [Weizmann Institute of Science, Department of Particle Physics, Rehovot 76100 (Israel)

    2010-07-15T23:59:59.000Z

    We analyze new data from Thomas Jefferson National Accelerator Facility (JLab) for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3 < or approx. x < or approx. 0.95 show reasonable agreement on a logarithmic scale for all targets. However, closer inspection of the quasielastic components reveals serious discrepancies. European Muon Collaboration (EMC) ratios with conceivably smaller systematic errors fare the same. As a consequence, the new data do not enable the extraction of the magnetic form factor G{sub M}{sup n} and the structure function F{sub 2}{sup n} of the neutron, although the application of exactly the same analysis to older data had been successful. We incorporate in the above analysis older CLAS Collaboration data on F{sub 2}{sup 2H}. Removal of some scattered points from those makes it appear possible to obtain the desired neutron information. We compare our results with others from alternative sources. Special attention is paid to the A=3 isodoublet cross sections and EMC ratios. Present data exist only for {sup 3}He, but the available input in combination with charge symmetry enables computations for {sup 3}H. Their average is the computed isoscalar part and is compared with the empirical modification of {sup 3}He EMC ratios toward a fictitious A=3 isosinglet.

  4. An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering

    E-Print Network [OSTI]

    Huang, Xian-Rong

    2011-01-01T23:59:59.000Z

    The development of medium-energy inelastic X-ray scattering (IXS) optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution IXS spectroscopy.

  5. Probing single magnon excitations in Sr?IrO? using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-05-27T23:59:59.000Z

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr?IrO?, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore »RIXS energy resolutions in the hard X-ray region is usually poor.« less

  6. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO??y

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; Fukuda, T.; Yoshida, M.; Hill, J. P.; Liu, X.; Hiraoka, N.; Tsuei, K. D.; Shamoto, S.

    2012-09-01T23:59:59.000Z

    We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO?.? and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations, which are a prerequisite to the occurrence of these excitations at the ? point, are still present in the superconducting state.

  7. Probing single magnon excitations in Sr?IrO? using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X. [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Brookhaven National Lab. (BNL), Upton, NY (United States); Collaborative Innovation Center of Quantum Matter, Beijing (China); Dean, M. P. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiuzbaian, S. G. [Sorbonne Univ., Paris (France); Synchrotron SOLEIL, Saint-Aubin (France); Jaouen, N. [Synchrotron SOLEIL, Saint-Aubin (France); Nicolaou, A. [Synchrotron SOLEIL, Saint-Aubin (France); Yin, W. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rayan Serrao, C. [Univ. of California, Berkeley, CA (United States); Ramesh, R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ding, H. [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Collaborative Innovation Center of Quantum Matter, Beijing (China); Hill, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27T23:59:59.000Z

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr?IrO?, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  8. The phonon density of states of (alpha) and (delta)-Plutonium by inelastic x-ray scattering

    SciTech Connect (OSTI)

    Manley, M E; Said, A; Fluss, M J; Wall, M; Lashley, J C; Alatas, A; Moore, K T

    2008-10-08T23:59:59.000Z

    Inelastic x-ray scattering measurements of the phonon density of states (DOS) were performed on polycrystalline samples of pure {alpha}-Pu and {delta}-Pu{sub 0.98}Ga{sub 0.02} at room temperature. The heat capacity of {alpha}-Pu is well reproduced by contributions calculated from the measured phonon DOS plus conventional thermal expansion and electronic contributions, showing that {alpha}-Pu is a 'well-behaved' metal in this regard. A comparison of the phonon DOS of the two phases at room temperature surprised us in that the vibrational entropy difference between them is only a quarter of the total entropy difference expected from known thermodynamic measurements. The missing entropy is too large to be accounted for by conventional electronic entropy and evidence from the literature rules out a contribution from spin fluctuations. Possible alternative sources for the missing entropy are discussed.

  9. Neutron Polarisabilities from Deuteron Compton Scattering in \\chiEFT

    E-Print Network [OSTI]

    Harald W. Griesshammer

    2007-10-15T23:59:59.000Z

    Chiral Effective Field Theory is for photon energies up to 200 MeV the tool to accurately determine the polarisabilities of the neutron from deuteron Compton scattering. A multipole analysis reveals that dispersive effects from an explicit Delta(1232) prove in particular indispensable to understand the data at 95 MeV measured at SAL. Simple power-counting arguments derived from nuclear phenomenology lead to the correct Thomson limit and gauge invariance. At next-to-leading order, the static scalar dipole polarisabilities are extracted as identical for proton and neutron within the error-bar of available data: \\alpha^n=11.6\\pm1.5_stat\\pm0.6_Baldin, \\beta^n=3.6\\mp1.5_stat\\pm0.6_Baldin for the neutron, in units of 10^-4 fm^3, compared to \\alpha^p=11.0\\pm1.4_stat\\pm0.4_Baldin, \\beta}^p=2.8\\mp1.4_stat\\pm0.4_Baldin for the proton in the same framework. New experiments e.g. at MAXlab (Lund) will improve the statistical error-bar.

  10. Small angle neutron scattering study of Linde 80 RPV welds

    SciTech Connect (OSTI)

    Wirth, B.D.; Odette, G.R.; Lucas, G.E. [Univ. of California, Santa Barbara, CA (United States). Dept. of Mechanical and Environmental Engineering; Pavinich, W.A. [Framatome Technologies Inc., Knoxville, TN (United States); Spooner, S.E. [Oak Ridge National Lab., TN (United States). Solid state Div.

    1999-10-01T23:59:59.000Z

    Small angle neutron scattering (SANS) results are presented for Linde 80 welds irradiated, as part of the B and W Owners Group Integrated Surveillance Program, at low fluxes (<10{sup 15} n/m{sup 2}-s) to fluences from 0.29 to 3.5 {times} 10{sup 23} n/m{sup 2} (E > 1 MeV) at irradiation temperatures from 276 to 292 C. The welds all contain about 0.6 Ni (all composition units are in wt.%), 0.009 to 0.18 P and 0.05 to 0.28 Cu. In the welds with significant amounts of copper (>0.2 Cu) the measured defect scattering cross sections were consistent with either: (a) copper rich precipitates (CRPs) alloyed with manganese and nickel; or (b) dominant CRP scattering, plus a weak contribution from so-called matrix defect features. Similar weak scattering was observed in a low copper (0.06 Cu) weld. The identity of matrix defect features cannot be determined from the SANS data alone, but the scattering is consistent with the presence of subnanometer vacancy cluster-solute complexes. The general character of the CRPs, and the trends in their number density, volume fraction and average radius as a function of fluence and irradiation temperature, are very similar to those observed in a wide range of pressure vessel-type steels irradiated in test reactors at intermediate to high flux. The SANS data in the surveillance welds is also in unity with: (a) thermodynamic-kinetic radiation enhanced diffusion models of CRP evolution; (b) mechanical property changes, including predictions of the correlations of the surveillance data base; and (c) an atomic scale, atom probe field ion microscopy study into the nanostructure-chemistry of a CRP.

  11. ON QUASI-ELASTIC SCATTERING OF SLOW NEUTRONS IN MOLECULAR LIQUIDS

    E-Print Network [OSTI]

    Boyer, Edmond

    L-317 ON QUASI-ELASTIC SCATTERING OF SLOW NEUTRONS IN MOLECULAR LIQUIDS M. UTSURO Research Reactor de neutrons avec élargissement par rotation moléculaire dans le liquide sont étudiés dans le cadre du du benzène liquide. Abstract. 2014 The rotational broadened quasi-elastic scattering spectrum

  12. Salt-Dependent Compaction of Di-and Trinucleosomes Studied by Small-Angle Neutron Scattering

    E-Print Network [OSTI]

    Langowski, Jörg

    Salt-Dependent Compaction of Di- and Trinucleosomes Studied by Small-Angle Neutron Scattering, Germany, and Institut Laue-Langevin Grenoble, F-38042 Grenoble, France ABSTRACT Using small-angle neutron scattering (SANS), we have measured the salt-dependent static structure factor of di- and trinucleosomes from

  13. Analysis of neutron scattering data: Visualization and parameter estimation

    SciTech Connect (OSTI)

    Beauchamp, J.J.; Fedorov, V.; Hamilton, W.A.; Yethiraj, M.

    1998-09-01T23:59:59.000Z

    Traditionally, small-angle neutron and x-ray scattering (SANS and SAXS) data analysis requires measurements of the signal and corrections due to the empty sample container, detector efficiency and time-dependent background. These corrections are then made on a pixel-by-pixel basis and estimates of relevant parameters (e.g., the radius of gyration) are made using the corrected data. This study was carried out in order to determine whether treatment of the detector efficiency and empty sample cell in a more statistically sound way would significantly reduce the uncertainties in the parameter estimators. Elements of experiment design are shortly discussed in this paper. For instance, we studied the way the time for a measurement should be optimally divided between the counting for signal, background and detector efficiency. In Section 2 we introduce the commonly accepted models for small-angle neutron and x-scattering and confine ourselves to the Guinier and Rayleigh models and their minor generalizations. The traditional approaches of data analysis are discussed only to the extent necessary to allow their comparison with the proposed techniques. Section 3 describes the main stages of the proposed method: visual data exploration, fitting the detector sensitivity function, and fitting a compound model. This model includes three additive terms describing scattering by the sampler, scattering with an empty container and a background noise. We compare a few alternatives for the first term by applying various scatter plots and computing sums of standardized squared residuals. Possible corrections due to smearing effects and randomness of estimated parameters are also shortly discussed. In Section 4 the robustness of the estimators with respect to low and upper bounds imposed on the momentum value is discussed. We show that for the available data set the most accurate and stable estimates are generated by models containing double terms either of Guinier's or Rayleigh's type. The optimal partitioning of the total experimental time between measuring various signals is discussed in Section 5. We applied a straightforward optimization instead of some special experimental techniques because of the numerical simplicity of the corresponding problem. As a criterion of optimality we selected the variance of the gyration radius maximum likelihood estimator. The statistical background of the proposed approach is given in the appendix. The properties of the maximum likelihood estimators and the corresponding iterated estimator together with its possible numerical realization are presented in subsection A.1. In subsection A.2 we prove that the use of a compound model leads to more efficient estimators than a stage-wise analysis of different components entering that model.

  14. Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.; Stock, C. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research; Chi, Songxue [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research; Kolesnikov, A. I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical and Engineering Materials Div.; Xu, Guangyong I. [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.; Gu, Genda [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.; Tranquada, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Condensed Mater Physics and Materials Science Dept.

    2014-10-01T23:59:59.000Z

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  15. Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies

    E-Print Network [OSTI]

    1978-01-01T23:59:59.000Z

    Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies of the Complex-ray and neutron scattering techniques. In this work, we concentrated mainly on radius of gyration analyses and a neutron scattering experiment is performed in 21-Iz0 solvent. This decrease simply reflects the fact

  16. Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering for studying

    E-Print Network [OSTI]

    Kuhl, Tonya L.

    Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering,U , Tonya L. Kuhlb , Joyce Y. Wongc , Gregory S. Smitha,1 a Manuel Lujan Jr. Neutron Scattering Center is defined as the Zratio of the number of particles neutrons or .photons elastically and specularly scattered

  17. PHYSICAL REVIEW C 85, 065503 (2012) Quasielastic scattering in the interaction of ultracold neutrons with a liquid wall and application

    E-Print Network [OSTI]

    Steyerl, Albert

    2012-01-01T23:59:59.000Z

    20 June 2012) We develop a theory of ultracold and very cold neutron scattering on viscoelastic-order approach to quasielastic UCN and very cold neutron (VCN) scattering and loss at a liquid wall. This allowed is organized as follows. In Sec. II we describe the basics of neutron quasielastic scattering by thermally

  18. Models to analyze small-angle neutron scattering from unilamellar lipid vesicles Norbert Kucerka* and John F. Nagle

    E-Print Network [OSTI]

    Nagle, John F.

    Models to analyze small-angle neutron scattering from unilamellar lipid vesicles Norbert Kucerka from small-angle neutron scattering of unilamellar vesicles. DOI: 10.1103/PhysRevE.69.051903 PACS discrete diffraction peaks that occur for multilamellar arrays, the scattering of x rays or neutrons from

  19. Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute poly((2edimethylamino)ethyl methacrylate) solutions

    E-Print Network [OSTI]

    Kofinas, Peter

    Small angle neutron scattering study of deuterated sodium dodecylsulfate micellization in dilute 2010 Keywords: Poly((2edimethylamino)ethyl methacrylate) Micelle Small angle neutron scattering a b angle neutron scattering. We found three transitions of the poly ((2edimethylamino)ethyl methacrylate

  20. Los Alamos National Laboratory | Science and people highlights from the Lujan Neutron Scattering Center at LANSCE CENTER SCIENCE & PEOPLE

    E-Print Network [OSTI]

    Los Alamos National Laboratory | Science and people highlights from the Lujan Neutron Scattering tuning: a new approach for making zero thermal expansion materials 8 Neutron scattering enables- Preferred Orientation beamline at the Los Ala- mos Neutron Scattering Center. In the back- ground

  1. HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations

    E-Print Network [OSTI]

    Nagle, John F.

    HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899, United States d CHESS, Cornell

  2. What's wrong with the field of bio-neutron scattering? 1) Not enough professional science and not enough professional scientists

    E-Print Network [OSTI]

    Doster, Wolfgang

    What's wrong with the field of bio-neutron scattering? 1) Not enough professional science a paper in this field. Anybody can do it! The most detailed analysis of bio-neutron scattering data up independent moment analysis of the neutron scattering spectrum. Up to today nobody, not even MD people, picked

  3. Neutron scattering Materials research for modern life Almost all of the major changes in our society, the dramatic

    E-Print Network [OSTI]

    Crowther, Paul

    Neutron scattering Materials research for modern life #12;Almost all of the major changes in our scattering experiments, materials are exposed to intense beams of neutrons inside specialised instruments that neutron scattering science contributes to our lives. Because of the collaborative nature of modern

  4. A View of Dynamics Changes in the Molten Globule-native Folding Step by Quasielastic Neutron Scattering

    E-Print Network [OSTI]

    dynamics that occur in the ®nal stages of protein folding, we have used neutron scattering to probe- lastic neutron scattering (IQNS). The IQNS results show length scale dependent, pico-second dynamics neutron scattering; a-lactalbumin*Corresponding author Introduction Proteins can form collapsed, partially

  5. Quasi-differential neutron scattering from 238 U from 0.5 to 20 MeV

    E-Print Network [OSTI]

    Danon, Yaron

    Quasi-differential neutron scattering from 238 U from 0.5 to 20 MeV A.M. Daskalakis a, , R Measurement Neutron scattering Time-of-flight experiment Benchmark a b s t r a c t The Rensselaer Polytechnic scattering sample 30 m from the source. Eight liquid scintillator (EJ-301) proton recoil fast neutron

  6. J. Mol. Biol. (1975) 91, 101-120 A Neutron Scattering Study of the Distribution of Protein

    E-Print Network [OSTI]

    J. Mol. Biol. (1975) 91, 101-120 A Neutron Scattering Study of the Distribution of Protein and RNA coli have been measured by neutron scattering experiments on the intact subunit. In addition the radius, 1972; Lutter et al., 1972), and neutron scattering (Engelman & Moore, 1972; Moore et al., 1974

  7. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Spectrometer (ARCS) CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak Ridge National Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON

  8. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574Proposals neutrons.ornl.gov Neutron Scattering Science - Oak Ridge National Laboratory Due March 6, 2013 #12; Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON

  9. A combined analysis of SLAC experiments on deep inelastic e-p and e-d scattering

    SciTech Connect (OSTI)

    Whitlow, L.W. (Stanford Univ., CA (United States)); Bodek, A.; deBarbaro, P.; Dasu, S.; Harada, H.; Krasny, M.W.; Lang, K.; Riordan, E.M. (Rochester Univ., NY (United States)); Rock, S.; Arnold, R.; Benton, D.; Bosted, P.; Button-Shafer, J.; deChambrier, G.; Clogher, L.; Lung, A.; Szalata, Z.M. (American Univ., Washington, DC (United States)); Alster, J. (Tel Aviv Univ. (Israel)); Debebe, B.; Hicks, R. (Massach

    1989-08-01T23:59:59.000Z

    We report recent work on the extraction of R = {sigma}{sub L}/{sigma}{sub T} and the structure function F{sub 2} over a large kinematic range, which is based on a reanalysis of deep inelastic {var epsilon} {minus} p and {var epsilon} {minus} d scattering cross sections measured at SLAC between 1970 and 1985. All these data were corrected for radiative effects using improved versions of external and internal radiative correction procedures. The data from seven individual experiments were normalized to those from the recent high-precision SLAC experiment E140. We find that R{sub p} = R{sub d}, as expected in QCD. The value of R is higher than predicted by QCD even when target-mass effects are included. This difference indicates that additional dynamical higher-twist effects may be present. The structure functions F{sub 2}p and F{sub 2}d were also extracted from the full data sets of normalized cross sections using an empirical fit to R. These structure functions were then compared with data from the CERN muon scattering experiments BCDMS and EMC. We find that our data are consistent with the EMC data, if the latter are multiplied by a normalization factor of 1.07. No single, uniform normalization factor can be applied to the BCDMS data that will bring them into agreement with the SLAC data in the region of overlap.

  10. A combined analysis of SLAC experiments on deep inelastic e-p and e-d scattering

    SciTech Connect (OSTI)

    Whitlow, L.W. [Stanford Univ., CA (United States); Bodek, A.; deBarbaro, P.; Dasu, S.; Harada, H.; Krasny, M.W.; Lang, K.; Riordan, E.M. [Rochester Univ., NY (United States); Rock, S.; Arnold, R.; Benton, D.; Bosted, P.; Button-Shafer, J.; deChambrier, G.; Clogher, L.; Lung, A.; Szalata, Z.M. [American Univ., Washington, DC (United States); Alster, J. [Tel Aviv Univ. (Israel); Debebe, B.; Hicks, R. [Massachusetts Univ., Amherst, MA (United States); Dietrich, F.; Van Bibber, K. [Lawrence Livermore National Lab., CA (United States); Filippone, B.; Jourdan, J.; Milner, R.; McKeown, R.; Potterveld, D.; Walker, R.C. [California Inst. of Tech., Pasadena, CA (United States); Gearhart, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Para, A. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1989-08-01T23:59:59.000Z

    We report recent work on the extraction of R = {sigma}{sub L}/{sigma}{sub T} and the structure function F{sub 2} over a large kinematic range, which is based on a reanalysis of deep inelastic {var_epsilon} {minus} p and {var_epsilon} {minus} d scattering cross sections measured at SLAC between 1970 and 1985. All these data were corrected for radiative effects using improved versions of external and internal radiative correction procedures. The data from seven individual experiments were normalized to those from the recent high-precision SLAC experiment E140. We find that R{sub p} = R{sub d}, as expected in QCD. The value of R is higher than predicted by QCD even when target-mass effects are included. This difference indicates that additional dynamical higher-twist effects may be present. The structure functions F{sub 2}p and F{sub 2}d were also extracted from the full data sets of normalized cross sections using an empirical fit to R. These structure functions were then compared with data from the CERN muon scattering experiments BCDMS and EMC. We find that our data are consistent with the EMC data, if the latter are multiplied by a normalization factor of 1.07. No single, uniform normalization factor can be applied to the BCDMS data that will bring them into agreement with the SLAC data in the region of overlap.

  11. Review of Indirect Methods Used to Determine the $^1S_0$ Neutron-Neutron Scattering Length

    E-Print Network [OSTI]

    C. R. Howell

    2008-05-08T23:59:59.000Z

    We have determined a value for the $^1S_0$ neutron-neutron scattering length ($a_{nn}$) from high-precision measurements of time-of-flight spectra of neutrons from the $^2H(\\pi^-,n \\gamma)n$ capture reaction. The measurements were done at the Los Alamos Meson Physics Facility by the E1286 collaboration. The high spatial resolution of our gamma-ray detector enabled us to make a detailed assessment of the systematic uncertainties in our techniques. The value obtained in the present work is $a_{nn} = -18$.63 $\\pm $0.10 (statistical) $\\pm$ 0.44 (systematic) $\\pm$ 0.30 (theoretical) fm. This result is consistent with previous determinations of $a_{nn}$ from the $\\pi^-d$ capture reaction. We found that the analysis of the data with calculations that use a relativistic phase-space factor gives a more negative value for $a_{nn}$ by 0.33 fm over the analysis done using a nonrelativistic phase-space factor. Combining the present result with the previous ones from $\\pi^-d$ capture gives: $a_{nn} = - 18$.63 $\\pm$ 0.27 (expt) $\\pm$ 0.30 fm (theory). For the first time the combined statistical and systematic experimental uncertainty in $a_{nn}$ is smaller than the theoretical uncertainty and comparable to the uncertainty in the proton-proton $^1S_0$ scattering length ($a_{pp}$). This average value of $a_{nn}$ when corrected for the magnetic-moment interaction of the two neutrons becomes -18.9 $\\pm$ 0.4 fm which is 1.6 $\\pm$ 0.5 fm different from the recommended value of $a_{pp}$, thereby confirming charge symmetry breaking at the 1% confidence level.

  12. Determination of the effective parameters of proton-$^{3}$He scattering on the basis of the neutron-triton scattering data

    E-Print Network [OSTI]

    V. P. Levashev

    2008-12-22T23:59:59.000Z

    We have studied the relations between the neutron-triton scattering lengths and effective ranges and the corresponding quantities for the p --$^{3}$He scattering in the framework of the potential model with an effective nucleon-nucleus interaction in the form of a $\\delta $-shell potential. It is shown that the Coulomb renormalization of the pure nuclear scattering lengths does not change the relation well established for the n + $^{3}$H system between the lengths: $A^{1} scattering lengths which give preference to set I of the phase analysis performed by E.A. George et al. (2003), which corresponds to the inequality $A^{1}_{nc} scattering lengths.

  13. Static light scattering and small-angle neutron scattering study on aggregated recombinant gelatin in aqueous solution

    E-Print Network [OSTI]

    Sutter, Marc

    2006-10-25T23:59:59.000Z

    Static Light Scattering and Small-Angle Neutron Scattering Study on Aggregated Recombinant Gelatin in Aqueous Solution A. Ramzi 1, M. Sutter 2, W.E. Hennink 1, W. Jiskoot 1,2 1 Department of Pharmaceutics, UIPS, Utrecht University, The Netherlands...-angle neutron scattering (SANS) for detecting aggregation of recombinant gelatin in aqueous solution and to obtain structural information about the aggregates. Recombinant Gelatin: RG-15-His 5.6Ser 25.2Pro 1.9Lys 3.7His 34.2Gly 15.5Gln 5.2Glu 11.8Asn 1.2Ala...

  14. Neutrino Scattering in a Newly Born Neutron Star

    E-Print Network [OSTI]

    Sanjay Reddy; Madappa Prakash

    1996-10-16T23:59:59.000Z

    We calculate neutrino cross sections from neutral current reactions in the dense matter encountered in the evolution of a newly born neutron star. Effects of composition and of strong interactions in the deleptonization and cooling phases of the evolution are studied. The influence of the possible presence of strangeness-rich hyperons on the neutrino scattering cross sections is explored. Due to the large vector couplings of the Sigma-minus and Cascade-minus, |C_V|~2, these particles, if present in protoneutron star matter, give significant contributions to neutrino scattering. In the deleptonization phase, the presence of strangeness leads to large neutrino energies, which results in large enhancements in the cross sections compared to those in matter with nucleons only. In the cooling phase, in which matter is nearly neutrino free, the response of the Sigma-minus hyperons to thermal neutrinos is the most significant. Neutrinos couple relatively weakly to the Lambda hyperons and, hence, their contributions are significant only at high density.

  15. Compton Scattering from the Deuteron and Extracted Neutron Polarizabilities

    E-Print Network [OSTI]

    M. Lundin; J. -O. Adler; M. Boland; K. Fissum; T. Glebe; K. Hansen; L. Isaksson; O. Kaltschmidt; M. Karlsson; K. Kossert; M. I. Levchuk; P. Lilja; B. Lindner; A. I. L'vov; B. Nilsson; D. E. Oner; C. Poech; S. Proff; A. Sandell; B. Schröder; M. Schumacher; D. A. Sims

    2003-06-13T23:59:59.000Z

    Differential cross sections for Compton scattering from the deuteron were measured at MAX-lab for incident photon energies of 55 MeV and 66 MeV at nominal laboratory angles of $45^\\circ$, $125^\\circ$, and $135^\\circ$. Tagged photons were scattered from liquid deuterium and detected in three NaI spectrometers. By comparing the data with theoretical calculations in the framework of a one-boson-exchange potential model, the sum and difference of the isospin-averaged nucleon polarizabilities, $\\alpha_N + \\beta_N = 17.4 \\pm 3.7$ and $\\alpha_N - \\beta_N = 6.4 \\pm 2.4$ (in units of $10^{-4}$ fm$^3$), have been determined. By combining the latter with the global-averaged value for $\\alpha_p - \\beta_p$ and using the predictions of the Baldin sum rule for the sum of the nucleon polarizabilities, we have obtained values for the neutron electric and magnetic polarizabilities of $\\alpha_n= 8.8 \\pm 2.4$(total) $\\pm 3.0$(model) and $\\beta_n = 6.5 \\mp 2.4$(total) $\\mp 3.0$(model), respectively.

  16. Inelastic scattering and current saturation in graphene Vasili Perebeinos* and Phaedon Avouris

    E-Print Network [OSTI]

    Perebeinos, Vasili

    . The discrepancy is due to the self-heating effect which lowers substantially the value of the saturated velocity about the role of self-heating and elastic scattering on the current satu- ration. High bias find that the self-heating of graphene on SiO2 limits significantly the value of the saturated current

  17. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect (OSTI)

    Häussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching, Germany and Physik-Department E21, Technische Universität München, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universität München, D-85748 Garching (Germany)

    2014-05-15T23:59:59.000Z

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  18. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions in Extremes Planning and logistic support is provided by: Los Alamos Neutron Science Center New Mexico State University Los Alamos Neutron Science Center New...

  19. Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction $^{3}\\mathrm{He}^{\\uparrow}(e,e')X$

    E-Print Network [OSTI]

    J. Katich; X. Qian; Y. X. Zhao; K. Allada; K. Aniol; J. R. M. Annand; T. Averett; F. Benmokhtar; W. Bertozzi; P. C. Bradshaw; P. Bosted; A. Camsonne; M. Canan; G. D. Cates; C. Chen; J. -P. Chen; W. Chen; K. Chirapatpimol; E. Chudakov; E. Cisbani; J. C. Cornejo; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; R. De Leo; X. Deng; A. Deur; H. Ding; P. A. M. Dolph; C. Dutta; D. Dutta; L. El Fassi; S. Frullani; H. Gao; F. Garibaldi; D. Gaskell; S. Gilad; R. Gilman; O. Glamazdin; S. Golge; L. Guo; D. Hamilton; O. Hansen; D. W. Higinbotham; T. Holmstrom; J. Huang; M. Huang; H. F. Ibrahim; M. Iodice; X. Jiang; G. Jin; M. K. Jones; A. Kelleher; W. Kim; A. Kolarkar; W. Korsch; J. J. LeRose; X. Li; Y. Li; R. Lindgren; N. Liyanage; E. Long; H. -J. Lu; D. J. Margaziotis; P. Markowitz; S. Marrone; D. McNulty; Z. -E. Meziani; R. Michaels; B. Moffit; C. Mu?oz Camacho; S. Nanda; A. Narayan; V. Nelyubin; B. Norum; Y. Oh; M. Osipenko; D. Parno; J. C. Peng; S. K. Phillips; M. Posik; A. J. R. Puckett; Y. Qiang; A. Rakhman; R. D. Ransome; S. Riordan; A. Saha; B. Sawatzky; E. Schulte; A. Shahinyan; M. H. Shabestari; S. Širca; S. Stepanyan; R. Subedi; V. Sulkosky; L. -G. Tang; A. Tobias; G. M. Urciuoli; I. Vilardi; K. Wang; Y. Wang; B. Wojtsekhowski; X. Yan; H. Yao; Y. Ye; Z. Ye; L. Yuan; X. Zhan; Y. Zhang; Y. -W. Zhang; B. Zhao; X. Zheng; L. Zhu; X. Zhu; X. Zong

    2014-08-04T23:59:59.000Z

    We report the first measurement of the target-normal single-spin asymmetry in deep-inelastic scattering from the inclusive reaction $^3$He$^{\\uparrow}\\left(e,e' \\right)X$ on a polarized $^3$He gas target. Assuming time-reversal invariance, this asymmetry is strictly zero in the Born approximation but can be non-zero if two-photon-exchange contributions are included. The experiment, conducted at Jefferson Lab using a 5.89 GeV electron beam, covers a range of $1.7 2$ GeV, which is non-zero at the $2.89\\sigma$ level. Our measured asymmetry agrees both in sign and magnitude with a two-photon-exchange model prediction that uses input from the Sivers transverse momentum distribution obtained from semi-inclusive deep-inelastic scattering.

  20. Beam-Target Double-Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.4

    E-Print Network [OSTI]

    Huang, Jin

    We report the first measurement of the double-spin asymmetry A[subscript LT] for charged pion electroproduction in semi-inclusive deep-inelastic electron scattering on a transversely polarized [superscript 3]He target. The ...

