Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BTU Accounting for Industry  

E-Print Network (OSTI)

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

2

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

3

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

4

Trillion Particles,  

NLE Websites -- All DOE Office Websites (Extended Search)

Trillion Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper Surendra Byna ∗ , Andrew Uselton ∗ , Prabhat ∗ , David Knaak † , and Yun (Helen) He ∗ ∗ Lawrence Berkeley National Laboratory, USA. Email: {sbyna, acuselton, prabhat, yhe}@lbl.gov † Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. In this paper, we describe our experiences in running VPIC, a large-scale plasma physics simulation, on the NERSC production Cray XE6 system Hopper. The simulation ran on 120,000 cores using ∼80% of computing resources, 90% of the available memory on each node and 50% of the Lustre scratch file system. Over two trillion particles were simulated for 23,000 timesteps, and 10 one-trillion particle dumps, each ranging between

5

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

6

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

7

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

8

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

9

" Generation by Census Region, Industry Group, Selected Industries, Presence of"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Inputs of Energy for Heat, Power, and Electricity" 4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.3

10

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

11

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

12

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

13

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE"

14

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE",," " "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

15

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

16

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Census Region",,,,,,,"Census Division",,,,,"RSE" "SIC"," ",,,,,,,"Middle","East North","West North","South","East South","West South",,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","New England","Atlantic","Central","Central","Atlantic","Central","Central","Mountain","Pacific","Factors"

17

New Jersey Industrial Energy Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

452.1 trillion British thermal units (Btu). As part of an initiative to reduce the energy intensity of the American manufacturing sector, the United States Department of...

18

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

19

NICE3: Industrial Refrigeration System  

SciTech Connect

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

20

INDUST: An Industrial Data Base  

E-Print Network (OSTI)

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Trillion Cubic Feet Billion Cubic Meters Residential Commercial  

Gasoline and Diesel Fuel Update (EIA)

2 2 4 6 8 10 0 50 100 150 200 250 Trillion Cubic Feet Billion Cubic Meters Residential Commercial Industrial Electric Utilities 1930 1935 1940 1945 1950 1955 1960 1965 1970 1980 1985 1990 1995 1975 2000 Note: In 1996, consumption of natural gas for agricultural use is classified as industrial use. In 1995 and earlier years, agricultural use was classified as commercial use. Sources: 1930-1975: Bureau of Mines, Minerals Yearbook, "Natural Gas" chapter. 1976-1978: Energy Information Administration (EIA), Energy Data Reports, Natural Gas Annual. 1979: EIA, Natural Gas Production and Consumption, 1979. 1980-1996: Form EIA- 176, "Annual Report of Natural and Supplemental Gas Supply and Disposition" and Form EIA-759, "Monthly Power Plant Report." 23. Natural Gas Delivered to Consumers in the United States, 1930-1996 Figure

22

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

23

" Generation by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

A49. Total Inputs of Energy for Heat, Power, and Electricity" A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row"

24

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

25

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

26

Powered by 500 Trillion Calculations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations April 15, 2011 - 5:31pm Addthis Blood flow visualization | Photo Courtesy of Argonne National Laboratory Blood flow visualization | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications. With the power of 500 trillion calculations per second, a team of scientists from the Department of Energy's Argonne National Laboratory (ANL) and Brown University are mapping the movement of red blood cells -- hoping this will lead to better diagnoses and treatments for patients with

27

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

28

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

29

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

Not Available

1980-12-01T23:59:59.000Z

30

In-Situ, Real-Time Measurement of Melt Constituents in the Aluminum, Glass, and Steel Industries  

SciTech Connect

Energy Research Company (ERCo), with support from DOEs Industrial Technologies Program, Sensors and Automation has developed a Laser Induced Breakdown Spectroscopy (LIBS) probe to measure, in real time and in-situ, the composition of an aluminum melt in a furnace at an industrial plant. The compositional data is provided to the operator continuously allowing the operator to adjust the melt composition, saving energy, increasing production, and maintaining tighter compositional tolerances than has been previously possible. The overall objectives of this project were to: -- design, develop, fabricate, test and project future costs of the LIBS probe on bench-size experiments; - test the unit in a pilot-scaled aluminum furnace under varying operating conditions of temperature and melt constituents; -- determine the instruments needed for use in industrial environment; -- compare LIBS Probe data to readings traditionally taken on the furnace; -- get full-scale data to resolve if, and how, the LIBS Probe design should be modified for operator acceptance. Extensive laboratory tests have proven the concept feasibility. Elemental concentrations below 0.1% wt. have been accurately measured. Further, the LIBS system has now been installed and is operating at a Commonwealth Aluminum plant in Ohio. The technology is crosscutting as it can be used in a wide variety of applications. In the Sensors and Automation Program the application was for the secondary aluminum industry. However, this project spawned a number of other applications, which are also reported here for completeness. The project was effective in that two commercial systems are now operating; one at Commonwealth Aluminum and another at a PPG fiberglass plant. Other commercial installations are being negotiated as of this writing. This project led to the following conclusions: 1. The LIBS System has been developed for industrial applications. This is the first time this has been accomplished. In addition, two commercial installations have been completed; one at Commonwealth and another at PPG. 2. The system is easy to operate and requires no operator training. Calibration is not required. It is certified as eye safe. 3. The system is crosscutting and ERCo is evaluating seven applications, as reported in this report, and other applications to be reported later. 4. A business plan is being completed for each of the near term markets. ERCo is committed to achieving continued commercial success with the LIBS System. 5. A world wide patent has been issued. 6. The energy savings is substantial. The annual energy savings, by 2010, for each industry is estimated as follows: o Secondary Aluminum 1.44 trillion Btus o Glass 17 to 45 trillion Btus o Steel Up to 26 trillion Btus

Robert De Saro

2006-05-18T23:59:59.000Z

31

Building Energy Software Tools Directory: BTU Analysis Plus  

NLE Websites -- All DOE Office Websites (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

32

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

33

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

34

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

35

Building Energy Software Tools Directory: BTU Analysis REG  

NLE Websites -- All DOE Office Websites (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

36

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

37

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

38

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network (OSTI)

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

39

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

40

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network (OSTI)

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

42

" Census Region, Census Division, Industry Group, and Selected Industries, 1994"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity and Steam by Type of Supplier," Quantity of Purchased Electricity and Steam by Type of Supplier," " Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam" ,," (million kWh)",," (billion Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

43

Method for producing low and medium BTU gas from coal  

SciTech Connect

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

44

Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

45

Industry  

E-Print Network (OSTI)

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

46

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

47

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

48

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell

1982-01-01T23:59:59.000Z

49

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer

1982-09-01T23:59:59.000Z

50

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

51

Table 1c. Off-Site Produced Energy (Site Energy)For Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

c c Page Last Modified: May 2010 Table 1c. Off-Site Produced Energy (Site Energy) for Selected Industries, 1998, 2002 and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 992 1,079 1,124 312 Beverage and Tobacco Products 109 104 101 313 Textile Mills 255 206 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 285 198 296 322 Paper 1,648 1,413 1,350 323 Printing and Related Support 97 98 85 324 Petroleum and Coal Products 1,475 1,290 1,434 325 Chemicals 3,377 3,154 2,772 326 Plastics and Rubber Products 327 347 336 327 Nonmetallic Mineral Products 921 960 1,105 331 Primary Metals 2,010 1,614 1,353 332 Fabricated Metal Products 441 387 396

52

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

53

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

54

Industry  

E-Print Network (OSTI)

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

55

Industry  

E-Print Network (OSTI)

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal19712004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

56

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

57

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

58

Industry  

E-Print Network (OSTI)

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

59

Industry  

E-Print Network (OSTI)

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

60

Industry  

E-Print Network (OSTI)

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Industry  

SciTech Connect

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

62

Analysis of the Energy Intensity of Industries in California  

E-Print Network (OSTI)

the aggregate energy-intensity of industry. Applied Energyindustries with final energy intensities of 12.3 Billion BtuAs mentioned, the energy intensity of this sector is much

Can, Stephane de la Rue du

2014-01-01T23:59:59.000Z

63

Wisconsin Save Energy Now Program  

Energy.gov (U.S. Department of Energy (DOE))

Among Wisconsins economic sectors, the industrial sector represents the highest level of energy consumption. In 2007, this sector consumed approximately 623.5 trillion British thermal units (Btu)....

