National Library of Energy BETA

Sample records for inelastic neutron scattering

  1. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    SCATTERING; ISOTOPES; LEAD; LEAD 206; LEAD 207; LEVELS; NEUTRONS; SCATTERING Inelastic neutron scattering on Pb isotopes can result in gamma rays near the signature endpoint...

  2. Research with Inelastic Neutron Scattering at the NRU Reactor

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.; Woods, A. D. B.; Dolling, G.; Thorson, I. M.

    1964-05-01

    This paper presents a brief outline of inelastic neutron scattering measurements carried out at the NRU reactor at Chalk River.

  3. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta ... Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 73; ...

  4. A New Polyethylene Scattering Law Determined Using Inelastic Neutron Scattering

    SciTech Connect (OSTI)

    Lavelle, Christopher M [ORNL; Liu, C [Oak Ridge National Laboratory (ORNL); Stone, Matthew B [ORNL

    2013-01-01

    Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S (Q, E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for T =300 K, and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 300 K which are used to improve the scattering law for HDPE. We describe the experimental methods, review some of the past HDPE scattering laws, and compare computations using these models to the measured S (Q, E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the 1 phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work.

  5. Neutron inelastic scattering in natural Pb as a background in neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Inelastic neutron scattering on Pb isotopes can result in {gamma} rays near the signature endpoint energy in a number of

  6. Inelastic magnetic neutron scattering in CePd{sub 3}.

    SciTech Connect (OSTI)

    Lawrence, J. M.; Fanelli, V. R.; Goremychkin, E. A.; Osborn, R.; Bauer, E. D.; McClellan, K. J.; Christianson, A. D.; Univ. of California at Irvine; LANL; ORNL

    2008-01-01

    We have performed time-of-flight neutron scattering measurements on a single crystal of the intermediate valence compound CePd{sub 3}. At 10 K, a Kondo-esque inelastic magnetic scattering peak occurs near {Delta}E = 60 meV with maximum intensity for momentum transfer Q near the (1/2, 1/2, 0) zone boundary. Spectral weight is transferred to lower energy as Q varies until at zone center the intensity at 60 meV is considerably weaker. These results are in qualitative accord with predictions of the Anderson lattice. The Q-dependence may resolve an older controversy concerning the low-temperature scattering. We discuss the relationship of these results to our recent results in YbAl{sub 3}.

  7. Neutron inelastic scattering in natural Pb as a background in neutrinoless

    Office of Scientific and Technical Information (OSTI)

    double-beta decay experiments (Journal Article) | SciTech Connect Journal Article: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments Citation Details In-Document Search Title: Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical

  8. Deep Inelastic Electron Scattering: Experimental

    DOE R&D Accomplishments [OSTI]

    Friedman, J. I.

    1971-10-01

    This report reviews and brings up to date the experimental information on high energy inelastic electron scattering from proton and neutron.

  9. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  10. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  11. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    SciTech Connect (OSTI)

    Hicks, S. F.; Combs, B.; Downes, L.; Girgis, J.; Kersting, L. J.; Lueck, C. J.; McDonough, P. J.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Chakraborty, A.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-19

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  12. Measurement of cross sections for inelastic cold-neutron scattering in metals and polymers by the method of (n, {gamma}) analysis

    SciTech Connect (OSTI)

    Arzumanov, S. S.; Bondarenko, L. N.; Geltenbort, P.; Morozov, V. I.; Panin, Yu. N.; Chernyavsky, S. M.

    2008-11-15

    The results obtained by measuring the cross sections for the inelastic scattering of very cold neutrons for a number of metals and polymers by the method of a neutron-irradiation analysis are presented. The method is based on simultaneously measuring events of inelastic scattering and neutron capture in the sample under investigation via recording gamma radiation with a semiconductor germanium detector. Neutron capture by a nucleus of the sample is accompanied by the prompt radiation of gamma rays having a known spectrum. Upon inelastic scattering, a neutron acquires thermal energy. Upon leaving the sample, this neutron is absorbed in a special converter that contains the isotope {sup 10}B. The capture of the neutron by a {sup 10}B nucleus is followed by the emission of a 477-keV gamma ray. The probabilities of capture and inelastic scattering are proportional to the respective neutron-interaction cross sections, and the ratio of the recorded detector counts corresponding to events of the two types does not depend on the spectrum of the incident flux of very cold neutrons or on the trajectory of neutron motion in the sample. The sought inelastic-scattering cross section at a fixed sample temperature is calculated by using this ratio and the known cross section for neutron capture by the sample isotope having a known gamma-radiation spectrum.

  13. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (OSTI)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  14. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less

  15. STUDY MAGNETIC EXCITATIONS IN DOPED TRANSITION METAL OXIDES USING INELASTIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    Dai, Pengcheng

    2014-02-18

    Understanding the interplay between magnetism and superconductivity continues to be a hot topic in modern condensed matter physics. The discovery of high-temperature superconductivity in iron-based materials in 2008 provided an unique opportunity to compare and contrast these materials with traditional high-Tc copper oxide superconductors. Neutron scattering plays an important role in determining the dynamical spin properties in these materials. This proposal is a continuation of previous DOE supported proposal. This report summarizes the final progress we have made over from May 2005 till Aug. 2013. Overall, we continue to carry out extensive neutron scattering experiments on Fe-based materials, focusing on understanding their magnetic properties. In addition, we have established a materials laboratory at UT that has allowed us to grow these superconductors. Because neutron scattering typically demands a large amount of samples, by growing these materials in our own laboratory, we can now pursuit neutron scattering experiments over the entire electronic phase diagram, focusing on regions of interests. The material synthesis laboratory at UT was established entirely with the support of DOE funding. This not only allowed us to carry out neutron scattering experiments, but also permit us to provide samples to other US/International collaborators for studying these materials.

  16. Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations

    SciTech Connect (OSTI)

    Lan, Tian [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Li, Chen [ORNL] [ORNL; Niedziela, Jennifer L [ORNL] [ORNL; Smith, Hillary [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Abernathy, Douglas L [ORNL] [ORNL; Rossman, George [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Fultz, B. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena

    2014-01-01

    Inelastic neutron scattering measurements on silver oxide (Ag2O) with the cuprite structure were performed at temperatures from 40 to 400 K, and Fourier transform far-infrared spectra were measured from 100 to 300 K. The measured phonon densities of states and the infrared spectra showed unusually large energy shifts with temperature, and large linewidth broadenings. First principles molecular dynamics (MD) calculations were performed at various temperatures, successfully accounting for the negative thermal expansion (NTE) and local dynamics. Using the Fourier-transformed velocity autocorrelation method, the MD calculations reproduced the large anharmonic effects of Ag2O, and were in excellent agreement with the neutron scattering data. The quasiharmonic approximation (QHA) was less successful in accounting for much of the phonon behavior. The QHA could account for some of the NTE below 250 K, although not at higher temperatures. Strong anharmonic effects were found for both phonons and for the NTE. The lifetime broadenings of Ag2O were explained by anharmonic perturbation theory, which showed rich interactions between the Ag-dominated modes and the O-dominated modes in both up- and down-conversion processes.

  17. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more » F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  18. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L₃ edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO₄ with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La₂CuO₄ (LCO), which is consistent with themore » previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L₃ edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  19. Precise neutron inelastic cross section measurements

    SciTech Connect (OSTI)

    Negret, Alexandru [Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, 077125 Bucharest-Magurele (Romania)

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  20. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    SciTech Connect (OSTI)

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that is orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(?,?) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(?,?) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.

  1. Level crossings and zero-field splitting in the {Cr8}-cubane spin-cluster studied using inelastic neutron scattering and magnetization

    SciTech Connect (OSTI)

    Vaknin, D.; Garlea, Vasile O; Demmel, F.; Mamontov, Eugene; Nojiri, H; Martin, Catalin; Chiorescu, Irinel; Qiu, Y.; Luban, M.; Kogerler, P.; Fielden, J.; Engelhardt, L; Rainey, C

    2010-01-01

    Inelastic neutron scattering (INS) in variable magnetic field and high-field magnetization measurements in the millikelvin temperature range were performed to gain insight into the low-energy magnetic excitation spectrum and the field-induced level crossings in the molecular spin cluster {Cr8}-cubane. These complementary techniques provide consistent estimates of the lowest level-crossing field. The overall features of the experimental data are explained using an isotropic Heisenberg model, based on three distinct exchange interactions linking the eight CrIII paramagnetic centers (spins s = 3/2), that is supplemented with a relatively large molecular magnetic anisotropy term for the lowest S = 1 multiplet. It is noted that the existence of the anisotropy is clearly evident from the magnetic field dependence of the excitations in the INS measurements, while the magnetization measurements are not sensitive to its effects.

  2. MAGNETIC NEUTRON SCATTERING

    SciTech Connect (OSTI)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern science, ranging from large-scale structures and dynamics of polymers and biological systems, to electronic properties of today's technological materials. Neutron scattering developed into a vast field, encompassing many different experimental techniques aimed at exploring different aspects of matter's atomic structure and dynamics. Modern magnetic neutron scattering includes several specialized techniques designed for specific studies and/or particular classes of materials. Among these are magnetic reflectometry aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy for glasses and polymers. Each of these techniques and many others offer exciting opportunities for examining magnetism and warrant extensive reviews, but the aim of this chapter is not to survey how different neutron-scattering methods are used to examine magnetic properties of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron scattering, and on the recent developments in applying one of the oldest methods, the triple axis spectroscopy, that still is among the most extensively used ones. The developments discussed here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed in Chapter 3.

  3. Inelastic X-ray and Nuclear Resonant Scattering | Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XSD-IXN XSD-IXN Home Staff Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group operates beamlines at APS Sectors 3, 9 and 30....

  4. Inelastic Scattering Of Electrons By Protons

    DOE R&D Accomplishments [OSTI]

    Cone, A. A.; Chen, K. W.; Dunning, J. R. Jr.; Hartwig, G.; Ramsey, N. F.; Walker, J. K.; Wilson, R.

    1966-12-01

    The inelastic scattering of electrons by protons has been measured at incident electron energies up to 5 BeV/c and momentum transfers q{sup 2}=4(BeV/c){sup 2}. Excitation of known nucleon resonances at M=1238, 1512, 1688 and possibly 1920 MeV have been observed. The calculations for the resonance at M=1238 MeV have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

  5. Multiplet resonance lifetimes in resonant inelastic x-ray scattering...

    Office of Scientific and Technical Information (OSTI)

    Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Citation Details In-Document Search Title: Multiplet resonance lifetimes in ...

  6. Test of factorization in diffractive deep inelastic scattering...

    Office of Scientific and Technical Information (OSTI)

    Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep ...

  7. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  8. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect (OSTI)

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  9. Neutron inelastic scattering investigation of the magnetic excitations in Cu{sub 2}Te{sub 2}O{sub 5}X{sub 2} (X=Br,Cl)

    SciTech Connect (OSTI)

    Crowe, S.J.; Majumdar, S.; Lees, M.R.; Paul, D. McK.; Bewley, R.I.; Levett, S.J.; Ritter, C.

    2005-06-01

    Neutron inelastic scattering investigations have been performed on the spin tetrahedral system Cu{sub 2}Te{sub 2}O{sub 5}X{sub 2} (X=Cl,Br). We report the observation of magnetic excitations with a dispersive component in both compounds, associated with the three-dimensional incommensurate magnetic order that develops below T{sub N}{sup Cl}=18.2 K and T{sub N}{sup Br}=11.4 K. The excitation in Cu{sub 2}Te{sub 2}O{sub 5}Cl{sub 2} softens as the temperature approaches T{sub N}{sup Cl}, leaving diffuse quasi-elastic scattering above the transition temperature. In the bromide, the excitations are present well above T{sub N}{sup Br}, which might be attributed to the presence of a degree of low dimensional correlations above T{sub N}{sup Br} in this compound.

  10. Multiplet resonance lifetimes in resonant inelastic x-ray scattering

    Office of Scientific and Technical Information (OSTI)

    involving shallow core levels (Journal Article) | SciTech Connect Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Citation Details In-Document Search Title: Multiplet resonance lifetimes in resonant inelastic x-ray scattering involving shallow core levels Authors: Wray, L. Andrew ; Yang, Wanli ; Eisaki, Hiroshi ; Hussain, Zahid ; Chuang, Yi-De Publication Date: 2012-11-19 OSTI Identifier: 1101794 Type: Publisher's Accepted Manuscript Journal

  11. Rapidity divergences and deep inelastic scattering in the endpoint region

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search This content will become publicly available on May 11, 2016 Title: Rapidity divergences and deep inelastic scattering in the endpoint region Authors: Fleming, Sean ; Labun, Ou Z. Publication Date: 2015-05-12 OSTI Identifier: 1179737 Grant/Contract Number: FG02-06ER41449; FG02-04ER41338 Type: Publisher's Accepted Manuscript Journal Name: Physical

  12. Test of factorization in diffractive deep inelastic scattering and

    Office of Scientific and Technical Information (OSTI)

    photoproduction at HERA (Journal Article) | SciTech Connect Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA Citation Details In-Document Search Title: Test of factorization in diffractive deep inelastic scattering and photoproduction at HERA The QCD factorization theorem in diffraction is tested by comparing diffractive jet production data to QCD predictions based on fits to inclusive diffractive cross section data. H1 measured dijet production with

  13. Mechanism of elastic and inelastic proton scattering on a {sup 15}C nucleus in diffraction theory

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2012-11-15

    The amplitudes for elastic and inelastic proton scattering on the neutron-rich nucleus {sup 15}C (to its J{sup {pi}} = 5/2{sup +} level in the latter case) in inverse kinematics were calculated within Glauber diffraction theory. First- and second-order terms were taken into account in the multiple-scattering operator. The {sup 15}C wave function in the multiparticle shell model was used. This made it possible to calculate not only respective differential cross sections but also the contribution of proton scattering on nucleons occurring in different shells. The differential cross sections for elastic and inelastic scattering were calculated at the energies of 0.2, 0.6, and 1 GeV per nucleon.

  14. Measurement of the nearly free neutron structure function using spectator tagging in inelastic 2H(e,e'p s)X scattering with CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tkachenko, Svyatoslav; Baillie, Nathan; Kuhn, Sebastian; Zhang, J; Arrington, John; Bosted, Peter; Bueltmann, Stephen; Christy, Michael; Fenker, Howard; Griffioen, Keith; et al

    Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  15. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic H2 ( e, e'ps ) X scattering with CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Dutta, D.; Ent, R.; et al

    2014-04-24

    In this study, much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  16. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print...

  17. Measurement of pretzelosity asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.

    2014-11-01

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized He target was performed at Jefferson Lab in the kinematic region of 0.16 on He3 and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  18. SciTech Connect: "neutron scattering"

    Office of Scientific and Technical Information (OSTI)

    neutron scattering" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "neutron scattering" Semantic Semantic Term Title: Full Text: Bibliographic...

  19. Inelastic pion scattering by /sup 13/C at low energies

    SciTech Connect (OSTI)

    Mitchell, J.H.

    1987-03-01

    Angular distributions for inelastically scattered pions were obtained for several states in /sup 13/C at an incident energy of 65 MeV. The data include results from both ..pi../sup +/ and ..pi../sup -/ measurements. In addition, ..pi../sup -/ measurements were made at T/sub ..pi../ = 50 MeV at one angle to give a two point fixed-q excitation function. The data are compared to theory and the data of others. As might be expected, medium corrections are shown to be considerably more important at low energies than at resonance. This is true for inelastic transitions of multipolarity 0,2 and 3. Parameters derived from an analysis of elastic pion scattering and SCX data also provide an adequate description of the inelastic transitions. The charge asymmetry in the cross sections for the 9/2/sup +/ state that was seen at resonance persists at these energies. This result is consistent with an impulse approximation treatment of the spin-flip amplitude. This is true even though the incoming energy of the pions is far below the range where the validity of an impulse treatment is expected. 65 refs., 45 figs.

  20. Neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  1. Resonant Inelastic Scattering Spectra of Free Molecules with Vibrational Resolution

    SciTech Connect (OSTI)

    Hennies, Franz; Pietzsch, Annette; Berglund, Martin; Foehlisch, Alexander; Schmitt, Thorsten; Strocov, Vladimir; Karlsson, Hans O.; Andersson, Joakim; Rubensson, Jan-Erik

    2010-05-14

    Inelastic x-ray scattering spectra excited at the 1s{sup -1{pi}}* resonance of gas phase O{sub 2} have been recorded with an overall energy resolution that allows for well-resolved vibrational progressions. The nuclear wave packet dynamics in the intermediate state is reflected in vibrational excitations of the electronic ground state, and by fine-tuning the excitation energy the dissociation dynamics in the predissociative B{sup '} {sup 3{Pi}}{sub g} final state is controlled.

  2. Neutron scattering studies of premartensitic phenomena

    SciTech Connect (OSTI)

    Shapiro, S.M.

    1989-01-01

    Elastic neutron diffraction and inelastic neutron scattering are ideal techniques for studying premartensitic behavior in metallic alloys. By necessity, real, bulk samples are probed replete with their intrinsic defects. Also, because of the properties of the neutron it is straightforward to probe the behavior of the phonon modes away from the zone center which is probed in the normal ultrasonic techniques. A wide variety of alloys exhibiting martensitic transformations have been studied. It will be shown that most systems undergoing diffusionless transformations exhibit premartensitic behavior in that precursor effects are seen at temperatures well above the martensitic transformation temperature, T{sub M}. This behavior manifests itself in an anomalous temperature dependence of the energy of a particular phonon mode as the temperature approaches T{sub M}. The wavevector of this mode is frequently away from the zone center (i.e., q {ne} O). This softening is nearly always accompanied by elastic diffuse scattering at the same wavevector. Particular examples to be discussed are the alkali metals, {omega}-phase materials and Ni-based alloys. 34 refs., 9 figs.

  3. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  4. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  5. Measurement of pretzelosity asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He target

    SciTech Connect (OSTI)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.

    2014-11-01

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q < 2.7 GeV. Our results show that both ? on He3 and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  6. 10th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10th LANSCE School on Neutron Scattering LANSCE 10th LANSCE School on Neutron Scattering Home Abstract Lecturers Hands-On Experiments Free Day About the School Sponsors FAQ's...

  7. Pressure dependence of the exchange interaction in the dimeric single-molecule magnet [Mn{sub 4}O{sub 3}Cl{sub 4}(O{sub 2}CEt){sub 3}(py){sub 3}]{sub 2} from inelastic neutron scattering

    SciTech Connect (OSTI)

    Sieber, A.; Waldmann, O.; Ochsenbein, S. T.; Carver, G.; Guedel, H. U.; Foguet-Albiol, D.; Christou, G.; Mutka, H.; Fernandez-Alonso, F.; Mezouar, M.; Weber, H. P.

    2006-07-01

    The low-lying magnetic excitations in the dimers of single-molecule magnets [Mn{sub 4}O{sub 3}Cl{sub 4}(O{sub 2}CEt){sub 3}(py){sub 3}]{sub 2}, or (Mn{sub 4}){sub 2}, are studied by inelastic neutron scattering as a function of hydrostatic pressure. The anisotropy parameters D and B{sub 0}{sup 4}, which describe each Mn{sub 4} subunit, are essentially pressure independent, while the antiferromagnetic exchange coupling J between the two Mn{sub 4} subunits strongly depends on pressure, with an increase of 42% at 17 kbar. Additional pressure-dependent powder x-ray measurements allow a structural interpretation of the findings.

  8. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  9. Recent QCD results in {nu} - N deep-inelastic-scattering at CCFR/NUTEV

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Recent QCD results in {nu} - N deep-inelastic-scattering at CCFR/NUTEV Citation Details In-Document Search Title: Recent QCD results in {nu} - N deep-inelastic-scattering at CCFR/NUTEV We present recent QCD results in {nu}-N scattering at the Fermilab CCFR/NuTeV experiments. We present the latest Next-to-Next-Leading order strong coupling constant, {alpha}{sub s}, extracted from Gross-Llewellyn-Smith sum rule. The value of {alpha}{sub s} from this

  10. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    SciTech Connect (OSTI)

    Sacci, Robert L [ORNL; Banuelos, Jose Leo [ORNL; Veith, Gabriel M [ORNL; Littrell, Ken [ORNL; Cheng, Yongqiang [ORNL; Wildgruber, Christoph U [ORNL; Jones, Lacy L [ORNL; Ramirez-Cuesta, Anibal J [ORNL; Rother, Gernot [ORNL; Dudney, Nancy J [ORNL

    2015-01-01

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  11. Quasielastic Neutron Scattering Study of Water Confined in Carbon...

    Office of Scientific and Technical Information (OSTI)

    Quasielastic Neutron Scattering Study of Water Confined in Carbon Nanopores Citation Details In-Document Search Title: Quasielastic Neutron Scattering Study of Water Confined in...

  12. Neutron scattering of iron-based superconductors (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Neutron scattering of iron-based superconductors Citation Details In-Document Search Title: Neutron scattering of iron-based superconductors Low-energy spin excitations have been...

  13. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  14. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 LANSCE Neutron Scattering School LANSCE 2012 LANSCE Neutron Scattering School Home About the School Hands-On Experiments Quick Links Application - Closed Schedule Poster...

  15. 2012 LANSCE Neutron Scattering School | Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 LANSCE Neutron Scattering School LANSCE 2011 LANSCE Neutron Scattering School Home NSS 2011 About the School Lecturers Hands-On Experiments Quick Links Application Schedule...

  16. At Los Alamos's Lujan Neutron Scattering Center, crystallographer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a related experimental technique, debuted in 1946. Also known as neutron diffraction or neutron scattering, the method involves immersing samples in neutrons rather...

  17. Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States Print Thursday, 17 December 2009 13:47 Schematic representation of linear dichroism observed in KL x-ray emission. Coupling between the spin-orbit interaction and the molecular field, oriented along the chemical bond, leads to different spin-orbit ratios as a function of the angle between the incoming

  18. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He3 target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Qian, X.; Allada, K.; Dutta, C.; Huang, J.; Katich, J.; Wang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; et al

    2014-11-24

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized ³He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q² < 2.7 GeV². Our results show that both π± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  19. 11th LANSCE School on Neutron Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11th LANSCE School on Neutron Scattering LANSCE » 11th LANSCE School on Neutron Scattering Home Abstract Lecturers Lecturer Abstracts Hands-On Experiments Free Day About the School Sponsors FAQ's Quick Links Application - Closed Reference Form - closed Schedule- tentative Poster Contacts School: neutronschool@lanl.gov School Co-Directors: A. Llobet allobet@lanl.gov H. Nakotte hnakotte@nmsu.edu Local Organizing Committee: Edwin Fohtung (Co-Chair) efohtung@nmsu.edu Ph:575.646.5631 Graham King

  20. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    students calculate results About the LANSCE School on Neutron Scattering The annual Los Alamos Neutron Science Center (LANSCE) School on Neutron Scattering is 9- to 10-day school focusing on specific science topics to which neutron scattering makes a critical impact. The focus-driven agenda makes it distinct from other neutron schools in the nation. The LANSCE Neutron Scattering School began in 2004 and it has had a continuous and successful run to this day. General School Format The first day

  1. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    SciTech Connect (OSTI)

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A; McGreevy, Robert L; Ekkebus, Allen E; Kszos, Lynn A; Anderson, Ian S

    2008-10-01

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A concerted effort was made to involve representatives from historically black colleges and universities (HBCUs) and minority educational institutions (MEIs). The roadmap contained herein provides the path to a national infrastructure for education of students, faculty, and professional researchers who wish to make use of national neutron scattering facilities but do not have (or do not believe they have) the educational background to do so. Education of other stakeholders, including the public, students in kindergarten through twelfth grade (K-12), and policy makers is also included. The opening sessions of the workshop provided the current status of neutron scattering education in North America, Europe, and Australia. National neutron sources have individually developed outreach and advertising programs aimed at increasing awareness among researchers of the potential applications of neutron scattering. However, because their principal mission is to carry out scientific research, their outreach efforts are necessarily self-limiting. The opening session was designed to build awareness that the individual programs need to be coupled with, and integrated into, a broader education program that addresses the complete range of experience, from the student to the experienced researcher, and the wide range of scientific disciplines covered by neutron scattering. Such a program must also take full advantage of existing educational programs and expertise at universities and expand them using modern distance learning capabilities, recognizing that the landscape of education is changing.

  2. Measurements of transverse momentum in semi-inclusive deep-inelastic scattering at CLAS

    SciTech Connect (OSTI)

    K.A. Griffioen

    2012-12-01

    With mounting experimental evidence that only a small fraction of the proton's spin comes from the spins of its quarks and gluons, the quest for orbital angular momentum has begun. The parton distributions relevant to this depend on transverse quark momenta. Recent CLAS semi-inclusive deep-inelastic scattering measurements probe these new transverse-momentum-dependent parton distributions using longitudinally polarized beams and targets and detecting {pi}{sup +},{pi}{sup -} and {pi}{sup 0} in the final state.

  3. Dipole model analysis of the newest diffractive deep inelastic scattering data

    SciTech Connect (OSTI)

    Golec-Biernat, K.; Luszczak, A.

    2009-06-01

    We analyze the newest diffractive deep inelastic scattering data from the DESY collider HERA with the help of dipole models. We find good agreement with the data on the diffractive structure functions provided the diffractive open charm contribution is taken into account. However, the region of large diffractive mass (small values of a parameter {beta}) needs some refinement with the help of an additional gluon radiation.

  4. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  5. Neutron Scattering Investigation of Phonon Scattering Rates in Ag1-xSb1+xTe2+x (x = 0, 0.1, and 0.2)

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Budai, John D [ORNL; Delaire, Olivier A [ORNL; Ehlers, Georg [ORNL; Hong, Tao [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL); Ma, Jie [ORNL; May, Andrew F [ORNL; McGuire, Michael A [ORNL; Specht, Eliot D [ORNL

    2014-01-01

    The phonon dispersions and scattering rates of the thermoelectric material AgSbTe$_{2}$ were measured as a function of temperature with inelastic neutron scattering. The results show that phonon scattering rates are large and weakly dependent on temperature. The lattice thermal conductivity was calculated from the measured phonon lifetimes and group velocities, providing good agreement with bulk transport measurements. The measured phonon scattering rates and their temperature dependence are compared with models of phonon scattering by anharmonicity and point defect. We find that these processes cannot account for the large total phonon scattering rates observed, and their lack of temperature dependence. Neutron and synchrotron diffraction measurements on single crystals revealed an extensive nanostructure from cation ordering, which is likely responsible for the strong phonon scattering.

  6. Contraband detection via neutron elastic scattering

    SciTech Connect (OSTI)

    Gomberg, H.J.; Charatis, G.; Brundage, J.

    1993-04-01

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon (C), Nitrogen (N), and Oxygen (O). The kinematic energy shifts of neutrons scattered through angles larger than 140{degrees} allows separate determinations of C, N, and O; ratios of N/C and O/C together give clear signatures of the presence of plastic explosives or narcotics. The ability to detect these signatures under conditions similar to those that would obtain for airport screening has been demonstrated for neutrons for energies less {le} 3 MeV. Strong N resonances and a deep window for scattering from O enhance the confidence of element quantification. Detection of contraband in large cargo containers presents a much more difficult problem. Use of higher energy neutrons is now being tested for shielding penetration, so narcotic signatures could be identified behind the shielding of cargo containers. Scattered neutron spectra, or {open_quotes}signatures{close_quotes} of different organic compounds will be presented.

  7. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, D.; Pan, K.; Subedi, R.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; et al

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  8. Advanced Elastic/Inelastic Nuclear Data Development Project (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Advanced Elastic/Inelastic Nuclear Data Development Project Citation Details In-Document Search Title: Advanced Elastic/Inelastic Nuclear Data Development Project The optical model is used to analyze the elastic and inelastic scattering of nucleons, deuterons, hellions, tritons, and alpha particles by the nuclei. Since this paper covers primarily neutron-nucleus scattering, the focus will be limited to only that interaction. For the sake of this model, the nucleus

  9. Neutron inelastic scattering in natural Pb as a background in...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  10. Bent crystal analyzer without grooves for inelastic scattering -- first experimental results

    SciTech Connect (OSTI)

    Kushnir, V.I.; Macrander, A.T.

    1996-11-01

    A new design of a bent crystal analyzer for high energy resolution inelastic X-ray scattering has been recently proposed. It has been theoretically predicted that an analyzer with reflecting planes at a certain angle with respect to a crystal surface, bent with two different radii of curvature, will have the same energy resolution as a perfect crystal. The first experimental measurement obtained at the Advanced Photon Source of a bandwidth of such an analyzer is presented. The overall energy resolution of the analyzer and monochromator observed with a narrow beam is equal to 16.4 meV (FWHM) at 13.84 KeV.

  11. Partonic Transverse Motion in Unpolarized Semi-Inclusive Deep Inelastic Scattering Processes

    SciTech Connect (OSTI)

    M. Boglione, S. Melis, A. Prokudin

    2011-08-01

    We analyse the role of partonic transverse motion in unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes. Imposing appropriate kinematical conditions, we find some constraints which fix an upper limit to the range of allowed k_perp values. We show that, applying these additional requirements on the partonic kinematics, we obtain different results with respect to the usual phenomenological approach based on the Gaussian smearing with analytical integration over an unlimited range of k_perp values. These variations are particularly interesting for some observables, like the < cos phi_h > azimuthal modulation of the unpolarized SIDIS cross section or the average transverse momentum of the final, detected hadron.

  12. Final-state interactions in inclusive deep-inelastic scattering from the deuteron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, Wim; Melnitchouk, Wally; Sargsian, Misak M.

    2014-01-16

    We explore the role of final-state interactions (FSI) in inclusive deep-inelastic scattering from the deuteron. Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three resonances with mass W~ 0.6 andmoreQ2 2 increasing in magnitude for lower Q2, but vanishing in the high-Q2 limit due to phase space constraints. The off-shell rescattering contributes at x ~> 0.8 and is taken as an uncertainty on the on-shell result.less

  13. 6 GeV Parity Violating Deep Inelastic Scattering at Jefferson Laboratory

    SciTech Connect (OSTI)

    Subedi, Ramesh R.; Deng Xiaoyan; Wang Diancheng; Zheng Xiaochao; Michaels, Robert; Pan Kai; Reimer, Paul E.

    2011-10-24

    The 6 GeV Parity Violating Deep Inelastic Scattering (PVDIS) experiment has measured a 10{sup -4} level asymmetry through polarized electron scattering off a liquid deuterium target with a beam energy of 6 GeV. This experiment has a goal of measuring a combination of the product of the weak neutral couplings of the electron and the quark with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment took place in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) and data collection was completed in the end of 2009. A highly specialized counting data acquisition system with an inherent particle identification was developed and utilized. We have taken data at two Q{sup 2} points in order to possibly address the hadronic correction due to higher twist effects. An overview of the experiment will be presented.

  14. Call issued for Lujan Neutron Scattering Center proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call issued for Lujan Neutron Scattering Center proposals Call issued for Lujan Neutron Scattering Center proposals The Lujan Neutron Scattering Center invites proposals addressing science of NNSA and LANL programmatic interest for the 2014 run cycle. May 20, 2014 Don Brown works at the SMARTS (Spectrometer for Materials Research at Temperature and Stress) instrument. Don Brown works at the SMARTS (Spectrometer for Materials Research at Temperature and Stress) instrument. This call for proposals

  15. Beam-Target Double Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized 3He Target at 1.422

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meziani, Z -E; Michaels, R; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; et al

    2012-01-30

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function gq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production onmore3He and the neutron, while our ?+ asymmetries are consistent with zero.less

  16. Enhanced reaction rates in NDP analysis with neutron scattering

    SciTech Connect (OSTI)

    Downing, R. Gregory

    2014-04-15

    Neutron depth profiling (NDP) makes accessible quantitative information on a few isotopic concentration profiles ranging from the surface into the sample a few micrometers. Because the candidate analytes for NDP are few, there is little interference encountered. Furthermore, neutrons have no charge so mixed chemical states in the sample are of no direct concern. There are a few nuclides that exhibit large probabilities for neutron scattering. The effect of neutron scattering on NDP measurements has not previously been evaluated as a basis for either enhancing the reaction rates or as a source of measurement error. Hydrogen is a common element exhibiting large neutron scattering probability found in or around sample volumes being analyzed by NDP. A systematic study was conducted to determine the degree of signal change when neutron scattering occurs during analysis. The relative signal perturbation was evaluated for materials of varied neutron scattering probability, concentration, total mass, and geometry. Signal enhancements up to 50% are observed when the hydrogen density is high and in close proximity to the region of analysis with neutron beams of sub thermal energies. Greater signal enhancements for the same neutron number density are reported for thermal neutron beams. Even adhesive tape used to position the sample produces a measureable signal enhancement. Because of the shallow volume, negligible distortion of the NDP measured profile shape is encountered from neutron scattering.