  1. Current Status and Future Works of Neutron Scattering Laboratory at BATAN in Serpong

    SciTech Connect (OSTI)

    Ikram, A. [Center of Technology for Nuclear Industrial Materials, National Nuclear Energy Agency of Indonesia (BATAN) Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia)

    2008-03-17T23:59:59.000Z

    Current status of neutron beam instruments using neutrons produced by the Multi Purpose Research Reactor--30MWth (MPR 30, RSG GA Siwabessy) located in Serpong is presented. Description of the reactor as the neutron source is mentioned briefly. There are six neutron beam tubes coming from the beryllium reflector surrounding half of the reactor core providing neutrons in the experimental hall of the reactor (XHR). Four of them are dedicated to R and D in materials science using neutron scattering techniques. Neutron Radiography Facility (NRF), Triple Axis Spectrometer (TAS) and Residual Stress Measurement (RSM) Diffractometer are installed respectively at beam tubes S2, S4 and S6. The largest neutron beam tube (S5) is exploited to accommodate two neutron guide tubes that transfer the neutrons to a neighbouring building called neutron guide hall (NGH). There are three other neutron beam instruments installed in this building, namely Small Angle Neutron Scattering (SANS) Spectrometer (SMARTer), High Resolution SANS (HRSANS) Spectrometer and High Resolution Powder Diffractometer (HRPD). In the XHR, a Four Circle and Texture Diffractometer (FCD/TD) is attached to one of the neutron guide tubes. These seven instruments were installed to utilize the neutrons for materials science research, and recently the RSM diffractometer has shown its capabilities in identifying different amount of stress left due to different treatments of welding in fuel cladding, while the SANS spectrometer is now gaining capabilities in identifying different sizes and shapes of macromolecules in polymers as well as investigations of magnetic samples. In the mean time, non-destructive tests using the NRF is gathering more confidence from some latest real time measurements eventhough there are still some shortcomings in the components and their alignments. Future works including improvement of each facility and its components, even replacement of some parts are necessary and have to be carried out carefully. A plan for developing a neutron reflectometer at one of the neutron guide in the Neutron Guide Hall is also part of the near future activities.

  2. Subleading-twist effects in single-spin asymmetries in semi-inclusive deep-inelastic scattering on a longitudinally polarized hydrogen target

    E-Print Network [OSTI]

    The HERMES Collaboration; A. Airapetian; :

    2005-06-19T23:59:59.000Z

    Single-spin asymmetries in the semi-inclusive production of charged pions in deep-inelastic scattering from transversely and longitudinally polarized proton targets are combined to evaluate the subleading-twist contribution to the longitudinal case. This contribution is significantly positive for (\\pi^+) mesons and dominates the asymmetries on a longitudinally polarized target previously measured by \\hermes. The subleading-twist contribution for (\\pi^-) mesons is found to be small.

  3. Your access to the Oak Ridge National Laboratory (ORNL) is approved beginning Sunday, June 20, 2010, for the second week of the Neutron X-ray Scattering School.

    E-Print Network [OSTI]

    Pennycook, Steve

    , for the second week of the Neutron X-ray Scattering School. Please be certain to bring photo identification access to the Target Facility.) · General User Access Training for Neutron Scattering Users, Neutron Scattering Science User Office Oak Ridge National Laboratory ORNL Neutron Scattering School June

  4. Directional Stand-off Detection of Fast Neutrons and Gammas Using Angular Scattering Distributions

    SciTech Connect (OSTI)

    Vanier P. e.; Dioszegi, I.; Salwen, C.; Forman, L.

    2009-10-25T23:59:59.000Z

    We have investigated the response of a DoubleScatter Neutron Spectrometer (DSNS) for sources at long distances (gr than 200 meters). We find that an alternative method for analyzing double scatter data avoids some uncertainties introduced by amplitude measurements in plastic scintillators.Time of flight is used to discriminate between gamma and neutron events, and the kinematic distributions of scattering angles are assumed to apply. Non-relativistic neutrons are most likely to scatter at 45°, while gammas with energies greater than 2 MeV are most likely to be forward scattered. The distribution of scattering angles of fission neutrons arriving from a distant point source generates a 45° cone, which can be back-projected to give the source direction. At the same time, the distribution of Compton-scattered gammas has a maximum in the forward direction, and can be made narrower by selecting events that deposit minimal energy in the first scattering event. We have further determined that the shape of spontaneous fission neutron spectra at ranges gr than 110 m is still significantly different from thecosmic ray background.

  5. Measurement of the Neutron Radius of [superscript 208]Pb through Parity Violation in Electron Scattering

    E-Print Network [OSTI]

    Deconinck, W.

    We report the first measurement of the parity-violating asymmetry A[subscript PV] in the elastic scattering of polarized electrons from [superscript 208]Pb. A[subscript PV] is sensitive to the radius of the neutron ...

  6. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations

    E-Print Network [OSTI]

    Chen, Sow-Hsin

    2010-01-01T23:59:59.000Z

    This review article describes our neutron scattering experiments made in the past four years for the understanding of the single-particle (hydrogen atom) dynamics of a protein and its hydration water and the strong coupling ...

  7. Measurement of Parton Distributions of Strange Quarks in the Nucleon from Charged-Kaon Production in Deep-Inelastic Scattering on the Deuteron

    E-Print Network [OSTI]

    Airapetian, A; Akopov, Z; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Belostotskii, S; Bianchi, N; Blok, H P; Bttcher, H; Bonomo, C; Borisov, A; Brüll, A; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Karibian, V; Giordano, F; Gliske, S; Gregor, I M; Guler, H; Hadjidakis, C; Hasch, D; Hasegawa, T; Hesselink, W H A; Hill, G; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Imazu, Y; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Joosten, S; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lamb, R; Lapikas, L; Lehmann, I; Lenisa, P; Liebing, P; Linden-Levy, L A; Lopez Ruiz, A; Lorenzon, W; Lu, S; Lu, X R; Ma, B Q; Mahon, D; Maiheu, B; Makins, N C R; Manfr, L; Mao, Y; Marianski, B; Marukyan, H; Mexner, V; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Mussgiller, A; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, W D; Osborne, A; Pappalardo, L L; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rock, S E; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; van Hulse, C; Varanda, M; Veretennikov, D; Vikhrov, V; Vilardi, I; Vogel, C; Wang, S; Yaschenko, S; Ye, H; Ye, Y; Ye, Z; Yen, S; Yu, W; Zeiler, D; Zihlmann, B; Zupranski, P

    2008-01-01T23:59:59.000Z

    The momentum and helicity density distributions of the strange quark sea in the nucleon are obtained in leading order from charged-kaon production in deep-inelastic scattering on the deuteron. The distributions are extracted from spin-averaged K+/- multiplicities, and from K+/- and inclusive double-spin asymmetries for scattering of polarized positrons by a polarized deuterium target. The shape of the momentum distribution is softer than that of the average of the ubar and dbar quarks. In the region of measurement, the helicity distribution is zero within experimental uncertainties.

  8. FAST NEUTRON SOURCE DETECTION AT LONG DISTANCES USING DOUBLE SCATTER SPECTROMETRY.

    SciTech Connect (OSTI)

    FORMAN,L.VANIER,P.WELSH,K.

    2003-08-03T23:59:59.000Z

    Fast neutrons can be detected with relatively high efficiency, >15%, using two planes of hydrogenous scintillator detectors where a scatter in the first plane creates a start pulse and scatter in the second plane is separated by time-of-flight. Indeed, the neutron spectrum of the source can be determined as the sum of energy deposited by pulse height in the first added to the energy of the second found by time-of-flight to the second detector. Gamma rays can also create a double scatter by Compton interaction in the first with detection in the second, but these events occur in a single time window because the scattered photons all travel at the speed of light. Thus, gamma ray events can be separated from neutrons by the time-of-flight differences. We have studied this detection system with a Cf-252 source using Bicron 501A organic scintillators and report on the ability to efficiently detect fast neutrons with high neutron/gamma detection ratios. We have further studied cosmic-ray neutron background detection response that is the dominant background in long range detection. We have found that most of the neutrons are excluded from the time-of-flight window because they are either too high in energy, >10 keV, or too low, < 10 keV. Moreover, if the detection planes are position-sensitive, the angular direction of the source can be determined by the ratio of the energy of scattered protons in the first detector relative to the position and energy of the scattered neutron detected in the second. This ability to locate the source in theta is useful, but more importantly increases the signal to noise relative to cosmic-ray produced neutrons that are relatively isotropic. This technique may be used in large arrays to detect neutrons at ranges up to 0.5 kilometer.

  9. The new very small angle neutron scattering spectrometer at Laboratoire Leon Brillouin

    E-Print Network [OSTI]

    Sylvain Desert; Vincent Thevenot; Julian Oberdisse; Annie Brulet

    2007-06-12T23:59:59.000Z

    The design and characteristics of the new very small angle neutron scattering spectrometer under construction at the Laboratoire Leon Brillouin is described. Its goal is to extend the range of scattering vectors magnitudes towards 2x10{-4} /A. The unique feature of this new spectrometer is a high resolution two dimensional image plate detector sensitive to neutrons. The wavelength selection is achieved by a double reflection supermirror monochromator and the collimator uses a novel multibeam design.

  10. Coherent neutron scattering and collective dynamics on mesoscale

    SciTech Connect (OSTI)

    Novikov, Vladimir [ORNL; Schweizer, Kenneth S [ORNL; Sokolov, Alexei P [ORNL

    2013-01-01T23:59:59.000Z

    By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca K NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.

  11. The structure of fillers, polymers and their interfaces in polymer composites using neutron scattering methods

    SciTech Connect (OSTI)

    Hjelm, R.P.

    1998-12-01T23:59:59.000Z

    The neutron scattering methods, small-angle neutron scattering and neutron reflectometry, provide information on the structure of polymer composite materials that is not available from other structural probes. The unique capabilities of these methods derive from three factors. First, the length scales probed correspond to polymer conformation, molecular and domain scales and to the characteristic sizes of many fillers. Second, neutrons are able to penetrate relatively thick samples, allowing bulk samples to be measured, and enabling buried interfaces to be studied. This characteristic also allows for the construction of special sample containment needed for studying materials under stress, extremes in pressure and temperature, etc. Third, neutrons readily distinguish between different light elements, and between different isotopes of the same element. The ability to distinguish between hydrogen and deuterium is particularly important in this regard. New ways of exploiting the capabilities of neutrons are opening up with the development of improved sources and instruments in the US and elsewhere. In this talk the author will discuss the basic concepts that give rise to the unique capabilities of neutron scattering, giving several examples of the uses of neutron scattering techniques in the study of polymer composites. The examples will include the morphology of fillers, polymer binders and matrices, interfaces and defect structures.

  12. 16th National School on Neutron and X-ray Scattering

    ScienceCinema (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-23T23:59:59.000Z

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  13. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    SciTech Connect (OSTI)

    Hyer, D.K.; DiStravolo, M.A. (comps.)

    1990-10-01T23:59:59.000Z

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

  14. 16th National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-02T23:59:59.000Z

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  15. Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering, CD, and MD simulations

    E-Print Network [OSTI]

    Nagle, John F.

    1 Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering- spacing are linearly related. Figure S3. Neutron scattering from stacks of DOPC:DOPE (3:1)/Tat, x=0 of Physics, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, 3 NIST Center for Neutron

  16. Anisotropic Motion and Molecular Dynamics of Cholesterol, Lanosterol, and Ergosterol in Lecithin Bilayers Studied by Quasi-elastic Neutron Scattering

    E-Print Network [OSTI]

    Brown, Michael F.

    Bilayers Studied by Quasi-elastic Neutron Scattering Emil Endress, Helmut Heller,§ He´le`ne CasaltaVised Manuscript ReceiVed June 27, 2002 ABSTRACT: Quasi-elastic neutron scattering (QENS) was employed to study of motion within the bilayer on the molecular dynamics time scale. In a recent quasi-elastic neutron

  17. Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron scattering (SANS)

    E-Print Network [OSTI]

    Boyer, Edmond

    of small angle neutron scattering from fluids in a constant shear gradient. Typical systems which can angle neutron scattering experiments with liquids have given information about structural pro- perties759 Apparatus for the investigation of liquid systems in a shear gradient by small angle neutron

  18. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    Pennycook, Steve

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574.ornl.gov Neutron Scattering Science - Oak Ridge National Laboratory Due February 26, 2014 #12; Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON

  19. Precision neutron interferometric measurement of the nd coherent neutron scattering length and consequences for models of three-nucleon forces

    E-Print Network [OSTI]

    T. C. Black; P. R. Huffman; D. L. Jacobson; W. M. Snow; K. Schoen; M. Arif; H. Kaiser; S. K. Lamoreaux; S. A. Werner

    2003-05-21T23:59:59.000Z

    We have performed the first high precision measurement of the coherent neutron scattering length of deuterium in a pure sample using neutron interferometry. We find b_nd = (6.665 +/- 0.004) fm in agreement with the world average of previous measurements using different techniques, b_nd = (6.6730 +/- 0.0045) fm. We compare the new world average for the nd coherent scattering length b_nd = (6.669 +/- 0.003) fm to calculations of the doublet and quartet scattering lengths from several modern nucleon-nucleon potential models with three-nucleon force (3NF) additions and show that almost all theories are in serious disagreement with experiment. This comparison is a more stringent test of the models than past comparisons with the less precisely-determined nuclear doublet scattering length of a_nd = (0.65 +/- 0.04) fm.

  20. Atomic dynamics in molten AlCu alloys of different compositions and at different temperatures by cold neutron scattering

    SciTech Connect (OSTI)

    Dahlborg, U. [University of Rouen; Besser, M. [Ames Laboratory; Kramer, Matthew J. [Ames Laboratory; Morris, J. R. [Oak Ridge National Laboratory; Calvo-Dahlborg, M. [University of Rouen

    2013-12-21T23:59:59.000Z

    The atomic motions in molten Al1?xCux (x=0.10, 0.171 and 0.25) around the eutectic composition (x=0.171) were studied by cold neutron inelastic scattering at three different temperatures (973 K, 1173 K and 1373 K). An alloy of eutectic composition containing the 63Cu isotope was also studied. Self-diffusion coefficients for the Cu ions were determined from the width of quasielastic peaks and were found to decrease slightly with increasing Cu concentration. Longitudinal current correlation functions Jl(Q,E) exhibit at all temperatures and at all compositions a shoulder at energies below 10 meV and one main maximum at higher energies. These features can be interpreted in terms of excitations of acoustic and optic nature. The shape of Jl(Q,E) is sensitive to composition, being considerably more structured for larger Cu content. This can be coupled to the existence of a prepeak in the measured zeroth moment of dynamic scattering function indicating an increased chemical ordering with increasing Cu concentration for all temperatures. Indications for an existence of a liquid–liquid phase transition are presented.

  1. Salt-Dependent DNA Superhelix Diameter Studied by Small Angle Neutron Scattering Measurements and Monte Carlo Simulations

    E-Print Network [OSTI]

    Langowski, Jörg

    Salt-Dependent DNA Superhelix Diameter Studied by Small Angle Neutron Scattering Measurements-38042 Grenoble Cedex 9, France ABSTRACT Using small angle neutron scattering we have measured the static the same behavior between 10 and 100 mM salt concentration: An undulation in the scattering curve

  2. Measurements of the Total Cross Section for the Scattering of Polarized Neutrons from Polarized $^3$He

    E-Print Network [OSTI]

    C. D. Keith; C. R. Gould; D. G. Haase; M. L. Seely; P. R. Huffman; N. R. Roberson; W. Tornow; W. S. Wilburn

    1996-07-19T23:59:59.000Z

    Measurements of polarized neutron--polarized $^3$He scattering are reported. The target consisted of cryogenically-polarized solid $^3$He, thickness 0.04 atom/b and polarization 40%. The longitudinal and transverse total cross-section differences $\\Delta\\sigma_L$ and $\\Delta\\sigma_T$ were measured for incident neutron energies 2-8 MeV. The results are compared to phase-shift predictions based on four different analyses of n-$^3$He scattering. The best agreement is obtained with a recent R-matrix analysis of A=4 scattering and reaction data, lending strong suport to the $^4$He level scheme obtained in that analysis.