64

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

65

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

66

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

67

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

68

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network (OSTI)

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

69

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

70

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

71

Energy Analysis and Diagnostics: A Computer Based Tool for Industrial Self Assessment  

E-Print Network (OSTI)

each BTU of energy produced. This paper describes the design and development of a computer based tool (ENERGEX) which aids the industrial user in developing energy conservation opportunities (ECOs) in plants. The software system is capable...

Gopalakrishnan, B.; Plummer, R. W.; Nagarajan, S.; Kolluri, R.

72

U. S. Industrial Energy Consumption and Conservation: Past and Future Perspectives  

E-Print Network (OSTI)

-bed combustors and medium Btu gasifiers to enable use of coal for gas turbines. Motors. Another partly developed technology which may have a major impact on industrial energy is motor controls. Although small motors are often remarkably inefficient, most...-bed combustors and medium Btu gasifiers to enable use of coal for gas turbines. Motors. Another partly developed technology which may have a major impact on industrial energy is motor controls. Although small motors are often remarkably inefficient, most...

Ganeriwal, R; Ross, M. H.

1980-01-01T23:59:59.000Z

73

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network (OSTI)

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

74

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

75

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network (OSTI)

-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies... through industry-wide application of this technology is on the order of 0.5-1 quad per year. 2. Depending on the sales price which can be ob tained for refinery fuel gas displaced by coke generated MBG, the economics of coke gasification can appear...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

76

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

77

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

78

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

79

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel Oil(b)","(billion",,"NGL(d)",,"(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)",,"short tons)","short tons)","(trillion Btu)"

80

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

82

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

83

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

84

Efficient Energy Utilization in the Industrial Sector - Case Studies  

E-Print Network (OSTI)

require. Recent figures for the distribution of energy indi cate that the industrial sector consumes about 44% of the total with about 2/3 of that for combustion and the remainder for raw materials. This repre sents about 24 quadrillion BTU's per year... 16 years to a possible 70 quqd rillion BTU's. The total energy consumption wi~l continue to grow over the next 16 years as shown in Figure 2. Again, under moderate economic growth, energy gnowth will average about 3 percent per year. For exa...

Davis, S. R.

1984-01-01T23:59:59.000Z

85

Industry Alliance Industry Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

86

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

87

" by Type of Supplier, Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Prices of Purchased Electricity and Steam" 3. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam" ,," (kWh)",," (million Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

88

Commercial and Industrial Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate The lesser of 25% of the total cost or $50,000 Program Info Funding Source RPS alternative compliance payments Start Date 11/1/2010 State New Hampshire Program Type State Rebate Program Rebate Amount PV: $0.80/W (DC) for new systems; $0.50/W (DC) for additions to existing systems Solar Thermal: $0.12/rated or modeled kBtu/year for new systems with 15 or fewer collectors; $0.07/rated or modeled kBtu/year for new systems with

89

Part-Per-Trillion Level SF6 Detection Using a Quartz Enhanced Photoacoustic Spectroscopy-Based Sensor with Single-Mode Fiber-Coupled Quantum Cascade Laser Excitation  

SciTech Connect

A sensitive spectroscopic sensor based on a hollow-core fiber-coupled quantum cascade laser (QCL) emitting at 10.54 m and quartz enhanced photoacoustic spectroscopy (QEPAS) technique is reported. The design and realization of mid-infrared fiber and coupler optics has ensured single-mode QCL beam delivery to the QEPAS sensor . The collimation optics was designed to produce a laser beam of significantly reduced beam size and waist so as to prevent illumination of the quartz tuning fork and micro-resonator tubes. SF6 was selected as the target gas. A minimum detection sensitivity of 50 parts per trillion in 1 s was achieved with a QCL power of 18 mW, corresponding to a normalized noise-equivalent absorption of 2.7x10-10 Wcm-1/Hz1/2.

Spagnolo, V.; Patimisco, P.; Borri, Simone; Scamarcio, G.; Bernacki, Bruce E.; Kriesel, J.M.

2012-10-23T23:59:59.000Z

90

U.S. Department of Energy Announces Completion of 500 Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completion of 500 Industrial Completion of 500 Industrial Energy Saving Assessment U.S. Department of Energy Announces Completion of 500 Industrial Energy Saving Assessment May 9, 2008 - 11:30am Addthis Over 80 Trillion Btus of Natural Gas Savings Found WASHINGTON - The U.S. Department of Energy (DOE) today announced that it has completed the 500th Energy Saving Assessment (ESA) at the nation's largest industrial facilities. These assessments have helped companies identify opportunities to save over an estimated 80 trillion British Thermal Units of natural gas - roughly equivalent to the natural gas used in over one million American homes - more than $800 million in potential energy savings. If all of the recommendations from the assessments conducted are fully implemented by the industrial facilities, the

91

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

92

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

93

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

94

Energy and materials flows in the iron and steel industry  

SciTech Connect

Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

Sparrow, F.T.

1983-06-01T23:59:59.000Z

95

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ",,,"Fuel...

96

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

97

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1, 2006;" 1 Relative Standard Errors for Table 4.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

98

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 3.1, 2006;" 1 Relative Standard Errors for Table 3.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

99

Sifting Through a Trillion Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Science, Hopper Linda Vu, lvu@lbl.gov, +1 510 495 2402 VPIC1.jpg After querying a dataset of approximately 114,875,956,837 particles for those with Energy values less than...

100

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

102

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

103

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

104

Final Technical Report HFC Concrete: A Low-???????­???¢???????Energy, Carbon-???????­Dioxide-???????­Negative Solution for reducing Industrial Greenhouse Gas Emissions  

SciTech Connect

Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.

Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

2012-05-14T23:59:59.000Z

105

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

106

Energy Conservation Through Industrial Cogeneration Systems  

E-Print Network (OSTI)

Typical Axial Turbine SATURN 800 kW CENTAUR 2700 kW MARS 7400 kW Figure 3. Solar Gas Turbine Generator Sets 23 ESL-IE-79-04-03 Proceedings from the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 Exhaust Heat Utilization... temperatures below the dew point) 612,500 = $383/kW 1600 ? Net fuel rate (from Figure 4) = 6524 Btu/kWh ? Maintenance cost = $0.0018/kWh ? Cost of Electricity Generated 6 = (6524) (2.85 -;"-10 ) + 0.0018 0.20/kWh ? Saving/Kilowatt Hour: 0...

Solt, J. C.

1979-01-01T23:59:59.000Z

107

" and Electricity Generation by Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," 3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " "," ","Pulping Liquor",," ","Wood Harvested","and Byproducts","and","RSE" "SIC"," ","or","Biomass","Agricultural","Directly","from","Paper-Related","Row"

108

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for primary electricity are 10,197 Btu/KWh, 10,173 Btu/KWh, and 9,919 Btu/KWh for 1998, 2002, and 2006, respectively. Sources: Energy Information Administration, Form EIA-846, Manufacturing Energy Consumption Surveys, 1998, 2002, and 2006. and Monthly Energy Review November 2005, and September 2009 DOE/EIA-0035(2005, 2009),Table A6. MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14

109

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

110

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

111

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

112

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

113

Critical Issues Facing Federal Customers and the Electric Industry: A Call to Partnering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Facing Federal Issues Facing Federal Critical Issues Facing Federal Customers and the Electric Industry: Customers and the Electric Industry: A Call to Partnering A Call to Partnering Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG November 28, 2007 Overview  State of the industry  Review recent Energy Infrastructure Picture State of the Industry State of the Industry The Challenge of Balancing Core Drivers The Challenge of Balancing Core Drivers Rising Costs Rising Costs and Prices and Prices Climate Climate Change Change Energy Energy Efficiency Efficiency Enormous Enormous CapEx CapEx No longer a declining cost industry Fuel, infrastructure components, global industrialization and competition $ 750 Billion  $ 1.2 Trillion Exceeds current capitalization

114

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

115

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing

116

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

117

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

118

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

119

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

120

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

122

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.1 Offsite-Produced Fuel Consumption, 2006; 4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3 618 1 7 * 45 3112 Grain and Oilseed Milling 316 15,536 * * 115 * 5 0 28 311221 Wet Corn Milling 179 6,801 * * 51 * 4 0 8 31131 Sugar Manufacturing 67 974 1 * 17 * 1 * 4 3114 Fruit and Vegetable Preserving and Specialty Food 168 9,721