  17. The simultaneous measurement of energy and linear polarization of the scattered radiation in resonant inelastic soft x-ray scattering

    SciTech Connect (OSTI)

    Braicovich, L. Minola, M.; Dellea, G.; Ghiringhelli, G.; Le Tacon, M.; Moretti Sala, M.; Morawe, C.; Peffen, J.-Ch.; Yakhou, F.; Brookes, N. B.; Supruangnet, R.

    2014-11-15

    Resonant Inelastic X-ray Scattering (RIXS) in the soft x-ray range is an element-specific energy-loss spectroscopy used to probe the electronic and magnetic excitations in strongly correlated solids. In the recent years, RIXS has been progressing very quickly in terms of energy resolution and understanding of the experimental results, but the interpretation of spectra could further improve, sometimes decisively, from a full knowledge of the polarization of incident and scattered photons. Here we present the first implementation, in a high resolution soft-RIXS spectrometer used to analyze the scattered radiation, of a device allowing the measurement of the degree of linear polarization. The system, based on a graded W/B{sub 4}C multilayer mirror installed in proximity of the CCD detector, has been installed on the AXES spectrometer at the ESRF (European Synchrotron Radiation Facility); it has been fully characterized and it has been used for a demonstration experiment at the Cu L{sub 3} edge on a high-T{sub c} superconducting cuprate. The loss in efficiency suffered by the spectrometer equipped with this test facility was a factor 17.5. We propose also a more advanced version, suitable for a routine use on the next generation of RIXS spectrometers and with an overall efficiency up to 10%.

  18. Unpolarised TMD Distribution and Fragmentation Functions from recent HERMES and COMPASS Semi-inclusive Deep Inelastic Scattering Multiplicities

    SciTech Connect (OSTI)

    Prokudin, Alexey; Anselmino, Mauro; Boglione, Mariaelena; Melis, Stefano; Gonzalez, J. O.

    2014-10-01

    The unpolarised transverse momentum dependent distribution and fragmentation functions (TMDs) are extracted from HERMES and COMPASS experimental measurements of semi- inclusive deep inelastic scattering multiplicities for charged hadron production. A simple factorised functional form of the TMDs is adopted, with a Gaussian dependence on the intrinsic transverse momentum, which turns out to be quite adequate in shape.

  19. Neutron Scattering | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Neutron Scattering Print Text Size: A A A FeedbackShare Page This activity supports basic research on the fundamental interactions of neutrons with matter to achieve an understanding of the atomic,

  20. X-ray and Neutron Scattering Study of the Formation of Core-Shell Type Polyoxometalates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; Daemen, Luke L; Cheng, Yongqiang; Hong, Kunlun; Bonnesen, Peter V; Keum, Jong Kahk; Ramirez-Cuesta, Anibal J

    2016-01-01

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types of water molecules,morethe confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.less

  1. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; Daemen, Luke L.; Cheng, Yongqiang; Li, Tao; Seifert, Soenke; Hong, Kunlun; Bonnesen, Peter V.; Keum, Jong Kahk; et al

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types of water molecules,more » the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo72Fe30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  2. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Title: Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Authors: Tobin, J G ; Mirmelstein, A V ; Podlesnyak, A ; ...

  3. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect (OSTI)

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-15

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  4. 11th LANSCE School on Neutron Scattering | FAQ's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Who can apply? The LANSCE School on Neutron Scattering is intended primarily for graduate students & post-docs in the topical area of that year's school....

  5. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; Wohlfeld, K.; Moritz, B.; Devereaux, T. P.; Wu, W. B.; Okamoto, J.; Lee, W. S.; Hashimoto, M.; et al

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less

  6. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q on Nucleons and Nuclei

    SciTech Connect (OSTI)

    Vladas Tvaskis

    2004-12-09

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F{sub 2}(x,Q{sup 2}) is known with high precision over about four orders of magnitude in x and Q{sup 2}. In the region of Q{sup 2} > 1 (GeV/c){sup 2} the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q{sup 2} becomes of the order of 1 (GeV/c){sup 2}, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q{sup 2}, since they include a factor 1/(Q{sup 2}{sup n}) (n {ge} 1).

  7. Multiple scattering effects in fission neutron outputs (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Multiple scattering effects in fission neutron outputs Citation Details In-Document Search Title: Multiple scattering effects in fission neutron outputs Authors: Taddeucci, Terry N [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-02-24 OSTI Identifier: 1053153 Report Number(s): LA-UR-11-01326; LA-UR-11-1326 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Fission fprogram Review, ;

  8. Elastic Neutron Scattering at 96 MeV

    SciTech Connect (OSTI)

    Hildebrand, A.; Blomgren, J.; Atac, A.; Bergenwall, B.; Johansson, C.; Klug, J.; Mermod, P.; Nilsson, L.; Pomp, S.; Esterlund, M.; Dangtip, S.; Tippawan, U.; Phansuke, P.; Jonsson, O.; Renberg, P.-U.; Prokofiev, A.; Nadel-Turonski, P.; Elmgren, K.; Olsson, N.; Blideanu, V.

    2005-05-24

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20 - 180-MeV neutron beam line of The Svedberg Laboratory, Uppsala. Elastic neutron scattering from 12C, 16O, 56Fe, 89Y, and 208Pb has been studied at 96 MeV in the 10-70 deg. interval. The results from 12C and 208Pb have recently been published,6 while the data from 16O, 56Fe, and 89Y are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic theory. Applications for these measurements are nuclear-waste incineration, single-event upsets in electronics, and fast-neutron therapy.

  9. 2010 American Conference on Neutron Scattering (ACNS 2010)

    SciTech Connect (OSTI)

    Billinge, Simon

    2011-06-17

    The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as would-be neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a super-user meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local organization and planning assistance. Additional logistical support is being provided this year through a partnership with the conferencing office of the Materials Research Society (MRS). The ACNS, targeting the entire potential neutron North American user community, complements the annual NIST, ANL and LANSCE neutron and scattering schools which give hands-on experience primarily to graduate students who anticipate using neutron scattering in their thesis research. The summer schools are promoted at the ACNS and represent a natural path for students to take after being inspired by the activities of the ACNS.

  10. Large-angle elastic and inelastic scattering of Pi(+) and Pi(-) from (28)Si and (40)Ca. Master's thesis

    SciTech Connect (OSTI)

    Snell, M.P.

    1989-05-01

    Differential cross sections were measured for Pi(+) and Pi(-) elastic scattering of Calcium 40 and Silicon 28 at incident pion energies ranging from 100 to 260 MeV at a scattering angle of 175 degs. Differential cross sections were also measured for Pi(+) and Pi(-) inelastic scattering to the 2(+), 1.78 MeV, 4(+), 4.62 MeV, and 3(-) 6.88 MeV states of 28Si at incident pion energies of 130, 180, and 226 MeV and scattering angles between 115 and 175{degrees} in 6{degrees} increments. The data are compared to previously obtained forward angle data through 120{degrees} and agree quite well. The data show a generally flat angular dependence for angles greater than 100{degrees}. Several theoretical codes are reviewed for their ability to predict large angle scattering. Coordinate-space and momentum-space models generally thought to be sufficient for predicting forward angle scattering have proved to be inappropriate for use at large angles. A new phenomenological delta-hole model, currently under modification, shows a greatly enhanced ability to predict scattering at back angles.

  11. Next-to-leading order weighted Sivers asymmetry in semi-inclusive deep inelastic scattering: three-gluon correlator

    SciTech Connect (OSTI)

    Dai, Lingyun; Prokudin, Alexei; Kang, Zhong-Bo; Vitev, Ivan

    2015-09-01

    We study the three-gluon correlation function contribution to the Sivers asymmetry in semiinclusive deep inelastic scattering. We first establish the matching between the usual twist-3 collinear factorization approach and transverse momentum dependent factorization formalism for the moderate transverse momentum region. We then derive the so-called coefficient functions used in the usual TMD evolution formalism. Finally we perform the next-to-leading order calculation for the transverse-momentum-weighted spin-dependent differential cross section, from which we identify the QCD collinear evolution of the twist-3 Qiu-Sterman function: the off diagonal contribution from the three-gluon correlation functions.

  12. Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge

    Office of Scientific and Technical Information (OSTI)

    National Laboratory: A Preliminary Report (Conference) | SciTech Connect Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the Spallation Neutron Source at Oak Ridge National Laboratory: A Preliminary Report Authors: Tobin, J G ; Mirmelstein, A V ; Podlesnyak, A ; Kolesnikov, A I Publication Date: 2014-01-16 OSTI Identifier: 1132009 Report Number(s): LLNL-PROC-649216 DOE Contract Number:

  13. Event-Based Processing of Neutron Scattering Data

    SciTech Connect (OSTI)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik L.

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniques will be shown for comparison.

  14. Optimizing Moderator Dimensions for Neutron Scattering at the Spallation Neutron Source

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Gallmeier, Franz X [ORNL; Riemer, Bernie [ORNL

    2013-01-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source. In a recent study of the planned second target station at the Spallation Neutron Source (SNS) facility [1,2], we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter for a smaller viewing area [4]. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories, those with natural collimation and those that use neutron guide systems. We found that the cross-sections of the sample and the neutron guide, respectively, are the deciding factors for choosing the moderator. Beam divergence plays no role as long as it is within the reach of practical constraints. Namely, the required divergence is not too large for the guide or sample to be located close enough to the moderator on an actual spallation source.

  15. A scaler-based data acquisition system for measuring parity-violating asymmetry in deep inelastic scattering

    SciTech Connect (OSTI)

    Subedi, Ramesh R.; Wang, Diancheng; Pan, Kai; Deng, Xiaoyan; Michaels, Robert W.; Shahinyan, Albert; Wojtsekhowski, Bogdan B.; Zheng, Xiaochao

    2013-10-01

    An experiment that measured the parity violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10^-4 level needed to be measured at event rates up to 500 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: The pion contamination in the electron samples was controlled at the order of 2 10^-4 or below with an electron efficiency of higher than 91% throughout the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.2%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.

  16. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    SciTech Connect (OSTI)

    Wang, Diancheng

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q{sup 2} values of 1.1 and 1.9 (GeV/c){sup 2}. The asymmetry at Q{sup 2}=1.9 (GeV/c){sup 2} can be used to extract the weak coupling combination 2C{sub 2u} - C{sub 2d}, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q{sup 2} values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A{sub PV} data in the resonance region beyond the {Delta}#1;(1232). They provide evidence that the quark hadron duality works for A{sub PV} at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  17. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect (OSTI)

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  18. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    SciTech Connect (OSTI)

    Mirmelstein, A. [Russian Federal Nuclear Center VNIITF, Snezhinsk, Russia; Podlesnyak, Andrey A [ORNL; Kolesnikov, Alexander I [ORNL; Saporov, B. [Oak Ridge National Laboratory (ORNL); Sefat, A.S. [Oak Ridge National Laboratory (ORNL); Tobin, J. G. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce.

  19. Neutron scattering effects on fusion ion temperature measurements.

    SciTech Connect (OSTI)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  20. Optimizing moderator dimensions for neutron scattering at the spallation neutron source

    SciTech Connect (OSTI)

    Zhao, J. K.; Robertson, J. L.; Herwig, Kenneth W.; Gallmeier, Franz X.; Riemer, Bernard W. [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)] [Instrument and Source Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2013-12-15

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter)

  1. Beam-Target Double-Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He3 Target at 1.4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, J.; Allada, K.; Dutta, C.; Katich, J.; Qian, X.; Wang, Y.; Zhang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; et al

    2012-01-01

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 < x < 0.35 with 1.4 < Q2 < 2.7 GeV2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g1Tq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for π- production on 3Hemore » and the neutron, while our π+ asymmetries are consistent with zero.« less

  2. Beam-Target Double-Spin Asymmetry ALT in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He3 Target at 1.4Q22.7 GeV2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, J.; Allada, K.; Dutta, C.; Katich, J.; Qian, X.; Wang, Y.; Zhang, Y.; Aniol, K.; Annand, J. R. M.; Averett, T.; et al

    2012-01-01

    We report the first measurement of the double-spin asymmetry ALT for charged pion electroproduction in semi-inclusive deep inelastic electron scattering on a transversely polarized 3He target. The kinematics focused on the valence quark region, 0.16 2 2. The corresponding neutron ALT asymmetries were extracted from the measured 3He asymmetries and proton/3He cross section ratios using the effective polarization approximation. These new data probe the transverse momentum dependent parton distribution function g1Tq and therefore provide access to quark spin-orbit correlations. Our results indicate a positive azimuthal asymmetry for ?- production on 3Hemoreand the neutron, while our ?+ asymmetries are consistent with zero.less

  3. 2009 International Conference on Neutron Scattering (ICNS 2009)

    SciTech Connect (OSTI)

    Gopal Rao, PhD; Donna Gillespie

    2010-08-05

    The ICNS provides a focal point for the worldwide neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as ?¢????would-be?¢??? neutron users. The International Conference on Neutron Scattering thus serves a dual role as an international user meeting and a scientific meeting. As a venue for scientific exchange, the ICNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. Each of the major national neutron facilities (NIST, LANSCE, ANL, HFIR and SNS), along with their international counterparts, has an opportunity to exchange information with each other and to update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities.

  4. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    SciTech Connect (OSTI)

    Drosg, M.

    2011-12-13

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the inclusion of the missing outgoing self-attenuation that amounts to up to 15%.

  5. Solid phases of spatially nanoconfined oxygen: A neutron scattering study

    SciTech Connect (OSTI)

    Kojda, Danny [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany) [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany); Freie Universitt Berlin, 14195 Berlin (Germany); Wallacher, Dirk; Hofmann, Tommy, E-mail: tommy.hofmann@helmholtz-berlin.de [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany)] [Helmholtz-Zentrum Berlin fr Materialien und Energie GmbH, 14109 Berlin (Germany); Baudoin, Simon; Hansen, Thomas [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)] [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Huber, Patrick [Technische Universitt Hamburg-Harburg, 21073 Hamburg (Germany)] [Technische Universitt Hamburg-Harburg, 21073 Hamburg (Germany)

    2014-01-14

    We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk oxygen. With decreasing temperature cubic ?-, orthorhombic ?- and monoclinic ?-phases are unambiguously identified in confinement. Weak antiferromagnetic ordering is observed in the confined monoclinic ?-phase. Rocking scans reveal that oxygen nanocrystals inside the tubular channels do not form an isotropic powder. Rather, they exhibit preferred orientations depending on thermal history and the very mechanisms, which guide the structural transitions.

  6. Neutrons for Catalysis: A Workshop on Neutron Scattering Techniques for Studies in Catalysis

    SciTech Connect (OSTI)

    Overbury, Steven {Steve} H; Coates, Leighton; Herwig, Kenneth W; Kidder, Michelle

    2011-10-01

    This report summarizes the Workshop on Neutron Scattering Techniques for Studies in Catalysis, held at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on September 16 and 17, 2010. The goal of the Workshop was to bring experts in heterogeneous catalysis and biocatalysis together with neutron scattering experimenters to identify ways to attack new problems, especially Grand Challenge problems in catalysis, using neutron scattering. The Workshop locale was motivated by the neutron capabilities at ORNL, including the High Flux Isotope Reactor (HFIR) and the new and developing instrumentation at the SNS. Approximately 90 researchers met for 1 1/2 days with oral presentations and breakout sessions. Oral presentations were divided into five topical sessions aimed at a discussion of Grand Challenge problems in catalysis, dynamics studies, structure characterization, biocatalysis, and computational methods. Eleven internationally known invited experts spoke in these sessions. The Workshop was intended both to educate catalyst experts about the methods and possibilities of neutron methods and to educate the neutron community about the methods and scientific challenges in catalysis. Above all, it was intended to inspire new research ideas among the attendees. All attendees were asked to participate in one or more of three breakout sessions to share ideas and propose new experiments that could be performed using the ORNL neutron facilities. The Workshop was expected to lead to proposals for beam time at either the HFIR or the SNS; therefore, it was expected that each breakout session would identify a few experiments or proof-of-principle experiments and a leader who would pursue a proposal after the Workshop. Also, a refereed review article will be submitted to a prominent journal to present research and ideas illustrating the benefits and possibilities of neutron methods for catalysis research.

  7. Numerical simulation of scattering of acoustic waves by inelastic bodies using hypersingular boundary integral equation

    SciTech Connect (OSTI)

    Daeva, S.G.; Setukha, A.V.

    2015-03-10

    A numerical method for solving a problem of diffraction of acoustic waves by system of solid and thin objects based on the reduction the problem to a boundary integral equation in which the integral is understood in the sense of finite Hadamard value is proposed. To solve this equation we applied piecewise constant approximations and collocation methods numerical scheme. The difference between the constructed scheme and earlier known is in obtaining approximate analytical expressions to appearing system of linear equations coefficients by separating the main part of the kernel integral operator. The proposed numerical scheme is tested on the solution of the model problem of diffraction of an acoustic wave by inelastic sphere.

  8. Accurate Development of Thermal Neutron Scattering Cross Section Libraries

    SciTech Connect (OSTI)

    Hawari, Ayman; Dunn, Michael

    2014-06-10

    The objective of this project is to develop a holistic (fundamental and accurate) approach for generating thermal neutron scattering cross section libraries for a collection of important enutron moderators and reflectors. The primary components of this approach are the physcial accuracy and completeness of the generated data libraries. Consequently, for the first time, thermal neutron scattering cross section data libraries will be generated that are based on accurate theoretical models, that are carefully benchmarked against experimental and computational data, and that contain complete covariance information that can be used in propagating the data uncertainties through the various components of the nuclear design and execution process. To achieve this objective, computational and experimental investigations will be performed on a carefully selected subset of materials that play a key role in all stages of the nuclear fuel cycle.

  9. Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Environments | Department of Energy Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon neutrons_peer2013.pdf More Documents & Publications Development of a Geological and

  10. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A FeedbackShare Page This activity supports the operation of two neutron scattering

  11. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-04-28

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr₂IrO₄, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore » RIXS energy resolutions in the hard X-ray region is usually poor.« less

  12. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO??y

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; et al

    2012-09-05

    We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO?.? and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations,morewhich are a prerequisite to the occurrence of these excitations at the ? point, are still present in the superconducting state.less

  13. Bragg optics computer codes for neutron scattering instrument design

    SciTech Connect (OSTI)

    Popovici, M.; Yelon, W.B.; Berliner, R.R.; Stoica, A.D.

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  14. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    SciTech Connect (OSTI)

    Li, Chen [ORNL] [ORNL; Ma, Jie [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Cao, Huibo [ORNL] [ORNL; Christianson, Andrew D [ORNL] [ORNL; Ehlers, Georg [ORNL] [ORNL; Singh, David J [ORNL] [ORNL; Sales, Brian C [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL

    2014-01-01

    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

  15. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Y X; Wang, Y; Allada, K; Aniol, K; Annand, J R; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; et al

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  16. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target

    SciTech Connect (OSTI)

    Zhao, Y X; Wang, Y; Allada, K; Aniol, K; Annand, J R; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A; Dutta, C; Dutta, D; El Fassi, L; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Munoz Camacho, C; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X

    2014-11-01

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1

  17. Event-Based Processing of Neutron Scattering Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; Taylor, Russell J.; Zikovsky, Janik L.

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniquesmore » will be shown for comparison.« less

  18. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron- α Scattering,

    Office of Scientific and Technical Information (OSTI)

    and Neutron Matter (Journal Article) | SciTech Connect Chiral Three-Nucleon Interactions in Light Nuclei, Neutron- α Scattering, and Neutron Matter Citation Details In-Document Search This content will become publicly available on February 8, 2017 Title: Chiral Three-Nucleon Interactions in Light Nuclei, Neutron- α Scattering, and Neutron Matter Authors: Lynn, J. E. ; Tews, I. ; Carlson, J. ; Gandolfi, S. ; Gezerlis, A. ; Schmidt, K. E. ; Schwenk, A. Publication Date: 2016-02-09 OSTI

  19. Measurement of Single Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering Reaction n? ( e,e' pi{sup +}) X at Jefferson Lab

    SciTech Connect (OSTI)

    Kalyan Allada

    2010-06-01

    What constitutes the spin of the nucleon? The answer to this question is still not completely understood. Although we know the longitudinal quark spin content very well, the data on the transverse quark spin content of the nucleon is still very sparse. Semi-inclusive Deep Inelastic Scattering (SIDIS) using transversely polarized targets provide crucial information on this aspect. The data that is currently available was taken with proton and deuteron targets. The E06-010 experiment was performed at Jefferson Lab in Hall-A to measure the single spin asymmetries in the SIDIS reaction n?(e, e??{sup }/K{sup })X using transversely polarized {sup 3}He target. The experiment used the continuous electron beam provided by the CEBAF accelerator with a beam energy of 5.9 GeV. Hadrons were detected in a high-resolution spectrometer in coincidence with the scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.19 to 0.34, at Q{sup 2} = 1.77 to 2.73 (GeV/c){sup 2}. This is the first measurement on a neutron target. The data from this experiment, when combined with the world data on the proton and the deuteron, will provide constraints on the transversity and Sivers distribution functions on both the u and d-quarks in the valence region. In this work we report on the single spin asymmetries in the SIDIS n?(e, e??{sup +})X reaction.

  20. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; et al

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  1. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    SciTech Connect (OSTI)

    Grammer, K. B.; Alarcon, R.; Barrn-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velzquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttil, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section d?/d? from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.

  2. Temperature-driven phase transformation in Y3Co: Neutron scattering...

    Office of Scientific and Technical Information (OSTI)

    Temperature-driven phase transformation in Y3Co: Neutron scattering and first-principles studies Citation Details In-Document Search Title: Temperature-driven phase transformation ...

  3. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  4. X-ray and neutron scattering from nano-mgantic clusters | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray and neutron scattering from nano-mgantic clusters The student will participate in hands on X-ray scattering experiments on bio-inspired inorganic materials (i.e., magnetic...

  5. Hadron mass corrections in semi-inclusive deep-inelastic scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guerrero Teran, Juan Vicente; Ethier, James J.; Accardi, Alberto; Casper, Steven W.; Melnitchouk, Wally

    2015-09-24

    We found that the spin-dependent cross sections for semi-inclusive lepton-nucleon scattering are derived in the framework of collinear factorization, including the effects of masses of the target and produced hadron at finite Q2. At leading order the cross sections factorize into products of parton distribution and fragmentation functions evaluated in terms of new, mass-dependent scaling variables. Furthermore, the size of the hadron mass corrections is estimated at kinematics relevant for current and future experiments, and the implications for the extraction of parton distributions from semi-inclusive measurements are discussed.

  6. Neutron-scattering evidence for a periodically modulated superconducting phase in the underdoped cuprate La1.905Ba0.095CuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Zhijun; Stock, C.; Chi, Songxue; Kolesnikov, A. I.; Xu, Guangyong I.; Gu, Genda; Tranquada, J. M.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  7. The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments

    SciTech Connect (OSTI)

    Senesi, Roberto; Flammini, Davide; Kolesnikov, Alexander I; Murray, Eamonn D.; Galli, Giulia; Andreani, Carla

    2013-01-01

    The OH stretching vibrational spectrum of water was measured in a wide range of temperatures across the triple point, 269 K < T < 296 K, using Inelastic Neutron Scattering (INS). The hydrogen projected density of states and the proton mean kinetic energy, _OH, were determined for the first time within the framework of a harmonic description of the proton dynamics. We found that in the liquid the value of _OH is nearly constant as a function of T, indicating that quantum effects on the OH stretching frequency are weakly dependent on temperature. In the case of ice, ab initio electronic structure calculations, using non-local van der Waals functionals, provided _OH values in agreement with INS experiments. We also found that the ratio of the stretching (_OH) to the total (_exp) kinetic energy, obtained from the present measurements, increases in going from ice, where hydrogen bonding is the strongest, to the liquid at ambient conditions and then to the vapour phase, where hydrogen bonding is the weakest. The same ratio was also derived from the combination of previous deep inelastic neutron scattering data, which does not rely upon the harmonic approximation, and the present measurements. We found that the ratio of stretching to the total kinetic energy shows a minimum in the metastable liquid phase. This finding suggests that the strength of intermolecular interactions increases in the supercooled phase, with respect to that in ice, contrary to the accepted view that supercooled water exhibits weaker hydrogen bonding than ice.

  8. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    SciTech Connect (OSTI)

    Brubaker, Erik

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  9. Neutron scattering of CeNi at the SNS-ORNL: A preliminary report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron scattering of CeNi at the SNS-ORNL: A preliminary report Citation Details In-Document Search Title: Neutron scattering of CeNi at the SNS-ORNL: A preliminary report This is a preliminary report of a neutron scattering experiment used to investigate 4f electron behavior in Ce. Authors: Mirmelstein, A. [1] ; Podlesnyak, Andrey A [2] ; Kolesnikov, Alexander I [2] ; Saporov, B. [3] ; Sefat, A.S. [3] ; Tobin, J. G. [4] + Show Author Affiliations

  10. Dynamic neutron scattering on incoherent systems using efficient resonance spin flip techniques

    SciTech Connect (OSTI)

    Hussler, Wolfgang [Heinz Maier-Leibnitz Zentrum, Technische Universitt Mnchen, D-85748 Garching, Germany and Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany); Kredler, Lukas [Physik-Department E21, Technische Universitt Mnchen, D-85748 Garching (Germany)

    2014-05-15

    We have performed numerical ray-tracing Monte-Carlo-simulations of incoherent dynamic neutron scattering experiments. We intend to optimize the efficiency of incoherent measurements depending on the fraction of neutrons scattered without and with spin flip at the sample. In addition to conventional spin echo, we have numerically and experimentally studied oscillating intensity techniques. The results point out the advantages of these different spin echo variants and are an important prerequisite for neutron resonance spin echo instruments like RESEDA (FRM II, Munich), to choose the most efficient technique depending on the scattering vector range and the properties of the sample system under study.

  11. Coherent neutron scattering and collective dynamics on mesoscale

    SciTech Connect (OSTI)

    Novikov, Vladimir [ORNL; Schweizer, Kenneth S [ORNL; Sokolov, Alexei P [ORNL

    2013-01-01

    By combining, and modestly extending, a variety of theoretical concepts for the dynamics of liquids in the supercooled regime, we formulate a simple analytic model for the temperature and wavevector dependent collective density fluctuation relaxation time that is measurable using coherent dynamic neutron scattering. Comparison with experiments on the ionic glass-forming liquid Ca K NO3 in the lightly supercooled regime suggests the model captures the key physics in both the local cage and mesoscopic regimes, including the unusual wavevector dependence of the collective structural relaxation time. The model is consistent with the idea that the decoupling between diffusion and viscosity is reflected in a different temperature dependence of the collective relaxation time at intermediate wavevectors and near the main (cage) peak of the static structure factor. More generally, our analysis provides support for the ideas that decoupling information and growing dynamic length scales can be at least qualitatively deduced by analyzing the collective relaxation time as a function of temperature and wavevector, and that there is a strong link between dynamic heterogeneity phenomena at the single and many particle level. Though very simple, the model can be applied to other systems, such as molecular liquids.

  12. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other)

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Technical Report: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems One of the two major themes of the proposal was to study quantum coherence in stressed hydrogen bond networks. Our experiments on double wall carbon nanotubes and two versions of Nafion, together with earlier work on water confined in

  13. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other)

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Technical Report: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  14. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department

  15. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other)

    Office of Scientific and Technical Information (OSTI)

    Systems (Technical Report) | SciTech Connect Technical Report: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Citation Details In-Document Search Title: Neutron Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems One of the two major themes of the proposal was to study quantum coherence in stressed hydrogen bond networks. Our experiments on double wall carbon nanotubes and two versions of Nafion, together with earlier work on water confined in

  16. Room-return scattering in fission neutron outputs (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs Authors: Taddeucci, Terry N [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-07-27 OSTI Identifier: 1084596 Report Number(s): LA-UR-11-04357; LA-UR-11-4357 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Chi-Nu project level

  17. Temperature-driven phase transformation in Y3Co: Neutron scattering and

    Office of Scientific and Technical Information (OSTI)

    first-principles studies (Journal Article) | SciTech Connect Temperature-driven phase transformation in Y3Co: Neutron scattering and first-principles studies Citation Details In-Document Search Title: Temperature-driven phase transformation in Y3Co: Neutron scattering and first-principles studies Authors: Podlesnyak, A. ; Ehlers, G. ; Cao, H. ; Matsuda, M. ; Frontzek, M. ; Zaharko, O. ; Kazantsev, V. A. ; Gubkin, A. F. ; Baranov, N. V. Publication Date: 2013-07-26 OSTI Identifier: 1104316

  18. Improved Technique of Hydrogen Content Analysis by Slow Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Rainwater, L. J.; Havens, W. W. Jr.

    1945-02-28

    A slow-neutron-transmission method fro determining the H content of fluorcarbons is described (G.Y.)

  19. 16th National School on Neutron and X-ray Scattering

    ScienceCinema (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-23

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  20. 16th National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-02

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  1. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    SciTech Connect (OSTI)

    Hyer, D.K.; DiStravolo, M.A.

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

  2. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functions as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  3. Structure Functions in Deep Inelastic Lepton Scattering: Data from DOE laboratory experiments as compiled in data reviews by the Durham High Energy Physics Database Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gehrmann, T; Roberts, R. G.; Whalley, M. R.; Durham HEP Database Group

    Gehrmann, Roberts, and Whalley in their 1999 paper, A Compilation of Structure Functions in Deep Inelastic Scattering, published in volume 25 of Journal of Physics G (Nuclear and Particle Physics) note that these data will continue to be relevant to the next generation of hadron colliders. They present data on the unpolarized structure functions F2 and xF3, R D ._L=_T /, the virtual photon asymmetries A1 and A2 and the polarized structure functions g1 and g2, from deep inelastic lepton scattering off protons, deuterium and nuclei. Data are presented in both tabular and graphical format and include predictions based on the MRST98 and CTEQ4 parton distribution functionsö as well. The data gathered from the relevant collaborations at DOE's Fermilab, SLAC, and JLAB are available, and so are data from related collaborations based at CERN and DESY. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also include in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction

  4. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Sow-Hsin; Lagi, Marco; Chu, Xiang-qiang; Zhang, Yang; Kim, Chansoo; Faraone, Antonio; Fratini, Emiliano; Baglioni, Piero

    2010-01-01

    This review article describes our neutron scattering experiments made in the past four years for the understanding of the single-particle (hydrogen atom) dynamics of a protein and its hydration water and the strong coupling between them. We found that the key to this strong coupling is the existence of a fragile-to-strong dynamic crossover (FSC) phenomenon occurring at around T L = 225±5 K in the hydration water. On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the high density form (HDL), a more fluid state, to predominantly the low density formmore » (LDL), a less fluid state, derived from the existence of a liquid–liquid critical point at an elevated pressure. We show experimentally that this sudden switch in the mobility of hydration water on Lysozyme, B-DNA and RNA triggers the dynamic transition, at a temperature T D = 220 K, for these biopolymers. In the glassy state, below T D , the biopolymers lose their vital conformational flexibility resulting in a substantial diminishing of their biological functions. We also performed molecular dynamics (MD) simulations on a realistic model of hydrated lysozyme powder, which confirms the existence of the FSC and the hydration level dependence of the FSC temperature. Furthermore, we show a striking feature in the short time relaxation ( β -relaxation) of protein dynamics, which is the logarithmic decay spanning 3 decades (from ps to ns). The long time α -relaxation shows instead a diffusive behavior, which supports the liquid-like motions of protein constituents. We then discuss our recent high-resolution X-ray inelastic scattering studies of globular proteins, Lysozyme and Bovine Serum Albumin. We were able to measure the dispersion relations of collective, intra-protein phonon-like excitations in these proteins for the first time. We found that the phonon energies show a marked softening and at the same time their population increases substantially in a certain wave vector range when temperature crosses over the T D . Thus the increase of biological activities above T D has positive correlation with activation of slower and large amplitude collective motions of a protein.« less

  5. Dynamics of water in prussian blue analogues: Neutron scattering study

    SciTech Connect (OSTI)

    Sharma, V. K.; Mitra, S.; Thakur, N.; Yusuf, S. M.; Mukhopadhyay, R.; Juranyi, Fanni

    2014-07-21

    Dynamics of crystal water in Prussian blue (PB), Fe(III){sub 4}[Fe(II)(CN){sub 6}]{sub 3}.14H{sub 2}O and its analogue Prussian green (PG), ferriferricynaide, Fe(III){sub 4}[Fe(III)(CN){sub 6}]{sub 4}.16H{sub 2}O have been investigated using Quasielastic Neutron Scattering (QENS) technique. PB and its analogue compounds are important materials for their various interesting multifunctional properties. It is known that crystal water plays a crucial role towards the multifunctional properties of Prussian blue analogue compounds. Three structurally distinguishable water molecules: (i) coordinated water molecules at empty nitrogen sites, (ii) non-coordinated water molecules in the spherical cavities, and (iii) at interstitial sites exist in PB. Here spherical cavities are created due to the vacant sites of Fe(CN){sub 6} units. However, PG does not have any such vacant N or Fe(CN){sub 6} units, and only one kind of water molecules, exists only at interstitial sites. QENS experiments have been carried out on both the compounds in the temperature range of 260360?K to elucidate the dynamical behavior of different kinds of water molecules. Dynamics is found to be much more pronounced in case of PB, compared to PG. A detailed data analysis showed that localized translational diffusion model could describe the observed data for both PB and PG systems. The average diffusion coefficient is found to be much larger in the PB than PG. The obtained domain of dynamics is found to be consistent with the geometry of the structure of the two systems. Combining the data of the two systems, a quantitative estimate of the dynamics, corresponding to the water molecules at different locations is made.