  3. Dynamics of water in prussian blue analogues: Neutron scattering study

    SciTech Connect (OSTI)

    Sharma, V. K.; Mitra, S.; Thakur, N.; Yusuf, S. M.; Mukhopadhyay, R., E-mail: mukhop@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Juranyi, Fanni [Laboratory for Neutron Scattering, Paul Scherrer Institut, Villigen (Switzerland)

    2014-07-21T23:59:59.000Z

    Dynamics of crystal water in Prussian blue (PB), Fe(III){sub 4}[Fe(II)(CN){sub 6}]{sub 3}.14H{sub 2}O and its analogue Prussian green (PG), ferriferricynaide, Fe(III){sub 4}[Fe(III)(CN){sub 6}]{sub 4}.16H{sub 2}O have been investigated using Quasielastic Neutron Scattering (QENS) technique. PB and its analogue compounds are important materials for their various interesting multifunctional properties. It is known that crystal water plays a crucial role towards the multifunctional properties of Prussian blue analogue compounds. Three structurally distinguishable water molecules: (i) coordinated water molecules at empty nitrogen sites, (ii) non-coordinated water molecules in the spherical cavities, and (iii) at interstitial sites exist in PB. Here spherical cavities are created due to the vacant sites of Fe(CN){sub 6} units. However, PG does not have any such vacant N or Fe(CN){sub 6} units, and only one kind of water molecules, exists only at interstitial sites. QENS experiments have been carried out on both the compounds in the temperature range of 260–360?K to elucidate the dynamical behavior of different kinds of water molecules. Dynamics is found to be much more pronounced in case of PB, compared to PG. A detailed data analysis showed that localized translational diffusion model could describe the observed data for both PB and PG systems. The average diffusion coefficient is found to be much larger in the PB than PG. The obtained domain of dynamics is found to be consistent with the geometry of the structure of the two systems. Combining the data of the two systems, a quantitative estimate of the dynamics, corresponding to the water molecules at different locations is made.

  4. Information from leading neutrons at HERA

    E-Print Network [OSTI]

    V. A. Khoze; A. D. Martin; M. G. Ryskin

    2006-06-20T23:59:59.000Z

    In principle, leading neutrons produced in photoproduction and deep-inelastic scattering at HERA have the potential to determine the pion structure function, the neutron absorptive cross section and the form of the pion flux. To explore this potential we compare theoretical predictions for the x_L and p_t spectra of leading neutrons, and the Q^2 dependence of the cross section, with the existing ZEUS data.

  5. MCNP benchmarking of an inelastic neutron scattering system for soil carbon analysis

    E-Print Network [OSTI]

    Ohta, Shigemi

    , and in precision agriculture are only but a few examples implicating soil carbon in extensive research world- wide spectroscopy on the molecular-, atomic-, and nuclear-levels. The INS method can be simulated using Monte Carlo, in the well logging industry, and for design of complex gauges based on nuclear techniques. One such technique

  6. Measurement of the Spin Structure of the Neutron using Polarised Deep Inelastic Scattering

    E-Print Network [OSTI]

    with a polarised internal gas target of hydrogen, deuterium or 3 He for the study of the spin structure Himmel ist, erfassen, Die Wissenschaft und die Natur. Mephistopheles Da seid Ihr auf der rechten Spur are not learned from books and being in Canada has changed and enriched my life more than I ever would have

  7. Neutron Inelastic Scattering Processes as Background for Double-Beta Decay Experiments

    E-Print Network [OSTI]

    D. -M. Mei; S. R. Elliott; A. Hime; V. Gehman; K. Kazkaz

    2008-01-26T23:59:59.000Z

    We investigate several Pb$(n,n'\\gamma$) and Ge$(n,n'\\gamma$) reactions. We measure $\\gamma$-ray production from Pb$(n,n'\\gamma$) reactions that can be a significant background for double-beta decay experiments which use lead as a massive inner shield. Particularly worrisome for Ge-based double-beta decay experiments are the 2041-keV and 3062-keV $\\gamma$ rays produced via Pb$(n,n'\\gamma$). The former is very close to the ^{76}Ge double-beta decay endpoint energy and the latter has a double escape peak energy near the endpoint. Excitation $\\gamma$-ray lines from Ge$(n,n'\\gamma$) reactions are also observed. We consider the contribution of such backgrounds and their impact on the sensitivity of next-generation searches for neutrinoless double-beta decay using enriched germanium detectors.

  8. Analyzing the Effects of Neutron Polarizabilities in Elastic Compton Scattering off ${}^3He$

    E-Print Network [OSTI]

    Deepshikha Shukla; Andreas Nogga; Daniel R. Phillips

    2008-12-01T23:59:59.000Z

    Motivated by the fact that a polarized ${}^3He$ nucleus behaves as an `effective' neutron target, we examine manifestations of neutron electromagnetic polarizabilities in elastic Compton scattering from the Helium-3 nucleus. We calculate both unpolarized and double-polarization observables using chiral perturbation theory to next-to-leading order (${\\mathcal O}(e^2 Q)$) at energies, $\\omega \\lsim m_{\\pi}$, where $m_{\\pi}$ is the pion mass. Our results show that the unpolarized differential cross section can be used to measure neutron electric and magnetic polarizabilities, while two double-polarization observables are sensitive to different linear combinations of the four neutron spin polarizabilities.

  9. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; Armstrong, David; Armstrong, Whitney; Averett, Todd; Babineau, Benjamin; Barbieri, A; Bellini, Vincenzo; Beminiwattha, Rakitha; Benesch, Jay; Benmokhtar, Fatiha; Bierlarski, Trevor; Boeglin, Werner; Camsonne, Alexandre; Canan, Mustafa; Carter, Philip; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Hen, O; Cusanno, Francesco; Dalton, Mark; De Leo, Raffaele; De Jager, Cornelis; Deconinck, Wouter; Decowski, Piotr; Deng, Xiaoyan; Deur, Alexandre; Dutta, Dipangkar; Etile, Asenath; Flay, David; Franklin, Gregg; Friend, Megan; Frullani, Salvatore; Fuchey, Eric; Garibaldi, Franco; Gasser, Estelle; Gilman, Ronald; Guisa, Antonio; Glamazdin, Oleksandr; Gomez, Javier; Grames, Joseph; Gu, Chao; Hansen, Jens-Ole; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Horowitz, Charles; Hoskins, Joshua; Huang, Jin; Hyde, Charles; Itard, Florian; Jen, Chun-Min; Jensen, Eric; Jin, Ge; Johnston, Sereres; Kelleher, Aidan; Kliakhandler, Konstantin; King, Paul; Kowalski, Stanley; Kumar, Krishna; Leacock, John; Leckey, John; Lee, Jeong Han; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Lubinsky, Nicholas; Mammei, Juliette; Mammoliti, Francesco; Margaziotis, Demetrius; Markowitz, Pete; McCreary, Amber; McNulty, Dustin; Mercado, Luis; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Muangma, Navaphon; Munoz Camacho, Carlos; Nanda, Sirish; Nelyubin, Vladimir; Nuruzzaman,; Oh, Yongseok; Palmer, Alvin; Parno, Diana; Paschke, Kent; Phillips, Sarah; Poelker, Benard; Pomatsalyuk, Roman; Posik, Matthew; Puckett, Andrew; Quinn, Brian; Rakhman, A; Reimer, Paul; Riordan, Seamus; Rogan, Patrick; Ron, Guy; Russo, Guiseppe; Saenboonruang, Kiadtisak; Saha, Arunava; Sawatzky, Bradley; Shahinyan, Albert; Silwal, Rupesh; Sirca, Simon; Slifer, Karl; Solvignon-Slifer, Patricia; Souder, Paul; Leda Sperduto, Maria; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Sutera, Concetta; Tobias, William; Troth, Wolfgang; Urciuoli, Guido; Buddhini Waidyawansa, Dinayadura; Wang, Diancheng; Wexler, Jonathan; Wilson, Richard; Wojtsekhowski, Bogdan; Yan, Xinhu; Yao, Huan; Ye, Yunxiu; Ye, Zhiohong; Yim, Vireak; Zana, Lorenzo; Zhan, Xiaohui; Zhang, Jixie; Zhang, Y; Zheng, Xiaochao; Zhu, Pengjia

    2012-03-15T23:59:59.000Z

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb. APV is sensitive to the radius of the neutron distribution (Rn). The result APV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  10. A study of neutron-deuteron scattering in configuration space

    E-Print Network [OSTI]

    V. M. Suslov; M. A. Braun; I. Filikhin; B. Vlahovic

    2006-10-09T23:59:59.000Z

    A new computational method for solving the configuration-space Faddeev equations for the breakup scattering problem has been applied to nd scattering both below and above the two-body threshold.

  11. Asterix is a reflectometer/diffractometer/grazing-incidence-SANS/SESAME-enabled-SANS spectrometer that is primarily used for experiments or neutron scattering

    E-Print Network [OSTI]

    that is primarily used for experiments or neutron scattering techniques requiring polarized neutron beams detector arm is readily configurable for polarization or energy analysis of the scattered neutron beam be translated in the horizontal and vertical directions. Neutron detector (Spin Echo Scattering Angle

  12. Journal of the Korean Physical Society, Vol. 55, No. 4, October 2009, pp. 13891393 Measurements of the Neutron Scattering Spectrum from 238

    E-Print Network [OSTI]

    Danon, Yaron

    of the Neutron Scattering Spectrum from 238 U and Comparison of the Results with a Calculation at the 36.68-e, in final form 22 July 2009) Neutrons elastically scattered from 238 U were measured in the neutron energy neutrons were measured at 25.5 m from the U sample by using a 6 Li detector, and the scattering direction

  13. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008 501 Neutron Stimulated Emission Computed Tomography

    E-Print Network [OSTI]

    in the human body. NSECT uses a beam of fast neutrons that scatter inelastically from atomic nuclei in tissueIEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008 501 Neutron Stimulated Emission. Pedroni, and Carey E. Floyd, Jr. Abstract--Neutron stimulated emission computed tomography (NSECT

  14. Neutron scattering-modern techniques and their scientific impact

    E-Print Network [OSTI]

    J W White; C G Windsor; J W White; C G Windsor

    The sustained interest in the neutron and its use as a probe of the structure and dynamics of condensed matter is examined against the background of neutron availabil-ity. An analysis is made of developments in neutron source brightness, instrument physics and experimental methodology which have been or are likely to be of outstand-ing value in physics, chemistry, biology and materials technology studies. The role of pulsed sources as the next step ahead in neutron source brightness, their need for extensive instrument development to realise this potential and their complementarity with steady-state reactors is analysed using newly available experimental results. This review was received in December 1983.

  15. Measurement of the elastic scattering cross section of neutrons from argon and neon

    E-Print Network [OSTI]

    S. MacMullin; M. Kidd; R. Henning; W. Tornow; C. R. Howell; M. Brown

    2012-12-12T23:59:59.000Z

    Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detector's sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argon and neon, which are target materials of interest to the dark matter community, were previously unavailable. Purpose: Measure the differential cross section for elastic scattering of neutrons from argon and neon in the energy range relevant to backgrounds from (alpha,n) reactions in direct dark matter searches. Method: Cross-section data were taken at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. These data were fit using the spherical optical model. Results: The differential cross section for elastic scatting of neutrons from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model parameters for the elastic scattering reactions were determined from the best fit to these data. The total elastic scattering cross section for neon was found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model predictions. Compared to a local optical-model for 40Ar, the elastic scattering cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions: These new data are important for improving Monte-Carlo simulations and background estimates for direct dark matter searches and for benchmarking optical models of neutron elastic scattering from these nuclei.

  16. Elastic and inelastic scattering of 240-MeV (6)Li ions from (40)Ca and (48)Ca and tests of a systematic optical potential

    E-Print Network [OSTI]

    Chen, Krishichayan X.; Lui, Y. -W; Button, J.; Youngblood, David H.

    2010-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 81, 044612 (2010) Elastic and inelastic scattering of 240-MeV 6Li ions from 40Ca and 48Ca and tests of a systematic optical potential Krishichayan, X. Chen,* Y.-W. Lui, J. Button, and D. H. Youngblood Cyclotron Institute, Texas... that 0556-2813/2010/81(4)/044612(10) 044612-1 ?2010 The American Physical Society KRISHICHAYAN, CHEN, LUI, BUTTON, AND YOUNGBLOOD PHYSICAL REVIEW C 81, 044612 (2010) the real and imaginary optical potentials have the same radial shape [22]. However...

  17. Scattering Theory When an x-ray beam (or neutron or light) passes through a material with

    E-Print Network [OSTI]

    Beaucage, Gregory

    Scattering Theory When an x-ray beam (or neutron or light) passes through a material radiation is scattered in directions that differ from that of the incident beam. Scattering arises since x of scattered radiation resulting from this process bears a direct relationship to the structure (the pattern

  18. Microscopic calculation of the spin-dependent neutron scattering lengths on 3He

    E-Print Network [OSTI]

    H. M. Hofmann; G. M. Hale

    2003-04-16T23:59:59.000Z

    We report on the spin.dependent neutron scattering length on 3He from a microscopic calculation of p-3H, n-3He, and d-2H scattering employing the Argonne v18 nucleon-nucleon potential with and without additional three-nucleon force. The results and that of a comprehensive R-matrix analysis are compared to a recent measurement. The overall agreement for the scattering lengths is quite good. The imaginary parts of the scattering lengths are very sensitive to the inclusion of three-nucleon forces, whereas the real parts are almost insensitive.

  19. Neutron-3H and Proton-3He Zero Energy Scattering

    E-Print Network [OSTI]

    M. Viviani; S. Rosati; A. Kievsky

    1998-07-23T23:59:59.000Z

    The Kohn variational principle and the (correlated) Hyperspherical Harmonics technique are applied to study the n-3H and p-3He scattering at zero energy. Predictions for the singlet and triplet scattering lengths are obtained for non-relativistic nuclear Hamiltonians including two- and three-body potentials. The calculated n-3H total cross section agrees well with the measured value, while some small discrepancy is found for the coherent scattering length. For the p-3He channel, the calculated scattering lengths are in reasonable agreement with the values extrapolated from the measurements made above 1 MeV.

  20. Finite volume effects in low-energy neutron-deuteron scattering

    E-Print Network [OSTI]

    Alexander Rokash; Evgeny Epelbaum; Hermann Krebs; Dean Lee; Ulf-G. Meißner

    2013-08-15T23:59:59.000Z

    We present a lattice calculation of neutron-deuteron scattering at very low energies and investigate in detail the impact of the topological finite-volume corrections. Our calculations are carried out in the framework of pionless effective field theory at leading order in the low-energy expansion. Using lattice sizes and a lattice spacing comparable to those employed in nuclear lattice simulations, we find that the topological volume corrections must be taken into account in order to obtain correct results for the neutron-proton S-wave scattering lengths.