123

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

124

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006; 1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107 3112 Grain and Oilseed Milling 317 15,464 * * 115 * 5 0 30 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 3115 Dairy Product

125

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

126

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

127

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

128

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

129

Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laclede Gas Company - Commercial and Industrial Energy Efficiency Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program Laclede Gas Company - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Maximum Rebate Commercial Incentive: Contact Laclede Gas for general program incentive maximum Gas Boilers: 1,000,000 BTU/hr ($3,000) Continuous Modulating Burner: $15,000 cap per burner Gas-fired Boiler Tune Up: $750 per building (non-profit), $500 per boiler (C&I) High Efficiency Air-Forced Furnaces: $200-$250 Vent Dampers: $500 per boiler Steam Trap Replacements: $2,500 Primary Air Dampers: $500 Food Service Gas Steamer: $475 Food Service Gas Fryer: $350

130

Industrial Engineering Industrial Advisory Board  

E-Print Network (OSTI)

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

131

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

132

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

133

Air movement as an energy efficient means toward occupant comfort  

E-Print Network (OSTI)

only by electrical lighting (481 trillion BTU vs. 1340only by electrical lighting (141 billion kWh vs. 393 billion

Arens, Edward; Zhang, Hui; Pasut, Wilmer; Zhai, Yongchao; Hoyt, Tyler; Huang, Li

2013-01-01T23:59:59.000Z

134

Innovative Process and Materials Technologies | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

110 trillion Btu per year. Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets (Massachusetts Institute of Technology (MIT) - Cambridge, MA) A...

135

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

136

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

137

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

138

Leading the Way in Energy Best Practices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fleet efficiency, which ultimately saves taxpayers money. This year's Federal Energy and Water Management Award winners saved a total of 1.9 trillion British thermal units (Btu)...

139

First trillion particle cosmological simulation completed  

NLE Websites -- All DOE Office Websites (Extended Search)

high-resolution cyber images of our cosmos. December 3, 2014 Simulation of the cosmic web of the dark matter mass distribution. This region represents about 110,000 of the...

140

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG and",,,"Coke"," " "Code(a)","Subsector and Industry","Total",,"Fuel Oil","Fuel Oil(b)","Natural Gas(c)",,"NGL(d)",,"Coal","and Breeze","Other(e)"

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

142

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

143

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009" August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,,"Furnace/Coke",,,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total",,"Oven Gases","Waste Gas",,"Coke","Black Liquor","Bark","Materials"

144

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

145

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

146

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010;" 5 Selected Byproducts in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste" " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

147

 

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2010 State Energy Consumption Estimates 1960 Through 2008 2008 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2008 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural

148

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

149

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

150

Industrial Hygienist  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

151

Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

152

Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

153

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

154

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

155

Fluidized-bed combustion: effectiveness of an SO/sub 2/ control technology for industrial boilers. Final report  

SciTech Connect

Atmospheric fluidized-bed combustion (AFBC) boilers have developed rapidly over recent years and are now offered commercially in several different configurations. SO/sub 2/ reduction levels of 90% and above have been achieved by coal-fired AFBC boilers in the industrial size category. Based on the data available, industrial FBC NOx emissions have been consistently below 0.5 lb/million Btu. PM emissions of less than 0.5 lb/million Btu have been routinely achieved with fabric filters. AFBC boiler system costs were compared with costs for a conventional boiler equipped with an FGD system and with costs for a conventional boiler using low-sulfur compliance coal. The conclusions drawn from the economic analyses are that (1) studied cost difference between AFBC Technology, conventional boiler/FGD systems, and compliance coal combustion are projected to be small over the SO/sub 2/ emission range of 1.7 to 0.8 lb/million Btu and SO/sub 2/ reduction range of 65 to 90%, and (2) that cost competitiveness among these technologies is not expected to change significantly as the emission limitations change over this range. Absolute economic competitiveness among these options will be sensitive to site-specific parameters and decided on a case-by-case basis.

Aul, E.F.; Owen, M.L.; Jones, A.F.

1984-09-01T23:59:59.000Z

156

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

157

The Natural Gas Industry and Markets in 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 Overview The natural gas industry in 2003 experienced sustained high prices, supported at least in part by pressure on supplies as gas in storage was rebuilt from historic lows in the early part of the year. The national annual average natural gas wellhead price was $4.88 per thousand cubic feet (Mcf), which is the highest wellhead price (based on 2003 constant dollars) in the Energy Information Administration's historical data series dating to 1930. U.S. marketed production was virtually unchanged compared with the previous year at 19.9 trillion cubic feet (Tcf), despite the high prices and an increased number of drilling rigs employed in the commercial development of gas deposits. Imports of liquefied natural gas (LNG) mitigated supply declines, reaching a record

158

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

159

U.S. Energy Information Administration (EIA) - Residential  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Glossary › FAQS › Overview Industrial Commercial Industrial Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. figure data The decrease in energy consumption in the manufacturing sector was also

160

Industry Perspective  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

162

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

163

Iron and steel industry process model  

SciTech Connect

The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

1980-01-01T23:59:59.000Z

164

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

165

Market and equipment performance analysis for the application of coal-based fuels/advanced combustion systems: Commercial and small industrial applications: Volume B, Appendices  

SciTech Connect

In March 1985, Burns and Roe Services Corporation (BRSC) under Contract No. AC22-84PC72571 with the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) initiated a task entitled ''Market and Equipment Performance Analysis for the Application of Coal-Based Fuels/Advanced Combustion Systems.'' This volume contains the following Appendices: Commercial sector applications of coal based fuels and advanced technologies, EOS Technologies, Inc.; Estimation of fuel use and population for industrial boilers <50 mm Btu/hr and direct fired combustors <100 mm Btu/hr firing oil and gas, PEI Associates; Characteristics of oil and gas fired boilers; Characteristics of oil and gas fired process heaters; Environmental permitting considerations; States air emission rules and regulations applying to commercial/industrial boilers and process heaters <100 mm Btu/hr heat input; Advanced coal combustion systems; Application of advanced coal combustion systems to watertube boilers; Application of advanced coal combustion systems to firetube boilers; and Application of advanced coal combustion systems to process heaters.

Not Available

1986-05-01T23:59:59.000Z

166

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

167

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 * 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 0 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 0 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 0 3115 Dairy Product 121 10,079 * * 80 * * 0 1 0 3116 Animal Slaughtering and Processing 226 17,545 1 1 141 * 0 0 12 0 312 Beverage and Tobacco Products 107

168

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

169

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

170

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

171

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

. In this introductory material, various definitions were given (BTU, Therm, etc.), along with the basic laws of thermodYnamics. Then, some conversion figures were given to compare var ious forms of energy. Finally, a brief tutorial on meter reading, demand charge...

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

172

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

Al MUilE 16 MMTIVl COAL GASIFICATION - HIGH STU 1250 MMCF/Olfacilities, particularly coal gasification plants,coal-fired5 5T/yr ore) Coal Gasification (Hi BTU (80Xl0 9 ft 3/yr)

Authors, Various

2010-01-01T23:59:59.000Z

173

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

174

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

175

Engineering Industrial & Systems  

E-Print Network (OSTI)

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

176

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

177

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

178

Potential for energy conservation in the glass industry  

SciTech Connect

While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

1986-06-01T23:59:59.000Z

179

1990 Washington State directory of biomass energy facilities  

SciTech Connect

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

180

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network (OSTI)

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

and Industrial Engineering  

E-Print Network (OSTI)

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

182

Industrial and Systems engineering  

E-Print Network (OSTI)

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

183

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

184

Energy-Related Carbon Emissions, by Industry, 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million metric tons) Carbon Intensity SIC Code Industry Group Total Net Electricity Natural Gas Petro- leum Coal Other (MMTC/ Quadrillion Btu) Total 371.7 131.1 93.5 87.3 56.8 3.1 17.16 20 Food and Kindred Products 24.4 9.8 9.1 W W 0.1 20.44 21 Tobacco Products W 0.1 W W W W W 22 Textile Mill Products 8.7 5.5 1.7 0.6 1.0 * 28.21 23 Apparel and Other Textile Products W 1.3 0.4 W W W W 24 Lumber and Wood Products 4.9 3.4 0.7 W W 0.2 9.98 25 Furniture and Fixtures 1.6 1.1 0.3 * 0.1 0.1 23.19 26 Paper and Allied Products 31.6 11.0 8.3 4.3 7.8 0.3 11.88