  6. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    SciTech Connect (OSTI)

    Sakuma, Takashi Makhsun,; Sakai, Ryutaro; Xianglian; Takahashi, Haruyuki; Basar, Khairul; Igawa, Naoki; Danilkin, Sergey A.

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10?K and 295?K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295?K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  7. 11th LANSCE School on Neutron Scattering | Lecturers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    His research speciality is in characterisation methods based on neutron and X-ray diffraction, with an emphasis on microstructure and lattice defects. Lately the focus has been...

  8. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; Armstrong, David; Armstrong, Whitney; Averett, Todd; Babineau, Benjamin; Barbieri, A.; Bellini, Vincenzo; Beminiwattha, Rakitha; et al

    2012-03-15

    We report the first measurement of the parity-violating asymmetry APV in the elastic scattering of polarized electrons from 208Pb. APV is sensitive to the radius of the neutron distribution (Rn). The result APV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn-Rp = 0.33-0.18+0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  9. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic H2 ( e, e'ps ) X scattering with CLAS

    SciTech Connect (OSTI)

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bltmann, S.; Christy, M. E.; Dutta, D.; Ent, R.; Fenker, H.; Griffioen, K. A.; Ispiryan, M.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabati, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.

    2014-04-24

    In this study, much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.

  10. Single spin asymmetries in charged kaon production from semi-inclusive deep inelastic scattering on a transversely polarized He3 target

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Y. X.; Wang, Y.; Allada, K.; Aniol, K.; Annand, J. R.M.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bradshaw, P. C.; Bosted, P.; et al

    2014-11-03

    We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments, which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic range of 0.1 < xbj<0.4 for K+ and K– production. While the Collins and Sivers moments for K+ are consistent with zero within the experimental uncertainties, both moments for K– favor negative values. The Sivers moments are compared to the theoretical prediction from a phenomenological fit to the world data. Whilemore »the K+ Sivers moments are consistent with the prediction, the K– results differ from the prediction at the 2-sigma level.« less

  11. Recent Measurements of the cos(n{phi}{sub h}) Azimuthal Modulations of the Unpolarized Deep Inelastic Scattering Cross-section at HERMES

    SciTech Connect (OSTI)

    Lamb, Rebecca; Giordano, Francesca [University of Illinois (United States)

    2009-12-17

    The cross section for hadron production in deep-inelastic lepton scattering contains azimuthal modulations which can be related to transverse momentum dependent (TMD) distribution and fragmentation functions. The former provide a picture of how the quarks are moving within nucleons. Specifically, the cos{phi}{sub h} and cos2{phi}{sub h} modulations of the unpolarized cross section relate quark spin and quark transverse momentum. These moments have been carefully measured at the HERMES experiment in a fully differential way, as a function of x, y, z, and P{sub hperpendicular} for positive and negative hadrons produced from hydrogen and deuterium targets. These measurements give new access to the flavor dependent TMDs via their charge and target dependence. These data must be compared to comprehensive models to determine which terms contribute significantly to the cos{phi}{sub h} and cos2{phi}{sub h} moments and allow access to the underlying structure functions.

  12. On the absence of a positive sound dispersion in the THz dynamics of glycerol: an inelastic x-ray scattering study

    SciTech Connect (OSTI)

    Cunsolo, Alessandro

    2012-10-23

    The high frequency transport properties of glycerol are derived from inelastic x-ray scattering spectra measured at different pressures and compared with ultrasound absorption data. As a result, the presence of two distinct relaxation processes is inferred: a slow one, occurring in the GHz window and having an essentially structural character, and a fast one, related instead to microscopic degrees of freedom. While the former originates a neat increase of the apparent, i.e. frequency-dependent, sound velocity, the latter induces no visible dispersive effects on the acoustic propagation. The observed behavior is likely paradigmatic of all glass formers near or below the melting and it is here discussed and explained in some detail.

  13. Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli

    DOE R&D Accomplishments [OSTI]

    Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.

    1982-06-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.

  14. George D. Wignall Neutron Scattering Sciences Division Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    George D. Wignall Neutron Scattering Sciences Division Oak Ridge National Laboratory Joint Meeting with the V CNMS D V { { x x Å Å | | v v t t Ä Ä f f v v | | x x Ç Ç v v x x á á W W | | ä ä | | á á | | É É Ç Ç Wednesday, November 1, 2006 2:00 pm Weinberg Auditorium (4500N) Refreshments will be served at 1:45 pm "Neutron Scattering from Polymers and Nano-structured Composite Materials; Everything you ever wanted to know about SANS, but were afraid to ask" D I I S S C C

  15. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    SciTech Connect (OSTI)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch [Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); White, J. S. [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland) [Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Laboratory for Quantum Magnetism, Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Rnnow, H. M.; Pra, K. [Laboratory for Quantum Magnetism, Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)] [Laboratory for Quantum Magnetism, Ecole Polytechnique Fdrale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  16. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  17. Geek-Up[1.28.2011]: Neutron Scattering and Full-Spectrum Solar Cells |

    Office of Environmental Management (EM)

    Department of Energy .28.2011]: Neutron Scattering and Full-Spectrum Solar Cells Geek-Up[1.28.2011]: Neutron Scattering and Full-Spectrum Solar Cells January 28, 2011 - 5:11pm Addthis Detector tanks for the new SANS instruments at the High Flux Isotope Reactor. The Bio-SANS detector is on the right. Source: ORNL Detector tanks for the new SANS instruments at the High Flux Isotope Reactor. The Bio-SANS detector is on the right. Source: ORNL Niketa Kumar Niketa Kumar Public Affairs Specialist,

  18. Updated flux information for neutron scattering and irradiation facilities at the BNL High Flux Beam Reactor

    SciTech Connect (OSTI)

    Holden, N.E.; Hu, J.P.; Reciniello, R.N.; Sengupta, S.; Greenwood, L.R.; Farrell, K.

    1997-08-01

    The HFBR is a heavy water, D{sub 2}O, cooled and moderated reactor with twenty-eight fuel elements containing a maximum of 9.8 kilograms of {sup 235}U. While most reactors attempt to minimize the escape of neutrons from the core, the HFBR`s D{sub 2}O design allows the thermal neutron flux to peak in the reflector region and maximizes the number of thermal neutrons available to nine horizontal external beams, H-1 to H-9, used for neutron scattering and capture reactions, supporting physics, chemistry and biology experiments. All horizontal beam tubes were built tangential to the direction of the emerging neutrons, except for the H-2 beam tube, which looks directly at the core and has been used for neutron cross section measurements utilizing fast neutrons and for the TRISTAN fission product studies. In recent years, there have been some beam modifications and new instrumentation introduced at the HFBR. A high resolution neutron powder diffractometer instrument is now operating with a resolution of 5 {times} 10{sup {minus}4} at horizontal beam line H-1. To study scattering from liquid surfaces, a neutron reflection spectrometer was introduced on the CNF beam line at H-9. In the past year, a fourth beam line has been added to the CNF line at H-9. The existing beam plug at the H-6 beam line has recently been removed and a new plug, which will feature super mirrored surfaces, is now being installed. Last year, the vertical beam thimble, V-13, a fixed port filled with thirty year old samples used for HFBR material surveillance studies was replaced by a new thimble and charging station at the core edge creating an irradiation facility to substitute for the original V-13. A neutron dosimetry program has begun to measure and calculate the energy dependent neutron and gamma ray flux densities and/or dose rates at horizontal beam lines and vertical irradiation thimbles.

  19. Elastic neutron scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    SciTech Connect (OSTI)

    Klug, J.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Mermod, P.; Pomp, S.; Tippawan, U.; Nilsson, L.; Elmgren, K.; Olsson, N.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Dangtip, S.; Phansuke, P.; Oesterlund, M.; Le Brun, C.

    2003-12-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL, has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10 deg. -70 deg. interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated normalization uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions based on phenomenology or microscopic nuclear theory.

  20. Meausrement of the Neutron Radius of {sup 208}Pb Through Parity Violation in Electron Scattering

    SciTech Connect (OSTI)

    Saenboonruang, Kiadtisak [Virginia U., JLAB

    2013-05-31

    In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R{sub n}, of a heavy nucleus and the proton radius, R{sub p}, to be in the order of several percent. To accurately obtain the difference, R{sub n}-R{sub p}, which is essentially a neutron skin, the Jefferson Lab Lead ({sup 208}Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 208}Pb at an energy of 1.06 GeV and a scattering angle of 5{degrees}#14;. Since Z{sup 0} boson couples mainly to neutrons, this asymmetry provides a clean measurement of R{sub n} with respect to R{sub p}. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x#2;10{sup 7} helicity-window quadruplets. The measured parity-violating electroweak asymmetry A{sub PV} = 0.656 {+-}#6; 0.060 (stat) {+-}#6; 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R{sub n}-R{sub p} = 0.33{sup +0.16}{sub -0.18} fm and provides the #12;first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of {sup 208}Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.

  1. The role of CP violating scatterings in baryogenesiscase study of the neutron portal

    SciTech Connect (OSTI)

    Baldes, Iason; Bell, Nicole F.; Millar, Alexander; Volkas, Raymond R.; Petraki, Kalliopi E-mail: n.bell@unimelb.edu.au E-mail: kpetraki@nikhef.nl

    2014-11-01

    Many baryogenesis scenarios invoke the charge parity (CP) violating out-of-equilibrium decay of a heavy particle in order to explain the baryon asymmetry. Such scenarios will in general also allow CP violating scatterings. We study the effect of these CP violating scatterings on the final asymmetry in a neutron portal scenario. We solve the Boltzmann equations governing the evolution of the baryon number numerically and show that the CP violating scatterings play a dominant role in a significant portion of the parameter space.

  2. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect (OSTI)

    Specht, Eliot D [ORNL; Ma, Jie [ORNL; Delaire, Olivier A [ORNL; Budai, John D [ORNL; May, Andrew F [ORNL; Karapetrova, Evguenia A. [Argonne National Laboratory (ANL)

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  3. SANS (small angle neutron scattering) measurement of deuterium-dislocation correlation in palladium

    SciTech Connect (OSTI)

    Heuser, B.J.; Summerfield, G.C.; King, J.S. ); Epperson, J.E. )

    1989-11-01

    Small angle neutron scattering (SANS) measurements have been made on deformed polycrystal palladium samples with and without deuterium dissolved in the solution phase ({alpha}) at room temperature. Concentrations were held constant during SANS experiments by an equilibrium gas pressure cell. The difference scattering cross section for the same sample with and without deuterium loading has a 1/Q behavior (Q=4{pi}/{lambda} sin{theta}/2) at intermediate values of Q. At very low values of Q the dependence is much stronger than 1/Q. The 1/Q behavior is attributed to deuterium trapping close to long dislocation cores forming rod-like scattering structures.

  4. Small-Angle Neutron Scattering Studies of a-Si:H and a-Si:D

    SciTech Connect (OSTI)

    Williamson, D. L.; Marr, D. W. M.; Nelson, B. P.; Iwaniczko, E.; Yang, J.; Yan, B.; Guha, S.

    2000-01-01

    The heterogeneity of hydrogen and deuterium on the nanometer scale has been probed by samll-angle neutron scattering (SANS) from a-Si:H and a-Si:D films. Films were depsoited by two techniques, plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) using conditions that yield high quality films and devices.

  5. The new Cold Neutron Chopper Spectrometer at the Spallation Neutron Source -- Design and Performance

    SciTech Connect (OSTI)

    Ehlers, Georg; Podlesnyak, Andrey A.; Niedziela, Jennifer L.; Iverson, Erik B.; Sokol, Paul E.

    2011-01-01

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  6. The new cold neutron chopper spectrometer at the Spallation Neutron Source: Design and performance

    SciTech Connect (OSTI)

    Ehlers, G.; Podlesnyak, A. A.; Niedziela, J. L.; Iverson, E. B.; Sokol, P. E.

    2011-08-15

    The design and performance of the new cold neutron chopper spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge are described. CNCS is a direct-geometry inelastic time-of-flight spectrometer, designed essentially to cover the same energy and momentum transfer ranges as IN5 at ILL, LET at ISIS, DCS at NIST, TOFTOF at FRM-II, AMATERAS at J-PARC, PHAROS at LANSCE, and NEAT at HZB, at similar energy resolution. Measured values of key figures such as neutron flux at sample position and energy resolution are compared between measurements and ray tracing Monte Carlo simulations, and good agreement (better than 20% of absolute numbers) has been achieved. The instrument performs very well in the cold and thermal neutron energy ranges, and promises to become a workhorse for the neutron scattering community for quasielastic and inelastic scattering experiments.

  7. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    SciTech Connect (OSTI)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can be easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.

  8. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    SciTech Connect (OSTI)

    Hurd, Alan J; Rhyne, James J; Lewis, Paul S

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  9. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect (OSTI)

    Nuruzzaman, nfn

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has also proven valuable for tracking changes in the beamline optics, such as dispersion at the target.

  10. Transport of thermal neutrons in different forms of liquid hydrogen and the production of intense beams of cold neutrons

    SciTech Connect (OSTI)

    Swaminathan, K.; Tewari, S.P.

    1982-10-01

    From their studies the authors find that the thermal neutron inelastic scattering kernel incorporating the chemical binding energy in liquid hydrogen is able to successfully explain various neutron transport studies such as pulsed neutron and steady-state neutron spectra. For an infinite-sized assembly, D/sub 2/ at 4 K yields a very intense flux of cold and ultracold neutrons. For the practicable finite assembly corresponding to B/sup 2/ = 0.0158 cm/sup -2/, it is found that liquid hydrogen at 11 K gives the most intense beam of cold neutrons.

  11. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    SciTech Connect (OSTI)

    Arnold, Owen; Bilheux, Jean-Christophe; Borreguero Calvo, Jose M; Buts, Alex; Campbell, Stuart I; Doucet, Mathieu; Draper, Nicholas J; Ferraz Leal, Ricardo F; Gigg, Martyn; Lynch, Vickie E; Mikkelson, Dennis J; Mikkelson, Ruth L; Miller, Ross G; Perring, Toby G; Peterson, Peter F; Ren, Shelly; Reuter, Michael A; Savici, Andrei T; Taylor, Jonathan W; Taylor, Russell J; Zhou, Wenduo; Zikovsky, Janik L

    2014-11-01

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by a large team of software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objective of the development is to improve software quality, both in terms of performance and ease of use, for the the user community of large scale facilities. The functionality and novel design aspects of the framework are described.

  12. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    SciTech Connect (OSTI)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phase transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of phases and phase transitions in condensed matter systems with random pinning. The broader impact of the program includes the training of future generation of neutron scientists, and further development of neutron scattering and complementary techniques for studies of superconducting materials. The graduate and undergraduate students participating in this project will learn the state-of-the-art neutron scattering techniques, acquire a wide range of materials research experiences, and participate in the frontier research of superconductivity. This should best prepare the students for future careers in academia, industry, or government.

  13. X-ray and neutron scattering studies of the complex compounds | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource X-ray and neutron scattering studies of the complex compounds Wednesday, September 25, 2013 - 1:00pm SLAC, Conference Room 137-322 Presented by Dr. Hoyoung Jang, Max Planck Institute for Solid State Research in Stuttgart, Germany In condensed matter physics, in particular a field of complex oxide materials, most of the research-activity is focusing on finding a new functionality in materials as well as its understanding. In this fashion, during past few

  14. Method for improving the angular resolution of a neutron scatter camera

    DOE Patents [OSTI]

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  15. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; et al

    2016-03-14

    We present time-of- ight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spinmore » excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  16. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect (OSTI)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  17. Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering

    SciTech Connect (OSTI)

    Clifton, Luke A; Johnson, Christopher L; Solovyova, Alexandra; Callow, Phil; Weiss, Kevin L; Ridley, Helen; Le Brun, Anton P; Kinane, Christian; Webster, John; Holt, Stephen A; Lakey, Jeremy H

    2012-01-01

    Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.

  18. Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory

    SciTech Connect (OSTI)

    Malek Mazouz

    2006-12-08

    Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.

  19. Inelastic incoherent neutron scattering study of the molecular properties of pure hydrogen peroxide and its water mixtures of different concentration

    SciTech Connect (OSTI)

    Albers, Peter W.; Glenneberg, Jürgen; Refson, Keith; Parker, Stewart F.

    2014-04-28

    We have investigated the spectra of shock-frozen H{sub 2}O{sub 2}–H{sub 2}O mixtures across the full composition range 99.1%–0.0% H{sub 2}O{sub 2}. In contrast to literature reports, we find that intermediate compositions (30%–70% H{sub 2}O{sub 2}) freeze to a solid solution rather than phase separating, which only occurs on annealing to just below the melting point. We have fully characterised the dihydrate H{sub 2}O{sub 2}·2H{sub 2}O (48.6% H{sub 2}O{sub 2}) for the first time and shown that its spectrum can account for the features previously observed on the surface of a Au/TiO{sub 2} catalyst.

  20. Multiple-Input Data Acquisition System (MIDAS) for Measuring the Carbon Content in Soil Using Inelastic Neutron Scattering

    SciTech Connect (OSTI)

    Warburton, William K.

    2014-01-24

    This report describes work funder under STTR grants Phase I and II and carried out jointly by XIA LLC and Brookhaven National Laboratory (BNL). The project goal was to develop a mobile nuclear activation analysis instrument that could be towed behind a tractor to document soil carbon levels in agricultural lands for carbon credit certification. XIA developed large NaI(Tl) detectors with integrated digital pulse processors controlled over USB 2.0 and delivered 16 of these units to BNL for integration into the prototype instrument, together with the necessary software to calibrate them and collect data. For reasons that are unknown to XIA, the BNL participants never completed the prototype vehicle, performed system integration, or carried out the proposed qualification and field tests, leaving the project incomplete.

  1. Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SNS-ORNL: A Preliminary Report Citation Details In-Document Search Title: Neutron Scattering of CeNi at the SNS-ORNL: A Preliminary Report Authors: Mirmelstein, A V ; Podlesnyak, A ; Kolesnikov, A I ; Saporov, B ; Sefat, A S ; Tobin, J G Publication Date: 2014-04-13 OSTI Identifier: 1132013 Report Number(s): LLNL-PROC-653272 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 2014 Materials Research

  2. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    SciTech Connect (OSTI)

    Ono, K. Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-05-07

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D{sub sw} (100.0??4.9?meV.{sup 2}) and the exchange stiffness constant A (6.6 0.3 pJ/m)

  3. Synthesis and characterization of nanophase zirconia : reverse micelle method and neutron scattering study.

    SciTech Connect (OSTI)

    Li, X.

    1998-11-23

    Zirconia is an important transition-metal oxide for catalytic applications. It has been widely used in automotive exhaust treatment, methanol synthesis, isomerization, alkylation, etc. [1]. Nanophase materials have unique physiochemical properties such as quantum size effects, high surface area, uniform morphology, narrow size distribution, and improvement of sintering rates[2]. Microemulsion method provides the means for controlling the microenvironment under which specific chemical reactions may occur in favoring the formation of homogeneous, nanometer-size particles. In this paper, we report the synthesis of nanophase zirconia and the characterization of the microemulsions as well as the powders by small- and wide-angle neutron scattering techniques.

  4. Small-angle neutron scattering measurement of deuterium trapping at dislocations and grain boundaries in palladium

    SciTech Connect (OSTI)

    Heuser, B.J.

    1991-01-01

    Small angle neutron scattering measurements have been performed on deformed single and polycrystalline palladium with and without deuterium dissolved in the solution phase at room temperature. The purpose of these experiments was to directly measure the spatial distribution of trapped deuterium at dislocations in the deformed metal. The net scattering cross section for the same smaple with and without deuterium shows a behavior expected from deuterium correlation with dislocations froming rod-like scattering structures. The measured cross sections indicate the trapped deuterium is within 2 to 3 Burgers vectors of the dislocation core. On average 1 to 3 deuterons per {angstrom} are trapped at the dislocations in the deformed samples. The measurements also indicate the straight, rod-like correlation geometry extends on average 50 to 100 {angstrom} along the dislocations. Dislocation densities on the order of 5 {times} 10{sup 11} cm/cm{sup 3} were found for all samples investigated. Net scattering from a well annealed polycrystalline palladium sample exhibiting a behavior expected from spherical shells has been observed. This net scattering is attributed to deuterium trapping at grain boundaries in the polycrystalline sample. net scattering in excess of that expected from deuterium correlated at dislocations was also observed in a deformed polycrystalline measurement. This too is attributed to deuterium trapping at grain boundaries. The dislocation substructure of the deformed palladium samples was characterized by transmission electron microscopy (TEM). This analysis illustrated the cellular arrangement that evolved in palladium during cold working. The presence of MnO particles also was confirmed by TEM analysis.

  5. Equilibrium Structure of a Triblock Copolymer System Revealed by Mesoscale Simulation and Neutron Scattering

    SciTech Connect (OSTI)

    Do, Changwoo [ORNL] [ORNL; Chen, Wei-Ren [ORNL] [ORNL; Hong, Kunlun [ORNL] [ORNL; Smith, Gregory Scott [ORNL] [ORNL

    2013-01-01

    We have performed both mesoscale simulations and neutron scattering experiments on Pluronic L62, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer system in aqueous solution. The influence of simulation variables such PEO/PPO block ratio, interaction parameters, and coarse-graining methods is extensively investigated by covering all permutations of parameters found in the literatures. Upon increasing the polymer weight fraction from 50 wt% to 90 wt%, the equilibrium structure of the isotropic, reverse micellar, bicontinuous, worm-like micelle network, and lamellar phases are respectively predicted from the simulation depending on the choices of simulation parameters. Small angle neutron scattering (SANS) measurements show that the same polymer systems exhibit the spherical micellar, lamellar, and reverse micellar phases with the increase of the copolymer concentration at room temperature. Detailed structural analysis and comparison with simulations suggest that one of the simulation parameter sets can provide reasonable agreement with the experimentally observed structures.

  6. Investigation of the tripoli porous structure by small-angle neutron scattering

    SciTech Connect (OSTI)

    Avdeev, M. V.; Blagoveshchenskii, N. M.; Garamus, V. M.; Novikov, A. G. Puchkov, A. V.

    2011-12-15

    The characteristics of the tripoli porous structure have been investigated by small-angle neutron scattering (SANS). Tripoli is a finely porous sedimentary rock formed by small spherical opal particles. Its main component is aqueous silica SiO{sub 2} {center_dot} nH{sub 2}O (80-90%). Tripoli is widely used in practice as a working medium for sorption filters and in some other commercial and construction technologies. The shape of the experimental SANS curves indicates the presence of small and large pores in tripoli. The small-pore size was estimated to be {approx}100 Angstrom-Sign . The size of large pores turned out to be beyond the range of neutron wave vector transfers Q that are available for the instrument used; however, their size was indirectly estimated to be {approx}(2000-2500) Angstrom-Sign . The pores of both groups behave as surfacetype fractal scatterers with the fractal dimension D {approx} 2.2-2.6. The densities of pores of these two groups differ by approximately three orders of magnitude ({approx}10{sup 16} and {approx}10{sup 13} cm{sup -3} for small and large pores, respectively); the fraction of large pores amounts to 70-80% of the total pore volume. The found pore characteristics (their densities, sizes, and relative volumes) are in satisfactory agreement (when a comparison is possible) with the absorption data.

  7. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    SciTech Connect (OSTI)

    Farrer, R.; Longshore, A.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  8. Neutron-scattering evidence for a periodically modulated superconducting phase in the underdoped cuprate La1.905Ba0.095CuO4

    SciTech Connect (OSTI)

    Xu, Zhijun; Stock, C.; Chi, Songxue; Kolesnikov, A. I.; Xu, Guangyong I.; Gu, Genda; Tranquada, J. M.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  9. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    SciTech Connect (OSTI)

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  10. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    SciTech Connect (OSTI)

    Prez-Andjar, Anglica [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Zhang, Rui; Newhauser, Wayne [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2013-12-15

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.

  11. Investigation of Three-Body Force Effects in Neutron-Deuteron Scattering at 95 MeV

    SciTech Connect (OSTI)

    Mermod, P.; Blomgren, J.; Bergenwall, B.; Hildebrand, A.; Johansson, C.; Klug, J.; Oesterlund, M.; Pomp, S.; Nilsson, L.; Olsson, N.; Tippawan, U.; Jonsson, O.; Prokofiev, A.; Renberg, P.-U.; Nadel-Turonski, P.; Maeda, Y.; Sakai, H.; Tamii, A.

    2005-05-24

    We have measured the neutron-deuteron (nd) elastic-scattering differential cross section at 95 MeV incident neutron energy, using both the Medley and the SCANDAL setups at TSL in Uppsala. The full angular distribution was covered by detecting recoil deuterons from thin CD2 targets, and the result was normalized to the neutron-proton (np) cross section. Recent theories predict that three-nucleon (3N) force effects, if present, would affect the cross section in the minimum region by about 30%. The results are compared with theoretical calculations and are well described if 3N forces are included.

  12. Response to 'Comment on 'Elastic incoherent neutron scattering operating by varying instrumental energy resolution: Principle, simulations, and experiments of the resolution elastic neutron scattering (RENS)'' [Rev. Sci. Instrum. 83, 107101 (2012)

    SciTech Connect (OSTI)

    Magazu, Salvatore; Migliardo, Federica; Benedetto, Antonio [Dipartimento di Fisica, Universita di Messina, C.da Papardo n Degree-Sign 31, P.O. Box 55, Vill. S. Agata 98166 Messina (Italy)

    2012-10-15

    Recently [S. Magazu et al., Rev. Sci. Instrum. 82, 105115 (2011)] we have proposed a new method for characterizing, by neutron scattering, the dynamical properties of complex material systems, such as, the ones of interest in the biophysical field. This approach called Resolution Elastic Neutron Scattering, in short RENS, is based on the detection of the elastically scattered neutron intensity as a function of the instrumental energy resolution. By experimental, theoretical, and numerical findings, we have pointed out that an inflection point occurs in the elastic intensity when the system relaxation time approaches the instrumental energy resolution time. This approach, differently from quasi-elastic neutron scattering (QENS), gives the chance to evaluate the system relaxation times without using pre-defined models that can be wrong and/or misleading. Here, we reply to a Comment on the above-mentioned main paper in which Wuttke proposes a different approach to evaluate the above-mentioned inflection point; on this regard, it should be noticed that the existence of the inflection point, which is the main topic of our work, is not questioned and that the approach proposed by Wuttke in the Comment, although valid for a class of dynamical processes, is not applicable when different and distinct processes occur simultaneously at different time scale.

  13. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  14. Small angle neutron scattering as fingerprinting of ancient potteries from Sicily (Southern Italy)

    SciTech Connect (OSTI)

    Barone, G.; Mazzoleni, P.; Crupi, V.; Majolino, D.; Venuti, V.; Teixeira, J.

    2009-09-01

    Small angle neutron scattering measurements have been carried out in order to investigate, in microdestructive way, the mesoscopic structure of a variety of potteries of relevance to cultural heritage coming from different Sicilian (Southern Italy) archeological sites belonging to the 'Strait of Messina' area and dated back to 7th-3rd century B.C. Data have been compared with the mesoscopic parameters extracted for two series of clayey sediments typical of the Strait of Messina area and fired under controlled conditions. The observed agreement between the features of reference and archeological samples allowed us to estimate the maximum firing temperature of the latter. Information on the pore sizes was obtained by the use of the concept of fractal surface, and compared with porosimetry results.

  15. 11th LANSCE School on Neutron Scattering | Hands-On Experiments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Institute for Materials Science Los Alamos Neutron Science Center MaRiE Los Alamos Neutron Science Center Matter Radiation Interactions in Extremes CINT...

  16. 11th LANSCE School on Neutron Scattering | Free-Day Excursion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Institute for Materials Science Los Alamos Neutron Science Center MaRiE Los Alamos Neutron Science Center Matter Radiation Interactions in Extremes CINT...

  17. Fast, Quantitative, and Nondestructive Evaluation on Hydrided LWR Fuel Cladding by Small Angle Incoherent Neutron Scattering of Hydrogen

    SciTech Connect (OSTI)

    Yan, Yong; Qian, Shuo; Littrell, Ken; Parish, Chad M; Plummer, Lee K

    2015-01-01

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.

  18. Total reflection inelastic x-ray scattering from a 10 nm thick La{sub 0.6}Sr{sub 0.2}CoO{sub 3} thin film.

    SciTech Connect (OSTI)

    Fister, T. T.; Fong, D. D.; Eastman, J. A.; Iddir, H.; Zapol, P.; Fuoss, P. H.; Balasubramanian, M.; Gordon, R. A.; Balasubramaniam, K. R.; Salvador, P. A.; Simon Fraser Univ.; Carnegie Mellon Univ.

    2011-01-18

    To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La{sub 0.6}Sr{sub 0.4}CoO{sub 3} thin film from that of the underlying SrTiO{sub 3} substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N{sub 4,5} edge with momentum transfer as an example.

  19. Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility

    SciTech Connect (OSTI)

    Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

    2014-03-21

    A dosimetry experiment used to measure the neutron flux and spectrum of a D-T neutron generator is presented. The D-T generator at Pacific Northwest National Laboratory is installed in the middle of a large room to minimize scatter of neutrons back to the sample. The efficacy of maintaining a pure fast neutron field for the sample is investigated. Twenty-one positions within 13 cm of the neutron source contained foils or wires of Fe, Ni, Al with additional Au, and In monitors at some locations. Spectral adjustment of the neutron flux at each position based on measured reaction rates and theoretical Monte Carlo calculations show that at least 99.1% of the spectrum lies above 110 keV for all measured positions, and neutrons above 14 MeV can account for as much as 91% at locations along the axis of the generator and close to the source. The 14 MeV component drops to 77% in radial positions far from the source. The largest total flux observed was 8.29E+08 n/cm2-s (1.4%) in the center of the cooling cap, although additional experiments have shown this value could be as high as 1.20E+09 n/cm2-s.

  20. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on results from x-ray and neutron diffraction. From advanced ceramics to catalysts, from semiconductor technology to the frontiers of medicine, and from new magnetic materials and...