  1. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    SciTech Connect (OSTI)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); White, J. S. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland) [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rønnow, H. M.; Prša, K. [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)] [Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-02-15T23:59:59.000Z

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  2. Exact limiting relation between the structure factors in neutron and x-ray scattering

    E-Print Network [OSTI]

    V. B. Bobrov; S. A. Trigger; S. N. Skovorod'ko

    2010-07-11T23:59:59.000Z

    The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.

  3. Study on generating of thermal neutron scattering cross sections for LiH

    SciTech Connect (OSTI)

    Wang, L.; Jiang, X.; Zhao, Z.; Chen, L. [Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

    2013-07-01T23:59:59.000Z

    LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

  4. Meausrement of the Neutron Radius of {sup 208}Pb Through Parity Violation in Electron Scattering

    SciTech Connect (OSTI)

    Saenboonruang, Kiadtisak [Virginia U., JLAB

    2013-05-31T23:59:59.000Z

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R{sub n}, of a heavy nucleus and the proton radius, R{sub p}, to be in the order of several percent. To accurately obtain the difference, R{sub n}-R{sub p}, which is essentially a neutron skin, the Jefferson Lab Lead ({sup 208}Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 208}Pb at an energy of 1.06 GeV and a scattering angle of 5{degrees}#14;. Since Z{sup 0} boson couples mainly to neutrons, this asymmetry provides a clean measurement of R{sub n} with respect to R{sub p}. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x#2;10{sup 7} helicity-window quadruplets. The measured parity-violating electroweak asymmetry A{sub PV} = 0.656 {+-}#6; 0.060 (stat) {+-}#6; 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R{sub n}-R{sub p} = 0.33{sup +0.16}{sub -0.18} fm and provides the #12;first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of {sup 208}Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  5. Neutron scattering evidence for isolated spin-1/2 ladders in (C5D12N)2CuBr4

    SciTech Connect (OSTI)

    Savici, Andrei T [ORNL; Granroth, Garrett E [ORNL; Broholm, Collin L [ORNL; Pajerowski, Daniel M. [University of Florida, Gainesville; Brown, Craig [National Institute of Standards and Technology (NIST); Talham, Daniel R. [University of Florida, Gainesville; Meisel, Mark W. [University of Florida, Gainesville; Schmidt, K. P. [Technische Universit Dortmund, Germany; Uhrig, G. S. [Technische Universit Dortmund, Germany; Nagler, Stephen E [ORNL

    2009-01-01T23:59:59.000Z

    Inelastic neutron scattering was used to determine the spin Hamiltonian for the singlet ground state system (C5D12N)2CuBr4 (BPCB). A 2-leg spin 1/2 ladder model, with J? = 1:084 0:005 meV and Jk = 0:321 0:008 meV, accurately describes the data. The experimental limit on the inter-ladder exchange constant is jJ0j 0.005 meV, and the limit on diagonal, intra-ladder exchange is jJF j 0.1 meV. The experimental ratios of intra-ladder bond energies are consistent with the predictions of continuous unitary transformations calculations.

  6. PHYSICAL REVIEW C 86, 024612 (2012) Neutrino-nucleus coherent scattering as a probe of neutron density distributions

    E-Print Network [OSTI]

    Engel, Jonathan

    2012-01-01T23:59:59.000Z

    PHYSICAL REVIEW C 86, 024612 (2012) Neutrino-nucleus coherent scattering as a probe of neutron manuscript received 25 July 2012; published 30 August 2012) Neutrino-nucleus coherent elastic scattering provides a theoretically appealing way to measure the neutron part of nuclear form factors. Using

  7. Is there an Ay problem in low-energy neutron-proton scattering?

    E-Print Network [OSTI]

    Franz Gross; Alfred Stadler

    2008-08-21T23:59:59.000Z

    We calculate Ay in neutron-proton scattering for the interactions models WJC-1 and WJC-2 in the Covariant Spectator Theory. We find that the recent 12 MeV measurements performed at TUNL are in better agreement with our results than with the Nijmegen Phase Shift Analysis of 1993, and after reviewing the low-energy data, conclude that there is no Ay problem in low-energy np scattering.

  8. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functionsö as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  9. Semi-inclusive Deep Inelastic Scattering off Few-Nucleon Systems: Tagging the EMC Effect and Hadronization Mechanisms with Detection of Slow Recoiling Nuclei

    E-Print Network [OSTI]

    C. Ciofi degli Atti; L. P. Kaptari

    2011-03-03T23:59:59.000Z

    The semi-inclusive deep inelastic scattering of electrons off the deuteron ($^2H \\equiv D$) and $^3He$ with detection of slow protons and deuterons, respectively, i.e. the processes $D(e,e'p)X$ and $^3He(e,e'D)X$, are calculated within the spectator mechanism, taking into account the final state interaction of the hadronizing quark with the detected protons and deuterons, respectively. It is shown that by a proper choice of the kinematics the origin of the EMC effect and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which cannot be reached by inclusive deep inelastic scattering. A comparison of our calculations with recently available experimental data on the process $D(e,e'p)X$ shows a good agreement in the backward hemisphere of the emitted nucleons. Theoretical predictions at the energies thyat will be available at the upgraded Thomas Jefferson National Accelerator Facilty are presented, and the possibility to investigate the proposed semi-inclusive processes at electron-ion colliders is briefly discussed.

  10. Semi-inclusive deep-inelastic scattering off few-nucleon systems: Tagging the EMC effect and hadronization mechanisms with detection of slow recoiling nuclei

    SciTech Connect (OSTI)

    Ciofi degli Atti, C.; Kaptari, L. P. [Department of Physics, University of Perugia, Piazza dell' Universita 1, I-06123 Perugia (Italy) and Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia (Italy)

    2011-04-15T23:59:59.000Z

    The semi-inclusive deep-inelastic scattering of electrons off {sup 2}H and {sup 3}He with detection of slow protons and deuterons, respectively, i.e., the processes {sup 2}H(e,e{sup '}p)X and {sup 3}He(e,e{sup '}d)X, are calculated within the spectator mechanism, taking into account the final state interaction of the nucleon debris with the detected protons and deuterons. It is shown that by a proper choice of the kinematics the origin of the EMC effect and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which cannot be reached by inclusive deep-inelastic scattering. A comparison of the results of our calculations, containing no adjustable parameters, with recently available experimental data on the process {sup 2}H(e,e{sup '}p)X shows a good agreement in the backward hemisphere of the emitted nucleons. Theoretical predictions at energies that will be available at the upgraded Thomas Jefferson National Accelerator Facility are presented, and the possibility to investigate the proposed semi-inclusive processes at electron-ion colliders is briefly discussed.

  11. Measurement of the F2n/F2p and d/u Ratios in Deep Inelastic Electron Scattering off 3H and 3He

    E-Print Network [OSTI]

    G. G. Petratos; I. R. Afnan; F. Bissey; J. Gomez; A. T. Katramatou; W. Melnitchouk; A. W. Thomas

    2000-10-19T23:59:59.000Z

    We discuss a possible measurement of the ratio of the nucleon structure functions, F2n/F2p, and the ratio of the up to down quark distributions, u/d, at large x, by performing deep inelastic electron scattering from the 3H and 3He mirror nuclei with the 11 GeV upgraded beam of Jefferson Lab. The measurement is expected to be almost free of nuclear effects, which introduce a significant uncertainty in the extraction of these two ratios from deep inelastic scattering off the proton and deuteron. The results are expected to test perturbative and non-perturbative mechanisms of spin-flavor symmetry breaking in the nucleon, and constrain the structure function parameterizations needed for the interpretation of high energy e-p, p-p and p-pbar collider data. The precision of the expected data can also allow for testing competing parameterizations of the nuclear EMC effect and provide valuable constraints on models of its dynamical origin.

  12. Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length

    E-Print Network [OSTI]

    Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)- Grafted Polystyrene Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, ORNL 2Center

  13. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Kasprzak, M

    2004-01-01T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for t...

  14. Thermal up-scattering of very cold and ultra-cold neutrons in solid deuterium

    E-Print Network [OSTI]

    Malgorzata Kasprzak

    2004-07-26T23:59:59.000Z

    The work presented in this thesis forms part of a program at the Paul Scherrer Institute (PSI) to construct a high intensity superthermal ultra-cold neutron (UCN) source based on solid deuterium as UCN production medium. We carried out a set of experiments to gain a better understanding of the properties and the behaviour of solid deuterium as a cold neutron moderator and ultra-cold neutron converter. We present the measurements of the total neutron cross section as obtained by transmission studies with very cold neutrons and ultra-cold neutrons in solid deuterium. The experimental set-up and the methods of data analysis are described and also the procedure of preparing the solid deuterium samples is given. The neutron transmission studies are supported by optical investigation of the crystal and by Raman spectroscopy. We have thus characterised the temperature dependence of the neutron transmission through solid deuterium and we have been able to identify the role that coherent neutron scattering plays for the investigated deuterium samples.

  15. Study of the superconducting gap in RNi2B2C,,RY, Lu... single crystals by inelastic light scattering

    E-Print Network [OSTI]

    Yang, In-Sang

    Study of the superconducting gap in RNi2B2C,,RÃ?Y, Lu... single crystals by inelastic light Initiative Center for Superconductivity, Department of Physics, Pohang University of Science and Technology, 790-390 Pohang, Korea Received 28 February 2000 Superconductivity-induced changes in the electronic

  16. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sokol, P. E. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)

    2011-08-15T23:59:59.000Z

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  17. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg [ORNL; Podlesnyak, Andrey A [ORNL; Niedziela, Jennifer L [ORNL; Iverson, Erik B [ORNL; Sokol, Paul E [ORNL

    2011-01-01T23:59:59.000Z

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  18. For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600.

    E-Print Network [OSTI]

    For more information: Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574 Neutron Source (SNS) will be accepted via the web-based proposal system until 11:59 a.m. EST, (NOON. Information and instructions To learn more about submitting a proposal for beam time, go to http://neutrons

  19. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering

    E-Print Network [OSTI]

    Nagle, John F.

    neutron and X-ray scattering Jianjun Pan a, , Frederick A. Heberle a , Stephanie Tristram-Nagle b Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 378316100 Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 378316453, USA e Canadian

  20. Proton Angular Distribution for 90 Mev Neutron-proton Scattering

    E-Print Network [OSTI]

    Hadley, James

    2010-01-01T23:59:59.000Z

    3, 1947 The angular distribution of the recoil protons inneutron -proton scattering at 90 Mev has been measured forNO. W ..7405-Eng 48 PROTON .ANGULAR DISTRIBUTION FOR 90 lWEV

  1. Re-evaluation of Neutron-4He Elastic Scattering Data near 20 MeV

    E-Print Network [OSTI]

    M. Drosg; R. Avalos Ortiz; B. Hoop

    2012-10-02T23:59:59.000Z

    Measured differential elastic scattering cross sections of 17.71-, 20.97-, and 23.72-MeV neutrons from liquid helium-4 were re-evaluated and corrected for sample size and multiple scattering effects by means of a Monte Carlo technique implemented in a more recent code (MCNPX). Results indicate that earlier corrections via a code, MAGGIE-2, overestimated the size of multiple scattering effects by an order of magnitude. The corrected differential cross sections and Legendre coefficients obtained by least-squares fits are given.

  2. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  3. The role of CP violating scatterings in baryogenesis - case study of the neutron portal

    E-Print Network [OSTI]

    Iason Baldes; Nicole F. Bell; Alexander Millar; Kalliopi Petraki; Raymond R. Volkas

    2014-11-28T23:59:59.000Z

    Many baryogenesis scenarios invoke the charge parity (CP) violating out-of-equilibrium decay of a heavy particle in order to explain the baryon asymmetry. Such scenarios will in general also allow CP violating scatterings. We study the effect of these CP violating scatterings on the final asymmetry in a neutron portal scenario. We solve the Boltzmann equations governing the evolution of the baryon number numerically and show that the CP violating scatterings play a dominant role in a significant portion of the parameter space.

  4. New High Field Magnet for Neutron Scattering at Hahn-Meitner Institute

    E-Print Network [OSTI]

    M Steiner; D A Tennant; P Smeibidl

    Abstract. The Berlin Neutron Scattering Center BENSC at the Hahn-Meitner-Institute (HMI) is a user facility for the study of structure and dynamics of condensed matter with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. Magnetic interactions and magnetic phenomena depend on thermodynamic parameters like magnetic field, temperature and pressure. At HMI special efforts are being made to offer outstanding sample environments such as very low temperatures or high magnetic fields or combination of both. For the future a dedicated instrument for neutron scattering at extreme fields is under construction, the Extreme Environment Diffractometer ExED. For this instrument the existing superconducting magnets as well as a future hybrid system can be used. The highest fields, above 30 T will be produced by the planned series-connected hybrid magnet system, designed and constructed in collaboration with the National High Magnetic Field Laboratory, Tallahassee, FL. 1.

  5. Possible doublet mechanism for a regular component of parity violation in neutron scattering

    E-Print Network [OSTI]

    V. V. Flambaum; V. G. Zelevinsky

    1994-12-19T23:59:59.000Z

    A nucleus with octupole deformation of the mean field reveals rotational doublets with the same angular momentum and opposite parity. Mediated by the Coriolis-type interaction, the doublet structure leads to a strong regular component in the parity violation caused by weak interaction. This can explain sign correlations observed in polarized neutron scattering by $^{232}$Th.

  6. Time-reversal invariance violation measurement using polarized neutron scattering from polarized xenon

    E-Print Network [OSTI]

    Pinghan Chu

    2014-03-06T23:59:59.000Z

    We proposed to use polarized neutrons scattering from a hyperpolarized 131Xe gaseous target in order to measure time-reversal violation effect in baryon processes with nucleons. This article provides a brief introduction, historical review, and possible methods to construct a hyperpolarized 131Xe gaseous target.

  7. National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 -October 11, 2008 Argonne National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 (HFIR) Neutron Scattering Science Division Oak Ridge Laboratory 10:15 - 10:30 Break 9:30 - 9:45 Break 10 School on Neutron and X-ray Scattering Building 8600, Main Lobby September 24 - October 11, 2008 Oak

  8. The Lujan Center is a national user facility funded by Basic Energy Sciences of the Department of Energy which o ers capability for basic and applied neutron scattering

    E-Print Network [OSTI]

    of Energy which o ers capability for basic and applied neutron scattering relevant to national security are the domain of the low-Q scattering intrument, LQD. These well-established neutron techniques probe long Matter, Local Structure, and Nanomaterials The Lujan Neutron Scattering Center encompasses a set

  9. Scattering of 64 eV to 3 keV Neutrons from Polyethylene and Graphite and the Coherence Length Problem

    E-Print Network [OSTI]

    Danon, Yaron

    Scattering of 64 eV to 3 keV Neutrons from Polyethylene and Graphite and the Coherence Length 12180, USA (Received 31 August 2005; published 8 February 2006) We measured the neutron scattering by the neutron coherence length. The scattered intensity ratios were found to conform to conventional

  10. Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)

    E-Print Network [OSTI]

    Pennycook, Steve

    Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

  11. Importance of Compton scattering to radiation spectra of isolated neutron stars

    E-Print Network [OSTI]

    V. Suleimanov; K. Werner

    2006-12-22T23:59:59.000Z

    Model atmospheres of isolated neutron stars with low magnetic field are calculated with Compton scattering taking into account. Models with effective temperatures 1, 3 and 5 MK, with two values of surface gravity log(g)g = 13.9 and 14.3), and different chemical compositions are calculated. Radiation spectra computed with Compton scattering are softer than the computed with Thomson scattering at high energies (E > 5 keV) for hot (T_eff > 1 MK) atmospheres with hydrogen-helium composition. Compton scattering is more significant to hydrogen models with low surface gravity. The emergent spectra of the hottest (T_eff > 3 MK) model atmospheres can be described by diluted blackbody spectra with hardness factors ~ 1.6 - 1.9. Compton scattering is less important for models with solar abundance of heavy elements.