185

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

186

Captive power plants and industrial sector in the developing countries  

SciTech Connect

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

187

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

188

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

189

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

190

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

191

Career Map: Industrial Engineer  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

192

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

193

Production of low BTU gas from biomass  

E-Print Network (OSTI)

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

194

Catalytic reactor for low-Btu fuels  

DOE Patents (OSTI)

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

195

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

196

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

197

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

198

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

199

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

200

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

table7.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002; 6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 0.9 1.2 1.5 0.9 1.5 0.8 0.6 1.1 311 Food 1,082 W 2 3 566 1 9 * 40 8.2 311221 Wet Corn Milling 220 W * * 59 * 6 0 9 1.1 31131 Sugar 71 733 * * 22 * 2 * 3 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0 0 1 12.6

202

table4.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002; 1 Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 68,230 2 3 560 1 8 * 50 8 311221 Wet Corn Milling 217 7,098 * * 59 * 5 0 11 1.1 31131 Sugar 74 733 * * 22 * 2 * 8 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0

203

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

204

Industrial Energy Conservation Potentials in North Carolina  

E-Print Network (OSTI)

molecules are closer together than those in warmer air. Also cooler air has a lower moisture content. The energy savings E for this ECO are E = C x H x W x L x PLF x ?TI - TO)/ Tl + 460?/EFF where C = conversion constant, 2,545 BTU/HP hr H... molecules are closer together than those in warmer air. Also cooler air has a lower moisture content. The energy savings E for this ECO are E = C x H x W x L x PLF x ?TI - TO)/ Tl + 460?/EFF where C = conversion constant, 2,545 BTU/HP hr H...

Barakat, M. G.; Singh, H.; Mallik, A. K.

205

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

206

Industry 4.0  

Science Journals Connector (OSTI)

Industry is the part of an economy that produces material goods which are highly mechanized and automatized. Ever since the beginning of industrialization, technological leaps have led to paradigm shifts which to...

Dr. Heiner Lasi

2014-08-01T23:59:59.000Z

207

Chemistry Industry in Egypt  

Science Journals Connector (OSTI)

Chemistry Industry in Egypt ... FROM antiquity the Egyptian economy has been predominately agricultural. ... Nevertheless, it is most probable that the ancient Egyptians were the world's first practical or industrial chemists. ...

1953-08-10T23:59:59.000Z

208

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network (OSTI)

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

209

Industrial Green | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the...

210

The Industrial Electrification Program  

E-Print Network (OSTI)

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

211

Systems and Industry Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

systems and industry analyses News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program...

212

Geothermal Industry Partnership Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

213

Photovoltaics industry profile  

SciTech Connect

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

214

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

215

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network (OSTI)

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

216

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

217

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

218

CA is particularly vulnerable to the costs associated with unmitigated climate change. A warming climate would generate more smoggy days, ozone, and foster more large brush  

E-Print Network (OSTI)

-acid-methyl-ester (FAME)) · Renewable diesel and gasoline (e.g., "drop-in" fuels or hydrocarbons, biomass-to-liquid (BTL% Forestry, 242 TBtu, 41% Agriculture, 137 TBtu, 24% Potential Feedstock Energy in Biomass 507 Trillion Btu

California at Davis, University of

219

How Much Energy Does Each State Produce? | Department of Energy  

Office of Environmental Management (EM)

Much Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it...

220

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Years, 1949-2011 (Sum of Tables 8.4b and 8.4c; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1...

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

222

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

223

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

224

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

225

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

226

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

227

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book (EERE)

4 Federal Agency Progress Toward the Renewable Energy Goal (Trillion Btu) (1) Total Renewable Energy Usage DOD EPA (2) DOE GSA NASA DOI Others All Agencies Note(s): Source(s):...

228

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

229

Interacting With the Pharmaceutical Industry  

E-Print Network (OSTI)

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

230

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name: Benteler Industries Place: Grand Rapids, MI Website: http:www.bentelerindustries. References: Benteler Industries1 Information...

231

LANSCE | Lujan Center | Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact the Lujan...

232

Fact Sheet for Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

for Industrial Facilities May 2012 Overview Public utilities in the Pacific Northwest serve more than 2,200 megawatts of industrial load, making industrial sector users a vitally...

233

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

234

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

235

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

236

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

237

Industrial Energy in Transition: A Petrochemical Perspective  

Science Journals Connector (OSTI)

...synthesis gas available is the following: 1) The need for medium Btu gas (more or less synonymous with synthesis gas) for...PUROX pro-cess, based on a unique, oxygen-fed slagging gasifier that has been extensive-ly shown in a pilot plant (yielding...

Ronald S. Wishart

1978-02-10T23:59:59.000Z

238

Industrial Energy in Transition: A Petrochemical Perspective  

Science Journals Connector (OSTI)

...available is the following: 1) The need for medium Btu gas (more or less synonymous with...limitation on shale oil production is not the size of the resource, but rather 10 FEBRUARY...based on a unique, oxygen-fed slagging gasifier that has been extensive-ly shown in...

Ronald S. Wishart

1978-02-10T23:59:59.000Z

239

Combined Cycles and Cogeneration - An Alternative for the Process Industries  

E-Print Network (OSTI)

SYSTEM Gasification Numerous programs are underway for gasification of solid fuels and heavy oils and it is among these systems that many feel medium Btu gas will be pro duced for use in combined cycle systems. Many of the problems now facing... the gasification approach are economic in nature caused by the compe titive costs of gas and oil. In addition, in areas lacking a coal infrastructure, extraordinary costs still exist in the early years. FIG. 13 INTEGRATED INTERMEDIATE Btu GASIFICATION CYCLE...

Harkins, H. L.

1981-01-01T23:59:59.000Z

240

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

242

Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry  

E-Print Network (OSTI)

and Kathleen Hogan (DOE-EERE) for their ongoing support ofARRA Btu C&I CBECS DOE ECM EERE EIA ESC ESCO ESPC FEMP HUD

Stuart, Elizabeth

2014-01-01T23:59:59.000Z

243

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network (OSTI)

diesel fuel consumption in 2000 was 69.5 million metric tons (MMT) 79 (see Table 9-1) or 2.96 quadrillion BTU.

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

244

Electrotechnologies in Process Industries  

E-Print Network (OSTI)

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

245

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

246

Industrial Security Specialst  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will serve in a developmental capacity assisting senior specialists in carrying out a variety of industrial security and oversight functions.

247

Window industry technology roadmap  

SciTech Connect

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

248

Commercial & Industrial Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

249

An industrial policy  

Science Journals Connector (OSTI)

An industrial policy ... There are problems that are very much intertwined with national policy, but there are strengths, too, and they are worth noting. ...

1984-03-05T23:59:59.000Z

250

Industrial and Grid Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial and Grid Security Establishing resilient infrastructures that operate when sensors and physical assets are perturbed is an important national objective. Two related LDRD...

251

Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report  

SciTech Connect

The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

1982-10-01T23:59:59.000Z

252

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

253

Growing Hawaii's agriculture industry,  

E-Print Network (OSTI)

Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

254

Conference on Industrial Physics  

Science Journals Connector (OSTI)

... THE first Conference on Industrial Physics to be held in Great Britain took place in Manchester under the ... auspices of the Institute of Physics on March 28-30. The subject chosen for the Conference was Vacuum Devices in Research and Industry, and its chief object was to ...

HERBERT R. LANG

1935-04-06T23:59:59.000Z

255

Industrial Optimization Compact Course  

E-Print Network (OSTI)

Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

Kirches, Christian

256

Industrial electrotechnology development  

Science Journals Connector (OSTI)

New and improved industrial technologies have a tremendous role in enhancing productivity, minimising waste, reducing overall energy consumption, and mitigating environmental impacts. The electric utility industry plays a major role in developing these new and improved technologies. This paper describes several major advances and their potential impacts.

Clark W. Gellings

1997-01-01T23:59:59.000Z

257

Japan's Rayon Industry  

Science Journals Connector (OSTI)

THE RAYON INDUSTRY of Japan has constantly expanded for the past eight years at a pace which has surpassed the development of all the other manufacturing industries of the Empire. At the end of 1926, the combined total output of rayon companies in this ...