  1. Pressure-induced valence change in YbAl3: a combined high pressure inelastic x-ray scattering and theoretical investigation

    SciTech Connect (OSTI)

    Bauer, E D; Kumar, R S; Svane, A; Vaitheeswaran, G; Nicol, M F; Kanchana, V; Hu, M; Cornelius, A L

    2008-01-01

    High resolution x-ray absorption (XAS) experiments in the partial fluorescence yield mode (PFY) and resonant inelastic x-ray emission (RXES) measurements under pressure were performed on the intermediate valence compound YbAl{sub 3} up to 38 GPa. The results of the Yb L{sub 3} PFY-XAS and RXES studies show a smooth valence increase in YbAl{sub 3} from 2.75 to 2.93 at ambient to 38 GPa. In-situ angle dispersive synchrotron high pressure x-ray diffraction experiments carried out using a diamond cell at room temperature to study the equation of state showed the ambient cubic phase stable up to 40 GPa. The results obtained from self-interaction corrected local spin density functional calculations to understand the pressure effect on the Yb valence and compressibility are in good agreement with the experimental results.

  2. Multi-component modeling of quasielastic neutron scattering from phospholipid membranes

    SciTech Connect (OSTI)

    Wanderlingh, U. DAngelo, G.; Branca, C.; Trimarchi, A.; Rifici, S.; Finocchiaro, D.; Conti Nibali, V.; Crupi, C.; Ollivier, J.; Middendorf, H. D.

    2014-05-07

    We investigated molecular motions in the 0.3350 ps time range of D{sub 2}O-hydrated bilayers of 1-palmitoyl-oleoyl-sn-glycero-phosphocholine and 1,2-dimyristoyl-sn-glycero-phosphocholine in the liquid phase by quasielastic neutron scattering. Model analysis of sets of spectra covering scale lengths from 4.8 to 30 revealed the presence of three types of motion taking place on well-separated time scales: (i) slow diffusion of the whole phospholipid molecules in a confined cylindrical region; (ii) conformational motion of the phospholipid chains; and (iii) fast uniaxial rotation of the hydrogen atoms around their carbon atoms. Based on theoretical models for the hydrogen dynamics in phospholipids, the spatial extent of these motions was analysed in detail and the results were compared with existing literature data. The complex dynamics of protons was described in terms of elemental dynamical processes involving different parts of the phospholipid chain on whose motions the hydrogen atoms ride.

  3. Measurement Of Neutron Radius In Lead By Parity Violating Scattering Flash ADC DAQ

    SciTech Connect (OSTI)

    Ahmed, Zafar

    2012-06-01

    This dissertation reports the experiment PREx, a parity violation experiment which is designed to measure the neutron radius in {sup 208}Pb. PREx is performed in hall A of Thomas Jefferson National Accelerator Facility from March 19th to June 21st. Longitudionally polarized electrons at energy 1 GeV scattered at and angle of {theta}{sub lab} = 5.8 {degrees} from the Lead target. Beam corrected pairty violaing counting rate asymmetry is (A{sub corr} = 594 50(stat) 9(syst))ppb at Q{sup 2} = 0.009068GeV {sup 2}. This dissertation also presents the details of Flash ADC Data Acquisition(FADC DAQ) system for Moller polarimetry in Hall A of Thomas Jefferson National Accelerator Facility. The Moller polarimeter measures the beam polarization to high precision to meet the specification of the PREx(Lead radius experiment). The FADC DAQ is part of the upgrade of Moller polarimetery to reduce the systematic error for PREx. The hardware setup and the results of the FADC DAQ analysis are presented

  4. Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results

  5. Characterization of the Neutron Fields in the Lawrence Livermore National Laboratory (LLNL) Radiation Calibration Laboratory Low Scatter Calibration Facility

    SciTech Connect (OSTI)

    Radev, R

    2009-09-04

    In June 2007, the Department of Energy (DOE) revised its rule on Occupational Radiation Protection, Part 10 CFR 835. A significant aspect of the revision was the adoption of the recommendations outlined in International Commission on Radiological Protection (ICRP) Report 60 (ICRP-60), including new radiation weighting factors for neutrons, updated internal dosimetric models, and dose terms consistent with the newer ICRP recommendations. ICRP-60 uses the quantities defined by the International Commission on Radiation Units and Measurements (ICRU) for personnel and area monitoring including the ambient dose equivalent H*(d). A Joint Task Group of ICRU and ICRP has developed various fluence-to-dose conversion coefficients which are published in ICRP-74 for both protection and operational quantities. In February 2008, Lawrence Livermore National Laboratory (LLNL) replaced its old pneumatic transport neutron irradiation system in the Radiation Calibration Laboratory (RCL) Low Scatter Calibration Facility (B255, Room 183A) with a Hopewell Designs irradiator model N40. The exposure tube for the Hopewell system is located close to, but not in exactly the same position as the exposure tube for the pneumatic system. Additionally, the sources for the Hopewell system are stored in Room 183A where, prior to the change, they were stored in a separate room (Room 183C). The new source configuration and revision of the 10 CFR 835 radiation weighting factors necessitate a re-evaluation of the neutron dose rates in B255 Room 183A. This report deals only with the changes in the operational quantities ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms 'neutron dose' and 'neutron dose rate' will be used for convenience for ambient neutron dose equivalent and ambient neutron dose rate equivalent unless otherwise stated.

  6. Neutron Scattering of Residual Hydrogen in 1,4-Dioxane-D8 Liquid. Understanding Measurements with Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    de Almeida, Valmor F.; Liu, Hongjun; Herwig, Kenneth W.; Kidder, Michelle

    2016-01-01

    That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to inter-molecular scattering and that uncertainty in the extent of deuteration account for discrepancies between simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen-deuterium pair, and complementary interference from the deuterium-deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298K and at 343K) protiated mole fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. Although we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids and similar systematic experimental/computational studies can be performed to either understand measurements or calibrate/validate molecular dynamics models.

  7. Liquid Dynamics from Neutron Spectrometry

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.; Bergsma, J.; Dasannacharya, B. A.; Pope, N. K.

    1962-10-01

    Recent experiments carried out at Chalk River on the dynamics of liquids using neutron inelastic scattering are reviewed, including one by Sakamoto et al., in which the Van Hove self-correlation functions in water at 25 and 75 deg C were determined, and another in which the correlation functions in liquid argon near its triple point were studied. The possible occurrence of short wavelength phonons in classical liquids is discussed, in analogy with their existence in the quantum liquid He4, and in connection with incomplete experiments on liquid tin. (auth)

  8. Response of LaBr{sub 3}(Ce) scintillators to 2.5 MeV fusion neutrons

    SciTech Connect (OSTI)

    Cazzaniga, C.; Nocente, M.; Gorini, G.; Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Via Roberto Cozzi 53, Milano 20125 ; Tardocchi, M.; Croci, G.; Giacomelli, L.; Angelone, M.; Pillon, M.; Villari, S.; Weller, A.; Petrizzi, L.; Collaboration: ASDEX Upgrade Team; JET-EFDA Contributors

    2013-12-15

    Measurements of the response of LaBr{sub 3}(Ce) to 2.5 MeV neutrons have been carried out at the Frascati Neutron Generator and at tokamak facilities with deuterium plasmas. The observed spectrum has been interpreted by means of a Monte Carlo model. It is found that the main contributor to the measured response is neutron inelastic scattering on {sup 79}Br, {sup 81}Br, and {sup 139}La. An extrapolation of the count rate response to 14 MeV neutrons from deuterium-tritium plasmas is also presented. The results are of relevance for the design of ?-ray diagnostics of fusion burning plasmas.

  9. Investigation of coercivity mechanism in hot deformed Nd-Fe-B permanent magnets by small-angle neutron scattering

    SciTech Connect (OSTI)

    Yano, M., E-mail: masao-yano-aa@mail.toyota.co.jp; Manabe, A.; Shoji, T.; Kato, A. [Advanced Material Engineering Division, Toyota Motor Corporation, Susono 410-1193 (Japan); Ono, K. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Harada, M. [Toyota Central R and D Labs, Inc., Aichi 480-1192 (Japan); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2014-05-07

    The magnetic reversal behaviors of single domain sized Nd-Fe-B permanent magnets, with and without isolation between the Nd{sub 2}Fe{sub 14}B grains, was clarified using small-angle neutron scattering (SANS). The SANS patterns obtained arose from changes in the magnetic domains and were analyzed using the TeubnerStray model, a phenomenological correlation length model, to quantify the periodicity and morphology of the magnetic domains. The results indicated that the magnetic reversal evolved with the magnetic domains that had similar sized grains. The grain isolation enabled us to realize the reversals of single domains.

  10. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    SciTech Connect (OSTI)

    Singh, Lokendra P.; Richert, Ranko; Raihane, Ahmed; Alba-Simionesco, Christiane

    2015-01-07

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the ?-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreased amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.

  11. A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences

    SciTech Connect (OSTI)

    Bryant, Rebecca

    2010-12-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

  12. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  13. Polar catastrophe and the structure of KTa1-xNbxO? surfaces: Results from elastic and inelastic helium atom scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Flaherty, F. A.; Trelenberg, T. W.; Li, J. A.; Fatema, R.; Skofronick, J. G.; Van Winkle, D. H.; Safron, S. A.; Boatner, L. A.

    2015-07-13

    The structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa1-xNbxO? (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14 meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areas of KO and TaO?/NbO? terraces.moreThe data, however, suggest that K? and O? ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K? ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO?/NbO?(+1) layers and avoids a polar catastrophe. This behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF? with its electrically neutral KF and MnF? layers.less

  14. Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results Citation Details In-Document Search Title: Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results We report on a precision measurement of the neutron spin structure function g{sub 1}{sup n} using deep inelastic scattering of polarized electrons by polarized {sup 3}He. For the kinematic range 0.014<x<0.7 and 1(GeV/c){sup 2}<Q{sup

  15. Neutron-scattering measurements of spin excitations in LaFeAsO and Ba(Fe0.953Co0.047)2As2: Evidence for a sharp enhancement of spin fluctuations by nematic order [Sharp enhancement of spin fluctuations by nematic order in iron pnictides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Qiang; Fernandes, Rafael M.; Lamsal, Jagat; Yan, Jiaqiang; Chi, Songxue; Tucker, Gregory S.; Pratt, Daniel K.; Lynn, Jeffrey W.; McCallum, R. W.; Canfield, Paul C.; et al

    2015-02-04

    Inelastic neutron scattering is employed to investigate the impact of electronic nematic order on the magnetic spectra of LaFeAsO and Ba(Fe0.953Co0.047)2As2. These materials are ideal to study the paramagnetic-nematic state, since the nematic order, signaled by the tetragonal-to-orthorhombic transition at TS, sets in well above the stripe antiferromagnetic ordering at TN. We find that the temperature-dependent dynamic susceptibility displays an anomaly at TS followed by a sharp enhancement in the spin-spin correlation length, revealing a strong feedback effect of nematic order on the low-energy magnetic spectrum. As a result, our findings can be consistently described by a model that attributesmore » the structural or nematic transition to magnetic fluctuations, and unveils the key role played by nematic order in promoting the long-range stripe antiferromagnetic order in iron pnictides.« less

  16. Adsorption of Supercritical CO2 in Aeroglass Studied by Small--Angle Neutron Scattering and Neutron Transmission Techniques

    SciTech Connect (OSTI)

    Melnichenko, Yuri B [ORNL; Wignall, George D [ORNL; Cole, David R [ORNL; Frielinghaus, H. [Forschungszentrum Julich, Julich, Germany

    2006-01-01

    Small-angle neutron scattering (SANS) has been used to study the adsorption behavior of supercritical carbon dioxide (CO{sub 2}) in porous Vycor glass and silica aerogels. Measurements were performed along two isotherms (T = 35 and 80 C) as a function of pressure (P) ranging from atmospheric up to 25 MPa, which corresponds to the bulk fluid densities ranging from {rho}CO{sub 2} - 0 to 0.9 g/cm{sup 3}. The intensity of scattering from CO{sub 2}-saturated Vycor porous glass can be described by a two-phase model which suggests that CO{sub 2} does not adsorb on the pore walls and fills the pore space uniformly. In CO{sub 2}-saturated aerogels an adsorbed phase is formed with a density substantially higher that of the bulk fluid, and neutron transmission data were used to monitor the excess adsorption at different pressures. The results indicate that adsorption of CO{sub 2} is significantly stronger in aerogels than in activated carbons, zeolites, and xerogels due to the extremely high porosity and optimum pore size of these materials. SANS data revealed the existence of a compressed adsorbed phase with the average density - 1.07 g/cm{sup 3}, close to the density corresponding to closely packed van der Waals volume of CO{sub 2}. A three-phase model [W. L. Wu, Polymer 23, 1907 (1982)] was used to estimate the volume fraction {phi}{sub 3} of the adsorbed phase as a function of the fluid density, and gave {phi}{sub 3} - 0.78 in the maximum adsorption regime around {rho}CO{sub 2} - 0.374 g/cm{sup 3}. The results presented in this work demonstrate the utility of SANS combined with the transmission measurements to study the adsorption of supercritical fluids in porous materials.

  17. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    SciTech Connect (OSTI)

    Howell, Rebecca M.; Burgett, E. A.

    2014-09-15

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ?20?MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (?20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.

  18. Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering

    SciTech Connect (OSTI)

    Kim, Min Gyu [Ames Laboratory

    2012-08-28

    The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

  19. Solutions for implementing time-of-flight techniques in low-angle neutron scattering, as realized on the Low-Q Diffractometer at Los Alamos

    SciTech Connect (OSTI)

    Hjelm, R.P. Jr.; Seeger, P.A.

    1992-12-01

    The implementation of small-angle (Low-momentum transfer) neutron scattering at pulsed spallation sources, using time of flight methods, has meant the introduction of some new ideas in instrument design, data acquisition, data reduction and computer management of the experiment and the data. Here we recount some of the salient aspects of solutions for implementing time of fight small-angle neutron scattering instruments at pulsed sources, as realized on the Low-Q Diffractometer, LQD, at Los Alamos. We consider, fortlier, some of the problems that are yet to be solved, and take a short excursion into the future of SANS instrumentation at pulsed sources.

  20. Structure of light neutron-rich nuclei and mechanism of elastic proton scattering

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.

    2011-11-15

    Differential cross sections for elastic p{sup 6}He, p{sup 8}Li, and p{sup 9}Li scattering at two energies of 70 and 700 MeV per nucleon were calculated within the Glauber theory of multiple diffractive scattering. Threeparticle wave functions ({alpha}-n-n for {sup 6}He, {alpha}-t-n for {sup 8}Li, and {sup 7}Li-n-n for {sup 9}Li) were used for realistic potentials of intercluster interactions. The sensitivity of elastic scattering to proton-nucleus interaction and to the structure of nuclei was explored. In particular, the dependence of the differential cross section on the contribution of higher order collisions, on scattering on the core and peripheral nucleons, and on the contribution of small wave-function components and their asymptotic behavior was determined. A comparison with available experimental data and with the results of calculations within different formalisms was performed.

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (polarized and unpolarized) * Inelastic neutron scattering spectroscopy * Small angle neutron scattering * Neutron radiographytomography The Lujan instruments webpage...

  2. In-situ Neutron Scattering Determination of 3D Phase-Morphology Correlations in Fullerene Block Copolymer Systems

    SciTech Connect (OSTI)

    Karim, Alamgir; Bucknall, David; Raghavan, Dharmaraj

    2015-02-23

    High efficiency solar energy devices can potentially meet all global energy requirements by efficiently harvesting energy from the solar spectrum. However, for solar technologies to be ubiquitous and meet the global power requirements, innovative and revolutionary approaches to trap solar energy are needed. In this regard, organic photovoltaics (OPVs) have drawn much attention, largely due to the ease with which OPVs can be manufactured at much lower costs compared to conventional inorganic PVs. Currently the most efficient OPV devices (at ~10%) are still below a technologically useful efficiency (~15%). It can be argued that to date most of the development of the OPVs has been driven by their electronic properties, without much consideration or understanding of the structure and morphology of the organic components and in particular how these affect the performance of the solar cell devices. It is only in the last few years that the latter has begun to be addressed. Arguably, without a complete understanding of the effect of morphology and structure on device performance, the theoretical maximum efficiency of these devices is unlikely to ever be realized. A thorough understanding of the structure and morphology of the polymers and how this affects device efficiency is vital to achieve the full potential of OPVs. If OPV devices with 15% efficiency can be achieved, coupled with the predicted low cost of processing, such devices would create an enabling technology, making these types of solar cells significant power generators and thereby reduce the dependency on conventional energy sources. This would fulfill the economic solar energy challenge identified by the NAE in their Grand Challenges of the 21st Century. In this project, we conducted a directed series of experiments to determine morphology-property correlations in bulk heterojunction films by careful control of the OPV structure and morphology. Unlike most research undertaken in the PV arena, this is mostly a fundamental study that does not set out to evaluate new materials or produce devices, but rather we wish to understand from first principles how the molecular structure of polymer-fullerene mixtures determined using neutron scattering (small angle neutron scattering and neutron reflection) affects device characteristics and consequently performance. While this seems a very obvious question to ask, this critical understanding is far from being realized despite the wealth of studies into OPVs and is severely limiting organic PV devices from achieving their theoretical potential. Despite the fundamental nature of proposed work, it is essential to remain technologically relevant and therefore to ensure we address these issues we have developed relationships on the fundamental nature of structure-processing-property paradigm as applied to future need for large area, flexible OPV devices. Nanoscale heterojunction systems consisting of fullerenes dispersed in conjugated polymers are promising materials candidates for achieving high performance organic photovoltaic (OPV) devices. In order to understand the phase behavior in these devices, neutron reflection is used to determine the behavior of model conjugated polymer-fullerene mixtures. Neutron reflection is particularly useful for these types of thin film studies since the fullerene generally have a high scattering contrast with respect to most polymers. We are studying model bulk heterojunction (BHJ) films based on mixtures of poly(3-hexyl thiophene)s (P3HT), a widely used photoconductive polymer, and different fullerenes (C60, PCBM and bis-PCBM). The characterization technique of neutron reflectivity measurements have been used to determine film morphology in a direction normal to the film surfaces. The novelty of the approach over previous studies is that the BHJ layer is sandwiched between a PEDOT/PSS and Al layers in real device configuration. Using this model system, the effect of typical thermal annealing processes on the film development as a function of the polythiophene-fullerene mixtures is measured.

  3. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    SciTech Connect (OSTI)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beam inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ({h_bar}{omega}) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility.

  4. Structure of neutron-rich Isotopes {sup 8}Li and {sup 9}Li and allowance for it in elastic scattering

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.; Sagindykov, Sh. Sh.

    2008-07-15

    The differential cross sections for elastic proton scattering on the unstable neutron-rich nuclei {sup 8}Li and {sup 9}Li at E = 700 and 60 MeV per nucleon were considered. The {sup 8}Li nucleus was treated on the basis of the three-body {alpha}-t-n model, while the {sup 9}Li nucleus was considered within the {alpha}-t-n and {sup 7}Li-n-n models. The cross sections in question were calculated within Glauber diffraction theory. A comparison of the results with available experimental data made it possible to draw conclusions on the quality of the wave functions and potential used in the calculations.

  5. SU-E-T-591: Measurement and Monte Carlo Simulation of Stray Neutrons in Passive Scattering Proton Therapy: Needs and Challenges

    SciTech Connect (OSTI)

    Farah, J; Bonfrate, A; Donadille, L; Dubourg, N; Lacoste, V; Martinetti, F; Sayah, R; Trompier, F; Clairand, I [IRSN - Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-roses (France); Caresana, M [Politecnico di Milano, Milano (Italy); Delacroix, S; Nauraye, C [Institut Curie - Centre de Protontherapie d Orsay, Orsay (France); Herault, J [Centre Antoine Lacassagne, Nice (France); Piau, S; Vabre, I [Institut de Physique Nucleaire d Orsay, Orsay (France)

    2014-06-01

    Purpose: Measure stray radiation inside a passive scattering proton therapy facility, compare values to Monte Carlo (MC) simulations and identify the actual needs and challenges. Methods: Measurements and MC simulations were considered to acknowledge neutron exposure associated with 75 MeV ocular or 180 MeV intracranial passively scattered proton treatments. First, using a specifically-designed high sensitivity Bonner Sphere system, neutron spectra were measured at different positions inside the treatment rooms. Next, measurement-based mapping of neutron ambient dose equivalent was fulfilled using several TEPCs and rem-meters. Finally, photon and neutron organ doses were measured using TLDs, RPLs and PADCs set inside anthropomorphic phantoms (Rando, 1 and 5-years-old CIRS). All measurements were also simulated with MCNPX to investigate the efficiency of MC models in predicting stray neutrons considering different nuclear cross sections and models. Results: Knowledge of the neutron fluence and energy distribution inside a proton therapy room is critical for stray radiation dosimetry. However, as spectrometry unfolding is initiated using a MC guess spectrum and suffers from algorithmic limits a 20% spectrometry uncertainty is expected. H*(10) mapping with TEPCs and rem-meters showed a good agreement between the detectors. Differences within measurement uncertainty (1015%) were observed and are inherent to the energy, fluence and directional response of each detector. For a typical ocular and intracranial treatment respectively, neutron doses outside the clinical target volume of 0.4 and 11 mGy were measured inside the Rando phantom. Photon doses were 210 times lower depending on organs position. High uncertainties (40%) are inherent to TLDs and PADCs measurements due to the need for neutron spectra at detector position. Finally, stray neutrons prediction with MC simulations proved to be extremely dependent on proton beam energy and the used nuclear models and cross sections. Conclusion: This work highlights measurement and simulation limits for ion therapy radiation protection applications.

  6. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    SciTech Connect (OSTI)

    Jill Trewhella

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set of researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently being accessed world-wide by researchers as an aid in neutron scattering data interpretation. In all, these collaborative projects and resulted in 29 original refereed journal articles published between 2005 and 2010 and engaged groups from at least 14 Universities (10 US, 4 international) and 3 National Laboratories (2 US, 1 international). An important final initiative from this project was to begin a process for international community agreement on a set of standards for the publication of biomolecular small-angle scattering data. This initiative is being championed with the International Union of Crystallography and has engaged a number of Journal Editors and is a very important step in the maturing of this now burgeoning field.

  7. Mechanical properties of interacting lipopolysaccharide membranes from bacteria mutants studied by specular and off-specular neutron scattering

    SciTech Connect (OSTI)

    Schneck, Emanuel; Tanaka, Motomu; Oliveira, Rafael G.; Rehfeldt, Florian; Deme, Bruno; Brandenburg, Klaus; Seydel, Ulrich

    2009-10-15

    Specular and off-specular neutron scattering are used to study the influence of molecular chemistry (mutation) on the intermembrane interactions and mechanical properties of the outer membrane of Gram-negative bacteria consisting of lipopolysaccharides (LPSs). For this purpose, solid-supported multilayers of mutant LPS membranes are deposited on silicon wafers and hydrated either at defined humidity or in bulk buffers. The planar sample geometry allows to identify out-of-plane and in-plane scattering vector components. The measured two-dimensional reciprocal space maps are simulated with membrane displacement correlation functions determined by two mechanical parameters (vertical compression modulus and bending rigidity) and an effective cutoff radius for the membrane fluctuation wavelength. Experiments at controlled humidity enable one to examine the influence of the disjoining pressure on the saccharide-mediated intermembrane interactions, while experiments in bulk buffers (i.e., in the absence of an external osmotic stress) reveal the effect of divalent cations on LPS membranes, highlighting the role of divalent cations in the survival mechanism of bacteria in the presence of antimicrobial molecules.

  8. Format requirements of thermal neutron scattering data in a nuclear data format to succeed the ENDF format

    SciTech Connect (OSTI)

    Brown, D.

    2014-03-31

    In November 2012, the Working Party on Evaluation Cooperation Subgroup 38 (WPEC-SG38) began with the task of developing a nuclear data format and supporting infrastructure to replace the now nearly 50 year old ENDF format. The first step in this process is to develop requirements for the new format and infrastructure. In this talk, I will review the status of ENDF's Thermal Scattering Law (TSL) formats as well as support for this data in the GND format (from which the new format is expected to evolve). Finally, I hope to begin a dialog with members of the thermal neutron scattering community so that their data needs can be accurately and easily accommodated by the new format and tools, as captured by the requirements document. During this discussion, we must keep in mind that the new tools and format must; Support what is in existing data files; Support new things we want to put in data files; and Be flexible enough for us to adapt it to future unanticipated challenges.

  9. Forward-angle neutron-proton scattering at 96 MeV

    SciTech Connect (OSTI)

    Johansson, C.; Blomgren, J.; Atac, A.; Bergenwall, B.; Hildebrand, A.; Klug, J.; Mermod, P.; Pomp, S.; Oesterlund, M.; Dangtip, S.; Tippawan, U.; Elmgren, K.; Jonsson, O.; Prokofiev, A.V.; Renberg, P.-U.; Nadel-Turonski, P.; Nilsson, L.; Olsson, N.

    2005-02-01

    The differential np scattering cross section has been measured at 96 MeV in the angular range {theta}{sub c.m.}=20 deg. -76 deg. Together with an earlier data set at the same energy, covering the angles {theta}{sub c.m.}=74 deg. -180 deg., a new data set has been formed in the angular range {theta}{sub c.m.}=20 deg. - 180 deg. This extended data set has been normalized to the experimental total np cross section, resulting in a renormalization of the earlier data of 0.7%, which is well within the reported normalization uncertainty for that experiment. A novel normalization technique has been investigated. The results on forward np scattering are in reasonable agreement with theory models and partial wave analyses and have been compared with data from the literature.

  10. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    SciTech Connect (OSTI)

    DiStravolo, M.A.

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.

  11. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report

    SciTech Connect (OSTI)

    DiStravolo, M.A.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

  12. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect (OSTI)

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  13. Neutron scattering from myelin revisited: bilayer asymmetry and water-exchange kinetics

    SciTech Connect (OSTI)

    Denninger, Andrew R. [Boston College, Chestnut Hill, MA 02467 (United States); Dem, Bruno; Cristiglio, Viviana [Institut LaueLangevin (ILL), CS 20156, F-38042 Grenoble CEDEX 9 (France); LeDuc, Graldine [European Synchrotron Radiation Facility (ESRF), CS 40220, F-38043 Grenoble CEDEX 9 (France); Feller, W. Bruce [NOVA Scientific Inc., Sturbridge, MA 01566 (United States); Kirschner, Daniel A., E-mail: kirschnd@bc.edu [Boston College, Chestnut Hill, MA 02467 (United States)

    2014-12-01

    The structure of internodal myelin in the rodent central and peripheral nervous systems has been determined using neutron diffraction. The kinetics of water exchange in these tissues is also described. Rapid nerve conduction in the central and peripheral nervous systems (CNS and PNS, respectively) of higher vertebrates is brought about by the ensheathment of axons with myelin, a lipid-rich, multilamellar assembly of membranes. The ability of myelin to electrically insulate depends on the regular stacking of these plasma membranes and on the presence of a number of specialized membrane-protein assemblies in the sheath, including the radial component, SchmidtLanterman incisures and the axoglial junctions of the paranodal loops. The disruption of this fine-structure is the basis for many demyelinating neuropathies in the CNS and PNS. Understanding the processes that govern myelin biogenesis, maintenance and destabilization requires knowledge of myelin structure; however, the tight packing of internodal myelin and the complexity of its junctional specializations make myelin a challenging target for comprehensive structural analysis. This paper describes an examination of myelin from the CNS and PNS using neutron diffraction. This investigation revealed the dimensions of the bilayers and aqueous spaces of myelin, asymmetry between the cytoplasmic and extracellular leaflets of the membrane, and the distribution of water and exchangeable hydrogen in internodal multilamellar myelin. It also uncovered differences between CNS and PNS myelin in their water-exchange kinetics.

  14. Cross section standards for neutron-induced gamma-ray production in the MeV energy range.

    SciTech Connect (OSTI)

    Nelson, R. O. (Ronald O.); Fotiadis, N. (Nikolaos); Devlin, M. J. (Matthew J.); Becker, J. A. (John A.); Garrett, P. E. (Paul E.); Younes, W. (Walid)

    2004-01-01

    Gamma-ray cross section standards for neutron-induced reactions are important in enabling the accurate determination of absolute cross sections from relative measurements of gamma-ray production. In our work we observed a need for improvement in these standards. In particular there are large discrepancies between evaluations of the {sup nat}Fe(n,n{sub 1}'{gamma}) cross section for the 847-keV gamma ray. We have performed (1) absolute cross section measurements, (2) measurements relative to the {sup nat}Cr(n,n{sub 1}'{gamma}) 1434-keV gamma ray, and (3) comparisons using measured total and elastic scattering cross sections to refine our knowledge of the Fe cross section and the closely linked inelastic channel cross section for Fe. Calculation of integral tests of the cross section libraries may indicate that adjustment of the angular distributions of the neutron elastic and inelastic scattering may be needed.

  15. Transport of thermal neutrons in D/sub 2/O in the temperature Range 5 to 60/sup 0/C based on a new scattering kernel

    SciTech Connect (OSTI)

    Bansal, R.M.; Kothari, L.S.; Tewari, S.P.

    1980-10-01

    A new scattering kernel for heavy water has been proposed. The kernel takes into account the chemical binding energy effects and also includes the rotational and intramolecular vibrational modes. Using this scattering kernel, various neutron transport processes in the temperature range 5 to 60/sup 0/C have been studied and compared with the corresponding experimental results. The calculated results include total neutron scattering cross section at 20/sup 0/C; asymptotic decay of neutron pulses in the temperature range 5 to 60/sup 0/C and temperature variation of the diffusion coefficient and diffusion cooling coefficient; timedependent spectra inside finite-sized assemblies of heavy water at 20 and 43.3/sup 0/C thermalization time; and diffusion length and space-dependent study in pure and poisoned assemblies of heavy water. The calculated results are in good agreement with the experimental results. At some places notable differences are observed between the results obtained using our scattering kernel and those based on the Honeck kernel.

  16. Neutron physics of the Re/Os clock. II. The (n,n{sup '}) cross section of {sup 187}Os at 30 keV neutron energy

    SciTech Connect (OSTI)

    Mosconi, M.; Heil, M.; Kaeppeler, F.; Plag, R.; Mengoni, A.

    2010-07-15

    The inelastic neutron-scattering cross section of {sup 187}Os has been determined in a time-of-flight experiment at the Karlsruhe 3.7-MV Van de Graaff accelerator. An almost monoenergetic beam of 30-keV neutrons was produced at the threshold of the {sup 7}Li(p,n){sup 7}Be reaction. Information on the inelastic channel is required for reliable calculations of the so-called stellar enhancement factor, by which the laboratory cross section of {sup 187}Os must be corrected in order to account for the thermal population of low-lying excited states at the temperatures of s-process nucleosynthesis, in particular of the important state at 9.75 keV. This correction represents a crucial step in the interpretation of the {sup 187}Os/{sup 187}Re pair as a cosmochronometer.

  17. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing

    Office of Scientific and Technical Information (OSTI)

    Color Forces (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces Citation Details In-Document Search Title: Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering

  18. Early stages of spinodal decomposition in Fe–Cr resolved by in-situ small-angle neutron scattering

    SciTech Connect (OSTI)

    Hörnqvist, M. Thuvander, M.; Steuwer, A.; King, S.; Odqvist, J.; Hedström, P.