  12. Characterization of irradiation-induced precipitates by small angle x-ray and neutron scattering experiments

    SciTech Connect (OSTI)

    Grosse, M.; Eichhorn, F.; Boehmert, J.; Brauer, G. [Research Center Rossendorf Inc., Dresden (Germany)

    1996-12-31T23:59:59.000Z

    The nature of the irradiation-induced precipitates in the VVER-440-type steel 15Kh2MFA has been investigated by the combination of small angle neutron scattering and anomalous small angle X-ray scattering. Information about the chemical composition of the irradiation-induced precipitates was obtained by the method of contrast variation. ASAXS experiments with variation of the X-ray energy near the energy of the vanadium K-absorption edge prove the content of vanadium within the irradiation-induced precipitates. The scattering density of the precipitates is lower than the scattering density of the iron matrix. The chemical shift of the vanadium-K{sub {alpha}}-absorption-edge and the results of the variation of the contribution of the magnetic scattering in the SANS experiment show, that vanadium does not precipitate in an elementary state. These results can be explained by assuming the precipitates are vanadium carbide.

  13. Comparison of discrete and continuous thermal neutron scattering treatments in MCNP5

    SciTech Connect (OSTI)

    Pavlou, A. T. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Brown, F. B. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Univ. of Michigan, Dept. of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C. [Los Alamos National Laboratory, Monte Carlo Codes Group, MS A143, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-07-01T23:59:59.000Z

    The standard discrete thermal neutron S({alpha},{beta}) scattering treatment in MCNP5 is compared with a continuous S({alpha},{beta}) scattering treatment using a criticality suite of 119 benchmark cases and ENDF/B-VII.0 nuclear data. In the analysis, six bound isotopes are considered: beryllium metal, graphite, hydrogen in water, hydrogen in polyethylene, beryllium in beryllium oxide and oxygen in beryllium oxide. Overall, there are only small changes in the eigenvalue (k{sub eff}) between discrete and continuous treatments. In the comparison of 64 cases that utilize S({alpha},{beta}) scattering, 62 agreed at the 95% confidence level, and the 2 cases with differences larger than 3 {sigma} agreed within 1 {sigma} when more neutrons were run in the calculations. The results indicate that the changes in eigenvalue between continuous and discrete treatments are random, small, and well within the uncertainty of measured data for reactor criticality experiments. (authors)

  14. Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA

    E-Print Network [OSTI]

    ZEUS Collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; P. Antonioli; A. Antonov; M. Arneodo; O. Arslan; V. Aushev; Y. Aushev; O. Bachynska; A. Bamberger; A. N. Barakbaev; G. Barbagli; G. Bari; F. Barreiro; N. Bartosik; D. Bartsch; M. Basile; O. Behnke; J. Behr; U. Behrens; L. Bellagamba; A. Bertolin; S. Bhadra; M. Bindi; C. Blohm; V. Bokhonov; T. Bold; K. Bondarenko; E. G. Boos; K. Borras; D. Boscherini; D. Bot; I. Brock; E. Brownson; R. Brugnera; N. Brummer; A. Bruni; G. Bruni; B. Brzozowska; P. J. Bussey; B. Bylsma; A. Caldwell; M. Capua; R. Carlin; C. D. Catterall; S. Chekanov; J. Chwastowski; J. Ciborowski; R. Ciesielski; L. Cifarelli; F. Cindolo; A. Contin; A. M. Cooper-Sarkar; N. Coppola; M. Corradi; F. Corriveau; M. Costa; G. D'Agostini; F. Dal Corso; J. del Peso; R. K. Dementiev; S. De Pasquale; M. Derrick; R. C. E. Devenish; D. Dobur; B. A. Dolgoshein; G. Dolinska; A. T. Doyle; V. Drugakov; L. S. Durkin; S. Dusini; Y. Eisenberg; P. F. Ermolov; A. Eskreys; S. Fang; S. Fazio; J. Ferrando; M. I. Ferrero; J. Figiel; B. Foster; G. Gach; A. Galas; E. Gallo; A. Garfagnini; A. Geiser; I. Gialas; A. Gizhko; L. K. Gladilin; D. Gladkov; C. Glasman; O. Gogota; Yu. A. Golubkov; P. Gottlicher; I. Grabowska-Bold; J. Grebenyuk; I. Gregor; G. Grigorescu; G. Grzelak; O. Gueta; M. Guzik; C. Gwenlan; T. Haas; W. Hain; R. Hamatsu; J. C. Hart; H. Hartmann; G. Hartner; E. Hilger; D. Hochman; R. Hori; A. Huttmann; Z. A. Ibrahim; Y. Iga; R. Ingbir; M. Ishitsuka; H. -P. Jakob; F. Januschek; T. W. Jones; M. Jungst; I. Kadenko; B. Kahle; S. Kananov; T. Kanno; U. Karshon; F. Karstens; I. I. Katkov; M. Kaur; P. Kaur; A. Keramidas; L. A. Khein; J. Y. Kim; D. Kisielewska; S. Kitamura; R. Klanner; U. Klein; E. Koffeman; N. Kondrashova; O. Kononenko; P. Kooijman; Ie. Korol; I. A. Korzhavina; A. Kotanski; U. Kotz; H. Kowalski; O. Kuprash; M. Kuze; A. Lee; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; T. Y. Ling; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Lohr; E. Lohrmann; K. R. Long; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; S. Magill; I. Makarenko; J. Malka; R. Mankel; A. Margotti; G. Marini; J. F. Martin; A. Mastroberardino; M. C. K. Mattingly; I. -A. Melzer-Pellmann; S. Mergelmeyer; S. Miglioranzi; F. Mohamad Idris; V. Monaco; A. Montanari; J. D. Morris; K. Mujkic; B. Musgrave; K. Nagano; T. Namsoo; R. Nania; A. Nigro; Y. Ning; T. Nobe; D. Notz; R. J. Nowak; A. E. Nuncio-Quiroz; B. Y. Oh; N. Okazaki; K. Olkiewicz; Yu. Onishchuk; K. Papageorgiu; A. Parenti; E. Paul; J. M. Pawlak; B. Pawlik; P. G. Pelfer; A. Pellegrino; W. Perlanski; H. Perrey; K. Piotrzkowski; P. Plucinski; N. S. Pokrovskiy; A. Polini; A. S. Proskuryakov; M. Przybycien; A. Raval; D. D. Reeder; B. Reisert; Z. Ren; J. Repond; Y. D. Ri; A. Robertson; P. Roloff; I. Rubinsky; M. Ruspa; R. Sacchi; U. Samson; G. Sartorelli; A. A. Savin; D. H. Saxon; M. Schioppa; S. Schlenstedt; P. Schleper; W. B. Schmidke; U. Schneekloth; V. Schonberg; T. Schorner-Sadenius; J. Schwartz; F. Sciulli; L. M. Shcheglova; R. Shehzadi; S. Shimizu; I. Singh; I. O. Skillicorn; W. Slominski; W. H. Smith; V. Sola; A. Solano; D. Son; V. Sosnovtsev; A. Spiridonov; H. Stadie; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; A. Stifutkin; P. Stopa; S. Suchkov; G. Susinno; L. Suszycki; J. Sztuk-Dambietz; D. Szuba; J. Szuba; A. D. Tapper; E. Tassi; J. Terron; T. Theedt; H. Tiecke; K. Tokushuku; J. Tomaszewska; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; M. Vazquez; A. Verbytskyi; O. Viazlo; N. N. Vlasov; R. Walczak; W. A. T. Wan Abdullah; J. J. Whitmore; K. Wichmann; L. Wiggers; M. Wing; M. Wlasenko; G. Wolf; H. Wolfe; K. Wrona; A. G. Yagues-Molina; S. Yamada; Y. Yamazaki; R. Yoshida; C. Youngman; O. Zabiegalov; A. F. . Zarnecki; L. Zawiejski; O. Zenaiev; W. Zeuner; B. O. Zhautykov; N. Zhmak; A. Zichichi; Z. Zolkapli; D. S. Zotkin

    2014-05-12T23:59:59.000Z

    Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.

  15. Inclusive inelastic scattering of 96. 5-MeV. pi. sup + and. pi. sup minus by the hydrogen and helium isotopes

    SciTech Connect (OSTI)

    Khandaker, M.A.; Doss, M.; Halpern, I.; Murakami, T.; Storm, D.W.; Tieger, D.R. (University of Washington, Department of Physics, FM-15, Seattle, Washington 98195 (USA)); Burger, W.J. (Massachusetts Institute of Technology, Bates Linear Accelerator Center, Middleton, Massachusetts 01949 (USA))

    1991-07-01T23:59:59.000Z

    Spectra, angular distributions, and integrated cross sections for inclusive inelastic scattering of 96.5-MeV {pi}{sup +} and {pi}{sup {minus}} from {sup 2}H, {sup 3}He, and {sup 4}He are presented. The measurements were made using a high-pressure gas cell, which permits an accurate determination of relative cross sections for all targets. The data are compared with distorted-wave impulse-approximation calculations and with a modified plane-wave impulse-approximation calculation. In addition, by combining the total inelastic cross sections from this work with estimates of single-charge-exchange cross sections and with published values and reasonable estimates of the other {pi}{sup +} cross sections at the same energy, values for total reaction and pion absorption cross sections are obtained for all the targets. The dependence of these cross sections on {ital Z}, {ital N}, nuclear density, and nuclear binding energy is discussed in terms of a simple model.

  16. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H{sub 2}O + He system

    SciTech Connect (OSTI)

    Semenov, Alexander [Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881 (United States); PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, ENS, UCP, CNRS, UMR8112, LERMA, 5 Place Janssen, 92195 Meudon (France); Dubernet, Marie-Lise [PSL Research University, Observatoire de Paris, Sorbonne Universités, UPMC Univ Paris 06, ENS, UCP, CNRS, UMR8112, LERMA, 5 Place Janssen, 92195 Meudon (France); Babikov, Dmitri, E-mail: dmitri.babikov@mu.edu [Chemistry Department, Wehr Chemistry Building, Marquette University, Milwaukee, Wisconsin 53201-1881 (United States)

    2014-09-21T23:59:59.000Z

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H{sub 2}O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm{sup ?1} the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm{sup ?1} the errors are consistently in the range of 1%–2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n{sup 2}, where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n{sup 3}. Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  17. Precision measurement of R = sigma/sub L//sigma/sub T/ and F/sub 2/ in deep-inelastic electron scattering

    SciTech Connect (OSTI)

    Dasu, S.; de Barbaro, P.; Bodek, A.; Harada, H.; Krasny, M.W.; Lang, K.; Riordan, E.M.; Arnold, R.; Benton, D.; Bosted, P.; and others

    1988-08-29T23:59:59.000Z

    We report new results on a precision measurement of the ratio R = sigma/sub L//sigma/sub T/ and the structure function F/sub 2/ for deep-inelastic electron-nucleon scattering in the kinematic range 0.2less than or equal toxless than or equal to0.5 and 1less than or equal toQ/sup 2/less than or equal to10 (GeV/c)/sup 2/. Our results show, for the first time, a clear falloff of R with increasing Q/sup 2/. Our R and F/sub 2/ results are in good agreement with QCD predictions only when corrections for target-mass effects are included.

  18. Measurement of the Inclusive ep Deep Inelastic Scattering Cross Section at Low Q2 with the H1 Detector at HERA

    SciTech Connect (OSTI)

    Raicevic, N. [Faculty of Science, University of Montenegro, Cetinjski put BB, 81000 Podgorica (Montenegro)

    2007-04-23T23:59:59.000Z

    The focus of this report are the recent measurements of the cross section and proton structure function F2 in ep deep inelastic scattering (DIS) at low virtuality of the exchanged boson, Q2, with the H1 detector at the HERA accelerator in Hamburg. The region of low Q2 and low Bjorken x allows precision tests of perturbative QCD at high gluon densities to be performed and also the transition from the perturbative to non-perturbative QCD domains to be explored. The recent H1 measurements of charm and beauty cross sections and structure functions, F{sub 2}{sup cc-bar} ans F{sub 2}{sup bb-bar}, for photon virtuality 12 < Q2 < 60 GeV2 will also be discussed.

  19. Single Spin Asymmetries in Charged Kaon Production from Semi-Inclusive Deep Inelastic Scattering on a Transversely Polarized $^3{\\rm{He}}$ Target

    E-Print Network [OSTI]

    Y. X. Zhao; Y. Wang; K. Allada; K. Aniol; J. R. M. Annand; T. Averett; F. Benmokhtar; W. Bertozzi; P. C. Bradshaw; P. Bosted; A. Camsonne; M. Canan; G. D. Cates; C. Chen; J. -P. Chen; W. Chen; K. Chirapatpimol; E. Chudakov; E. Cisbani; J. C. Cornejo; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; R. De Leo; X. Deng; A. Deur; H. Ding; P. A. M. Dolph; C. Dutta; D. Dutta; L. El Fassi; S. Frullani; H. Gao; F. Garibaldi; D. Gaskell; S. Gilad; R. Gilman; O. Glamazdin; S. Golge; L. Guo; D. Hamilton; O. Hansen; D. W. Higinbotham; T. Holmstrom; J. Huang; M. Huang; H. F Ibrahim; M. Iodice; X. Jiang; G. Jin; M. K. Jones; J. Katich; A. Kelleher; W. Kim; A. Kolarkar; W. Korsch; J. J. LeRose; X. Li; Y. Li; R. Lindgren; N. Liyanage; E. Long; H. -J. Lu; D. J. Margaziotis; P. Markowitz; S. Marrone; D. McNulty; Z. -E. Meziani; R. Michaels; B. Moffit; C. Muñoz Camacho; S. Nanda; A. Narayan; V. Nelyubin; B. Norum; Y. Oh; M. Osipenko; D. Parno; J. -C. Peng; S. K. Phillips; M. Posik; A. J. R. Puckett; X. Qian; Y. Qiang; A. Rakhman; R. Ransome; S. Riordan; A. Saha; B. Sawatzky; E. Schulte; A. Shahinyan; M. H. Shabestari; S. Širca; S. Stepanyan; R. Subedi; V. Sulkosky; L. -G. Tang; A. Tobias; G. M. Urciuoli; I. Vilardi; K. Wang; B. Wojtsekhowski; X. Yan; H. Yao; Y. Ye; Z. Ye; L. Yuan; X. Zhan; Y. Zhang; Y. -W. Zhang; B. Zhao; X. Zheng; L. Zhu; X. Zhu; X. Zong

    2014-04-29T23:59:59.000Z

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized $^3{\\rm{He}}$ target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1$<$$x_{bj}$$<$0.4 for $K^{+}$ and $K^{-}$ production. While the Collins and Sivers moments for $K^{+}$ are consistent with zero within the experimental uncertainties, both moments for $K^{-}$ favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. While the $K^{+}$ Sivers moments are consistent with the prediction, the $K^{-}$ results differ from the prediction at the 2-sigma level.