KEHTI SISIDO

1934-08-10T23:59:59.000Z

258

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

259

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

260

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 7.3c Consumption of Selected Combustible Fuels for Electricity Generation: Commercial and Industrial Sectors (Subset of Table 7.3a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 417 953 28 15 10,740 13,103 517 104 335 16 36 1995 Total .................... 569 649 43 21 12,171 12,265 601 114 373 13 40 2000 Total .................... 514 823 37 26 11,706 10,459 640 107 369 10 45 2001 Total .................... 532 1,023 36 15 10,636 10,530 654 88 370 7 44 2002 Total .................... 477 834 33 18 11,855 11,608 685 106 464 15 43 2003 Total

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 7.4c Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors (Subset of Table 7.4a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 1,191 2,056 46 28 27,781 36,159 1,055 275 1,125 41 86 1995 Total .................... 1,419 1,245 78 40 29,363 34,448 1,258 290 1,255 38 95 2000 Total .................... 1,547 1,615 85 47 28,031 30,520 1,386 331 1,244 35 108 2001 Total .................... 1,448 1,832 79 25 25,755 26,817 1,310 248 1,054 27 101 2002 Total ....................

262

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

263

Posted 3/2/13 Medline Industries Industrial Engineer  

E-Print Network (OSTI)

Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

Heller, Barbara

264

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use  

E-Print Network (OSTI)

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

265

INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

Rohs, Remo

266

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

267

The Hobbling of Coal: Policy and Regulatory Uncertainties  

Science Journals Connector (OSTI)

...use coal and that, after 1 January 1990, gas use...arid then providing tax rebates equal to the amount of...reduction that is set at $1.05 in 1979, falls to...Those us-ing less than 500 billion Btu would be ex-empt...larger users and those using 1.5 trillion Btu or more...

Richard L. Gordon

1978-04-14T23:59:59.000Z

268

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

269

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

270

Argonne CNM: Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industrial Users For Industrial Users The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through peer review of user proposals. Before you submit your first user proposal, we encourage you to contact any of our staff researchers, group leaders, the User Office, or division management to discuss the feasibility of your intended research using the expertise and facilities at the CNM. We are here to serve you as part of our user community and will be happy to address any questions you might have.

271

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

272

Industry | OpenEI  

Open Energy Info (EERE)

Industry Industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by other industries and construction. Data is only available for Paraguay and the U.S., years 2000 to 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption Industry UN Data application/zip icon XML (zip, 514 bytes) application/zip icon XLS (zip, 425 bytes) Quality Metrics

273

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

274

Safety in Offshore Industry  

Science Journals Connector (OSTI)

A large number of accidents in offshore industry have occurred over the years. Ten of the deadliest of these accidents occurred at or on the Piper Alpha ... , the Alexander L. Kielland (a Norwegian semi-submersible

2010-01-01T23:59:59.000Z

275

Energy Industry Analyst  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will function as an Energy Industry Analyst within FE's Office of Oil and Gas, with responsibility for supporting senior staff members in performing policy...

276

Mining Industry Profile  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. mining industry consists of the search for, extraction, beneficiation, and processing of naturally occurring solid minerals from the earth. These mined minerals include coal, metals such...

277

Load Management for Industry  

E-Print Network (OSTI)

In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

Konsevick, W. J., Jr.

1982-01-01T23:59:59.000Z

278

Uranium Industry Annual, 1992  

SciTech Connect

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

279

Industrial power by research?  

Science Journals Connector (OSTI)

... The largest nation on the Earth is at last on the road to becoming an industrial power matching in prosperity and creativity the most successful nations elsewhere in the world. ... ask whether China has always been so certain of itself.

1985-11-21T23:59:59.000Z

280

Steel Industry Profile  

Energy.gov (U.S. Department of Energy (DOE))

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Utility and Industrial Partnerships  

E-Print Network (OSTI)

In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

Sashihara, T. F.

282

Presentations for Industry  

Energy.gov (U.S. Department of Energy (DOE))

Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

283

Industrial Decision Making  

E-Print Network (OSTI)

Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

284

Macro Industrial Working Group  

U.S. Energy Information Administration (EIA) Indexed Site

your attention 22 Industrial Team Washington DC, September 29, 2014 Macro Team: Kay Smith (lead) (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 |...

285

Industrial Assessment Center  

SciTech Connect

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

286

Industrial energy use indices  

E-Print Network (OSTI)

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

287

Tuesday Webcasts for Industry  

Energy.gov (U.S. Department of Energy (DOE))

Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday Webcasts for Industry. They are held on the first Tuesday of every month from 2:00 to 3:00 p.m. Eastern time and are presented by manufacturers, AMO staff, and industry experts. Register to participate in upcoming Tuesday webcasts by visiting the AMO Events Calendar or Training Calendar. Each entry includes the webcast's date, topic, and registration link, and a detailed description.

288

Japan Confronts Industry Decline  

Science Journals Connector (OSTI)

Japan Confronts Industry Decline ... The moves are taking place at a time when demand in Japan is weak and companies face competition from lower-cost players in the Middle East and the U.S. ... Only a few months ago, Japans largest chemical company, Mitsubishi Chemical, cited deteriorating business conditions when it announced it would close one of its ethylene crackers in Kashima, Ibaraki prefecture, an industrial city a few hours drive northeast of Tokyo. ...

JEAN-FRANOIS TREMBLAY

2013-02-11T23:59:59.000Z

289

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

290

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

291

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

292

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

293

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

294

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

295

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

296

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network (OSTI)

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

297

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

Rohs, Remo

298

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network (OSTI)

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

Rohs, Remo

299

Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst  

E-Print Network (OSTI)

9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

Mountziaris, T. J.

300

Overview of Commercial Buildings, 2003 - Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings Sector-1979 to 2003 Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial buildings increased from 3.8 million to 4.9 million (Figure 3). The amount of commercial floorspace increased from 51 billion to 72 billion square feet (Figure 4). Total energy consumed increased from less than 5,900 trillion to more than 6,500 trillion Btu (Figure 5). Electricity and natural gas consumption, nearly equal in 1979, diverged; electricity increased to more than 3,500 trillion Btu by 2003 while natural gas declined to 2,100 trillion Btu. Figure 3. The number of commercial buildings increased from 1979 to 2003. Figure 3. The number of commercial buildings increased from 1979 to 2003.

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. States - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2

302

ET Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

303

Petrochemical industry drivers  

SciTech Connect

Extensive analyses of profit-ability and pricing over the years have shown that the trends seen in the petrochemical industry have two dominant drivers, namely, industry experience curves (reflecting continuous process improvement and cost savings) and profitability cycles. Any outlook for the future must examine both of these facets. The author`s algorithm for price projections has two primary terms: a cost-related one and a supply/demand-related one. Both are strong functions of experience curves; the latter is also a prime function of cyclicality. At SRI International. To arrive at medium-term quantitative projections, SRI typically creates a consistent base-case scenario that more or less mirrors the past but also incorporates observed directional changes. In this article the author examines in detail how these scenarios are used for projection. He describes experience curves, ethylene/gross domestic product (GDP) penetration levels, industry structure, and cyclicality as they apply to ethylene prices.

Sedriks, W.

1995-11-01T23:59:59.000Z

304

Emulsified industrial oils recycling  

SciTech Connect

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

305

U.S. Department of Energy Announces Completion of 500 Industrial...  

Energy Savers (EERE)

Energy Saving Assessment May 9, 2008 - 11:30am Addthis Over 80 Trillion Btus of Natural Gas Savings Found WASHINGTON - The U.S. Department of Energy (DOE) today announced...

306

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

307

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

308

Chapter 11 - Industrial Automation  

Science Journals Connector (OSTI)

The industrial systems of the future are complex systems composed of vast numbers of devices interacting with each other and with enterprise systems. Modern technologies such as web services, service-oriented architectures (SOAs), the cloud, etc. make it possible for sophisticated infrastructures to emerge in future factories. We take a closer look at key visionary aspects that are expected to be introduced in the industrial automation domain in the years to come, and the pivotal role of M2M and IoT. Additionally, we investigate the impact on the collaboration of machines among themselves and with enterprise systems and their services.