    2015-02-09

    In-situ, time-resolved small-angle neutron scattering (SANS) investigations of the early stages of the spinodal decomposition process in Fe–35Cr were performed at 773 and 798 K. The kinetics of the decomposition, both in terms of characteristic distance and peak intensity, followed a power-law behaviour from the start of the heat treatment (a′{sup  }= 0.10–0.11 and a″ = 0.67–0.86). Furthermore, the method allows tracking of the high–Q slope, which is a sensitive measure of the early stages of decomposition. Ex-situ SANS and atom probe tomography were used to verify the results from the in-situ investigations. Finally, the in-situ measurement of the evolution of the characteristic distance at 773 K was compared with the predictions from the Cahn-Hilliard-Cook model, which showed good agreement with the experimental data (a′{sup  }= 0.12–0.20 depending on the assumed mobility)

  19. A short note on physical properties to irradiated nuclear fuel by means of X-ray diffraction and neutron scattering techniques

    SciTech Connect (OSTI)

    Abdullah, Yusof Husain, Hishamuddin; Hak, Cik Rohaida Che; Alias, Nor Hayati; Yusof, Mohd Reusmaazran; Kasim, Norasiah Ab; Zali, Nurazila Mat; Mohamed, Abdul Aziz

    2015-04-29

    For nuclear reactor applications, understanding the evolution of the fuel materials microstructure during irradiation are of great importance. This paper reviews the physical properties of irradiated nuclear fuel analysis which are considered to be of most importance in determining the performance behavior of fuel. X-rays diffraction was recognize as important tool to investigate the phase identification while neutron scattering analyses the interaction between uranium and other materials and also investigation of the defect structure.

  20. Determination of electron-nucleus collisions geometry with forward neutrons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, L.; Aschenauer, E.; Lee, J. H.

    2014-12-29

    There are a large number of physics programs one can explore in electron-nucleus collisions at a future electron-ion collider. Collision geometry is very important in these studies, while the measurement for an event-by-event geometric control is rarely discussed in the prior deep-inelastic scattering experiments off a nucleus. This paper seeks to provide some detailed studies on the potential of tagging collision geometries through forward neutron multiplicity measurements with a zero degree calorimeter. As a result, this type of geometry handle, if achieved, can be extremely beneficial in constraining nuclear effects for the electron-nucleus program at an electron-ion collider.

  1. Anomalous dynamics of aqueous solutions of di-propylene glycol methylether confined in MCM-41 by quasielastic neutron scattering

    SciTech Connect (OSTI)

    Swenson, Jan Elamin, Khalid; Chen, Guo; Lohstroh, Wiebke; Sakai, Victoria Garcia

    2014-12-07

    The molecular dynamics of solutions of di-propylene glycol methylether (2PGME) and H{sub 2}O (or D{sub 2}O) confined in 28 Å pores of MCM-41 have been studied by quasielastic neutron scattering and differential scanning calorimetry over the concentration range 0–90 wt.% water. This system is of particular interest due to its pronounced non-monotonic concentration dependent dynamics of 2PGME in the corresponding bulk system, showing the important role of hydrogen bonding for the dynamics. In this study we have elucidated how this non-monotonic concentration dependence is affected by the confined geometry. The results show that this behaviour is maintained in the confinement, but the slowest diffusive dynamics of 2PGME is now observed at a considerably higher water concentration; at 75 wt.% water in MCM-41 compared to 30 wt.% water in the corresponding bulk system. This difference can be explained by an improper mixing of the two confined liquids. The results suggest that water up to a concentration of about 20 wt.% is used to hydrate the hydrophilic hydroxyl surface groups of the silica pores, and that it is only at higher water contents the water becomes partly mixed with 2PGME. Hence, due to this partial micro-phase separation of the two liquids larger, and thereby slower relaxing, structural entities of hydrogen bonded water and 2PGME molecules can only be formed at higher water contents than in the bulk system. However, the Q-dependence is unchanged with confinement, showing that the nature of the molecular motions is preserved. Thus, there is no indication of localization of the dynamics at length scales of less than 20 Å. The dynamics of both water and 2PGME is strongly dominated by translational diffusion at a temperature of 280 K.

  2. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    SciTech Connect (OSTI)

    Wesolowski, David J

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energy Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.

  3. Neutron detector

    DOE Patents [OSTI]

    Stephan, Andrew C. (Knoxville, TN); Jardret; Vincent D. (Powell, TN)

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  4. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can travel through several feet of air, but are generally stopped by clothing and skin. Beta emitters occur naturally in the environment, and this incident involved...

  5. Collective relaxation, single particle motion and short range order in. cap alpha. '-NbD/sub x/: A quasielastic neutron scattering study

    SciTech Connect (OSTI)

    Hempelmann, R.; Richter, D.; Faux, D.A.; Ross, D.K.

    1988-01-01

    Applying both incoherent and coherent quasielastic neutron scattering we have studied simultaneously single particle motion, collective relaxation and short range order of deuterium in ..cap alpha..'-NbD/sub x/. A comparison with recent Monte Carlo simulations lead to a consistent description of all results in terms of strongly repulsive deuterium-deuterium interactions. Relating the independently determined tracer and chemical diffusion coefficients with the also measured structure factor we show experimentally that for lattice gases the de Gennes narrowing Ansatz needs to be modified by correlation factors. 18 refs., 3 figs., 1 tab.

  6. A portable hydro-thermo-mechanical loading cell for in-situ small angle neutron scattering studies of proton exchange membranes

    SciTech Connect (OSTI)

    Yu, Dunji; An, Ke; Gao, Carrie Y; Heller, William T; Chen, Xu

    2013-01-01

    A portable hydro-thermo-mechanical loading cell has been designed to enable in-situ small angle neutron scattering (SANS) studies of proton exchange membranes (PEM) under immersed tensile loadings at different temperatures. The cell consists of three main parts as follows: a letter-paper-size motor-driven mechanical load frame, a SANS friendly reservoir that provides stable immersed and thermal sample conditions, and a data acquisition & control system. The ex-situ tensile tests of Nafion 212 membranes demonstrated a satisfactory thermo-mechanical testing performance of the cell for either dry or immersed conditions at elevated temperatures. The in-situ SANS tensile measurements on the Nafion 212 membranes immersed in D2O at 70oC proved the feasibility and capability of the cell for small angle scattering study on deformation behaviors of PEM and other polymer materials under hydro-thermo-mechanical loading.

  7. Neutron scattering studies of the H2a-H2b and (H3-H4)/sub 2/ histone complexes

    SciTech Connect (OSTI)

    Carlson, R.D.

    1982-01-01

    Neutron scattering experiments have shown that both the (H3-H4)/sub 2/ and H2a-H2b histone complexes are quite asymmetric in solution. The (H3-H4)/sub 2/ tetramer is an oblate or flattened structure, with a radius of gyration almost as large as that of the core octamer. If the tetramer is primarily globular, it must have an axial ratio of about 1:5. It is more likely, however, that this asymmetry results in part from N-terminal arms that extend outward approximately within the major plane of the particle. If this is the case, less asymmetric models for the globular part of the tetramer, including a dislocated disk, can be made consistent with the scattering data. The H2a-H2b dimer, on the other hand, is an elongated structure. 48 references, 12 figures, 1 table.

  8. Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic

    Office of Scientific and Technical Information (OSTI)

    Scattering from the Reaction 3He{uparrow}(e,e')X (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X Citation Details In-Document Search Title: Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X We report the first measurement of the target single-spin asymmetry in

  9. Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic

    Office of Scientific and Technical Information (OSTI)

    Scattering from the Reaction 3He{uparrow}(e,e')X (Journal Article) | SciTech Connect Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X Citation Details In-Document Search Title: Measurement of the Target-Normal Single-Spin Asymmetry in Deep-Inelastic Scattering from the Reaction 3He{uparrow}(e,e')X × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's

  10. Measurement of porosity in a composite high explosive as a function of pressing conditions by ultra-small-angle neutron scattering with contrast variation

    SciTech Connect (OSTI)

    Mang, Joseph Thomas; Hjelm, Rex P; Francois, Elizabeth G

    2009-01-01

    We have used ultra-small-angle neutron scattering (USANS) with contrast variation to measure the porosity (voids and binder-filled regions) in a composite high explosive, PBX 9501, formulated with a deuterated binder. Little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 10,000 and 29,000 psi at 90 C. Five samples were prepared at each pressure that differed in the fraction of deuterated binder, facilitating variation of the neutron scattering length density contrast ({Delta}{rho}) and thus, the resolution of microstructural details. The sample composition was determined by calculation of the Porod Invariant as a function of {Delta}{rho} and compared with compositional estimates obtained from the bulk sample density. Structural modeling of the USANS data, at different levels of contrast, assuming both spherical and cylindrical morphologies, allowed the mean size and size distribution of voids and binder-filled regions to be determined. A decrease in the mean diameter of binder-filled regions was found with increasing pressing intensity, while the mean void diameter showed no significant change.

  11. In-situ neutron scattering studies of magnetic shape memory alloys under stress, temperature, and magnetic fields

    SciTech Connect (OSTI)

    Brown, Donald W; Sisneros, Thomas A; Kabra, Saurabh; Schlagel, Deborah

    2010-01-01

    We have utilized the SMARTS engineering neutron diffractometer to study the crystallographic orientation and phase transformations in the ferromagnetic shape memory alloy Ni 2MnGa under conditions of temperature (200-600K), stress (500MPa), and magnetic field (2T). Neutrons are uniquely suited to probe the crystallographic response of materials to external stimuli because of their high penetration, which allows them to sample the bulk of the material (as opposed to the surface) as well as pass through environmental chambers. A single crystal of Ni{sub 5}MnGa was repeatedly thermally cycled through the Austenitic-Martensitic phase transformation under varying conditions of applied stress, magnetic field or both. In-situ neutron diffraction was used to quantitatively monitor the population of the crystallographic variants in the martensitic phase as a function of the external stimuli during cooling. Neutron diffraction was used to monitor variant selection in the Ferromagnetic Shape Memory Alloy Ni{sub 2}Mn Ga during austenitic to martensitic transformation under varying conditions of externally applied stress and magnetic field. Qualitatively, the results were to be expected in this simple example. The shorter and magnetically soft c-axis of the tetragonal martensitic phase aligned with the compressive stress or magnetic field. However, neutron diffraction proved useful in directly quantifying the selection of the preferred variant by external influence. For instance, by quantifying the variant selection, the neutron diffraction results made apparent that the sample 'remembered' a loading cycle following a 'reset' cycle with no external applied stress. Moreover, the power of in-situ neutron diffraction will become more apparent when applied to more complex, less understood, samples such as polycrystalline samples or composite samples.

  12. Characterization of a Thermo Scientific D711 D-T Neutron Generator Located in a Low-Scatter Facility

    SciTech Connect (OSTI)

    Hayes, John W.; Finn, Erin C.; Greenwood, Lawrence R.; Wittman, Richard S.

    2014-03-21

    Pacific Northwest National Laboratory (PNNL) purchased and installed a D711 D-T neutron generator (D-T) from Thermo Scientific in August 2011. The D-T nominally produces 14 MeV neutrons which are important for research in matters of national security. Fast neutrons provide the capability of harnessing threshold reactions for the production of rare isotopes, which are of interest to radiochemistry groups at PNNL concerned with validating radioanalytical techniques for the separation of these isotopes. Rare fission product isotopes from fast fission of 235U, 238U, and 239Pu are also desired to further develop these techniques. Experiments with 14 MeV neutrons are also of interest because nuclear data for fast fission has not been researched as extensively as it has been for thermal fission. Analyses of these applications require first that the source spectrum be well characterized. Neutron fluences in Fe, Ni, Al, In, and Au were measured in 21 locations near the generator head. STAYSL PNNL and MCNP codes were used to produce flux spectra based on experimental fluences.

  13. Ferroelectric nanoscale domains and the 905 K phase transition in SrSnO{sub 3}: A neutron total-scattering study

    SciTech Connect (OSTI)

    Goodwin, Andrew L.; Redfern, Simon A. T.; Dove, Martin T.; Keen, David A.; Tucker, Matthew G.

    2007-11-01

    The 905 K Pnma-Imma phase transition in SrSnO{sub 3} is studied here using a combination of variable-temperature neutron total scattering together with the reverse Monte Carlo (RMC) refinement method. The real-space RMC configurations obtained are analyzed in terms of bond distance and bond-angle distributions, and a geometric algebra approach is used to quantify the associated octahedral-tilting distributions. What emerges from this analysis is that the transition is displacive in nature, in contrast to the results of a recent average-structure investigation in which an order-disorder model was proposed [E. H. Mountstevens et al., Phys. Rev. B 71, 220102(R) (2005)]. Three-dimensional diffuse scattering patterns calculated from the same RMC configurations reveal the existence of an additional disorder mechanism which persists across the Pnma-Imma transition. The ''reflection conditions'' of this diffuse scattering, together with displacement correlation calculations, point to the existence of ferroelectric nanoscale domains within the configurations, which are found to extend across planar regions of approximately 10-15 A ring in diameter.

  14. Sensitivity of the electric dipole polarizability to the neutron skin thickness in {sup 208}Pb

    SciTech Connect (OSTI)

    Roca-Maza, X.; Agrawal, B. K.; Colo, G.; Nazarewicz, W.; Paar, N.; Piekarewicz, J.; Reinhard, P.-G.; Vretenar, D.

    2012-10-20

    The static dipole polarizability, {alpha}{sub D}, in {sup 208}Pb has been recently measured with highresolution via proton inelastic scattering at the Research Center for Nuclear Physics (RCNP) [1]. This observable is thought to be intimately connected with the neutron skin thickness, r{sub skin}, of the same nucleus and, more fundamentally, it is believed to be associated with the density dependence of the nuclear symmetry energy. The impact of r{sub skin} on {alpha}{sub D} in {sup 208}Pb is investigated and discussed on the basis of a large and representative set of relativistic and non-relativistic nuclear energy density functionals (EDF) [2].

  15. Clifford G. Shull, Neutron Diffraction, Hydrogen Atoms, and Neutron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Clifford Shull, Neutron Diffraction, and Neutron Scattering Resources with Additional Information Clifford G. Shull was awarded the 1994 Nobel Prize in Physics "for the development of the neutron diffraction technique". 'Professor Shull's prize was awarded for his pioneering work in neutron scattering, a technique that reveals where atoms are within a material like ricocheting bullets reveal where obstacles are in the dark. Clifford Shull Photo Courtesy of Oak Ridge

  16. LANSCE | Lujan Center | Instruments | Neutron Radiography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Radiography The recently acquired energy-dispersive neutron imaging detector can be used on various Lujan Center beam-lines to combine scattering with imaging. In most...

  17. A high resolution neutron scattering study of Tb2Mo2O7: A geometrically frustrated and disorder-free spin glass

    SciTech Connect (OSTI)

    Ehlers, Georg; Gardner, Jason; Qiu, Y.; Rule, K; Greedan, John E; Stewart, John Ross; Fouquet, Peter; Cornelius, A. L.; Adriano, Cris; Pagliuso, P G

    2010-01-01

    Neutron scattering, muon spin relaxation, and de susceptibility studies have been carried out on polycrystalline Tb{sub 2}Ti{sub 2}O{sub 7}, a pyrochlore antiferromagnet in which the Tb{sup 3+} moments reside on a network of corner-sharing tetrahedra. Unlike other geometrically frustrated systems, Tb{sub 2}Ti{sub 2}O{sub 7} remains paramagnetic down to {approx}0.07 K, rather than ordering into a conventional Neel or spin-glass-like state, despite the fact that short-range antiferromagnetic correlations (AFC) develop at {approx}50 K. At the first AFC wave vector, its low-lying, relatively flat magnetic excitation spectrum softens partially below 30 K.

  18. Evaluation of Neutron Elastic Scatter (NES) technique for detection of graphitic corrosion in gas cast iron pipe. Final report, March 1996-April 1997

    SciTech Connect (OSTI)

    Charatis, G.; Hugg, E.; McEllistrem, M.

    1997-04-01

    PENETRON, Inc., in two phases, demonstrated the effectiveness of its Neutron elastic Scatter (NES) techniques in detecting the change in the carbon weight percentage (CWt%) as a measure of corrosion in gray cast iron pipe. In Phase I, experiments were performed with synthetic standards supplied by IIT Research Institute (IITRI) to test the applicability of the NES techniques. Irradiation experiments performed at the University of Kentucky showed that CWt% could be detected, ranging from 1.6% to 13%, within an uncertainty of around 4%. In Phase II, experiments were performed on seven (7) corroded pipe sections supplied by MichCon. Tests were made on pipe sliced lengthwise into quarter sections, and in re-assembled whole pipe sections. X-ray films of the quarter sections indicated probable areas of corrosion for each quarter section.

  19. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

    2011-08-29

    Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

  20. Measurement of the Target-Normal Single-Spin Asymmetry A{sub y}{sup n} in the Deep Inelastic Region from the Reaction {sup 3}He{up_arrow}(e,e')

    SciTech Connect (OSTI)

    Katich, Joseph [William and Mary College

    2011-01-01

    A first measurement of the inclusive target single-spin asymmetry, A{sup n}{sub y}, has been performed in deep-inelastic scattering of electrons from a {sup 3}He target polarized normal to the electron scattering plane. This asymmetry is void of contributions at the Born level, and thus is a direct observable for two-photon physics. The experiment was performed in Hall A at Thomas Jefferson National Accelerator Facility from October 2008 through early February 2009. The measurement is the first from a polarized neutron target. The final overall precision is several times better than previously existing SLAC proton data, and significantly extends the kinematic range over which the asymmetry has been measured. The asymmetry was measured at five kinematic points in the deep inelastic scattering region covering Q{sup 2} = 1 - 3 GeV{sup 2} and x{sub B} = 0.16 to 0.41. The asymmetry varied from 0.006 to 0.071 with astatistical precision at the 10{sup -2} level.

  1. Raw neutron scattering data for strain measurement of hydraulically loaded granite and marble samples in triaxial stress state

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Polsky, Yarom

    This entry contains raw data files from experiments performed on the Vulcan beamline at the Spallation Neutron Source at Oak Ridge National Laboratory using a pressure cell. Cylindrical granite and marble samples were subjected to confining pressures of either 0 psi or approximately 2500 psi and internal pressures of either 0 psi, 1500 psi or 2500 psi through a blind axial hole at the center of one end of the sample. The sample diameters were 1.5" and the sample lengths were 6". The blind hole was 0.25" in diameter and 3" deep. One set of experiments measured strains at points located circumferentially around the center of the sample with identical radii to determine if there was strain variability (this would not be expected for a homogeneous material based on the symmetry of loading). Another set of experiments measured load variation across the radius of the sample at a fixed axial and circumferential location. Raw neutron diffraction intensity files and experimental parameter descriptions are included.

  2. Raw neutron scattering data for strain measurement of hydraulically loaded granite and marble samples in triaxial stress state

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Polsky, Yarom

    2014-05-23

    This entry contains raw data files from experiments performed on the Vulcan beamline at the Spallation Neutron Source at Oak Ridge National Laboratory using a pressure cell. Cylindrical granite and marble samples were subjected to confining pressures of either 0 psi or approximately 2500 psi and internal pressures of either 0 psi, 1500 psi or 2500 psi through a blind axial hole at the center of one end of the sample. The sample diameters were 1.5" and the sample lengths were 6". The blind hole was 0.25" in diameter and 3" deep. One set of experiments measured strains at points located circumferentially around the center of the sample with identical radii to determine if there was strain variability (this would not be expected for a homogeneous material based on the symmetry of loading). Another set of experiments measured load variation across the radius of the sample at a fixed axial and circumferential location. Raw neutron diffraction intensity files and experimental parameter descriptions are included.

  3. Dynamical magnetic correlations in the YbB{sub 12} kondo insulator: Neutron investigations with a polarization analysis

    SciTech Connect (OSTI)

    Alekseev, P. A. Nemkovski, K. S.; Mignot, J.-M.; Nefeodova, E. V.; Sadikov, I. P.; Iga, F.; Takabatake, T.

    2007-05-15

    The results of investigations into the spin dynamics in the YbB{sub 12} Kondo insulator with the use of inelastic neutron scattering, including experiments with a polarization analysis, are discussed. It is shown that, at low temperatures, the dynamic magnetic response in the structure of the YbB{sub 12} Kondo insulator is characterized by three dispersive excitations with a nontrivial q-dependence of the intensity. An increase in the temperature results in a crossover to the single-site spin fluctuation regime accompanied by suppression of collective excitations.

  4. Comparative study of nuclear effects in polarized electron scattering from 3He

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ethier, Jacob James; Melnitchouk, Wally

    2013-11-04

    We present a detailed analysis of nuclear effects in inclusive electron scattering from polarized 3He nuclei for polarization asymmetries, structure functions and their moments, both in the nucleon resonance and deep-inelastic regions. We compare the results of calculations within the weak binding approximation at finite Q2 with the effective polarization ansatz often used in experimental data analyses, and explore the impact of Δ components in the nuclear wave function and nucleon off-shell corrections on extractions of the free neutron structure. Using the same framework we also make predictions for the Q2 dependence of quasielastic scattering from polarized 3He, data onmore » which can be used to constrain the spin-dependent nuclear smearing functions in 3He.« less

  5. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  6. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  7. Small-angle neutron scattering study of magnetic ordering and inhomogeneity across the martensitic phase transformation in Ni50–xCoxMn₄₀Sn₁₀ alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhatti, Kanwal Preet; El-Khatib, S.; Srivastava, Vijay; James, R. D.; Leighton, C.

    2012-04-27

    The Heusler-derived multiferroic alloy Ni50–xCoxMn₄₀Sn₁₀ has recently been shown to exhibit, at just above room temperature, a highly reversible martensitic phase transformation with an unusually large magnetization change. In this work the nature of the magnetic ordering above and below this transformation has been studied in detail in the critical composition range x = 6–8 via temperature-dependent (5–600 K) magnetometry and small-angle neutron scattering (SANS). We observe fairly typical paramagnetic to long-range-ordered ferromagnetic phase transitions on cooling to 420–430 K, with the expected critical spin fluctuations, followed by first-order martensitic phase transformations to a nonferromagnetic state below 360–390 K. Themore » static magnetization reveals complex magnetism in this low-temperature nonferromagnetic phase, including a Langevin-like field dependence, distinct spin freezing near 60 K, and significant exchange bias effects, consistent with superparamagnetic blocking of ferromagnetic clusters of nanoscopic dimensions. We demonstrate that these spin clusters, whose existence has been hypothesized in a variety of martensitic alloys exhibiting competition between ferromagnetic and antiferromagnetic exchange interactions, can be directly observed by SANS. The scattering data are consistent with a liquidlike spatial distribution of interacting magnetic clusters with a mean center-to-center spacing of 12 nm. Considering the behavior of the superparmagnetism, cooling-field and temperature-dependent exchange bias, and magnetic SANS, we discuss in detail the physical form and origin of these spin clusters, their intercluster interactions, the nature of the ground-state magnetic ordering in the martensitic phase, and the implications for our understanding of such alloy systems.« less

  8. Neutron scattering study of spin ordering and stripe pinning in superconducting La1.93Sr0.07CuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; Winn, B. L.; Chang, S.; Hücker, M.; Gu, G. D.; Tranquada, J. M.

    2015-11-20

    Tmore » he relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La1.93Sr0.07CuO4 a superconductor with a transition temperature of c = 20 K. At << c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2 planes. Moreover, we observed a weak elastic (3 ⁻30) superlattice peak that implies a reduced lattice symmetry. he presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La2-xSrxCuO4. he coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.« less

  9. Structural and phase transition changes of sodium dodecyl sulfate micellar solution in alcohols probed by small-angle neutron scattering (SANS)

    SciTech Connect (OSTI)

    Putra, Edy Giri Rachman; Patriati, Arum

    2015-04-16

    Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 210 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 3050 has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.

  10. Characterization of nanostructured zirconia prepared by hydrolysis and reverse micelle synthesis by small-angle neutron and X-ray scattering

    SciTech Connect (OSTI)

    Thiyagarajan, P.; Li, X.; Littrell, K.; Seifert, S.; Csencsits, R.; Loong, C.

    1999-12-07

    Low temperature techniques such as hydrolysis and reverse micelle syntheses provide the opportunity to determine the relationship between the structural properties and preparation conditions of zirconia powders as well as to tailor their physicochemical properties. The authors have performed small-angle neutron and synchrotron X-ray scattering (SANS and SAXS) experiments to study the nucleation and organization of zirconia nanoparticles via different preparation routes. First, the formation of reverse micelles in individual and mixed solutions of (ZrOCl{sub 2}+D{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3}, and (NH{sub 4}OH+H{sub 2}O)/AOT/C{sub 6}D{sub 5}CD{sub 3} systems at water/AOT molar ratio of 20 was characterized. Second, the aggregation of zirconia gels obtained from the reaction of the reverse micelle solutions after heat treatments was studied. Third, the nanostructure of zirconia powders prepared by the reverse micelle method is compared with the corresponding powders prepared by hydrolysis after different heat treatments.

  11. Neutron transversity measurement at Jefferson Lab with a polarized He-3 target

    SciTech Connect (OSTI)

    Gao, H; Chen, J P; Cisbani, E; Jiang, X; Peng, J C; Qian, X; Zhu, L Y

    2007-12-01

    A first measurement of single target spin asymmetry (SSA) from semi-inclusive electroproduction of charged pions from a transversely polarized 3He target in deep-inelastic-scattering kinematics will take data in Hall A at Jefferson Lab in 2008. Such SSA will allow for an extraction of the much desired information on the Collins and Sivers asymmetry from the neutron in order to probe the quark transversity distributions. The experiment will be a coincidence measurement with the BigBite spectrometer detecting the scattered electrons and the left-arm HRS spectrometer detecting the charged pions. The prospect of future 11 GeV measurements at Jefferson Lab in Hall A using a solenoid magnetic detector system is also discussed in this talk.

  12. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    SciTech Connect (OSTI)

    Cosyn, W. [Ghent University, Gent (Belgium); Guzey, V. [Petersburg Nuclear Physics Institute, Gatchina (Russia); Higinbotham, D. W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hyde, C. [Old Dominion Univ., Norfolk, VA (United States); Kuhn, S. [Old Dominion Univ., Norfolk, VA (United States); Nadel-Turonski, P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Park, K. [Old Dominion Univ., Norfolk, VA (United States); Sargsian, M. [Florida Intl Univ., Miami, FL (United States); Strikman, M. [Pennsylvania State Univ., State College, PA (United States); Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.

  13. Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosyn, W.; Guzey, V.; Higinbotham, D. W.; Hyde, C.; Kuhn, S.; Nadel-Turonski, P.; Park, K.; Sargsian, M.; Strikman, M.; Weiss, C.

    2014-10-27

    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Thus, traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < pR << several 100 MeV in the nucleusmore » rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.« less

  14. Advanced Elastic/Inelastic Nuclear Data Development Project ...

    Office of Scientific and Technical Information (OSTI)

    Advanced ElasticInelastic Nuclear Data Development Project Citation Details In-Document Search Title: Advanced ElasticInelastic Nuclear Data Development Project The optical model ...

  15. Rapidity divergences and deep inelastic scattering in the endpoint...

    Office of Scientific and Technical Information (OSTI)

    This content will become publicly available on May 11, 2016 Title: Rapidity divergences ... will become publicly available on May 11, 2016 Publisher's Version of Record 10.1103...

  16. Neutron scattering study on cathode LiMn{sub 2}O{sub 4} and solid electrolyte 5(Li{sub 2}O)(P{sub 2}O{sub 5})

    SciTech Connect (OSTI)

    Kartini, E. Putra, Teguh P. Jahya, A. K. Insani, A.; Adams, S.

    2014-09-30

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO{sub 2}, LiMn{sub 2}O{sub 4} and LiFePO{sub 4}, and solid electrolyte Li{sub 3}PO{sub 4}. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn{sub 2}O{sub 4} and 5(Li{sub 2}O)(P{sub 2}O{sub 5}), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  17. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    SciTech Connect (OSTI)

    Nowak, G. Strmer, M.; Horstmann, C.; Kampmann, R.; Hche, D.; Lorenz, U.; Mller, M.; Schreyer, A.; Becker, H.-W.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Hall-Wilton, R.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2??m thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  18. Neutron-deuteron breakup reaction as a tool for studying neutron-neutron interactions

    SciTech Connect (OSTI)

    Konobeevski, E. S., E-mail: konobeev@inr.ru; Zuyev, S. V.; Mordovskoy, M. V.; Potashev, S. I.; Sharapov, I. M. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)] [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-11-15

    An analysis of the most recent data on the reaction nd {yields} pnn revealed a serious discrepancy between theoretical predictions and cross sections measured for this reaction in various configurations where the role of neutron-neutron interactions is important. In view of this, it seems necessary both to develop theoretical approaches and to obtain new experimental data. For this purpose, a setup for studying the neutron-deuteron breakup reaction was created at the Institute for Nuclear Research on the basis of the neutron beam in the RADEX channel and deuterium targets. This facility makes it possible to perform experiments over a broad region of primary-neutron energies (10-60 MeV) and in various (final-state interaction, quasifree scattering, and spatial-star) configurations. Preliminary results of the respective experiment were obtained for configurations of final-state neutron-neutron interaction and quasifree neutron-neutron scattering.

  19. Measurement of the neutron F2 structure function via spectator tagging with CLAS

    SciTech Connect (OSTI)

    Baillie, N.; Tkachenko, S.; Zhang, J.; Bosted, P.; Bltmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Keppel, C. E.; Kuhn, S. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; DAngelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Djalali, C.; Dodge, G.; Domingo, J.; Doughty, D.; Dupre, R.; Dutta, D.; Ent, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Heddle, D.; Hicks, K.; Holtrop, M.; Hungerford, E.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ispiryan, M.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Klimenko, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; McKinnon, B.; Mineeva, T.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, I.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabati, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhao, B.

    2012-04-01

    We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ?< 100 MeV and their angles to ?> 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 ?< x ?< 0.8, essentially free of nuclear corrections.

  20. Measurement of the neutron F2 structure function via spectator tagging with CLAS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baillie, N.; Tkachenko, S.; Zhang, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Keppel, C. E.; Kuhn, S. E.; et al

    2012-04-01

    We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≈< 100 MeV and their angles to ≈> 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less thanmore » a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 ≈< x ≈< 0.8, essentially free of nuclear corrections.« less

  1. Resonances in pi-K scattering

    SciTech Connect (OSTI)

    Wilson, David J.

    2014-06-23

    We have obtained clear signals of resonances in coupled-channel pi K - eta K scattering. Using distillation and a large basis of operators we are able to extract a precise spectrum of energy levels using the variational method. These energies are analysed using inelastic extensions of the Luescher method to obtain scattering amplitudes that clearly describe S, P and D wave resonances, corresponding to the physical K_0^*(1430), the K^*(892) and the K_2^*(1430).

  2. Interplay of threshold resummation and hadron mass corrections in deep inelastic processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Accardi, Alberto; Anderle, Daniele P.; Ringer, Felix

    2015-02-01

    We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering lN-->l'X and semi-inclusive annihilation e+e- → hX processes, and provide a prescription how to consistently combine these two corrections respecting all kinematic thresholds. We find an interesting interplay between threshold resummation and target mass corrections for deep-inelastic scattering at large values of Bjorken xB. In semi-inclusive annihilation, on the contrary, the two considered corrections are relevant in different kinematic regions and do not affect each other. A detailed analysis is nonetheless of interest in the light of recent high precision data from BaBar and Belle on pion and kaonmore » production, with which we compare our calculations. For both deep inelastic scattering and single inclusive annihilation, the size of the combined corrections compared to the precision of world data is shown to be large. Therefore, we conclude that these theoretical corrections are relevant for global QCD fits in order to extract precise parton distributions at large Bjorken xB, and fragmentation functions over the whole kinematic range.« less

  3. Interplay of threshold resummation and hadron mass corrections in deep inelastic processes

    SciTech Connect (OSTI)

    Accardi, Alberto; Anderle, Daniele P.; Ringer, Felix

    2015-02-01

    We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering lN-->l'X and semi-inclusive annihilation e+e- → hX processes, and provide a prescription how to consistently combine these two corrections respecting all kinematic thresholds. We find an interesting interplay between threshold resummation and target mass corrections for deep-inelastic scattering at large values of Bjorken xB. In semi-inclusive annihilation, on the contrary, the two considered corrections are relevant in different kinematic regions and do not affect each other. A detailed analysis is nonetheless of interest in the light of recent high precision data from BaBar and Belle on pion and kaon production, with which we compare our calculations. For both deep inelastic scattering and single inclusive annihilation, the size of the combined corrections compared to the precision of world data is shown to be large. Therefore, we conclude that these theoretical corrections are relevant for global QCD fits in order to extract precise parton distributions at large Bjorken xB, and fragmentation functions over the whole kinematic range.

  4. Structure in the Proton and the Neutron

    DOE R&D Accomplishments [OSTI]

    Hofstadter, R.