  20. Intrinsic vs. extrinsic inelastic scattering contributions in kappa-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br - transport measurements under hydrostatic pressure.

    SciTech Connect (OSTI)

    Strack, C.; Akinci, C.; Paschenko, V.; Wolf, B.; Uhrig, E.; Assmus, W.; Schreuer, J.; Wiehl, L.; Schlueter, J.; Wosnitza, J.; Schweitzer, D.; Lang , M.; Materials Science Division; J.W. Goethe-Universitat Frankfurt; Inst.fur Festkorperphysik; Univ. Stuttgart

    2006-12-05T23:59:59.000Z

    Interlayer-resistivity measurements have been performed on a variety of single crystals of the quasi-two-dimensional organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu[N(CN){sub 2}]Br. These crystals, which have been synthesized along two somewhat different routes, reveal strongly sample-dependent resistivity profiles: while the majority of samples shows a more or less pronounced {rho}(T) maximum around 90 K with a semiconducting behavior above, some crystals remain metallic at all temperatures T {le} 300 K. In the absence of significant differences in the crystals' structural parameters and chemical compositions, as proved by high-resolution X-ray and electron-probe-microanalysis, these results indicate that real structure phenomena, i.e. disorder and/or defects, may strongly affect the inelastic scattering. Comparative resistivity measurements under He-gas pressure on two crystals with strongly differing {rho}(T) profiles indicate that these additional, sample-dependent scattering contributions are characterized by an extraordinarily strong pressure response which is highly non-monotonous as a function of temperature. No correlations have been found between the strength of these scattering contributions and other characteristic properties such as the glass transition at T{sub g} = 77 K, the temperature T* {approx} 40 K, where the temperature dependence of the resistivity changes rather abruptly, or the superconducting transition temperature T{sub c}.

  1. Neutrino pair emission due to scattering of electrons off fluxoids in superfluid neutron star cores

    E-Print Network [OSTI]

    A. D. Kaminker; D. G. Yakovlev; P. Haensel

    1997-02-18T23:59:59.000Z

    We study the emission of neutrinos, resulting from the scattering of electrons off magnetic flux tubes (fluxoids) in the neutron star cores with superfluid (superconducting) protons. In the absence of proton superfluidity (T> T_{cp}), this process transforms into the well known electron synchrotron emission of neutrino pairs in a locally uniform magnetic field B, with the neutrino energy loss rate Q proportional to B^2 T^5. For temperatures T not much below T_{cp}, the synchrotron regime (Q \\propto T^5) persists and the emissivity Q can be amplified by several orders of magnitude due to the appearance of the fluxoids and associated enhancement of the field within them. For lower T, the synchrotron regime transforms into the bremsstrahlung regime (Q \\propto T^6) similar to the ordinary neutrino-pair bremsstrahlung of electrons which scatter off atomic nuclei. We calculate Q numerically and represent our results through a suitable analytic fit. In addition, we estimate the emissivities of two other neutrino-production mechanisms which are usually neglected -- neutrino-pair bremsstrahlung processes due to electron-proton and electron-electron collisions. We show that the electron-fluxoid and electron-electron scattering can provide the main neutrino production mechanisms in the neutron star cores with highly superfluid protons and neutrons at T scattering is significant if the initial, locally uniform magnetic field B > 10^{13} G.

  2. Importance of Compton scattering for radiation spectra of isolated neutron stars with weak magnetic fields

    E-Print Network [OSTI]

    V. Suleimanov; K. Werner

    2007-02-15T23:59:59.000Z

    Emergent model spectra of neutron star atmospheres are widely used to fit the observed soft X-ray spectra of different types of isolated neutron stars. We investigate the effect of Compton scattering on the emergent spectra of hot (T_eff > 10^6 K) isolated neutron stars with weak magnetic fields. In order to compute model atmospheres in hydrostatic and radiative equilibrium we solve the radiation transfer equation with the Kompaneets operator. We calculate a set of models with effective temperatures in the range 1 - 5 * 10^6 K, with two values of surface gravity (log g = 13.9 and 14.3) and different chemical compositions. Radiation spectra computed with Compton scattering are softer than those computed without Compton scattering at high energies (E > 5 keV) for light elements (H or He) model atmospheres. The Compton effect is more significant in H model atmospheres and models with low surface gravity. The emergent spectra of the hottest (T_eff > 3 * 10^6 K) model atmospheres can be described by diluted blackbody spectra with hardness factors ~ 1.6 - 1.9. Compton scattering is less important in models with solar abundance of heavy elements.

  3. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    SciTech Connect (OSTI)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  4. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    SciTech Connect (OSTI)

    Arnold, Owen [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Bilheux, Jean-Christophe [ORNL; Borreguero Calvo, Jose M [ORNL; Buts, Alex [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Campbell, Stuart I [ORNL; Doucet, Mathieu [ORNL; Draper, Nicholas J [ORNL; Ferraz Leal, Ricardo F [ORNL; Gigg, Martyn [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lynch, Vickie E [ORNL; Mikkelson, Dennis J [ORNL; Mikkelson, Ruth L [ORNL; Miller, Ross G [ORNL; Perring, Toby G [ORNL; Peterson, Peter F [ORNL; Ren, Shelly [ORNL; Reuter, Michael A [ORNL; Savici, Andrei T [ORNL; Taylor, Jonathan W [ORNL; Taylor, Russell J [ORNL; Zhou, Wenduo [ORNL; Zikovsky, Janik L [ORNL

    2014-11-01T23:59:59.000Z

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by a large team of software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objective of the development is to improve software quality, both in terms of performance and ease of use, for the the user community of large scale facilities. The functionality and novel design aspects of the framework are described.

  5. Long-range ordering of reduced magnetic moments in the spin-gap compound CeOs{sub 2}Al{sub 10} as seen via muon spin relaxation and neutron scattering

    SciTech Connect (OSTI)

    Adroja, D. T.; Hillier, A. D.; Kockelmann, W. A.; Anand, V. K.; Stewart, J. R.; Taylor, J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot Oxon OX11 0QX (United Kingdom); Deen, P. P. [Institute Laue-Langevin, BP 156, 6 Rue Jules Horowitz, 38042 Grenoble Cedex (France); Strydom, A. M. [Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Muro, Y.; Kajino, J.; Takabatake, T. [Department of Quantum Matter, ADSM, and IAMR, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2010-09-01T23:59:59.000Z

    We have carried out neutron diffraction, muon spin relaxation ({mu}SR), and inelastic neutron scattering (INS) investigations on a polycrystalline sample of CeOs{sub 2}Al{sub 10} to investigate the nature of the phase transition observed near 29 K in the resistivity and heat capacity. Our {mu}SR data clearly reveal coherent frequency oscillations below 28 K, indicating the presence of an internal field at the muon site, which confirms the long-range magnetic ordering of the Ce moment below 28 K. Upon cooling the sample below 15 K, unusual behavior of the temperature-dependent {mu}SR frequencies may indicate either a change in the muon site, consistent with the observation of superstructure reflections in electron diffraction, or a change in the ordered magnetic structure. Neutron diffraction data do not reveal any clear sign of either magnetic Bragg peaks or superlattice reflections. Furthermore, INS measurements clearly reveal the presence of a sharp inelastic excitation near 11 meV between 5 and 26 K, due to opening of a gap in the spin-excitation spectrum, which transforms into a broad response at and above 30 K. The magnitude of the spin gap (11 meV) as derived from the INS peak position agrees very well with the gap value as estimated from the bulk properties.

  6. Influence of the Environment Fluctuations on Incoherent Neutron Scattering Functions

    E-Print Network [OSTI]

    D. J. Bicout

    2001-04-09T23:59:59.000Z

    In extending the conventional dynamic models, we consider a simple model to account for the environment fluctuations of particle atoms in a protein system and derive the elastic incoherent structure factor (EISF) and the incoherent scattering correlation function C(Q,t) for both the jump dynamics between sites with fluctuating site interspacing and for the diffusion inside a fluctuating sphere. We find that the EISF of the system (or the normalized elastic intensity) is equal to that in the absence of fluctuations averaged over the distribution of site interspacing or sphere radius a. The scattering correlation function is $C(Q,t)=\\sum_{n} \\psi(t)$, where the average is taken over the Q-dependent effective distribution of relaxation rates \\lambda_n(a) and \\psi(t) is the correlation function of the length a. When \\psi(t)=1, the relaxation of C(Q,t) is exponential for the jump dynamics between sites (since \\lambda_n(a) is independent of a) while it is nonexponential for diffusion inside a sphere.

  7. Dynamic behavior of hydration water in calcium-silicate-hydrate gel: A quasielastic neutron scattering spectroscopy investigation

    E-Print Network [OSTI]

    Li, Hua

    The translational dynamics of hydration water confined in calcium-silicate-hydrate (C-S-H) gel was studied by quasielastic neutron scattering spectroscopy in the temperature range from 280 to 230 K. The stretch exponent ...

  8. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect (OSTI)

    Xinsheng Ling

    2012-02-02T23:59:59.000Z

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.

  9. Cooling neutrons using non-dispersive magnetic excitations

    E-Print Network [OSTI]

    Oliver Zimmer

    2014-06-14T23:59:59.000Z

    A new method is proposed for cooling neutrons by inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic neutron energy is removed in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. Analytical solutions of the stationary neutron transport equation are given using inelastic neutron scattering cross sections derived in an appendix. They neglect any inelastic process except the paramagnetic scattering and hence still underestimate very-cold neutron densities. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated oxygen-clathrate hydrate, or more exotically, in dry oxygen-He4 van der Waals clusters. At a neutron temperature about 6 K, for which neutron conversion to ultra-cold neutrons by single-phonon emission in pure superfluid He4 works best, conversion rates due to paramagnetic scattering in the clathrate are found to be a factor 9 larger. While in conversion the neutron imparts only a single energy quantum to the medium, the multi-step paramagnetic cooling cascade leads to further strong enhancements of very-cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K), for the moderator held at about 1.3 K. Due to a favorable Bragg cutoff of the oxygen-clathrate the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter. The paramagnetic cooling mechanism may offer benefits in novel intense sources of very cold neutrons and for enhancing production of ultra-cold neutrons.

  10. Low-energy neutron-12C analyzing powers: Results from a multichannel algebraic scattering theory

    E-Print Network [OSTI]

    J. P. Svenne; K. Amos; S. Karataglidis; D. van der Knijff; L. Canton; G. Pisent

    2005-10-29T23:59:59.000Z

    Analyzing powers in low-energy neutron scattering from 12C are calculated in an algebraic momentum-space coupled-channel formalism (MCAS). The results are compared with recently obtained experimental data. The channel-coupling potentials have been defined previously to reproduce the total cross section and sub-threshold bound states of the compound system. Without further adjustment, good agreement with data for the analyzing powers is obtained.

  11. Virtual Compton scattering and neutral pion electroproduction in the resonance region up to the deep inelastic region at backward angles

    E-Print Network [OSTI]

    Zhou, Z. -L.

    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e, e'p)? exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the W-dependence at ...

  12. Evidence for Narrow N*(1685) Resonance in Quasifree Compton Scattering on the Neutron

    E-Print Network [OSTI]

    V. Kuznetsov; M. V. Polyakov; V. Bellini; T. Boiko; S. Chebotarev; H. S. Dho; G. Gervino; F. Ghio; A. Giusa; A. Kim; W. Kim; F. Mammoliti; E. Milman; A. Ni; I. A. Perevalova; C. Randieri; G. Russo; M. L. Sperduto; C. M. Sutera; A. N. Vall

    2011-02-21T23:59:59.000Z

    The first study of quasi-free Compton scattering on the neutron in the energy range of $E_{\\gamma}=0.75 - 1.5$ GeV is presented. The data reveals a narrow peak at $W\\sim 1.685$ GeV. This result, being considered in conjunction with the recent evidence for a narrow structure at $W\\sim 1.68$GeV in the $\\eta$ photoproduction on the neutron, suggests the existence of a new nucleon resonance with unusual properties: the mass $M\\sim 1.685$GeV, the narrow width $\\Gamma \\leq 30$MeV, and the much stronger photoexcitation on the neutron than on the proton.

  13. Neutrino-nucleus coherent scattering as a probe of neutron density distributions

    E-Print Network [OSTI]

    Kelly Patton; Jonathan Engel; Gail C. McLaughlin; Nicolas Schunck

    2012-07-03T23:59:59.000Z

    Neutrino-nucleus coherent elastic scattering provides a theoretically appealing way to measure the neutron part of nuclear form factors. Using an expansion of form factors into moments, we show that neutrinos from stopped pions can probe not only the second moment of the form factor (the neutron radius) but also the fourth moment. Using simple Monte Carlo techniques for argon, germanium, and xenon detectors of 3.5 tonnes, 1.5 tonnes, and 300 kg, respectively, we show that the neutron radii can be found with an uncertainty of a few percent when near a neutrino flux of $3\\times10^{7}$ neutrinos/cm$^{2}$/s. If the normalization of the neutrino flux is known independently, one can determine the moments accurately enough to discriminate among the predictions of various nuclear energy functionals.

  14. Method for improving the angular resolution of a neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25T23:59:59.000Z

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  15. Cross sections for neutron-deuteron elastic scattering in the energy range 135–250 MeV

    E-Print Network [OSTI]

    Ertan, E.

    We report new measurements of the neutron-deuteron elastic scattering cross section at energies from 135 to 250 MeV and center-of-mass angles from 80[degrees] to 130[degrees]. Cross sections for neutron-proton elastic ...

  16. Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many

    E-Print Network [OSTI]

    Boyer, Edmond

    Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

  17. Quantification of microstructural features in HMX using small angle neutron scattering techniques

    SciTech Connect (OSTI)

    Mang, J.T.; Skidmore, C.B.; Hjelm, R.P.; Howe, P.M.

    1998-12-01T23:59:59.000Z

    Microstructural features in raw powders of High Explosives have been qualitatively observed by many researchers, using polarized light and scanning electron microscopy. Here, the authors present a method for non-destructive quantification of volume fraction and structure of intragranular cracks and crystallization voids in a bulk sample (100--300 mg). By employing Small Angle Neutron Scattering (SANS) in conjunction with the method of contrast variation, they can effectively highlight different structural features of a complex system. The technique of contrast variation relies on immersing the sample in a uniform fluid of known neutron scattering length density. By selectively varying the scattering length density of the immersion fluid, scattering contributions from internal and external structures can be separated. This approach is analogous to varying the index of refraction for immersion oil relative to a sample in polarized light microscopy. SANS experiments on HMX were conducted using loose powders (261 and 10 micron mean particle diameters) and pellets made by uniaxial consolidation (without binder) to 7 and 10 volume percent porosity respectively. Detailed modeling of the SANS data indicate significant alteration of the intragranular void/crack/pore structure, with pressing, of the HMX powders.