Jan Hller; Vlasios Tsiatsis; Catherine Mulligan; Stamatis Karnouskos; Stefan Avesand; David Boyle

2014-01-01T23:59:59.000Z

309

CX-001651: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

651: Categorical Exclusion Determination 651: Categorical Exclusion Determination CX-001651: Categorical Exclusion Determination Commercial and Industrial Building Energy Efficiency CX(s) Applied: A9, A11, B5.1 Date: 04/09/2010 Location(s): Saint Paul, Minnesota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The City of Saint Paul would sub grant Energy Efficiency and Conservation Block Grant (EECBG) funds to the Saint Paul Port Authority's (the industrial economic redevelopment arm of the City of Saint Paul) Trillion British Thermal Unit (BTU) Energy Efficiency Improvement Program. The Port Authority would use the funds to design, finance, and install energy efficient improvements in commercial and industrial facilities. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-001651.pdf More Documents & Publications

310

Industrial Partnerships | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

311

Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of Dr. A. B. P. Cassie, director of research of the Wool Industries Research Association, presented to the annual general meeting of the Association on April ... No. 212.) Headingley, Leeds: 1959). Modifications have been made to the pilot scouring plant, while methods for determining oil and grease in ...

1959-06-27T23:59:59.000Z

312

CONGRESS BLASTS OIL INDUSTRY  

Science Journals Connector (OSTI)

IN PACKED HEARINGS last week before angry members of Congress, the heads of BP, ExxonMobil, Chevron, ConocoPhillips, and Shell Oil defended their industry in light of the April 20 BP oil rig explosion in the Gulf of Mexico, which has led to the worst ...

JEFF JOHNSON

2010-06-21T23:59:59.000Z

313

Industry Partners Panel  

Energy.gov (U.S. Department of Energy (DOE))

Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

314

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.136 Consumption .............................................. million Btu per short ton 19.810 Coke plants ............................................. million Btu per short ton 26.304 Industrial .................................................. million Btu per short ton 23.651 Residential and commercial .................... million Btu per short ton 20.698 Electric power sector ............................... million Btu per short ton 19.370

315

Implementation of Industrial Assessment Center Energy and Waste Management Recommendations  

E-Print Network (OSTI)

Stream Summarya as 3.7% and saved 251 million Btu of electrical energy resulting in an annual cost savings of $3,380 (a 2.3% reduction in energy costs). The individual project annual savings ranged from $460 to $1,760. All of these recommendations have been.... This is a continuing project which saves $460 a year. The combined energy projects save 251 million Btu of energy (a 3.7% reduction) and $3,380 (a 2.3% reduction in energy bills) each year. The implementation of these projects cost $1,850 and they paid...

King, J. D.; Eggebrecht, J. A.; Heffington, W. M.

316

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

317

Essays on the industrial organization of the airline industry  

E-Print Network (OSTI)

This thesis analyzes several aspects of the Industrial Organization of the airline industry in three separate chapters. Chapter 1 investigates the effect of air traffic delays on airline prices. The degree to which prices ...

Januszewski, Silke I. (Silke Irene), 1974-

2003-01-01T23:59:59.000Z

318

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

319

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

320

Coal industry annual 1993  

SciTech Connect

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industrial Assessment Centers (IACs)  

Energy.gov (U.S. Department of Energy (DOE))

Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. Each manufacturer typically identifies about $55,000 in potential annual savings on average. Over 15,000 IAC assessments have been conducted. IACs also train the next-generation of energy savvy engineers.

322

Recent developments: Industry briefs  

SciTech Connect

This article is the `Industry Briefs` portion of Nuexco`s July 1992 `Recent Developments` section. Specific items mentioned include: (1) the merger of Entergy and Gulf States Utilities, (2) restart of the Sequoyah Fuels facility in Oklahoma, (3) development of the 7th and 8th nuclear units in Taiwan, (4) purchase of interest in Rio Algom, Ltd, and (5) acquisition of the Italian firm AGIP by a Canadian company.

NONE

1992-07-01T23:59:59.000Z

323

Industrial Analytics Corporation  

SciTech Connect

The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

Industrial Analytics Corporation

2004-01-30T23:59:59.000Z

324

SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program  

E-Print Network (OSTI)

SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

Van Stryland, Eric

325

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

326

LCA experiences in Danish industry  

Science Journals Connector (OSTI)

A study has been performed on Danish industrys experiences with LCA. Twenty-six enterprises from different sectors conpleted ... learning phase, and experiences with full-blown LCAs are sparse. Expectations of ...

Ole Broberg; Per Christensen

1999-09-01T23:59:59.000Z

327

Energy Efficient Industrial Building Design  

E-Print Network (OSTI)

The design of industrial buildings today is still largely unaffected by energy legislation and building technologies. The present corporate tax structures for industry do little to encourage investment of capital for future operating cost savings...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

328

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. zil

1987-01-01T23:59:59.000Z

329

Industrial Heat Pump Design Options  

E-Print Network (OSTI)

There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

Gilbert, J. S.

330

Texas Industries of the Future  

E-Print Network (OSTI)

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

Ferland, K.

331

Empirical essays in industrial organization  

E-Print Network (OSTI)

In this dissertation, I present three empirical essays that encompass topics in industrial organization. The first essay examines the degree of competition and spatial differentiation in the retail industry by exploiting ...

Chiou, Lesley C

2005-01-01T23:59:59.000Z

332

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

333

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

334

EPRI's Industrial Energy Management Program  

E-Print Network (OSTI)

EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... and other industrial activity effects on our environment. Energy efficiency programs and new electrical processes can playa major role in restoring the environment and in creating a stronger industrial sector in the national economy. Since 1984...

Mergens, E.; Niday, L.

335

PETROLEUM INDUSTRY INFORMATION REPORTING ACT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT: RULEMAKING;1 EXECUTIVE SUMMARY In the six months since the new Petroleum Industry Information Reporting Act (PIIRA which is used by the petroleum industry and market trading groups to assess the trends in California

336

Creating Value Wood Products Industry  

E-Print Network (OSTI)

and an information dissemination plan. The program areas are Industrial Process Improvement, Environmental Assessment1 Creating Value for the Wood Products Industry Creating Value for the Wood Products Industry Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland

337

Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California  

SciTech Connect

The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

None

1980-07-01T23:59:59.000Z

338

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

3 3 Table 10.2b Renewable Energy Consumption: Industrial and Transportation Sectors, Selected Years, 1949-2011 (Trillion Btu) Year Industrial Sector 1 Transportation Sector Hydro- electric Power 2 Geo- thermal 3 Solar/PV 4 Wind 5 Biomass Total Biomass Wood 6 Waste 7 Fuel Ethanol 8 Losses and Co-products 9 Total Fuel Ethanol 10 Biodiesel Total 1949 76 NA NA NA 468 NA NA NA 468 544 NA NA NA 1950 69 NA NA NA 532 NA NA NA 532 602 NA NA NA 1955 38 NA NA NA 631 NA NA NA 631 669 NA NA NA 1960 39 NA NA NA 680 NA NA NA 680 719 NA NA NA 1965 33 NA NA NA 855 NA NA NA 855

339

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of

340

EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy) for  

Gasoline and Diesel Fuel Update (EIA)

d d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1 8 3 312 Beverage and Tobacco Products * 1 * 313 Textile Mills 2 1 0 314 Textile Product Mills 1 * 0 315 Apparel * 0 0 316 Leather and Allied Products * * 0 321 Wood Products 6 4 0 322 Paper 2 1 1 323 Printing and Related Support * * * 324 Petroleum and Coal Products 3,748 3,689 3,572 325 Chemicals 2,772 3,750 2,812 326 Plastics and Rubber Products * Q Q 327 Nonmetallic Mineral Products 10 7 12 331 Primary Metals 758 646 529 332 Fabricated Metal Products 3 1 1 333 Machinery Q 2 * 334 Computer and Electronic Products * 1 1 335 Electrical Equip., Appliances, and Components 27 69 21 336 Transportation Equipment

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

3 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185 175 Natural Gas NA 388 326 Coal NA 36 14 Residual Fuel NA 1 19 Coke and Breeze NA 313 186 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2.'Total' includes all energy sources listed below and all other energy that was purchased or transferred in. 3.'Electricity' consists of quantities of electricity that were purchased or transferred in, and is equivalent

342

Energy Information Administration - Energy Efficiency-Table 3.  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total2 NA 950 749 Net Electricity3 NA 185 175 Natural Gas NA 388 326 Coal NA 36 14 Residual Fuel NA 1 19 Coke and Breeze NA 313 186 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