    1958-06-01

    A survey of the recent work on the structures of the proton and the neutron carried out by high-energy electron-scattering methods is presented. Early work established finite size effects in the proton and led to information about the charge and magnetic density distributions in the proton. The rms size was established to be close to (0.77 plus or minus 0.10) x 10{sup -13} cm, and the density distributions of charge and anomalous magnetic moment were shown to be approximately of the same shape. The form factors could be described in terms of several alternative models given, for example, by an exponential, gaussian, hollow exponential, hollow gaussian, etc., distribution of densities. Many other shapes were excluded by the experimental data. Recent work by Bumiller and Hofstadter now fixes one among these models that is appropriate to the proton and provides an extremely good fit at all angles between energies of 200 and 650 Mev. The new evidence clearly favors the exponential model with rms radius (0.80 plus or minus 0.04) 10{sup -13} cm. Recent studies of the proton have attempted to answer the question: how closely similar are the charge and magnetic form factors? This work now shows that the distributions have the same sizes and shapes to within 10 per cent, and each distribution is given very closely by the exponential model described above with radius (0.80 plus or minus 0.04) x 10{sup -13}. Certain other similar models will be discussed. Early work on the inelastic continuum in the deuteron established that the neutron's magnetic structure was extended and not a point. It was further shown that the neutron's size was approximately the same as that of the proton. This work has recently been extended by Yearian and Hofstadter to a determination of the variation of the neutron's magnetic form factor over the range where the proton's form factor is known. The new results show: (1) the neutron is not a point, (2) the neutron's magnetic structure has a size lying between the limits 0.61 x 10{sup -13} cm and 0.80 x 10{sup -13} cm. The first value (0.61 x 10{sup -13} cm) is determined by examining the total deuteron electro-disintegration cross section at a given angle and incident energy and comparing this cross section with that of the free proton under the same conditions. The second value (0.80 x 10{sup -13} cm) is found by examining the peak of the deuteron electro-disintegration cross section. Because of possible contributions to the total cross section by mesonic exchange effects, the second method is believed to be slightly more accurate. The neutron size is, therefore, approximately (0.70 plus or minus 0.10) x 10{sup -13} cm and probably the larger size 0.90 x 10{sup -13} cm is correct. Thus the magnetic clouds of the neutron and proton are closely the same. The bearing of these results on the validity of electrodynamics is discussed. Because of the small radius implied by the neutron-electron experiments, there is an anomaly between the neutron and the proton. This is represented by the small charge radius for the neutron and the much larger radius of the proton. Additional information of the structure of the deuteron and on the production of pions by electrons is also furnished by the same experiments and will be discussed at the meeting. (auth)

  5. Spallation Neutron Source (SNS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Facilities » Spallation Neutron Source (SNS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities Spallation Neutron Source (SNS) Print Text Size: A A A

  6. Measurements of the Neutron Longitudinal Spin Asymmetry A1n and Flavor Decomposition in the Valence Quark Region

    SciTech Connect (OSTI)

    Flay, David J.

    2014-08-01

    The current data for the nucleon-virtual photon longitudinal spin asymmetry A1 on the proton and neutron have shown that the ratio of the polarized-to-unpolarized down-quarkparton distribution functions,Dd=d, tends towards -1/2 at large x, in disagreement with the perturbative QCD prediction that Dd/d approaches 1 but more in line with constituent quark models. As a part of experiment E06-014 in Hall A of Jefferson Lab, double-spin asymmetries were measured in the scattering of a longitudinally polarized electron beam of energies 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target in the deep inelastic scattering and resonance region, allowing for the extraction of the neutron asymmetry An1 and the ratios Dd/d and Du/u. We will discuss our analysis of the data and present results for A1 and g1/F1 on both 3He and the neutron, and the resulting quark ratios for the up and down quarks in the kinematic range of 0.2

  7. Shifting scintillator neutron detector

    DOE Patents [OSTI]

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  8. The Spallation Neutron Source Project

    Broader source: Energy.gov [DOE]

    When the Department of Energy (DOE) set out in the 1990s to develop a neutron scattering research facility that was ten times more powerful than the state of the art, the concept for the project...

  9. Characterization of a Fe/Y{sub 2}O{sub 3} metal/oxide interface using neutron and x-ray scattering

    SciTech Connect (OSTI)

    Watkins, E. B.; Majewski, J. E-mail: jarek@lanl.gov; Kashinath, A.; Wang, P.; Baldwin, J. K.; Demkowicz, M. J. E-mail: jarek@lanl.gov

    2014-07-28

    The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y{sub 2}O{sub 3} metal/oxide heterophase interface using neutron and x-ray reflectometry. These findings suggest that the Fe/Y{sub 2}O{sub 3} interface is a transitional zone approximately ?64?-thick containing mixtures or compounds of Fe, Y, and O. Our results illustrate the complex chemical and magnetic nature of Fe/oxide interfaces and demonstrate the utility of combined neutron and x-ray techniques as tools for characterizing them.

  10. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    SciTech Connect (OSTI)

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  11. Back-scattering channel-cut high-resolution monochromator for inelastic x-ray scattering

    SciTech Connect (OSTI)

    Kushnir, V.I.; Abbamonte, P.M.; Macrander, A.T.; Schwoerer-Boehning, M.

    1997-08-01

    We report on a design and on some experimental results for the performance of a new high energy resolution monochromator. It is a large channel-cut Si crystal with a 197 mm separation between the two faces designed to operate in a near-backscattering regime. The device was tested as a second monochromator on Sector 3 of the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT) at the Advanced Photon Source using the Si(777) reflection at a photon energy of 13.84 keV. The same monochromator can be used for other energies with reflections of the type (hhh). Special care has been taken to equalize the temperature of the two faces by employing a Peltier heat pump. A Si(111) double-crystal pre-monochromator designed to withstand the high heat load of the undulator radiation was used upstream on the beamline. The measured throughput efficiency of the Si(777) channel-cut monochromator was less ideal by a factor of 1.9. Dynamical diffraction theory was used to calculate the throughput of an ideally perfect crystal.

  12. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for Pmorethe phase transition.less

  13. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations

    SciTech Connect (OSTI)

    Mirmelstein, A.; Podlesnyak, Andrey A.; dos Santos, Antonio M.; Ehlers, Georg; Kerbel, O.; Matvienko, V.; Sefat, A. S.; Saporov, B.; Halder, G. J.; Tobin, J. G.

    2015-08-03

    The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by x-ray and neutron powder diffraction techniques. It is shown that the structure of the pressure-induced CeNi phase (phases) can be described in terms of the Pnma space group. Equations of state for CeNi on both sides of the phase transition are derived and an approximate P-T phase diagram is suggested for P<8 GPa and T<300 K. The observed Cmcm?Pnma structural transition is then analyzed using density functional theory calculations, which successfully reproduce the ground state volume, the phase transition pressure, and the volume collapse associated with the phase transition.

  14. Graphene nanoribbon molecular sensor based on inelastic transport (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Graphene nanoribbon molecular sensor based on inelastic transport Citation Details In-Document Search Title: Graphene nanoribbon molecular sensor based on inelastic transport Results of phonon-assisted inelastic quantum transport calculations are presented for graphene nanoribbons. We consider a single molecule attached to a carbon atom and describe the electronic structure by a tight-binding model, taking into account a local phonon mode associated with the

  15. Scattering Of Light Nuclei

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  16. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme ismore » much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  17. Grand Challenges of Characterization & Modeling of Cellulose...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... neutron, x-ray *Inelastic Scattering: Raman *Scattering: DLS, *Spectroscopy: NMR, IR, FTIR, *Rheology: *Thermal: TGADTA * Etc Key Challenges: * Increased Fidelity * ...

  18. DOE Science Showcase - Neutron Science Research from DOE Databases | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize in Physics. Access Shull's early research records in Energy Citations Database. Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize

  19. Neutronic reactor

    DOE Patents [OSTI]

    Wende, Charles W. J. (Augusta, GA); Babcock, Dale F. (Wilmington, DE); Menegus, Robert L. (Wilmington, DE)

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  20. Final Report Gentile, Thomas R. 36 MATERIALS SCIENCE neutron...

    Office of Scientific and Technical Information (OSTI)

    spin filter; polarization; helium-3 We propose to extend the technique of polarized neutron scattering into new domains by continued development and application of polarized...

  1. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron...

    Office of Scientific and Technical Information (OSTI)

    attempt to measure the energy distribution of the scattered neutrons by absorption methods", and on a measurement of the incoherent cross sections of copper and gold. ...

  2. Neutron scattering study of underdoped Ba1-xKxFe₂As₂ (x=0.09 and 0.17) self-flux-grown single crystals and the universality of the tricritical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rotundu, C. R.; Tian, W.; Rule, K. C.; Forrest, T. R.; Zhao, J.; Zarestky, J. L.; Birgeneau, R. J.

    2012-04-04

    We present a combination of elastic neutron scattering measurements in zero and 14.5 T and magnetization measurements in zero and 14 T on underdoped superconducting Ba1-xKxFe₂As₂ (x=0.17), and the same measurements in zero field on a nonsuperconducting crystal with x=0.09. The data suggest that the underdoped materials may not be electronic phase separated but rather have slightly inhomogeneous potassium doping. The temperature dependence of the magnetic order parameter below the transition of the sample with x=0.09 is more gradual than that for the case of the undoped BaFe₂As₂, suggesting that this doping may be in the vicinity of a tricriticalmore » point. We advance therefore the hypothesis that the tricritical point is a common feature of all superconducting 122s. For the x=0.17 sample, while Tc is suppressed from ≈17 to ≈8 K by a magnetic field of 14 T, the intensity of the magnetic Bragg peaks (1 0 3) at 1.2 K is enhanced by 10%, showing competition of superconductivity and antiferromagnetism. The intensity of the magnetic Bragg peaks (1 0 3) in the (Tc, TN) temperature interval remain practically unchanged in 14.5 T within a 10% statistical error. The present results are discussed in the context of the existing literature.« less

  3. Local structures of polar wurtzites Zn1-xMgxO studied by raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering

    SciTech Connect (OSTI)

    Proffen, Thomas E; Kim, Yiung- Il; Cadars, Sylvian; Shayib, Ramzy; Feigerle, Charles S; Chmelka, Bradley F; Seshadri, Ram

    2008-01-01

    Research in the area of polar semiconductor heterostructures has been growing rapidly, driven in large part by interest in two-dimensional electron gas (2DEG) systems. 2DEGs are known to form at heterojunction interfaces that bear polarization gradients. They can display extremely high electron mobilities, especially at low temperatures, owing to spatial confinement of carrier motions. Recent reports of 2DEG behaviors in Ga{sub 1-x}Al{sub x}N/GaN and Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have great significance for the development of quantum Hall devices and novel high-electron-mobility transistors (HEMTs). 2DEG structures are usually designed by interfacing a polar semiconductor with its less or more polar alloys in an epitaxial manner. Since the quality of the 2DEG depends critically on interface perfection, as well as the polarization gradient at the heterojunction, understanding compositional and structural details of the parent and alloy semiconductors is an important component in 2DEG design and fabrication. Zn{sub 1-x}Mg{sub x}O/ZnO is one of the most promising heterostructure types for studies of 2DEGs, due to the large polarization of ZnO, the relatively small lattice mismatch, and the large conduction band offsets in the Zn{sub 1-x}Mg{sub x}O/ZnO heterointerface. Although 2DEG formation in Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have been researched for some time, a clear understanding of the alloy structure of Zn{sub 1-x}Mg{sub x}O is currently lacking. Here, we conduct a detailed and more precise study of the local structure of Zn{sub 1-x}Mg{sub x}O alloys using Raman and solid-state nuclear magnetic resonance (NMR), in conjunction with neutron diffraction techniques.

  4. FEASIBILITY OF MEASURING IRON IN VIVO USING FAST 14 MEV NEUTRONS.

    SciTech Connect (OSTI)

    WIELOPOLSKI, L.

    2005-05-01

    In this short report, I reassess the feasibility of measuring iron in vivo in the liver and heart of thalassemia patients undergoing chelation therapy. Despite the multiplicity of analytical methods for analyzing iron, only two, magnetic resonance imaging, and magnetic susceptibility, are suitable for in vivo applications, and these are limited to the liver because of the heart's beat. Previously, a nuclear method, gamma-resonance scattering, offered a quantitative measure of iron in these organs; however, it was abandoned because it necessitated a nuclear reactor to produce the radioactive source. I reviewed and reassessed the status of two alternative nuclear methods, based on iron spectroscopy of gamma rays induced by fast neutron inelastic scattering and delayed activation in iron. Both are quantitative methods with high specificity for iron and adequate penetrating power to measure it in organs sited deep within the human body. My experiments demonstrated that both modalities met the stated qualitative objectives to measure iron. However, neutron dosimetry revealed that the intensity of the neutron radiation field was too weak to reliably assess the minimum detection limits, and to allow quantitative extrapolations to measurements in people. A review of the literature, included in this report, showed that these findings agree qualitatively with the published results, although the doses reported were about three orders-of-magnitude higher than those I used. Reviewing the limitations of the present work, steps were outlined for overcoming some of the shortcomings. Due to a dearth of valid quantitative alternatives for determining iron in vivo, I conclude that nuclear methods remain the only viable option. However, from the lessons learned, further systematic work is required before embarking on clinical studies.

  5. January 16, 2009: Expansion of Spallation Neutron Source | Department of

    Energy Savers [EERE]

    Energy 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009: Expansion of Spallation Neutron Source January 16, 2009 The Department gives its initial approval to begin plans for the Oak Ridge National Laboratory (ORNL) to build a second target station for the Spallation Neutron Source, expanding what is already the world's most powerful pulsed neutron scattering facility. The new station, which will cost approximately $1

  6. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    ,

    2012-06-24

    This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing LaboratoryAndrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps for neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains ?eV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.

  7. Moments of the neutron g₂ structure function at intermediate Q²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solvignon-Slifer, Patricia H.

    2015-07-15

    We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.

  8. Sandia Energy - Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Scattering Dynamics Scattering DynamicsAshley...

  9. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to design, discover, and control materials. This research is in anticipation of MaRIE, Los Alamos National Laboratory's proposed Matter-Radiation Interactions in Extremes...

  10. Neutron scattering study of unconventional superconductors

    SciTech Connect (OSTI)

    Lee, Seunghun

    2014-06-30

    My groups primary activity at the University of Virginia supported by DOE is to study novel electronic, magnetic, and structural phenomena that emerge out of strong interactions between electrons. Some of these phenomena are unconventional superconductivity, exotic states in frustrated magnets, quantum spin liquid states, and magneto-electricity. The outcome of our research funded by the grant advanced microscopic understanding of the emergence of the collective states in the systems.

  11. A precision measurement of the neutron{sub 2}: probing the color force

    SciTech Connect (OSTI)

    Posik, Matthew R.

    2014-01-01

    The g{sub 2} nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d{sub 2}, a measure of this local color force, has its information encoded in an x{sup 2} weighted integral of a linear combination of spin structure functions g{sub 1} and g{sub 2} and thus is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d{sub 2} differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV{sup 2}. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized {sup 3}He target. Results for the absolute cross-sections and spin structure functions on {sup 3}He will be presented in the dissertation, as well as results for the neutron d{sub 2} and extracted color forces.

  12. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  13. Spallation Neutron Source reaches megawatt power

    ScienceCinema (OSTI)

    Dr. William F. Brinkman

    2010-01-08

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  14. Polarized Neutron in Structural Biology Present and Future Outlook

    SciTech Connect (OSTI)

    Zhao, Jinkui [ORNL; Robertson, Lee [ORNL; Herwig, Kenneth W [ORNL; Crabb, Don [University of Virginia

    2013-01-01

    Hydrogen has a strong polarization-dependent neutron scattering cross section. This property has been exploited in the study of soft matters, especially biological macromolecules. When a polarized neutron beam is scattered off a polarized hydrogenous sample, the otherwise large hydrogen incoherent cross section is drastically reduced while the coherent signal is significantly increased. Past experiments have demonstrated the potentials and benefits of polarized neutron scattering from soft materials. The main technical challenge of polarized neutron scattering from biological matters lies at sample polarization. Dynamic nuclear polarization is a proven yet rather sophisticated technique. Its complexity is one of the main reasons for the technique's slow adoption. The future of polarized neutron scattering in biology may rest largely in neutron protein crystallography. Polarization of protein crystals is much easier to accomplish, since protein crystals are typically rather small (<<1 mm) and only require small and easy- to-operate polarization apparatuses. In addition, the high resolution nature of neutron protein crystallography means that we will be able to study individual atoms using the polarized neutron scattering technique.

  15. Inelastic transport through Aharonov-Bohm interferometer in Kondo regime

    SciTech Connect (OSTI)

    Yoshii, Ryosuke; Eto, Mikio; Sakano, Rui; Affleck, Ian

    2013-12-04

    We formulate elastic and inelastic parts of linear conductance through an Aharonov-Bohm (AB) ring with an embedded quantum dot in the Kondo regime. The inelastic part G{sub inel} is proportional to T{sup 2} when the temperature T is much smaller than the Kondo temperature T{sub K}, whereas it is negligibly small compared with elastic part G{sub el} when T ? T{sub K}. G{sub inel} weakly depends on the magnetic flux penetrating the AB ring, which disturbs the precise detection of G{sub el}/(G{sub el}+G{sub inel}) by the visibility of AB oscillation.

  16. Porous material neutron detector

    DOE Patents [OSTI]

    Diawara, Yacouba (Oak Ridge, TN); Kocsis, Menyhert (Venon, FR)

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  17. Modeling gated neutron images of THD capsules

    SciTech Connect (OSTI)

    Wilson, Douglas Carl; Grim, Gary P; Tregillis, Ian L; Wilke, Mark D; Morgan, George L; Loomis, Eric N; Wilde, Carl H; Oertel, John A; Fatherley, Valerie E; Clark, David D; Schmitt, Mark J; Merrill, Frank E; Wang, Tai - Sen F; Danly, Christopher R; Batha, Steven H; Patel, M; Sepke, S; Hatarik, R; Fittinghoff, D; Bower, D; Marinak, M; Munro, D; Moran, M; Hilko, R; Frank, M; Buckles, R

    2010-01-01

    Time gating a neutron detector 28m from a NIF implosion can produce images at different energies. The brighter image near 14 MeV reflects the size and symmetry of the capsule 'hot spot'. Scattered neutrons, {approx}9.5-13 MeV, reflect the size and symmetry of colder, denser fuel, but with only {approx}1-7% of the neutrons. The gated detector records both the scattered neutron image, and, to a good approximation, an attenuated copy of the primary image left by scintillator decay. By modeling the imaging system the energy band for the scattered neutron image (10-12 MeV) can be chosen, trading off the decayed primary image and the decrease of scattered image brightness with energy. Modeling light decay from EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A leads to a preference from BCF99-55 for the first NIF detector, but DPAC 30 and Liquid A would be preferred if incorporated into a system. Measurement of the delayed light from the NIF scintillator using implosions at the Omega laser shows BCF99-55 to be a good choice for down-scattered imaging at 28m.

  18. Fast proton hopping detection in ice I{sub h} by quasi-elastic neutron

    Office of Scientific and Technical Information (OSTI)

    scattering. (Journal Article) | SciTech Connect Fast proton hopping detection in ice I{sub h} by quasi-elastic neutron scattering. Citation Details In-Document Search Title: Fast proton hopping detection in ice I{sub h} by quasi-elastic neutron scattering. Quasi-elastic neutron scattering was employed on samples of HCl-doped polycrystalline ice I{sub h}. The analysis of the scattering signal provides the excess proton hopping time, {tau}{sub hop}, in the temperature range of 140-195 K. The

  19. The Spectroscopy of Neutron-Rich sdf-Shell Nuclei Using the CLARA-PRISMA Setup

    SciTech Connect (OSTI)

    Liang, X.; Hodsdon, A.; Chapman, R.; Burns, M.; Keyes, K.; Ollier, J.; Papenberg, A.; Spohr, K.; Azaiez, F.; Ibrahim, F.; Stanoiu, M.; Haas, F.; Caurier, E.; Curien, D.; Nowacki, F.; Salsac, M.-D.; Bazzacco, D.; Beghini, S.; Farnea, E.; Menegazzo, R.

    2006-08-14

    Since the discovery of the breakdown of shell effects in very neutron-rich N=20 and 28 nuclei, studies of the properties of nuclei far from stability have been of intense interest since they provide a unique opportunity to increase our understanding of nuclear interactions in extreme conditions and often challenge our theoretical models.Deep-inelastic processes can be used to populated high spin states of neutron-rich nuclei. In the deep-inelastic processes, an equilibration in N/Z between the target and projectile nuclei is achieved. For most heavy neutron-rich target nuclei, the N/Z ratio is 1.5 - 1.6, while for the possible neutron-rich sdf-shell projectile it is about 1.2. Thus by using deep-inelastic processes one can populate neutron-rich nuclei around N=20 and N=28.New results for the spectroscopy of neutron-rich N=22 36Si and 37P are presented here.

  20. 2015 SSAA Awards | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and Inelastic Neutron Scattering Differential Cross Sections on Iron, Silicon, and Carbon LENS University of Massachusetts Lowell Chowdhury, Partha Nuclear Science with a C7LYC...

  1. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Neutron inelastic scattering in natural Pb as a background in neutrinoless double-beta decay experiments","Guiseppe, Vincente E Los Alamos National Laboratory; Elliott, Steve R...

  2. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Neutron inelastic scattering in natural Pb as a background in neutrinoless double beta decay experiments Guiseppe Vincente E Los Alamos National Laboratory Elliott Steve R Los...

  3. Neutron Sources for Standard-Based Testing

    SciTech Connect (OSTI)

    Radev, Radoslav; McLean, Thomas

    2014-11-10

    The DHS TC Standards and the consensus ANSI Standards use 252Cf as the neutron source for performance testing because its energy spectrum is similar to the 235U and 239Pu fission sources used in nuclear weapons. An emission rate of 20,000 20% neutrons per second is used for testing of the radiological requirements both in the ANSI standards and the TCS. Determination of the accurate neutron emission rate of the test source is important for maintaining consistency and agreement between testing results obtained at different testing facilities. Several characteristics in the manufacture and the decay of the source need to be understood and accounted for in order to make an accurate measurement of the performance of the neutron detection instrument. Additionally, neutron response characteristics of the particular instrument need to be known and taken into account as well as neutron scattering in the testing environment.

  4. Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McKenney, Joshua R.; Sato, Nobuo; Melnitchouk, Wally; Ji, Chueng-Ryong

    2016-03-07

    In this paper, we examine the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and themore » $$\\bar{d}-\\bar{u}$$ flavor asymmetry in the proton. A detailed $$\\chi^2$$ analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of $$4 \\times 10^{-4} \\lesssim x_\\pi \\lesssim 0.05$$ at a scale of $Q^2$=10 GeV$^2$. Also, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments on the deuteron with forward protons, based on the fit results, at Jefferson Lab.« less

  5. Scattering Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Dynamics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  6. Neutron tubes

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lou, Tak Pui (Berkeley, CA); Reijonen, Jani (Oakland, CA)

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  7. Multigroup computation of the temperature-dependent Resonance Scattering Model (RSM) and its implementation

    SciTech Connect (OSTI)

    Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.; Ivanov, K. N.

    2012-07-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied. (authors)

  8. Low-energy parameters of neutron-neutron interaction in the effective-range approximation

    SciTech Connect (OSTI)

    Babenko, V. A.; Petrov, N. M. [National Academy of Sciences of Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine)

    2013-06-15

    The effect of the mass difference between the charged and neutral pions on the low-energy parameters of nucleon-nucleon interaction in the {sup 1}S{sub 0} state is studied in the effective-range approximation. On the basis of experimental values of the singlet parameters of neutron-proton scattering and the experimental value of the virtual-state energy for the neutron-neutron systemin the {sup 1}S{sub 0} state, the following values were obtained for the neutron-neutron scattering length and effective range: a{sub nn} = -16.59(117) fm and r{sub nn} = 2.83(11) fm. The calculated values agree well with present-day experimental results.

  9. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    SciTech Connect (OSTI)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ???? (nnvv, ppvv, and npvv) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ???? emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ???? cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv, ppvv, and npvv.

  10. Recent QCD results in {nu} - N deep-inelastic-scattering at CCFR...

    Office of Scientific and Technical Information (OSTI)

    order strong coupling constant, alphasub s, extracted from Gross-Llewellyn-Smith sum rule. The value of alphasub s from this measurement, at the mass of Z boson,...

  11. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  12. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Fittinghoff, D N; Atkinson, D P; Bower, D E; Drury, O B; Dzenitis, J M; Felker, B; Frank, M; Liddick, S N; Moran, M J; Roberson, G P; Weiss, P B; Grim, G P; Aragonez, R J; Archuleta, T N; Batha, S H; Clark, D D; Clark, D J; Danly, C R; Day, R D; Fatherley, V E; Finch, J P; Garcia, F P; Gallegos, R A; Guler, N; Hsu, A H; Jaramillo, S A; Loomis, E N; Mares, D; Martinson, D D; Merrill, F E; Morgan, G L; Munson, C; Murphy, T J; Oertel, J A; Polk, P J; Schmidt, D W; Tregillis, I L; Valdez, A C; Volegov, P L; Wang, T F; Wilde, C H; Wilke, M D; Wilson, D C; Buckles, R A; Cradick, J R; Kaufman, M I; Lutz, S S; Malone, R M; Traille, A

    2011-10-24

    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n') reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system will be presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system will be presented. We will also discuss future improvements to the system hardware.

  13. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  14. Deuteron scattering on {sup 6}Li at an energy of 25 MeV

    SciTech Connect (OSTI)

    Burtebayev, N.; Artemov, S. V.; Duisebayev, B. A.; Kerimkulov, Zh. K.; Kuranov, S. B.; Sakuta, S. B.

    2010-05-15

    At an energy of 25 MeV and in the angular range 7{sup o}-175{sup o} in the laboratory frame, angular distributions were measured for elastic deuteron scattering on {sup 6}Li nuclei and for the respective inelastic-scattering processes accompanied by the transitions to the ground state (1+) of the {sup 6}Li nucleus and to its excited state at E{sub x} = 2.186 MeV (J{sup {pi}} = 3{sup +}). The resulting data were analyzed on the basis of the optical model of the nucleus and the coupled-reaction-channel method with allowance for the mechanism of alpha-particle-cluster exchange. It is shown that only upon including, in the analysis, channel coupling and the exchange mechanism can the experimental cross sections for elastic and inelastic scattering be reproduced over the entire range of angles.

  15. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  16. Shielding analysis and design of the KIPT experimental neutron source facility of Ukraine.

    SciTech Connect (OSTI)

    Zhong, Z.; Gohar, M. Y. A.; Naberezhnev, D.; Duo, J.; Nuclear Engineering Division

    2008-10-31

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility based on the use of an electron accelerator driven subcritical (ADS) facility [1]. The facility uses the existing electron accelerators of KIPT in Ukraine. The neutron source of the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and the electron energy in the range of 100 to 200 MeV, [2]. The main functions of the facility are the production of medical isotopes and the support of the Ukraine nuclear power industry. Reactor physics experiments and material performance characterization will also be carried out. The subcritical assembly is driven by neutrons generated by the electron beam interactions with the target material. A fraction of these neutrons has an energy above 50 MeV generated through the photo nuclear interactions. This neutron fraction is very small and it has an insignificant contribution to the subcritical assembly performance. However, these high energy neutrons are difficult to shield and they can be slowed down only through the inelastic scattering with heavy isotopes. Therefore the shielding design of this facility is more challenging relative to fission reactors. To attenuate these high energy neutrons, heavy metals (tungsten, iron, etc.) should be used. To reduce the construction cost, heavy concrete with 4.8 g/cm{sup 3} density is selected as a shielding material. The iron weight fraction in this concrete is about 0.6. The shape and thickness of the heavy concrete shield are defined to reduce the biological dose equivalent outside the shield to an acceptable level during operation. At the same time, special attention was give to reduce the total shield mass to reduce the construction cost. The shield design is configured to maintain the biological dose equivalent during operation {le} 0.5 mrem/h inside the subcritical hall, which is five times less than the allowable dose for working forty hours per week for 50 weeks per year. This study analyzed and designed the thickness and the shape of the radial and top shields of the neutron source based on the biological dose equivalent requirements inside the subcritical hall during operation. The Monte Carlo code MCNPX is selected because of its capabilities for transporting electrons, photons, and neutrons. Mesh based weight windows variance reduction technique is utilized to estimate the biological dose outside the shield with good statistics. A significant effort dedicated to the accurate prediction of the biological dose equivalent outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The building wall was designed with ordinary concrete to reduce the biological dose equivalent to the public with a safety factor in the range of 5 to 20.

  17. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  18. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    SciTech Connect (OSTI)

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a support for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.

  19. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron

    Office of Scientific and Technical Information (OSTI)

    Scattering Studies and First-Principles Calculations (Journal Article) | SciTech Connect Journal Article: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search This content will become publicly available on August 3, 2016 Title: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations The pressure-induced structural

  20. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  1. Methods for absorbing neutrons

    DOE Patents [OSTI]

    Guillen, Donna P. (Idaho Falls, ID); Longhurst, Glen R. (Idaho Falls, ID); Porter, Douglas L. (Idaho Falls, ID); Parry, James R. (Idaho Falls, ID)

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  2. Graphene nanoribbon molecular sensor based on inelastic transport

    SciTech Connect (OSTI)

    Ritter, C. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Muniz, R. B.; Latg, A. [Instituto de Fsica, Universidade Federal Fluminense SN, 24210-360 Niteri-RJ (Brazil)

    2014-04-07

    Results of phonon-assisted inelastic quantum transport calculations are presented for graphene nanoribbons. We consider a single molecule attached to a carbon atom and describe the electronic structure by a tight-binding model, taking into account a local phonon mode associated with the attached molecule characteristic vibration. The calculated transmission spectra reveal a striking sensitivity for molecules attached to the edges of asymmetric zigzag graphene nanoribbons. Our results show that the differential conductance may be used to identify the presence as well as the characteristic vibration frequency of a target molecule at finite temperatures.

  3. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources.

  4. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, J.L.

    1992-12-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. 2 figs.

  5. A crystallographer keen on showing off the revealing properties of neutrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revealing properties of neutrons A crystallographer keen on showing off the revealing properties of neutrons Olivier Gourdon shows visiting researchers some of the latest tricks that can be performed using this 100-year old multidisciplinary science. February 27, 2014 Olivier Gourdon Olivier Gourdon "With neutron diffraction, we can learn much more than where are the atoms." At Los Alamos's Lujan Neutron Scattering Center, crystallographer Olivier Gourdon shows visiting researchers

  6. Versatile module for experiments with focussing neutron guides

    SciTech Connect (OSTI)

    Adams, T.; Pfleiderer, C.; Bni, P. [Physik-Department, Technische Universitt Mnchen, D-85748 Garching (Germany); Brandl, G.; Chacon, A.; Wagner, J. N.; Rahn, M.; Mhlbauer, S.; Georgii, R. [Physik-Department, Technische Universitt Mnchen, D-85748 Garching (Germany); Heinz Maier-Leibnitz Zentrum, FRM II, Technische Universitt Mnchen, D-85748 Garching (Germany)

    2014-09-22

    We report the development of a versatile module that permits fast and reliable use of focussing neutron guides under varying scattering angles. A simple procedure for setting up the module and neutron guides is illustrated by typical intensity patterns to highlight operational aspects as well as typical parasitic artefacts. Combining a high-precision alignment table with separate housings for the neutron guides on kinematic mounts, the change-over between neutron guides with different focussing characteristics requires no readjustments of the experimental setup. Exploiting substantial gain factors, we demonstrate the performance of this versatile neutron scattering module in a study of the effects of uniaxial stress on the domain populations in the transverse spin density wave phase of single crystal Cr.

  7. Methods for Neutron Spectrometry

    DOE R&D Accomplishments [OSTI]

    Brockhouse, Bertram N.