  18. Rapidly pulsed TRIGA reactor: an intense source for neutron scattering experiments

    SciTech Connect (OSTI)

    Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The need for ever increasing intensities of thermal neutron beams for neutron scattering experiments has stimulated the development of intense steady state research reactors such as the 53-MW ILL reactor at Grenoble. The source flux at the reactor end of the beam ports is typically 10{sup 15}n/cm{sup 2}.s for its thermal neutron beams. To achieve still higher source fluxes of neutrons, the family of pulsing IBR was developed. In this type of facility the pulse repetition rate is low ({approx}5/sec) typically but the instantaneous peak fluxes are high, ranging up to 5 x 10{sup 15}n/cm{sup 2}.s at the surface of the moderator. Another type of intense neutron source is that exemplified by the proton synchrotron accelerators with their spallation targets. The first of these has been the IPNS at Argonne National laboratory. This neutron source produces 30 pulses per second with an individual peak thermal neutron intensity of 4 x 10{sup 14}n/cm{sup 2}.s from the moderator. An equivalent, alternative intense neutron source can be based on a rapidly pulsed TRIGA reactor. With a pulsed thermal neutron intensity of more than 10{sup 15}n/cm{sup 2}.s occurring 50 times per second at the source end of beam ports, the rapidly pulsed TRIGA reactor combines some of the best features of the pulsed fast reactors such as IBR-2 and the spallation neutron sources but with the safety of a thermal neutron reactor with a large, prompt, negative temperature coefficient of reactivity. The initial concept of the rapidly pulsed TRIGA reactor was developed and initially reported in 1966. Subsequently, the standard fuel format for U-ZrH{sub x} fuel has been developed to include a small diameter fuel particularly well suited for the rapidly pulsed application. This fuel is LEU, satisfying all the requirements for non proliferation, and has a very long core life time. In the proposed application, the peak fuel temperature does not vary more than 1 deg. C from the average peak fuel temperatures during each pulse. Hence long term metallurgical stability is thus assured. With a core lifetime that can be designed for up to 10,000 MWD, operation at an average power of 10 MW (with peak pulsed powers of {approx}50 MW) with an equilibrium core can be conducted for 1000 full power days. (author)

  19. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect (OSTI)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24T23:59:59.000Z

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  20. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions

    E-Print Network [OSTI]

    S. Terashima; H. Sakaguchi; H. Takeda; T. Ishikawa; M. Itoh; T. Kawabata; T. Murakami; M. Uchida; Y. Yasuda; M. Yosoi; J. Zenihiro; H. P. Yoshida; T. Noro; T. Ishida; S. Asaji; T. Yonemura

    2008-02-02T23:59:59.000Z

    Cross sections and analyzing powers for proton elastic scattering from $^{116,118,120,122,124}$Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm$^{-1}$ to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.

  1. Cross sections for neutron-deuteron elastic scattering in the energy range 135-250 MeV

    E-Print Network [OSTI]

    E. Ertan; T. Akdogan; M. B. Chtangeev; W. A. Franklin; P. A. M. Gram; M. A. Kovash; J. L. Matthews; M. Yuly

    2012-11-22T23:59:59.000Z

    We report new measurements of the neutron-deuteron elastic scattering cross section at energies from 135 to 250 MeV and center-of-mass angles from $80^\\circ$ to $130^\\circ$. Cross sections for neutron-proton elastic scattering were also measured with the same experimental setup for normalization purposes. Our $nd$ cross section results are compared with predictions based on Faddeev calculations including three-nucleon forces, and with cross sections measured with charged particle and neutron beams at comparable energies.

  2. Gravitational waves from a test particle scattered by a neutron star: Axial mode case

    E-Print Network [OSTI]

    Kazuhiro Tominaga; Motoyuki Saijo; Kei-ichi Maeda

    1999-09-20T23:59:59.000Z

    Using a metric perturbation method, we study gravitational waves from a test particle scattered by a spherically symmetric relativistic star. We calculate the energy spectrum and the waveform of gravitational waves for axial modes. Since metric perturbations in axial modes do not couple to the matter fluid of the star, emitted waves for a normal neutron star show only one peak in the spectrum, which corresponds to the orbital frequency at the turning point, where the gravitational field is strongest. However, for an ultracompact star (the radius $R \\lesssim 3M$), another type of resonant periodic peak appears in the spectrum. This is just because of an excitation by a scattered particle of axial quasinormal modes, which were found by Chandrasekhar and Ferrari. This excitation comes from the existence of the potential minimum inside of a star. We also find for an ultracompact star many small periodic peaks at the frequency region beyond the maximum of the potential, which would be due to a resonance of two waves reflected by two potential barriers (Regge-Wheeler type and one at the center of the star). Such resonant peaks appear neither for a normal neutron star nor for a Schwarzschild black hole. Consequently, even if we analyze the energy spectrum of gravitational waves only for axial modes, it would be possible to distinguish between an ultracompact star and a normal neutron star (or a Schwarzschild black hole).

  3. Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering

    SciTech Connect (OSTI)

    Clifton, Luke A [ORNL; Johnson, Christopher L [ORNL; Solovyova, Alexandra [University of Newcastle upon Tyne; Callow, Phil [Institut Laue-Langevin (ILL); Weiss, Kevin L [ORNL; Ridley, Helen [University of Newcastle upon Tyne; Le Brun, Anton P [ORNL; Kinane, Christian [ISIS Facility, Rutherford Appleton Laboratory; Webster, John [ISIS Facility, Rutherford Appleton Laboratory; Holt, Stephen A [ORNL; Lakey, Jeremy H [ORNL

    2012-01-01T23:59:59.000Z

    Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.

  4. Multi-Grid Boron-10 detector for large area applications in neutron scattering science

    E-Print Network [OSTI]

    Ken Andersen; Thierry Bigault; Jens Birch; Jean-Claude Buffet; Jonathan Correa; Patrick van Esch; Bruno Guerard; Richard Hall-Wilton; Lars Hultman; Carina Höglund; Jens Jensen; Anton Khaplanov; Oliver Kirstein; Francesco Piscitelli; Christian Vettier

    2012-09-04T23:59:59.000Z

    The present supply of 3He can no longer meet the detector demands of the upcoming ESS facility and continued detector upgrades at current neutron sources. Therefore viable alternative technologies are required to support the development of cutting-edge instrumentation for neutron scattering science. In this context, 10B-based detectors are being developed by collaboration between the ESS, ILL, and Link\\"{o}ping University. This paper reports on progress of this technology and the prospects applying it in modern neutron scattering experiments. The detector is made-up of multiple rectangular gas counter tubes coated with B4C, enriched in 10B. An anode wire reads out each tube, thereby giving position of conversion in one of the lateral co-ordinates as well as in depth of the detector. Position resolution in the remaining co-ordinate is obtained by segmenting the cathode tube itself. Boron carbide films have been produced at Link\\"{o}ping University and a detector built at ILL. The characterization study is presented in this paper, including measurement of efficiency, effects of the fill gas species and pressure, coating thickness variation on efficiency and sensitivity to gamma-rays.

  5. Search for Anomalous Scattering of keV Neutrons from H2O-D2O Mixtures R. Moreh,1,2,* R. C. Block,2

    E-Print Network [OSTI]

    Danon, Yaron

    Search for Anomalous Scattering of keV Neutrons from H2O-D2O Mixtures R. Moreh,1,2,* R. C. Block,2 (Received 20 January 2005; published 12 May 2005) We measured the neutron scattering intensities from pure Linac and the final energy of the scattered neutrons was fixed at 24.3 keV using a 20 cm thick pure iron

  6. Neutron Transmission, Capture, and Scattering Measurements at the Gaerttner LINAC Center Y. Danon, L. Liu, E.J. Blain, A.M. Daskalakis, B.J. McDermott, K. Ramic, C.R. Wendorff

    E-Print Network [OSTI]

    Danon, Yaron

    Neutron Transmission, Capture, and Scattering Measurements at the Gaerttner LINAC Center Y. Danon . As the energy of the neutrons increases to the keV region neutron resonance scattering becomes dominant compared to capture, and scattered neutrons can penetrate the 10 B4C liner of the NaI capture detector and get

  7. Quasi-Differential Neutron Scattering Measurements of 238 A.M. Daskalakis, R.M. Bahran, E.J. Blain, B.J. McDermott, S. Piela, and Y. Danon

    E-Print Network [OSTI]

    Danon, Yaron

    Quasi-Differential Neutron Scattering Measurements of 238 U A.M. Daskalakis, R.M. Bahran, E between evaluations through the energy-angle distribution of neutrons from scattering and fission of 238 U using the Rensselaer Polytechnic Institute (RPI) neutron scattering system. Differential neutron

  8. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    SciTech Connect (OSTI)

    McCray, John (Colorado School of Mines); Navarre-Sitchler, Alexis (Colorado School of Mines); Mouzakis, Katherine (Colorado School of Mines); Heath, Jason E.; Dewers, Thomas A.; Rother, Gernot (Oak Ridge National Laboratory)

    2010-11-01T23:59:59.000Z

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillary entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.

  9. Development and application of setup for ac magnetic field in neutron scattering experiments

    SciTech Connect (OSTI)

    Klimko, Sergey [Laboratoire Leon Brillouin, 91191 Gif-sur-Yvette (France); Zhernenkov, Kirill; Toperverg, Boris P.; Zabel, Hartmut [Institut fuer Festkoerperphys IV, Ruhr Universitaet Bochum, D-44780 Bochum (Germany)

    2010-10-15T23:59:59.000Z

    We report on a new setup developed for neutron scattering experiments in periodically alternating magnetic fields at the sample position. The assembly consisting of rf generator, amplifier, wide band transformer, and resonance circuit. It allows to generate homogeneous ac magnetic fields over a volume of a few cm{sup 3} and variable within a wide range of amplitudes and frequencies. The applicability of the device is exemplified by ac polarized neutron reflectometry (PNR): a new method established to probe remagnetization kinetics in soft ferromagnetic films. Test experiments with iron films demonstrate that the ac field within the accessible range of frequencies and amplitudes produces a dramatic effect on the PNR signal. This shows that the relevant ac field parameters generated by the device match well with the scales involved in the remagnetization processes. Other possible applications of the rf unit are briefly discussed.

  10. Neutrino-Pair Emission due to Electron-Phonon Scattering in a Neutron Star Crust

    E-Print Network [OSTI]

    D. G. Yakovlev; A. D. Kaminker

    1996-04-19T23:59:59.000Z

    Neutrino-pair bremsstrahlung radiation is considered due to electron--phonon scattering of degenerate, relativistic electrons in a lattice of spherical atomic nuclei in a neutron star crust. The neutrino energy generation rate is calculated taking into account exact spectrum of phonons, the Debye--Waller factor, and the nuclear form--factor in the density range from $10^7$~g~cm$^{-3}$ to $10^{14}$~g~cm$^{-3}$ at arbitrary nuclear composition for body-centered-cubic and face-centered-cubic Coulomb crystals. The results are fitted by a unified analytic expression. A comparison is given of the neutrino bremsstrahlung energy losses in a neutron star crust composed of ground state and accreted matter, in the solid and liquid phases.

  11. Hydrogen Species Motion in Piezoelectrics: A Quasi-Elastic Neutron Scattering Study

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Tyagi, Madhu; Brown, Craig; Udovic, Terrence J.; Jenkins, T. J.; Pitman, Stan G.

    2012-03-05T23:59:59.000Z

    Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here Quasi-Elastic Neutron Scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by gaseous exposure to high-pressure gaseous hydrogen {approx}17 MPa. Filter Analyzed Neutron Spectroscopy (FANS) studies of the hydrogen enhanced vibrational modes are presented as well. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate.

  12. Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory

    SciTech Connect (OSTI)

    Malek Mazouz

    2006-12-08T23:59:59.000Z

    Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

  13. Measurement of the Neutral Current Deep Inelastic Scattering Cross Section at Low and Medium Q{sup 2} Using H1 Data

    SciTech Connect (OSTI)

    Picuric, Ivana [Faculty of Natural Sciences and Mathematics, University of Montenegro, P. O. Box 211, 81001 Podgorica (Montenegro)

    2010-01-21T23:59:59.000Z

    This report presents the measurements of the inclusive deep inelastic e{sup +}p scattering cross section at low and medium virtuality of the exchanged boson, 0.2

  14. X-ray and neutron scattering studies of the Rb?MnF? and Cu?â??õxMgx̳GeO? in an external magnetic field

    E-Print Network [OSTI]

    Christianson, Rebecca J. (Rebecca Jean), 1973-

    2001-01-01T23:59:59.000Z

    This thesis presents results of two scattering studies of low dimensional magnetic materials. The first is a neutron scattering study of Rb2MnF4, a nearly ideal two-dimensional square lattice Heisenberg antiferromagnet ...

  15. JOURNAL DE PHYSIQUE Colloque C2, suppl&mentau n o3, Tome 40, mars 1979,page C2-666 ?~OSSBAUE%SCATTERING AND NEUTRON SCATTEZINS ON L I Q U I D GLYCEROL

    E-Print Network [OSTI]

    Boyer, Edmond

    the temperature range, a high regolution neutron-scattering experiment was performed. There the q-range extended is obtained from the width and intensity of the quasielastic scattering. The neutron scattering experiment 0.7 A-' up to 3.5 A-' while for neutron scattering q was between 1 0.2 I-' and 2 A

  16. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect (OSTI)

    Nuruzzaman, nfn [Thomas Jefferson National Accelerator Facility and Hampton University

    2014-12-01T23:59:59.000Z

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has also proven valuable for tracking changes in the beamline optics, such as dispersion at the target.

  17. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    SciTech Connect (OSTI)

    Ono, K., E-mail: kanta.ono@kek.jp; Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Yano, M.; Shoji, T.; Manabe, A.; Kato, A. [Toyota Motor Corporation, Toyota, Aichi 471-8571 (Japan); Kaneko, Y. [Toyota Central R and D Labs. Inc., Aichi 480-1192 (Japan)

    2014-05-07T23:59:59.000Z

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D{sub sw} (100.0?±?4.9?meV.Å{sup 2}) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  18. Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS

    E-Print Network [OSTI]

    Silvia Niccolai; for the CLAS Collaboration

    2012-07-13T23:59:59.000Z

    This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.

  19. Deeply virtual Compton scattering on longitudinally polarized protons and neutrons at CLAS

    SciTech Connect (OSTI)

    Silvia Niccolai

    2012-04-01T23:59:59.000Z

    This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH{sub 3}) and deuterons (ND{sub 3}) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.

  20. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    SciTech Connect (OSTI)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.; Langlois, D.A.

    1995-12-31T23:59:59.000Z

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphology and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.