343

EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary a  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,579 1,665 312 Beverage and Tobacco Products 156 157 164 313 Textile Mills 459 377 304 314 Textile Product Mills 86 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 652 520 625 322 Paper 3,224 2,805 2,825 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 7,571 7,051 7,125 325 Chemicals 7,211 7,499 6,135 326 Plastics and Rubber Products 692 710 684 327 Nonmetallic Mineral Products 1,245 1,338 1,394

344

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms 2006 Data Tables Revision notice (November 2009): Tables 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 3.5, 4.1 and 4.2 have been slightly revised due to further editing. The revisions in XLS are indicated with a value of "R" in an adjacent column. In the PDF versions, the revised values are superscripted with an "R". No further revisions are anticipated for these tables. all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF XLS

345

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Selected years of data from 1949 through 1972 have been added to this table. For all years of data from 1949 through 2013, see the "Web Page" cited above. Table 3.8b Heat Content of Petroleum Consumption: Industrial Sector (Trillion Btu) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Total ........................ 435 698 274 156 94 251 90 1,416 546 3,960 1955 Total ........................ 615 991 241 323 103 332 147 1,573 798 5,123 1960 Total ........................ 734 1,016 161 507 107 381 328 1,584 947 5,766 1965 Total ........................ 890 1,150 165 712 137 342 444 1,582 1,390 6,813 1970 Total ........................ 1,082 1,226 185 953 155

346

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

347

Coal Industry Annual 1995  

SciTech Connect

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

348

Colorado Industrial Challenge and Recognition Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

349

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

350

Industrial Energy Conservation by New Process Design and Efficiency Improvements  

E-Print Network (OSTI)

to an additional 350 trillio Btu (.35 quad). Potential COnventional Energy Proc.'1 Ar Hew Technology TIlC~n logy Product Saving...... Heavy all ART (Kellogg) & Rigid, FCCU tH

Kusik, C. L.; Stickles, R. P.; Machacek, R. F.

1983-01-01T23:59:59.000Z

351

Research Projects in Industrial Technology.  

SciTech Connect

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

352

Whitacre College of Engineering Industrial Engineering Department  

E-Print Network (OSTI)

Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

Gelfond, Michael

353

Faculty of Engineering & Design Industrial Placements  

E-Print Network (OSTI)

Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

Burton, Geoffrey R.

354

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles  

E-Print Network (OSTI)

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

Rohs, Remo

355

industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles  

E-Print Network (OSTI)

74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

Rohs, Remo

356

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

357

ESCO Industry in China  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ESCO Development in ESCO Development in China China-America EE Forum 2011.5.6, S.F Contents Fast development 1 Great potential 2 Opportunities & Challenges 3 Function of EMCA 4 China Energy Conservation project  Officially started in 1998;  It is a key international cooperation project in the field of energy conservation by Chinese government and World Bank/GEF;  The main purpose of the project is to promote Energy Performance Contracting (EPC) mechanism and develop ESCO industry in China Project progress-1 st phase 3 pilot ESCOs: Beijing Liaoning Shandong Phase I EC information Dissemination Center(ECIDC) Project progress-2 nd phase EMCA Phase II I& G New and Potential ESCOs Technical support Financial support Project Progress- 2 nd Phase EMCA---provide practical technical

358

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

359

End User Perspective - Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Research Center Solid State Research Center DOE Fuel Cell Portable Power Workshop End User Perspective - Industrial Consumer Electronics Power (< 20-50W) Department of Energy Fuel Cell Portable Power Workshop Jerry Hallmark Manager Energy Technologies Lab Motorola Labs Solid State Research Center DOE Fuel Cell Portable Power Workshop Outline * Energy & Power of Portable Devices * Fuel Cell Applications & Cost * Key Requirements & Challenges * Fuels for Portable Fuel Cells * Fuel Transportation Regulations and Standards * Methanol Fuel Cells - Direct Methanol Fuel Cells - Reformed Methanol Fuel Cells * Technical Challenges 2 Solid State Research Center DOE Fuel Cell Portable Power Workshop Portable Electronics Yearly Energy Usage  :KU 1990 1980  :KU

360

Rebuttal: Interacting With the Pharmaceutical Industry  

E-Print Network (OSTI)

9. 6. Angell M. The pharmaceutical industry: To whom is ithas shown that the pharmaceutical industry has profited some

Stone, Susan; Herbert, Mel

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ITP Industrial Materials: Development and Commercialization of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

362

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

363

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

364

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

365

Industry Interactive Procurement System (IIPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

366

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel towers and...

367

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

368

Deaerators in Industrial Steam Systems  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

369

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings....

Zhou, A.; Tutterow, V.; Harris, J.

370

FAQS Reference Guide Industrial Hygiene  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

371

Industry Interactive Procurement System (IIPS)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on DOEs Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

372

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place: Monroe, Michigan Zip: 48161 Sector: Wind energy Product: Michigan-based wind turbine tower manufacturer. References: Ventower Industries1 This article is a stub. You...

373

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

Maharashtra, India Zip: 416 109 Sector: Wind energy Product: Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries....

374

AEO2014: Preliminary Industrial Output  

Gasoline and Diesel Fuel Update (EIA)

Elizabeth Sendich, Analyst, and Kay Smith, Team Leader Macroeconomic Analysis Team September 26, 2013 Preliminary AEO2014 Macroeconomic Industrial Results DO NOT CITE OR...

375

Industrial Facility Best Practice Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BP Scorecard 20120620 ( 2012Georgia Tech Research Corporation) Superior Energy Performance CM Industrial Facility Best Practice Scorecard Rev. 9 5 December 2012 Replaces rev. 8...

376

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2008 Motech Industries is a company located in Bethlehem, Taiwan....

377

Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc  

E-Print Network (OSTI)

PENNSTATE Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc Overview The main objectives were the following: -To reduce wasted space and optimize the Armstrong Marietta plant generate? How did you analyse them? Outcomes Armstrong will save on forklift fuel costs as a result

Demirel, Melik C.

378

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

379

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

380

Building A New Biofuels Industry  

Science Journals Connector (OSTI)

Building A New Biofuels Industry ... It may be another five years or more before the fledgling industry catches up to the lofty goals called for in the Renewable Fuel Standard (RFS)a federal-government-mandated schedule of yearly biofuel production targets. ...

MELODY M. BOMGARDNER

2013-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of the Director of Research of Wool Industries Research Association briefly summarizes some of the research during the year in ... Industries Research Association briefly summarizes some of the research during the year in scouring and combing, woollen carding and spinning, worsted drawing and spinning and weaving (Publication ...

1963-06-15T23:59:59.000Z

382

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

383

College of Engineering Industrial Engineering  

E-Print Network (OSTI)

College of Engineering Industrial Engineering Core 2.0 Completion Checklist Industrial Engineering) 6 Research and Creative Experience R EIND 499R (I&ME 444 R and I&ME 445 R) Note: Courses completed Social Sciences; * EGEN 310 (ENGR 310), Multidisciplinary Engineering Design, may be substituted

Dyer, Bill

384

Industrial Use of Infrared Inspections  

E-Print Network (OSTI)

, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections...

Duch, A. A.

1979-01-01T23:59:59.000Z

385

Electronics Industry: Markets & Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

386

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

387

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

388

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

389

The industrial ecology of the iron casting industry  

E-Print Network (OSTI)

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

390

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

vehicles. They have a strong research base and are sup- ported by the U. S. Department of Energy. They have. Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption

Ginzel, Matthew

391

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

392

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

393

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

394

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

395

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

396

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

397

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

398

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

399

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

400

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fumigation of a diesel engine with low Btu gas  

SciTech Connect

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

402

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

403

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024...

404

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016...

405

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029...

406

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022...

407

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033...

408

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038...

409

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005...

410

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043...

411

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025...

412

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037...

413

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053...

414

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,028...

415

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034...

416

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001...

417

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031...

418

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,018...

419

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012...

420

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033...

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029...

422

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046...