    1961-01-09

    The appropriate theories and the general philosophy of methods of measurement and treatment of data neutron spectrometry are discussed. Methods of analysis of results for liquids using the Van Hove formulation, and for crystals using the Born-von Karman theory, are reviewed. The most useful of the available methods of measurement are considered to be the crystal spectrometer methods and the pulsed monoenergetic beam/time-of-flight method. Pulsed-beam spectrometers have the advantage of higher counting rates than crystal spectrometers, especially in view of the fact that simultaneous measurements in several counters at different angles of scattering are possible in pulsed-beam spectrometers. The crystal spectrometer permits several valuable new types of specialized experiments to be performed, especially energy distribution measurements at constant momentum transfer. The Chalk River triple-axis crystal-spectrometer is discussed, with reference to its use in making the specialized experiments. The Chalk River rotating crystal (pulsed-beam) spectrometer is described, and a comparison of this type instrument with other pulsed-beam spectrometers is made. A partial outline of the theory of operation of rotating-crystal spectrometers is presented. The use of quartz-crystal filters for fast neutron elimination and for order elimination is discussed. (auth)

  8. Probing Quark-Gluon Interactions with Transverse Polarized Scattering

    SciTech Connect (OSTI)

    Slifer, K.; Rondon, O. A.; Crabb, D.; Day, D.; Frlez, E.; Lindgren, R.; McKee, P.; Norum, B.; Pocanic, D.; Prok, Y.; Sawatzky, B.; Smith, C.; Tajima, S.; Wang, K.; Zeier, M.; Zhu, H.; Aghalaryan, A.; Asaturyan, R.; Mkrtchyan, H.; Ahmidouch, A.

    2010-09-03

    We have extracted QCD matrix elements from our data on doubly polarized inelastic scattering of electrons on nuclei. We find the higher twist matrix element d{sub 2}-tilde, which arises strictly from quark-gluon interactions, to be unambiguously nonzero. The data also reveal an isospin dependence of higher twist effects if we assume that the Burkhardt-Cottingham sum rule is valid. The fundamental Bjorken sum rule obtained from the a{sub 0} matrix element is satisfied at our low momentum transfer.

  9. Spallation Neutron Source | Neutron Science at ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spallation Neutron Source Spallation Neutron Source SNS is a one-of-a-kind research facility that provides the most intense pulsed neutron beams in the world for scientific research and industrial development. SNS produces neutrons with an accelerator-based system that delivers short (microsecond) proton pulses to a target/moderator system, where neutrons are produced by a process called spallation. State-of-the-art experiment stations provide a variety of capabilities for researchers across a

  10. NEUTRONIC REACTORS

    DOE Patents [OSTI]

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  11. On-the-fly generation of differential resonance scattering probability distribution functions for Monte Carlo codes

    SciTech Connect (OSTI)

    Sunny, E. E.; Martin, W. R. [University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor MI 48109 (United States)

    2013-07-01

    Current Monte Carlo codes use one of three models to model neutron scattering in the epithermal energy range: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S({alpha},{beta}) model, depending on the neutron energy and the specific Monte Carlo code. The free gas scattering model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not for heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that using the free gas scattering model in the vicinity of the resonances in the lower epithermal range can under-predict resonance absorption due to the up-scattering phenomenon. Existing methods all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame. In this paper, we will present a new sampling methodology that (1) accounts for the energy-dependent scattering cross sections in the collision analysis and (2) acts in the laboratory frame, avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials to approximate the scattering cross section in Blackshaw's equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using these methods showed very close comparison to results using the reference Doppler-broadened rejection correction (DBRC) scheme. (authors)

  12. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hatarik, R.; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Knauer, J. P.; et al

    2015-11-12

    For a long time, neutron time-of-flight diagnostics been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d+t→n+α (DT) and d+d→n+³He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, which is also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (Tion) and cold fuel areal density. We explain such novel methodologies used to determine neutron yield, apparent Tion and DSR.

  13. Progress in development of neutron energy spectrometer for deuterium plasma operation in KSTAR

    SciTech Connect (OSTI)

    Tomita, H. Yamashita, F.; Nakayama, Y.; Morishima, K.; Yamamoto, Y.; Sakai, Y.; Hayashi, S.; Kawarabayashi, J.; Iguchi, T.; Cheon, M. S.; Isobe, M.; Ogawa, K.

    2014-11-15

    Two types of DD neutron energy spectrometer (NES) are under development for deuterium plasma operation in KSTAR to understand behavior of beam ions in the plasma. One is based on the state-of-the-art nuclear emulsion technique. The other is based on a coincidence detection of a recoiled proton and a scattered neutron caused by an elastic scattering of an incident DD neutron, which is called an associated particle coincidence counting-NES. The prototype NES systems were installed at J-port in KSTAR in 2012. During the 2012 and 2013 experimental campaigns, multiple shots-integrated neutron spectra were preliminarily obtained by the nuclear emulsion-based NES system.

  14. NEUTRON COUNTER

    DOE Patents [OSTI]

    Curtis, C.D.; Carlson, R.L.; Tubinis, M.P.

    1958-07-29

    An ionization chamber instrument is described for cylindrical electrodes with an ionizing gag filling the channber. The inner electrode is held in place by a hermetic insulating seal at one end of the outer electrode, the other end of the outer electrode being closed by a gas filling tube. The outer surface of the inner electrode is coated with an active material which is responsive to neutron bombardment, such as uranium235 or boron-10, to produce ionizing radiations in the gas. The transverse cross sectional area of the inner electrode is small in relation to that of the channber whereby substantially all of the radiations are directed toward the outer electrode.

  15. Neutron elastic backscattering with resonance enhancement

    SciTech Connect (OSTI)

    Gomberg, H.J.; McEllistrem, M.T.

    1993-12-31

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon, Oxygen, and Nitrogen which provide specific elemental ratios and chemical signatures. Neutron-induced reaction methods are rapid and non-invasive means of probing container interiors for special element-ratio signatures which signal the presence of significant amounts of contraband. Among these reactions the highest probabilities occur for neutron from different light elements, allowing determination of relative abundance of these elements. The authors have already demonstrated signature for simulated explosives and simulated narcotics in experimental tests at 1-4 MeV at the University of Kentucky accelerator labs. Intensities of neutron scatter at angles near 150{degrees} from three different elements, C, N, and O, were determined. Fast neutron time-of-flight detection methods enabled measurement of neutron energies, and thus separation of scattering from the different elements. Making measurements on and off strong resonances for specific elements, increases PFD and reduces PFA. Measurements illustrating this resonance enhancement technique will be presented.

  16. Color dipole BFKL-Regge factorization and high-energy photon-photon scattering

    SciTech Connect (OSTI)

    Nikolaev, N.N.; Speth, J.; Zoller, V.R.

    2001-11-01

    Based on the color dipole representation, we investigate consequences for the {gamma}*{gamma}*, {gamma}*{gamma} scattering of the finding by Fadin, Kuraev, and Lipatov that the incorporation of asymptotic freedom into the BFKL equation makes the QCD pomeron a series of isolated poles in the angular momentum plane. The emerging color dipole BFKL-Regge factorization allows us to relate in a model-independent way the contributions of each BFKL pole to the {gamma}*{gamma}*, {gamma}*{gamma} scattering and the deep inelastic scattering on protons. Numerical predictions based on our early work on the color dipole BFKL phenomenology of the deep inelastic scattering on protons gives a good agreement with the recent experimental data from OPAL and L3 experiments at LEP200. We discuss the role of nonperturbative dynamics and predict a pronounced effect of the Regge-factorization breaking due to large unfactorizable nonperturbative corrections to the perturbative vacuum exchange. We comment on the salient features of the BFKL-Regge expansion for the {gamma}*{gamma}*, {gamma}*{gamma} scattering including the issue of the decoupling of subleading BFKL poles and the soft plus rightmost hard BFKL pole dominance.

  17. Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer

    SciTech Connect (OSTI)

    Eriksson, J. Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C.; Giacomelli, L.

    2014-11-15

    In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

  18. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  19. Neutrino-pair bremsstrahlung from nucleon-nucleon scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.

    2015-07-22

    Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.

  20. Neutron reflecting supermirror structure

    DOE Patents [OSTI]

    Wood, James L. (Drayton Plains, MI)

    1992-01-01

    An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.

  1. Continuous Energy MC Neutron/Photon

    Energy Science and Technology Software Center (OSTI)

    1991-10-10

    VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron or photon (VIM3.0) transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments. In VIM3.0, the photon interactions i.e., pair production, coherent and incoherent scattering, and photoelectric events, and photon heating are tallied by group, region, and isotope.

  2. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  3. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect (OSTI)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  4. Development of multichannel low-energy neutron spectrometer

    SciTech Connect (OSTI)

    Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  5. Design and Demonstration of a Quasi-monoenergetic Neutron Source

    SciTech Connect (OSTI)

    Joshi, T.; Sangiorgio, Samuele; Mozin, Vladimir V.; Norman, E. B.; Sorensen, Peter F.; Foxe, Michael P.; Bench, G.; Bernstein, A.

    2014-03-05

    The design of a neutron source capable of producing 24 and 70 keV neutron beams with narrow energy spread is presented. The source exploits near-threshold kinematics of the 7Li(p,n)7Be reaction while taking advantage of the interference `notches' found in the scattering cross-sections of iron. The design was implemented and characterized at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Alternative lters such as vanadium and manganese are also explored and the possibility of studying the response of di*erent materials to low-energy nuclear recoils using the resultant neutron beams is discussed.

  6. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    SciTech Connect (OSTI)

    Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan; Maurer, Richard; Mitchell, Stephen; Guss, Paul; Lacy, Jeffrey L.; Sun, Liang; Athanasiades, Athanasios

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ship effect ) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called straws that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.

  7. Environment scattering in GADRAS.

    SciTech Connect (OSTI)

    Thoreson, Gregory G.; Mitchell, Dean James; Theisen, Lisa Anne; Harding, Lee T.

    2013-09-01

    Radiation transport calculations were performed to compute the angular tallies for scattered gamma-rays as a function of distance, height, and environment. Green's Functions were then used to encapsulate the results a reusable transformation function. The calculations represent the transport of photons throughout scattering surfaces that surround sources and detectors, such as the ground and walls. Utilization of these calculations in GADRAS (Gamma Detector Response and Analysis Software) enables accurate computation of environmental scattering for a variety of environments and source configurations. This capability, which agrees well with numerous experimental benchmark measurements, is now deployed with GADRAS Version 18.2 as the basis for the computation of scattered radiation.

  8. Scattering Techniques and Geometries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grains - Thin films - Texture (crystallite orientation) - Real time experiments (electrochemistry, stress-strain) Get to know your beamlines incident scattered Detector Q...

  9. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1981-05-14

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  10. Neutron streak camera

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  11. Neutron streak camera

    DOE Patents [OSTI]

    Wang, C.L.

    1983-09-13

    Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.

  12. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  13. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  14. Neutronic Reactor Design to Reduce Neutron Loss

    DOE Patents [OSTI]

    Miles, F. T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall. The wall is surrounded by successive layers of pure fertile material and moderator containing fertile material. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. Since the steel has a smaller capture cross section for the fast neutrons, greater nunnbers of neutrons will pass into the blanket, thereby increasing the over-all efficiency of the reactor. (AEC)

  15. NEUTRONIC REACTOR DESIGN TO REDUCE NEUTRON LOSS

    DOE Patents [OSTI]

    Mills, F.T.

    1961-05-01

    A nuclear reactor construction is described in which an unmoderated layer of the fissionable material is inserted between the moderated portion of the reactor core and the core container steel wall which is surrounded by successive layers of pure fertile material and fertile material having moderator. The unmoderated layer of the fissionable material will insure that a greater portion of fast neutrons will pass through the steel wall than would thermal neutrons. As the steel has a smaller capture cross-section for the fast neutrons, then greater numbers of the neutrons will pass into the blanket thereby increasing the over-all efficiency of the reactor.

  16. Measurement of the inelastic cross section in proton-lead collisions at $\\sqrt{s_{_\\mathrm{NN}}}=$ 5.02 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-09-15

    The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. Our data sample, corresponding to an integrated luminosity of L = 12.6 0.4 nb-1, has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < ? < 5 and/or -5 < ? < -3, corrected for photon-induced contributions, experimental acceptance, and other instrumental effects. The inelastic cross section is measured to be ?inel(pPb) = 2061 3 (stat) 34 (syst) 72 (lumi) mb. Various Monte Carlo generators, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. Furthermore, the value of ?inel(pPb) is compatible with that expected from the proton-proton cross section at 5.02 TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that further net nuclear corrections are small.

  17. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    SciTech Connect (OSTI)

    Yang, W. S.; Lee, C. H.

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies. Relative to the MCNP solution, the MC{sup 2}-2/TWODANT results overestimated the multiplication factor by 0.22 {approx} 0.35% {Delta}{rho} for these small systems with very hard neutron spectrum. Comparisons of measured and calculated values for the fission reaction rate ratios of Godiva and Jezebel assemblies also showed that the MC{sup 2}-2/TWODANT results agreed well with measurements within 2.7%. From a series of methodology review and ENDF/B-VII.0 data processing, several improvement needs to enhance accuracy were also identified for the ETOE-2/MC{sup 2}-2 code system, including the multigroup slowing-down solution for whole-energy range, proper treatment for anisotropy of inelastic scattering, improved evaluation of inelastic and high-order anisotropic scattering source in RABANL calculations.

  18. Dose equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, Richard V. (Pleasanton, CA); Hankins, Dale E. (Livermore, CA); Tomasino, Luigi (Rome, IT); Gomaa, Mohamed A. M. (Heliopolis, EG)

    1983-01-01

    A neutron dosimeter is disclosed which provides a single measurements indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer containing conversion material such as .sup.6 Li and .sup.10 B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet. The density of conversion material in the radiator layer is of an amount which is chosen so that the density of tracks produced in the detecting sheet is proportional to the biological damage done by neutrons, regardless of whether the tracks are produced as the result of moderate energy neutrons striking the radiator layer or as the result of higher energy neutrons striking the sheet of track etch material.

  19. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, C.L.

    1985-06-19

    A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.

  20. Neutron dose equivalent meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

    1996-01-01

    A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

  1. Compton scattering overview

    SciTech Connect (OSTI)

    Hartemann, F V

    2008-12-01

    An overview of linear and nonlinear Compton scattering is presented, along with a comparison with Thomson scattering. Two distinct processes play important roles in the nonlinear regime: multi-photon interactions, leading to the generation of harmonics, and radiation pressure, yielding a downshift of the radiated spectral features. These mechanisms, their influence on the source brightness, and different modeling strategies are also briefly discussed.

  2. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. A radial collimator for a time-of-flight neutron spectrometer

    SciTech Connect (OSTI)

    Stone, M. B.; Abernathy, D. L. [Quantum Condensed Matter Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Niedziela, J. L.; Loguillo, M. J.; Overbay, M. A. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-08-15

    We have engineered and installed a radial collimator for use in the scattered beam of a neutron time-of-flight spectrometer at a spallation neutron source. The radial collimator may be used with both thermal and epithermal neutrons, reducing the detected scattering intensity due to material outside of the sample region substantially. The collimator is located inside of the sample chamber of the instrument, which routinely cycles between atmospheric conditions and cryogenic vacuum. The oscillation and support mechanism of the collimator allow it to be removed from use without breaking vacuum. We describe here the design and characterization of this radial collimator.

  4. Arsenic activation neutron detector

    DOE Patents [OSTI]

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  5. Neutrons - 88-Inch Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutrons Neutron beams are available at the 88-Inch Cyclotron. Available energies range of from 8 to 30 MeV, with fluxes of up to 1E8 neutrons/cm^2/sec. For more information, please contact Mike Johnson via e-mail at MBJohnson@lbl.gov, or by phone at at (510) 486-4389.

  6. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  7. Population of 195Os via a deep-inelastic reaction

    SciTech Connect (OSTI)

    Valiente-Dobon, J.J.; Wheldon, C.; Regan, P.H.; Langdown, S.D.; Yamamoto, A.D.; Wu, C.Y.; Cline, D.; Hayes, A.; Hua, H.; Teng, R.; Andreoiu, C.; Svensson, C.E.; Chapman, R.; Liang, X.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Freeman, S. J.; Smith, J.F.

    2004-09-13

    The present work reports on the {sub 76}{sup 195}Os isotope, which is the most neutron-rich osmium isotope for which transitions have been measured. It has been populated following a multi-nucleon transfer reaction between a thin {sub 78}{sup 198}Pt target and an 850-MeV {sub 54}{sup 136}Xe beam. Evidence from {gamma}-ray coincidences has been found for an I{sup {pi}} = ((27/2){sup -}) isomeric state with a measured half-life of 26 {+-} 9ns.

  8. Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via

    Office of Scientific and Technical Information (OSTI)

    inelastic neutron scattering (Journal Article) | DOE PAGES Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering « Prev Next » Title: Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering Authors: Xu, Zhijun ; Wen, Jinsheng ; Xu, Guangyong ; Chi, Songxue ; Ku, Wei ; Gu, Genda ; Tranquada, J. M. Publication Date: 2011-08-11 OSTI Identifier: 1100533 Type: Publisher's Accepted Manuscript Journal Name:

  9. Neutron-Scattering Evidence for a Periodically Modulated Superconducti...

    Office of Scientific and Technical Information (OSTI)

    Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Physical Review Letters; Journal Volume: 113; Journal Issue: 17 Research Org: Oak Ridge...

  10. 11th LANSCE School on Neutron Scattering | Lecturers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Los Alamos National Laboratory Curt Bronkhorst, Los Alamos National Laboratory Physics-Based Materials Modeling Abstract: The role of numerical simulation in the design...

  11. Theoretical modeling for neutron elastic scattering angular distributi...

    Office of Scientific and Technical Information (OSTI)

    Publication: United States Language: English Subject: 29 ENERGY PLANNING, POLICY AND ECONOMY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS AND RADIATION...

  12. Multiple scattering effects in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Laboratory Publication Date: 2011-02-24 OSTI Identifier: 1053153 Report Number(s): LA-UR-11-01326; LA-UR-11-1326 DOE Contract Number: AC52-06NA25396 Resource Type: Conference...

  13. 11th LANSCE School on Neutron Scattering | About the School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Extremes program. Los Alamos National Laboratory Institute for Materials Science MaRiE Los Alamos National Laboratory Institute for Materials Science Matter Radiation...

  14. Theoretical modeling for neutron elastic scattering angular distributi...

    Office of Scientific and Technical Information (OSTI)

    Org: DOE Country of Publication: United States Language: English Subject: 29 ENERGY PLANNING, POLICY AND ECONOMY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73...

  15. Neutron Scattering Data Vickie Lynch, Jose Borreguero-Calvo,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the U.S. Department of Energy CAMM Refinement Workflow Parameter Refinement File (XML) Force Field Template File Microscopic Configuration File (atoms) S(Q,t) Config.File Expt....

  16. 11th LANSCE School on Neutron Scattering | School Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials, geological disposition of nuclear waste, additive manufacturing, nanoscience for drug delivery, solid state refrigeration, nanoscience for energy efficiency, etc.). ...

  17. Neutron Compton Scattering as a Probe of Hydrogen Bonded (and...

    Office of Scientific and Technical Information (OSTI)

    of Nafion, together with earlier work on water confined in xerogel and in single wall carbon nanotubes demonstrate that water confined in dimensions on the order of 20 ...

  18. Neutron Scatter Camera for Radiaton Detection - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tailor sensitivity to user needs Can penetrate heavily shielded sources Applications and Industries Treaty verification & monitoring Nuclear safeguards & nonproliferation Homeland...

  19. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.

    2010-07-15

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  20. Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron

    Office of Scientific and Technical Information (OSTI)

    Scattering Studies and First-Principles Calculations (Journal Article) | SciTech Connect Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Citation Details In-Document Search Title: Pressure-Induced Structural Phase Transition in CeNi: X-ray and Neutron Scattering Studies and First-Principles Calculations Authors: Mirmelstein, A ; Podlesnyak, A ; dos Santos, A M ; Ehlers, G ; Kerbel, O ; Matvienko, V ; Sefat, A S ;

  1. Semiconductor neutron detector

    DOE Patents [OSTI]

    Ianakiev, Kiril D. (Los Alamos, NM); Littlewood, Peter B. (Cambridge, GB); Blagoev, Krastan B. (Arlington, VA); Swinhoe, Martyn T. (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Sullivan, Clair J. (Los Alamos, NM); Alexandrov, Boian S. (Los Alamos, NM); Lashley, Jason Charles (Santa Fe, NM)

    2011-03-08

    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  2. High energy neutron dosimeter

    DOE Patents [OSTI]

    Sun, Rai Ko S.F. (Albany, CA)

    1994-01-01

    A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.

  3. High energy neutron dosimeter

    DOE Patents [OSTI]

    Rai, K.S.F.

    1994-01-11

    A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.

  4. Organic metal neutron detector

    DOE Patents [OSTI]

    Butler, Michael A. (Albuquerque, NM); Ginley, David S. (Albuquerque, NM)

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  5. Electroweak Measurements of Neutron Densities in CREX and PREX at JLab, USA

    SciTech Connect (OSTI)

    Horowitz, Charles J. [Indiana U.; Kumar, Krishna S. [UMass; Michaels, Robert W. [JLAB

    2014-02-01

    Measurement of the parity-violating electron scattering asymmetry is an established technique at Jefferson Lab and provides a new opportunity to measure the weak charge distribution and hence pin down the neutron radius in nuclei in a relatively clean and model-independent way. This is because the Z boson of the weak interaction couples primarily to neutrons. We will describe the PREX and CREX experiments on ${}^{208}$Pb and ${}^{48}$Ca respectively; these are both doubly-magic nuclei whose first excited state can be discriminated by the high resolution spectrometers at JLab. The heavier lead nucleus, with a neutron excess, provides an interpretation of the neutron skin thickness in terms of properties of bulk neutron matter. For the lighter ${}^{48}$Ca nucleus, which is also rich in neutrons, microscopic nuclear theory calculations are feasible and are sensitive to poorly constrained 3-neutron forces.

  6. High resolution monochromator for inelastic scattering studies of high energy phonons using undulator radiation at the advanced photon source

    SciTech Connect (OSTI)

    Macrander, A.T.; Schwoerer-Boehning, M.; Abbamonte, P.M.; Hu, M.

    1997-08-01

    A monochromator for use at 13.84 keV with a calculated bandpass of 5.2 meV was designed built, and tested. Tuning was performed by rotating the inner crystal of a pair of nested silicon channel-cut crystals. The inner crystal employs the (884) reflection, and the outer crystal employs a collimating asymmetric (422) reflection (dynamical asymmetry factor, b, equal to {minus}17.5). Tests were done with a double-crystal Si(111) pre-monochromator situated upstream of the high resolution monochromator and a Si(777) backscattering crystal situated downstream. For this optical arrangement an ideal value of 6.3 meV as calculated by x-ray dynamical diffraction theory applies for the FWHM of the convolution of the net monochromator reflectivity function with that of the Si(777) reflection. This calculated value is to be compared to the value of 7.1 meV measured by tuning the high resolution monochromator. Measured efficiencies were less than ideal by a factor of 3.2 to 4.9, where the larger flux reduction factors were found with higher positron storage ring currents.

  7. Enhancing Neutron Beam Production with a Convoluted Moderator

    SciTech Connect (OSTI)

    Iverson, Erik B; Baxter, David V; Muhrer, Guenter; Ansell, Stuart; Gallmeier, Franz X; Dalgliesh, Robert; Lu, Wei; Kaiser, Helmut

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  8. Scattering from Star Polymers including Excluded Volume Effects

    SciTech Connect (OSTI)

    Li, Xin [ORNL; Do, Changwoo [ORNL; Liu, Yun [National Institute of Standards and Technology (NIST); Sanchez-Diaz, Luis E [ORNL; Hong, Kunlun [ORNL; Smith, Greg [ORNL; Chen, Wei-Ren [ORNL

    2014-01-01

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffness of its constituent branch.

  9. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; et al

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2, xB, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution of the axialmore » charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.« less

  10. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect (OSTI)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States)] [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)] [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany)] [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States)] [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States) [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ?30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ?98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm 30 mm) and an increase in length scales accessible to SESAME to beyond 10 ?m. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  11. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    SciTech Connect (OSTI)

    Lewis, J. M. Kelley, R. P.; Jordan, K. A.; Murer, D.

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  12. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  13. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    SciTech Connect (OSTI)

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  14. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  15. Intense Pulsed Neutron Source progress report for 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  16. Excitation of the 3p states in electron-sodium scattering at intermediate energies

    SciTech Connect (OSTI)

    Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.

    2014-03-05

    A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e{sup ?}-Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.

  17. Pulsed Neutron Measurments With A DT Neutron Generator for an Annular HEU Uranium Metal Casting

    SciTech Connect (OSTI)

    Mihalczo, John T [ORNL; Archer, Daniel E [ORNL; Wright, Michael C [ORNL; Mullens, James Allen [ORNL

    2007-09-01

    Measurements were performed with a single annular, stainless-steel-canned casting of uranium (93.17 wt% 235U) metal ( ~18 kg) to provide data to verify calculational methods for criticality safety. The measurements used a small portable DT generator with an embedded alpha detector to time and directionally tag the neutrons from the generator. The center of the time and directional tagged neutron beam was perpendicular to the axis of the casting. The radiation detectors were 1x1x6 in plastic scintillators encased in 0.635-cm-thick lead shields that were sensitive to neutrons above 1 MeV in energy. The detector lead shields were adjacent to the casting and the target spot of the generator was about 3.8 cm from the casting at the vertical center. The time distribution of the fission induced radiation was measured with respect to the source event by a fast (1GHz) processor. The measurements described in this paper also include time correlation measurements with a time tagged spontaneously fissioning 252Cf neutron source, both on the axis and on the surface of the casting. Measurements with both types of sources are compared. Measurements with the DT generator closely coupled with the HEU provide no more additional information than those with the Cf source closely coupled with the HEU and are complicated by the time and directionally tagged neutrons from the generator scattering between the walls and floor of the measurements room and the casting while still above detection thresholds.

  18. Fusion-neutron-yield, activation measurements at the Z accelerator: Design, analysis, and sensitivity

    SciTech Connect (OSTI)

    Hahn, K. D., E-mail: kdhahn@sandia.gov; Ruiz, C. L.; Fehl, D. L.; Chandler, G. A.; Knapp, P. F.; Smelser, R. M.; Torres, J. A. [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Diagnostics and Target Physics, Albuquerque, New Mexico 87123 (United States); Cooper, G. W.; Nelson, A. J. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Leeper, R. J. [Los Alamos National Laboratories, Plasma Physics Group, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratories, Plasma Physics Group, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r{sup 2} decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% 17% counts/neutron per cm{sup 2} and is ? 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  19. Fast Neutron Detection Evaluation

    SciTech Connect (OSTI)

    McKigney, Edward A.; Stange, Sy

    2014-03-17

    These slides present a summary of previous work, conclusions, and anticipated schedule for the conclusion of our fast neutron detection evaluation.

  20. Neutron detection apparatus

    DOE Patents [OSTI]

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    An atomic fission counting apparatus used for neutron detection is provided with spirally curved electrode plates uniformly spaced apart in a circular array and coated with fissile material.

  1. Neutron Detection Using an Embedded Sol-Gel Neutron Absorber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Find More Like This Return to Search Neutron Detection Using an Embedded Sol-Gel Neutron Absorber Oak Ridge National Laboratory Contact ORNL About This Technology...

  2. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Links Neutron and Nuclear Science News Media Links Profiles Events at...

  3. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect (OSTI)

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  4. The Development of a Parameterized Scatter Removal Algorithm for Nuclear Materials Identification System Imaging

    SciTech Connect (OSTI)

    Grogan, Brandon R

    2010-03-01

    This dissertation presents a novel method for removing scattering effects from Nuclear Materials Identification System (NMIS) imaging. The NMIS uses fast neutron radiography to generate images of the internal structure of objects non-intrusively. If the correct attenuation through the object is measured, the positions and macroscopic cross-sections of features inside the object can be determined. The cross sections can then be used to identify the materials and a 3D map of the interior of the object can be reconstructed. Unfortunately, the measured attenuation values are always too low because scattered neutrons contribute to the unattenuated neutron signal. Previous efforts to remove the scatter from NMIS imaging have focused on minimizing the fraction of scattered neutrons which are misidentified as directly transmitted by electronically collimating and time tagging the source neutrons. The parameterized scatter removal algorithm (PSRA) approaches the problem from an entirely new direction by using Monte Carlo simulations to estimate the point scatter functions (PScFs) produced by neutrons scattering in the object. PScFs have been used to remove scattering successfully in other applications, but only with simple 2D detector models. This work represents the first time PScFs have ever been applied to an imaging detector geometry as complicated as the NMIS. By fitting the PScFs using a Gaussian function, they can be parameterized and the proper scatter for a given problem can be removed without the need for rerunning the simulations each time. In order to model the PScFs, an entirely new method for simulating NMIS measurements was developed for this work. The development of the new models and the codes required to simulate them are presented in detail. The PSRA was used on several simulated and experimental measurements and chi-squared goodness of fit tests were used to compare the corrected values to the ideal values that would be expected with no scattering. Using the PSRA resulted in an improvement of the chi-squared test by a factor of 60 or more when applied to simple homogeneous objects.

  5. Schoenborn wins Bau Neutron Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of LANL's Bioenergy and Biome Sciences group, to receive the 2016 Bau Neutron Diffraction Award. The award recognizes exceptional research achievement in neutron...

  6. Neutron and Nuclear Science Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Recent publications related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science Publications Chi-Nu Publications DANCE Publications GEANIE...

  7. Center for Nanophase Materials Sciences - Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solid. Inelastic neutron scattering measurements of Fe1-xCoxSi alloys were combined with quantum mechanics based calculations to show why the alloys exhibit unusual softening as...

  8. Reconciliation of local and long range tilt correlations in underdoped...

    Office of Scientific and Technical Information (OSTI)

    powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO tilt order with orthogonally inequivalent Cu-O bonds in the CuO planes in...

  9. Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Lacy, Jeffrey L

    2009-05-22

    Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically, probably at a small fraction of the cost of He-3 detectors. In addition to neutron scattering science, the fully developed base technology can be used as a rugged, low-cost neutron detector in area monitoring and surveying. Radiation monitors are used in a number of other settings for occupational and environmental radiation safety. Such a detector can also be used in environmental monitoring and remote nuclear power plant monitoring. For example, the Department of Energy could use it to characterize nuclear waste dumps, coordinate clean-up efforts, and assess the radioactive contaminants in the air and water. Radiation monitors can be used to monitor the age and component breakdown of nuclear warheads and to distinguish between weapons and reactor grade plutonium. The UN's International Atomic Energy Agency (IAEA) uses radiation monitors for treaty verification, remote monitoring, and enforcing the non-proliferation of nuclear weapons. As part of treaty verification, monitors can be used to certify the contents of containers during inspections. They could be used for portal monitoring to secure border checkpoints, sea ports, air cargo centers, public parks, sporting venues, and key government buildings. Currently, only 2% of all sea cargo shipped is inspected for radiation sources. In addition, merely the presence of radiation is detected and nothing is known about the radioactive source until further testing. The utilization of radiation monitors with neutron sensitivity and capability of operation in hostile port environments would increase the capacity and effectiveness of the radioactive scanning processes.

  10. Plastic neutron detectors.

    SciTech Connect (OSTI)

    Wilson, Tiffany M.S; King, Michael J.; Doty, F. Patrick

    2008-12-01

    This work demonstrated the feasibility and limitations of semiconducting {pi}-conjugated organic polymers for fast neutron detection via n-p elastic scattering. Charge collection in conjugated polymers in the family of substituted poly(p-phenylene vinylene)s (PPV) was evaluated using band-edge laser and proton beam ionization. These semiconducting materials can have high H/C ratio, wide bandgap, high resistivity and high dielectric strength, allowing high field operation with low leakage current and capacitance noise. The materials can also be solution cast, allowing possible low-cost radiation detector fabrication and scale-up. However, improvements in charge collection efficiency are necessary in order to achieve single particle detection with a reasonable sensitivity. The work examined processing variables, additives and environmental effects. Proton beam exposure was used to verify particle sensitivity and radiation hardness to a total exposure of approximately 1 MRAD. Conductivity exhibited sensitivity to temperature and humidity. The effects of molecular ordering were investigated in stretched films, and FTIR was used to quantify the order in films using the Hermans orientation function. The photoconductive response approximately doubled for stretch-aligned films with the stretch direction parallel to the electric field direction, when compared to as-cast films. The response was decreased when the stretch direction was orthogonal to the electric field. Stretch-aligned films also exhibited a significant sensitivity to the polarization of the laser excitation, whereas drop-cast films showed none, indicating improved mobility along the backbone, but poor {pi}-overlap in the orthogonal direction. Drop-cast composites of PPV with substituted fullerenes showed approximately a two order of magnitude increase in photoresponse, nearly independent of nanoparticle concentration. Interestingly, stretch-aligned composite films showed a substantial decrease in photoresponse with increasing stretch ratio. Other additives examined, including small molecules and cosolvents, did not cause any significant increase in photoresponse. Finally, we discovered an inverse-geometric particle track effect wherein increased track lengths created by tilting the detector off normal incidence resulted in decreased signal collection. This is interpreted as a trap-filling effect, leading to increased carrier mobility along the particle track direction. Estimated collection efficiency along the track direction was near 20 electrons/micron of track length, sufficient for particle counting in 50 micron thick films.

  11. Neutron capture therapies

    DOE Patents [OSTI]

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  12. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  13. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  14. Pocked surface neutron detector

    DOE Patents [OSTI]

    McGregor, Douglas; Klann, Raymond

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  15. Neutron Scattering of CeNi at the Spallation Neutron Source at...

    Office of Scientific and Technical Information (OSTI)

    Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: MRS Spring 2014, San Francisco, CA, United States, Apr 20 - Apr 25, 2013...

  16. High-energy Electron Scattering and the Charge Distributions of Selected Nuclei

    DOE R&D Accomplishments [OSTI]

    Hahn, B.; Ravenhall, D. G.; Hofstadter, R.

    1955-10-01

    Experimental results are presented of electron scattering by Ca, V, Co, In, Sb, Hf, Ta, W, Au, Bi, Th, and U, at 183 Mev and (for some of the elements) at 153 Mev. For those nuclei for which asphericity and inelastic scattering are absent or unimportant, i.e., Ca, V, Co, In, Sb, Au, and Bi, a partial wave analysis of the Dirac equation has been performed in which the nuclei are represented by static, spherically symmetric charge distributions. Smoothed uniform charge distributions have been assumed; these are characterized by a constant charge density in the central region of the nucleus, with a smoothed-our surface. Essentially two parameters can be determined, related to the radium and to the surface thickness. An examination of the Au experiments show that the functional forms of the surface are not important, and that the charge density in the central regions is probably fairly flat, although it cannot be determined very accurately.

  17. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering Space sample light image Image Space lens Angular Space Q 4p sin(q) l Fourier Transform Scattering Pattern Fourier Transform Phase Problem Scattering Pattern...

  18. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  19. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    SciTech Connect (OSTI)

    Ghrayeb, Shadi Z. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Ougouag, Abderrafi M. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Ouisloumen, Mohamed [Westinghouse Electric Company, Cranberry Township, PA (United States); Ivanov, Kostadin N. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.

  20. Thermal conductivity changes upon neutron transmutation of {sup 10}B doped diamond

    SciTech Connect (OSTI)

    Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Verghese, K. [Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Butler, J. E. [Code 6174, Naval research Laboratory, Washington, District of Columbia 20375 (United States)

    2014-08-28

    {sup 10}B doped p-type diamond samples were subjected to neutron transmutation reaction using thermal neutron flux of 0.9 10{sup 13} cm{sup ?2} s{sup ?1} and fast neutron flux of 0.09 10{sup 13} cm{sup ?2} s{sup ?1}. Another sample of epilayer grown on type IIa (110) single crystal diamond substrate was subjected to equal thermal and fast neutron flux of 10{sup 14}?cm{sup ?2} s{sup ?1}. The defects in the diamond samples were previously characterized by different methods. In the present work, thermal conductivity of these diamond samples was determined at room temperature by transient thermoreflectance method. The thermal conductivity change in the samples as a function of neutron fluence is explained by the phonon scattering from the point defects and disordered regions. The thermal conductivity of the diamond samples decreased more rapidly initially and less rapidly for larger neutron fluence. In addition, the thermal conductivity in type IIb diamond decreased less rapidly with thermal neutron fluence compared to the decrease in type IIa diamond subjected to fast neutron fluence. It is concluded that the rate of production of defects during transmutation reaction is slower when thermal neutrons are used. The thermal conductivity of epilayer of diamond subjected to high thermal and fast neutron fluence is associated with the covalent carbon network in the composite structure consisting of disordered carbon and sp{sup 2} bonded nanocrystalline regions.

  1. Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models

    SciTech Connect (OSTI)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza; Moscovitch, Marko

    2013-02-28

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of the differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.

  2. A novel method for modeling the neutron time of flight detector response in current mode to inertial confinement fusion experiments (invited)

    SciTech Connect (OSTI)

    Nelson, A. J.; Cooper, G. W. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131 (United States); Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; Smelser, R.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2012-10-15

    A novel method for modeling the neutron time of flight (nTOF) detector response in current mode for inertial confinement fusion experiments has been applied to the on-axis nTOF detectors located in the basement of the Z-Facility. It will be shown that this method can identify sources of neutron scattering, and is useful for predicting detector responses in future experimental configurations, and for identifying potential sources of neutron scattering when experimental set-ups change. This method can also provide insight on how much broadening neutron scattering contributes to the primary signals, which is then subtracted from them. Detector time responses are deconvolved from the signals, allowing a transformation from dN/dt to dN/dE, extracting neutron spectra at each detector location; these spectra are proportional to the absolute yield.

  3. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  4. Voids in neutron-irradiated metals and alloys

    SciTech Connect (OSTI)

    Hendricks, R.W.

    1980-01-01

    Small-angle x-ray and neutron scattering are powerful analytical tools for investigating long-range fluctuations in electron (x-rays) or magnetic moment (neutrons) densities in materials. In recent years they have yielded valuable information about voids, void size distributions, and swelling in aluminum, aluminum alloys, copper, molybdenum, nickel, nickel-aluminum, niobium and niobium alloys, stainless steels, graphite and silicon carbide. In the case of aluminum, information concerning the shape of the voids and the ratio of specific surface energies was obtained. The technique of small-angle scattering and its application to the study of voids is reviewed in the paper. Emphasis is placed on the conditions which limit the applicability of the technique, on the interpretation of the data, and on a comparison of the results obtained with companion techniques such as transmission electron microscopy and bulk density. 8 figures, 41 references.

  5. Ortho- and para-hydrogen in neutron thermalization

    SciTech Connect (OSTI)

    Daemen, L. L.; Brun, T. O.

    1998-01-01

    The large difference in neutron scattering cross-section at low neutron energies between ortho- and para-hydrogen was recognized early on. In view of this difference (more than an order of magnitude), one might legitimately ask whether the ortho/para ratio has a significant effect on the neutron thermalization properties of a cold hydrogen moderator. Several experiments performed in the 60`s and early 70`s with a variety of source and (liquid hydrogen) moderator configurations attempted to investigate this. The results tend to show that the ortho/para ratio does indeed have an effect on the energy spectrum of the neutron beam produced. Unfortunately, the results are not always consistent with each other and much unknown territory remains to be explored. The problem has been approached from a computational standpoint, but these isolated efforts are far from having examined the ortho/para-hydrogen problem in neutron moderation in all its complexity. Because of space limitations, the authors cannot cover, even briefly, all the aspects of the ortho/para question here. This paper will summarize experiments meant to investigate the effect of the ortho/para ratio on the neutron energy spectrum produced by liquid hydrogen moderators.

  6. Measurement of the Neutron electric form factor at Q2=0.8 2(GeV\\\\c)

    SciTech Connect (OSTI)

    Derek Glazier

    2007-09-30

    Nucleon form factors allow a sensitive test for models of the nucleon. Recent experiments utilising polarisation observables have resulted, for the first time, in a model-independent determination of the neutron electric form factor GnE. This method employed an 80% longitudinally polarised, high intensity (10 uA) electon beam (883 MeV) that was quasi-elastically scattered off a liquid deuterium target in the reaction D (e, en)p. A neutron polarimeter was designed and installed to measure the ratio of transverse-to-longitudinal polarisation using neutron scattering asymmetries. This ratio allowed a determination of the neutron elastic form factor, GnE, free of the previous large systematic uncertainties associated with the deuterium wave function. The experiment took place in the A1 experimental hall at MAMI taking advantage of a high resolution magnetic spectrometer. A detailed investigation was carried out into the performance of the neutron polarimeter.

  7. Switchable radioactive neutron source device

    DOE Patents [OSTI]

    Stanford, G.S.; Rhodes, E.A.; Devolpi, A.; Boyar, R.E.

    1987-11-06

    This invention is a switchable neutron generating apparatus comprised of a pair of plates, the first plate having an alpha emitter section on it and the second plate having a target material portion on it which generates neutrons when its nuclei absorb an alpha particle. In operation, the alpha portion of the first plate is aligned with the neutron portion of the second plate to produce neutrons and brought out of alignment to cease production of neutrons. 3 figs.

  8. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  10. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  11. Neutron resonance averaging

    SciTech Connect (OSTI)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  12. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect (OSTI)

    Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.

    2014-11-15

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  13. Ultracold neutrons (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Ultracold neutrons Citation Details In-Document Search Title: Ultracold neutrons This series of slides describes ultracold neutrons (UCN) and their properties, various ...

  14. Channel coupling and exchange of an alpha-particle cluster in deuteron scattering on {sup 6}Li nuclei

    SciTech Connect (OSTI)

    Sakuta, S. B.; Burtebaev, N.; Artemov, S. V.; Yarmukhamedov, R.

    2012-07-15

    Existing experimental data on elastic and inelastic deuteron scattering on {sup 6}Li nuclei in the energy range from 8 to 50 MeV were analyzed within the approach of coupled reaction channels. The coupling of elastic scattering and inelastic scattering accompanied by the transition to the 3{sup +} state at E{sub x} 2.186 MeV and the mechanism involving the exchange of an alpha-particle cluster were taken into account in respective calculations. The phenomenological potentials obtained from the present analysis describe well experimental angular distributions at all energies and in full angular ranges. The depths of the real and imaginary parts of the potentials in question depend smoothly on energy at fixed values of the remaining parameters. The energy dependence of relevant volume integrals agrees well with similar data for the p + {sup 6}Li, {alpha} + {sup 6}Li, and {sup 12}C + {sup 12}C systems and with the predictions of a microscopic theory.

  15. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  16. Category:Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    Looking for the Neutron Log page? For detailed information on Neutron Log, click here. Category:Neutron Log Add.png Add a new Neutron Log Technique Pages in category...

  17. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  18. Portable Neutron Sensors for Emergency Response Operations

    SciTech Connect (OSTI)

    Mukhopadhyay, S., Maurer, R., Detweiler, R.

    2012-06-22

    This slide-show presents neutron measurement work, including design, use and performance of different neutron detection systems.

  19. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    SciTech Connect (OSTI)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    2014-05-23

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.

  20. Sigmund and WInterbon Multiple Scattering

    Energy Science and Technology Software Center (OSTI)

    1985-03-01

    SWIMS calculates the angular dispersion of ion beams that undergo small-angle, incoherent multiple scattering by gaseous or solid media.

  1. The I=2 ππ S-wave Scattering Phase Shift from Lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beane, S. R.; Chang, E.; Detmold, W.; Lin, H. W.; Luu, T. C.; Orginos, K.; Parreno, A.; Savage, M. J.; Torok, A.; Walker-Loud, A.

    2012-02-16

    The π+π+ s-wave scattering phase-shift is determined below the inelastic threshold using Lattice QCD. Calculations were performed at a pion mass of mπ ≈ 390 MeV with an anisotropic nf = 2+1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bs ≈ 0.123 fm in the spatial direction and bt bs/3.5 in the time direction. The phase-shift is determined from the energy-eigenvalues of π+π+ systems with both zero and non-zero total momentum in the lattice volume using Luscher's method. Our calculations are precise enoughmore »to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape-parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπ2 a r = 3+O(mπ2/Λχ2). Chiral perturbation theory is used, with the Lattice QCD results as input, to predict the scattering phase-shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.« less

  2. Ultrafast neutron detector

    DOE Patents [OSTI]

    Wang, Ching L. (Livermore, CA)

    1987-01-01

    The invention comprises a neutron detector (50) of very high temporal resolution that is particularly well suited for measuring the fusion reaction neutrons produced by laser-driven inertial confinement fusion targets. The detector comprises a biased two-conductor traveling-wave transmission line (54, 56, 58, 68) having a uranium cathode (60) and a phosphor anode (62) as respective parts of the two conductors. A charge line and Auston switch assembly (70, 72, 74) launch an electric field pulse along the transmission line. Neutrons striking the uranium cathode at a location where the field pulse is passing, are enabled to strike the phosphor anode and produce light that is recorded on photographic film (64). The transmission line may be variously configured to achieve specific experimental goals.

  3. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, Roger B. (Lafayette, CO); Tyree, William H. (Boulder, CO)

    1984-12-18

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  4. Neutronic reactor construction

    DOE Patents [OSTI]

    Huston, Norman E.

    1976-07-06

    1. A neutronic reactor comprising a moderator including horizontal layers formed of horizontal rows of graphite blocks, alternate layers of blocks having the rows extending in one direction, the remaining alternate layers having the rows extending transversely to the said one direction, alternate rows of blocks in one set of alternate layers having longitudinal ducts, the moderator further including slotted graphite tubes positioned in the ducts, the reactor further comprising an aluminum coolant tube positioned within the slotted tube in spaced relation thereto, bodies of thermal-neutron-fissionable material, and jackets enclosing the bodies and being formed of a corrosion-resistant material having a low neutron-capture cross section, the bodies and jackets being positioned within the coolant tube so that the jackets are spaced from the coolant tube.

  5. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  6. Personnel electronic neutron dosimeter

    DOE Patents [OSTI]

    Falk, R.B.; Tyree, W.H.

    1982-03-03

    A personnel electronic dosimeter includes a neutron-proton and neutron-alpha converter for providing an electrical signal having a magnitude proportional to the energy of a detected proton or alpha particle produced from the converter, a pulse generator circuit for generating a pulse having a duration controlled by the weighed effect of the amplitude of the electrical signal, an oscillator enabled by the pulse for generating a train of clock pulses for a time dependent upon the pulse length, a counter for counting the clock pulses, and an indicator for providing a direct reading and aural alarm when the count indicates that the wearer has been exposed to a selected level of neutron dose equivalent.

  7. Low-Fidelity Covariances: Neutron Cross Section Covariance Estimates for 387 Materials

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    "Covariance data are provided for radiative capture (or (n,ch.p.) for light nuclei), elastic scattering (or total for some actinides), inelastic scattering, (n,2n) reactions, fission and nubars over the energy range from 10(-5{super}) eV to 20 MeV. The library contains 387 files including almost all (383 out of 393) materials of the ENDF/B-VII.0. Absent are data for (7{super})Li, (232{super})Th, (233,235,238{super})U and (239{super})Pu as well as (223,224,225,226{super})Ra, while (nat{super})Zn is replaced by (64,66,67,68,70{super})Zn."[http://www.nndc.bnl.gov/lowfi/index.jsp?z=7

  8. Neutron Log | Open Energy Information

    Open Energy Info (EERE)

    Dictionary.png Neutron Log: The neutron log responds primarily to the amount of hydrogen in the formation which is contained in oil, natural gas, and water. The amount of...

  9. Measurement of single-target spin asymmetries in the electroproduction of negative pions in the semi-inclusive deep inelastic reaction n{up_arrow}(e,e'{pi}{sup -})X on a transversely polarized {sup 3}He target

    SciTech Connect (OSTI)

    Chiranjib Dutta

    2010-06-01

    The experiment E06010 measured the target single spin asymmetry (SSA) in the semiinclusive deep inelastic (SIDIS) n{up_arrow}(e, e'{pi}{sup -})X reaction with a transversely polarized {sup 3}He target as an e#11;ective neutron target. This is the very #12;rst independent measurement of the neutron SSA, following the measurements at HERMES and COMPASS on the proton and the deuteron. The experiment acquired data in Hall A at Je#11;erson Laboratory with a continuous electron beam of energy 5.9 GeV, probing the valence quark region, with x = 0.13 {rt_arrow} 0.41, at Q{sup 2} = 1.31 {rt_arrow} 3.1 GeV{sup 2}. The two contributing mechanisms to the measured asymmetry, viz, the Collins effect and the Sivers effect can be realized through the variation of the asymmetry as a function of the Collins and Sivers angles. The neutron Collins and Sivers moments, associated with the azimuthal angular modulations, are extracted from the measured asymmetry for the very #12;first time and are presented in this thesis. The kinematics of this experiment is comparable to the HERMES proton measurement. However, the COMPASS measurements on deuteron and proton are in the low-x region. The results of this experiment are crucial as the first step toward the extraction of quark transversity and Sivers distribution functions in SIDIS. With the existing results on proton and deuteron, these new results on neutron will provide powerful constraints on the transversity and Sivers distributions of both the u and d-quarks in the valence region.

  10. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  11. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  12. Corrosion resistant neutron absorbing coatings

    DOE Patents [OSTI]

    Choi, Jor-Shan (El Cerrito, CA); Farmer, Joseph C. (Tracy, CA); Lee, Chuck K. (Hayward, CA); Walker, Jeffrey (Gaithersburg, MD); Russell, Paige (Las Vegas, NV); Kirkwood, Jon (Saint Leonard, MD); Yang, Nancy (Lafayette, CA); Champagne, Victor (Oxford, PA)

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  13. FAST NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  14. Structure of ??Pb populated in ??Pb + ??Pb deep-inelastic collisions*

    SciTech Connect (OSTI)

    Shand, C. M. [Univ. of Surrey, Guildford (United Kingdom); Wilson, E. [Univ. of Surrey, Guildford (United Kingdom); Podolyk, Zs. [Univ. of Surrey, Guildford (United Kingdom); Grawe, H. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Brown, B. A. [Michigan State Univ., East Lansing, MI (United States); Fornal, B. [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Janssens, R. V. F. [Argonne National Lab. (ANL), Argonne, IL (United States); Bowry, M. [Univ. of Surrey, Guildford (United Kingdom); Bunce, M. [Univ. of Surrey, Guildford (United Kingdom); Carpenter, M. P. [Argonne National Lab. (ANL), Argonne, IL (United States); Carroll, R. J. [Univ. of Surrey, Guildford (United Kingdom); Chiara, C. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Maryland, College Park, MD (United States); Cieplicka-Ory?czak, N. [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Deo, A. Y. [Univ. of Massachusetts, Lowell, MA (United States); Dracoulis, G. D. [Australian National Univ., Canberra, ACT (Australia); Hoffman, C. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Kempley, R. S. [Univ. of Surrey, Guildford (United Kingdom); Kondev, F. G. [Argonne National Lab. (ANL), Argonne, IL (United States); Lane, G. J. [Australian National Univ., Canberra, ACT (Australia); Lauritsen, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Lotay, G. [Univ. of Surrey, Guildford (United Kingdom); National Physics Lab., Teddington (United Kingdom); Reed, M. W. [Univ. of Surrey, Guildford (United Kingdom); Regan, P. H. [Univ. of Surrey, Guildford (United Kingdom); National Physics Lab., Teddington (United Kingdom); Rodriguez-Triguero, C. [Univ. of Brighton, Brighton (United Kingdom); Seweryniak, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Szpak, B. [The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Walker, P. M. [Univ. of Surrey, Guildford (United Kingdom); Zhu, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The yrast structure of 207Pb above the 13/2+ isomeric state has been investigated in deep-inelastic collisions of 208Pb and 208Pb at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of 207Pb is presented up to ~ 6 MeV, built using coincidence and ?-ray intensity analyses. In addition, the spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations.

  15. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    SciTech Connect (OSTI)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)] [Forschungszentrum Jlich GmbH, Jlich Centre for Neutron Science at MLZ, Lichtenbergstrae 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  16. Observation of Nonlinear Compton Scattering

    SciTech Connect (OSTI)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  17. Neutron Absorbing Alloys

    DOE Patents [OSTI]

    Mizia, Ronald E. (Idaho Falls, ID); Shaber, Eric L. (Idaho Falls, ID); DuPont, John N. (Whitehall, PA); Robino, Charles V. (Albuquerque, NM); Williams, David B. (Bethlehem, PA)

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  18. Dose-equivalent neutron dosimeter

    DOE Patents [OSTI]

    Griffith, R.V.; Hankins, D.E.; Tomasino, L.; Gomaa, M.A.M.

    1981-01-07

    A neutron dosimeter is disclosed which provides a single measurement indicating the amount of potential biological damage resulting from the neutron exposure of the wearer, for a wide range of neutron energies. The dosimeter includes a detecting sheet of track etch detecting material such as a carbonate plastic, for detecting higher energy neutrons, and a radiator layer contaning conversion material such as /sup 6/Li and /sup 10/B lying adjacent to the detecting sheet for converting moderate energy neutrons to alpha particles that produce tracks in the adjacent detecting sheet.

  19. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, John G. (Pittsburgh, PA); Ruddy, Frank H. (Monroeville, PA); Brandt, Charles D. (Mount Lebanon, PA); Dulloo, Abdul R. (Pittsburgh, PA); Lott, Randy G. (Pittsburgh, PA); Sirianni, Ernest (Monroeville, PA); Wilson, Randall O. (Greensburg, PA)

    1999-01-01

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors.

  20. Solid state neutron detector array

    DOE Patents [OSTI]

    Seidel, J.G.; Ruddy, F.H.; Brandt, C.D.; Dulloo, A.R.; Lott, R.G.; Sirianni, E.; Wilson, R.O.

    1999-08-17

    A neutron detector array is capable of measuring a wide range of neutron fluxes. The array includes multiple semiconductor neutron detectors. Each detector has a semiconductor active region that is resistant to radiation damage. In one embodiment, the array preferably has a relatively small size, making it possible to place the array in confined locations. The ability of the array to detect a wide range of neutron fluxes is highly advantageous for many applications such as detecting neutron flux during start up, ramp up and full power of nuclear reactors. 7 figs.

  1. A New Facility for High-Energy Neutron-Induced Fission Studies

    SciTech Connect (OSTI)

    Prokofiev, A.; Carlsson, M.; Einarsson, L.; Haag, N.; Pomp, S.; Bergenwall, B.; Blomgren, J.; Hildebrand, A.; Johansson, C.; Mermod, P.; Oesterlund, M.; Tippawan, U.; Dangtip, S.

    2005-05-24

    A new facility is constructed for measurements of neutron-induced fission cross sections in the 20-180 MeV energy region versus the np scattering cross section, which is adopted as the primary neutron standard. The advantage of the experiment compared to earlier studies is that the fission-fragment detection and the neutron-flux measurement via np scattering are performed simultaneously and at the same position in the beam, and, therefore, many sources of systematic errors cancel out. Further reduction of systematic errors is achieved due to 'embedded' determination of effective solid angle of particle detectors using {alpha}-particles from the radioactive decay of the target nuclei. The performance of the facility is illustrated by first data obtained for angular distributions of fission fragments in the 238U(n,f) reaction.

  2. The characterization of metal/ceramic interfaces using specular neutron reflection

    SciTech Connect (OSTI)

    Xiao, P.; Derby, B.; Webster, J.; Penfold, J.

    1997-01-01

    The authors have characterized the chemical composition of three interfaces between metals and a sapphire (Al{sub 2}O{sub 3}) single crystal using specular neutron reflection. The interfaces are Sn/sapphire, Sn/sapphire containing a thin, {approximately}20 nm, Ti interlayer and an interface between sapphire and a Ti-containing Ag-Cu eutectic active braze alloy. The authors have evaluated the neutron reflection results using a multilayer model of the interface. The technique is extremely sensitive to the presence of Ti at the interface being probed because of the negative neutron scattering length of Ti compared with the positive scattering lengths of the other elements present in the systems. The analysis of the data revealed a thin, {approximately}70 nm, titanium suboxide layer t the sapphire/active braze alloy interface, consistent with observations made using other techniques.

  3. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect (OSTI)

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  4. Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering

    SciTech Connect (OSTI)

    Quaglioni, S; Navratil, P

    2008-12-17

    We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.

  5. Notes on the Lumped Backward Master Equation for the Neutron...

    Office of Scientific and Technical Information (OSTI)

    ... FISSION; FISSION NEUTRONS; FLUCTUATIONS; MULTIPLICITY; NEUTRON SOURCES; NEUTRONS; NUCLEAR WEAPONS; PHYSICS; POWER REACTORS; PROBABILITY; PROGENY; RANDOMNESS; REACTOR PHYSICS; ...

  6. Coated Fiber Neutron Detector Test

    SciTech Connect (OSTI)

    Lintereur, Azaree T.; Ely, James H.; Kouzes, Richard T.; Stromswold, David C.

    2009-10-23

    Radiation portal monitors used for interdiction of illicit materials at borders include highly sensitive neutron detection systems. The main reason for having neutron detection capability is to detect fission neutrons from plutonium. The currently deployed radiation portal monitors (RPMs) from Ludlum and Science Applications International Corporation (SAIC) use neutron detectors based upon 3He-filled gas proportional counters, which are the most common large neutron detector. There is a declining supply of 3He in the world, and thus, methods to reduce the use of this gas in RPMs with minimal changes to the current system designs and sensitivity to cargo-borne neutrons are being investigated. Reported here are the results of tests of the 6Li/ZnS(Ag)-coated non-scintillating plastic fibers option. This testing measured the required performance for neutron detection efficiency and gamma ray rejection capabilities of a system manufactured by Innovative American Technology (IAT).

  7. Role of channel coupling and deuteron-exchange mechanisms in anomalous alpha-particle scattering on {sup 6}Li

    SciTech Connect (OSTI)

    Sakuta, S. B.; Artemov, S.V.; Burtebaev, N.; Kerimkulov, Zh.; Novatsky, B. G.; Stepanov, D.N.; Yarmukhamedov, R.

    2009-12-15

    A unified description of existing experimental data on alpha-particle scattering by {sup 6}Li over the broad energy range from 18 to 166 MeV was obtained with allowance for channel-coupling effects and mechanisms involving the exchange of a deuteron cluster. Angular distributions were analyzed on the basis of the optical model and the coupled reaction channels method. It was shown that the inclusion of channel coupling and the contributions from one- and two-step exchangemechanismsmakes it possible to describe special features of the behavior of differential cross sections for both elastic and inelastic scattering in a full energy range. Optimum values found for the parameters of optical potentials agree with the parameters of the global potential proposed previously for nuclei in the mass region A > 12.

  8. Temporal Scattering And Response

    Energy Science and Technology Software Center (OSTI)

    1992-12-15

    TSAR2.3 (Temporal Scattering and Response) is a finite-difference time-domain electromagnetics code suite. TSAR2.3 is a software package for simulating the interactions of electromagnetic waves with linear materials through the use of the finite-difference time-domain method. The code suite contains grid generation, grid verification, input-file creation and post-processing utilities. The physics package, written in Fortran 77, can be pre-processed to run on many different architectures including Cray, Vax and many Unix workstations. Tools are provided tomore » easily port the code to new computers. The physics package is an efficient, flexible electromagnetic simulator. A body under study can be represented as a three-dimensional grid of materials with arbitrary linear properties. This grid can be simulated in a number of ways including incident plane waves, dipoles, and arbitrary incident fields. The grid can be terminated with numerous boundary conditions including free-space radiation, electric conductor, or magnetic conductor. Projection to the far-field in both the time and frequency domains is possible. This distribution includes make files for installing and maintaining the entire code suite.« less

  9. SHARP Neutronics Expanded | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neutronics Expanded SHARP Neutronics Expanded January 29, 2013 - 1:28pm Addthis Fully heterogeneous predictions of thermal neutron flux in a hypothetical metal-oxide-fueled PWR Fully heterogeneous predictions of thermal neutron flux in a hypothetical metal-oxide-fueled PWR SHARP neutronics Module Development The SHARP neutronics module, PROTEUS, includes neutron and gamma transport solvers and cross-section processing tools as well as the capability for depletion and fuel cycle analysis. The

  10. Calculation of Ambient (H*(10)) and Personal (Hp(10)) Dose Equivalent from a 252Cf Neutron Source

    SciTech Connect (OSTI)

    Traub, Richard J.

    2010-03-26

    The purpose of this calculation is to calculate the neutron dose factors for the Sr-Cf-3000 neutron source that is located in the 318 low scatter room (LSR). The dose factors were based on the dose conversion factors published in ICRP-21 Appendix 6, and the Ambient dose equivalent (H*(10)) and Personal dose equivalent (Hp(10)) dose factors published in ICRP Publication 74.

  11. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect (OSTI)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~10% accuracy, and mean neutron energy to ~50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to 15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~25-40 km/s.

  12. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  13. A new neutron time-of-flight detector for fuel-areal-density measurements on OMEGA

    SciTech Connect (OSTI)

    Glebov, V. Yu. Forrest, C. J.; Marshall, K. L.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J.; Stoeckl, C.

    2014-11-15

    A new neutron time-of-flight (nTOF) detector for fuel-areal-density measurements in cryogenic DT implosions was installed on the OMEGA Laser System. The nTOF detector has a cylindrical thin-wall, stainless-steel, 8-in.-diam, 4-in.-thick cavity filled with an oxygenated liquid xylene scintillator. Four gated photomultiplier tubes (PMTs) with different gains are used to measure primary DT and D{sub 2} neutrons, down-scattered neutrons in nT and nD kinematic edge regions, and to study tertiary neutrons in the same detector. The nTOF detector is located 13.4 m from target chamber center in a well-collimated line of sight. The design details of the nTOF detector, PMT optimization, and test results on OMEGA will be presented.

  14. Neutron diffraction measurements of residual stresses in friction stir welding: a review

    SciTech Connect (OSTI)

    Woo, Wan Chuck [ORNL; Feng, Zhili [ORNL; Wang, Xun-Li [ORNL; David, Stan A [ORNL

    2011-01-01

    Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

  15. Fast neutron imaging device and method

    DOE Patents [OSTI]

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  16. Proton recoil scintillator neutron rem meter

    DOE Patents [OSTI]

    Olsher, Richard H. (Los Alamos, NM); Seagraves, David T. (Los Alamos, NM)

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  17. Thermal Neutron Detectors with Discrete Anode Pad Readout

    SciTech Connect (OSTI)

    Yu,B.; Schaknowski, N.A., Smith, G.C., DeGeronimo, G., Vernon, E.O.

    2008-10-19

    A new two-dimensional thermal neutron detector concept that is capable of very high rates is being developed. It is based on neutron conversion in {sup 3}He in an ionization chamber (unity gas gain) that uses only a cathode and anode plane; there is no additional electrode such as a Frisch grid. The cathode is simply the entrance window, and the anode plane is composed of discrete pads, each with their own readout electronics implemented via application specific integrated circuits. The aim is to provide a new generation of detectors with key characteristics that are superior to existing techniques, such as higher count rate capability, better stability, lower sensitivity to background radiation, and more flexible geometries. Such capabilities will improve the performance of neutron scattering instruments at major neutron user facilities. In this paper, we report on progress with the development of a prototype device that has 48 x 48 anode pads and a sensitive area of 24cm x 24cm.

  18. NEUTRON RADIOGRAPHY (NRAD) REACTOR 64-ELEMENT CORE UPGRADE

    SciTech Connect (OSTI)

    John D. Bess

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately +/-1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  19. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  20. NEUTRON IMAGING, RADIOGRAPHY AND TOMOGRAPHY.

    SciTech Connect (OSTI)

    SMITH,G.C.

    2002-03-01

    Neutrons are an invaluable probe in a wide range of scientific, medical and commercial endeavors. Many of these applications require the recording of an image of the neutron signal, either in one-dimension or in two-dimensions. We summarize the reactions of neutrons with the most important elements that are used for their detection. A description is then given of the major techniques used in neutron imaging, with emphasis on the detection media and position readout principle. Important characteristics such as position resolution, linearity, counting rate capability and sensitivity to gamma-background are discussed. Finally, the application of a subset of these instruments in radiology and tomography is described.