423

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

424

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

425

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

426

UNDERGRADUATE DEGREES Industrial and Systems Engineering  

E-Print Network (OSTI)

UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

Suzuki, Masatsugu

427

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

428

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

429

INDUSTRIAL SAFETY & HEALTH (ISH)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HEALTH (ISH) HEALTH (ISH) OBJECTIVE ISH.1 A comprehensive industrial safety & health program has been implemented to address applicable safety requirements at the TA 55 SST Facility. (Core Requirements 1, 3, and 4) Criteria * Procedures are implemented to address applicable industrial & health safety issues. * An adequate number of trained personnel are available to support SST facility regarding industrial safety & health concerns. * Portable fire extinguishers are appropriate for the class of fire they are expected to fight and are located within the proper distance. * Cranes, hooks, slings, and other rigging are plainly marked as to their capacity and inspected prior to use. * Forklifts and other powered lifting devices are adequately inspected.

430

Industry Sponsored Research | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering Mechanism Sample Sponsored Research Agreement SBIR-STTR Support Economic Development Industrial Partnerships University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Sponsored Research SHARE Sponsored Research Fiber Optic Research The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC. The laboratory's 1500+ research scientists and engineers conduct a vigorous program of scientific discovery and technology development, and ORNL is eager to engage industry in partnerships to help translate its research output into market impact and support for U.S. competitiveness. Companies wishing to learn about the research being

431

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

432

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

433

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

434

Manufacturers Saving with Lost Foam Metal Casting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting Manufacturers Saving with Lost Foam Metal Casting December 18, 2009 - 2:43pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent fewer materials than traditional processes. One example of this technology is being used by General Motors to make lightweight engine blocks for the fuel-efficient vehicles they manufacture. A government-funded effort to support development of foam metal casting helped reduce an estimated 9.4 million tons of solid waste between 1994 and 2005, which saved industry an estimated 3 trillion Btu.

435

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

436

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009 August 2009 Revised: October 2009 Next MECS will be conducted in 2010 Table 3.5 Selected Byproducts in Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Waste Blast Pulping Liquor Oils/Tars NAICS Furnace/Coke Petroleum or Wood Chips, and Waste Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Materials Total United States 311 Food 10 0 3 0 0 7 Q 3112 Grain and Oilseed Milling 7 0 1 0 0 6 * 311221 Wet Corn Milling 5 0 * 0 0 4 0 31131 Sugar Manufacturing 1 0 0 0 0 1 0 3114 Fruit and Vegetable Preserving and Specialty Food Q 0 * 0 0 0 Q 3115 Dairy Product * 0 * 0 0 0 0 3116 Animal Slaughtering and Processing 1 0 1 0 0 * * 312 Beverage and Tobacco Products

437

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 8.4c Consumption for Electricity Generation by Energy Source: Commercial and Industrial Sectors, Selected Years, 1989-2011 (Subset of Table 8.4a; Trillion Btu) Year Fossil Fuels Nuclear Electric Power Renewable Energy Other 9 Electricity Net Imports Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 5,8 Wind 5 Total Wood 6 Waste 7 Commercial Sector 10 1989 9 7 18 1 36 - 1 2 9 - - - 12 - - - 47 1990 9 6 28 1 45 - 1 2 15 - - - 18 - - - 63 1995 12 4 44 - 60 - 1 1 21 - - - 23 (s) - - 83 1996 14 4 44 (s) 62 - 1 1 31 - - - 33 (s) - - 95 1997 14 5 40 (s) 59 - 1 1 34 - - - 35 (s) - - 94 1998 11 5 42 (s) 57 - 1 1 32 - - - 34 - - - 91 1999 12 6 40 (s) 57 - 1 (s) 33 - - - 35 (s) - - 92 2000

438

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

439

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing * 0 * * 0 0 0 * 312 Beverage and Tobacco Products * 0 * 0 * 0 0 0 3121 Beverages * 0 * 0 0 0 0 0 3122 Tobacco * 0 0 0 * 0 0 0 313 Textile Mills 0 0

440

Presentation to the Plastics Developers Association North America Conference  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in in Dow Chemical 26 May 2010, Beijing Ningke Peng About Dow A diversified chemical company, harnessing the power of science and technology to improve living daily  founded in Midland, Michigan in 1897  annual sales of $58 billion  52,000 employees  3,900+ in China and growing daily  supplies more than 5,000 products  serve customers in 160 countries  a company committed to sustainability  24 sites and offices in China Dow's Energy Use Dow is among the largest Industrial Energy Consumers  Annual Energy Consumption Globally ≈ 600 Trillion Btu's (22 million tons of coal equivalent)  The Cost of Energy in 2009 Approached US $2.5 Billion Globally (~17 billion RMB)

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010; 5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 0 1 0 0 0 3115 Dairy Products 1 0 1 0 0 0 3116 Animal Slaughtering and Processing 4 0 4 0 0 * 312 Beverage and Tobacco Products 3 0 2 0 0 1 3121 Beverages 3 0 2 0 0 1 3122 Tobacco 0 0 0 0 0 0 313 Textile Mills 0 0 0 0 0 0 314 Textile Product Mills

442

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

443

Released: March 2010  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 5.5;" 5 Relative Standard Errors for Table 5.5;" " Unit: Percents." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)" "End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu

444

Export.gov - By Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

By Industry By Industry Print | E-mail Page Export Information By Industry Export.gov offers a wide range of current industry and trade information to help exporters of U.S goods and services find the information they need to compete successfully in overseas markets. Four Essential Resources 1. Export Assistance. The U.S. & Foreign Commercial Service is the trade promotion arm of the U.S. Department of Commerce's International Trade Administration. Commercial Service trade professionals in more than100 U.S. cities and in nearly 80 countries help U.S. companies to start exporting or increase sales to new global markets. Commercial Service services include: Market Intelligence , Trade Counseling , Business Matchmaking, and more. 2. Trade Data & Analysis. Trade data can help companies identify the best

445

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

446

Changing Trends in Telecommunications Industry  

E-Print Network (OSTI)

The mobile telecommunication industry is one of the fastest growing and continually changing markets in the world today. The greatest achievement of wireless technology is that it has made communications possible in the most remote of places at a...

Sathyanarayanan, Ramachandran

2010-12-17T23:59:59.000Z

447

Big Picture 19912012 other industry  

E-Print Network (OSTI)

% Academic 49% Research 8% Consulting 11% Finance 12% other industry 20% Where are the ORC Ph.D. graduates Semiconductors Lincoln Vale NonAcademic Jobs Small Firms Big Firms ORC Alumni Startups Academic 49% Research 8

448

Electrified Separation Processes in Industry  

E-Print Network (OSTI)

For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

Appleby, A. J.

1983-01-01T23:59:59.000Z

449

Integrated Industrial Wood Chip Utilization  

E-Print Network (OSTI)

The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

Owens, E. T.

1984-01-01T23:59:59.000Z

450

Electric Utility Industrial Conservation Programs  

E-Print Network (OSTI)

Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings... Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings...

Norland, D. L.

1983-01-01T23:59:59.000Z

451

The steam engine and industrialization  

E-Print Network (OSTI)

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

452

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

453

Industrial Plans for AEO2014  

U.S. Energy Information Administration (EIA) Indexed Site

you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

454

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network (OSTI)

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2010/2011 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH)...................................................................................................1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

Mountziaris, T. J.

455

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network (OSTI)

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2009/2010 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING (30 CREDITS)...............1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

Mountziaris, T. J.

456

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network (OSTI)

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2013/2014 September..............................3 C. COURSE REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS............................4 E. DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

Massachusetts at Amherst, University of

457

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network (OSTI)

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2011/2012 September).................1 REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (30).....................................................................................................2 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

Mountziaris, T. J.

458

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

459

Aftertreatment Research Prioritization: A CLEERS Industrial Survey...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research Prioritization: A CLEERS Industrial Survey Aftertreatment Research Prioritization: A CLEERS Industrial Survey Presentation given at the 2007 Diesel Engine-Efficiency &...

460

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer References: CRV industrial Ltda1 This article is a...

462

Rotation With Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc...

463

Grand Challenge Portfolio: Driving Innovations in Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

464

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

465

Colorado State University Industrial Assessment Center Saves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

audit. | Photo courtesy of University of Missouri IAC. Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Help Students, Communities...

466

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

467

Plastic Magen Industry | Open Energy Information  

Open Energy Info (EERE)

Plastic Magen Industry Jump to: navigation, search Name: Plastic Magen Industry Place: Kibbutz Magen, Israel Zip: 85465 Sector: Solar Product: Manufactures plastic products with a...

468

Industrial Assessment Centers Quarterly Update, Spring 2014 ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment Centers Quarterly Update, Spring 2014 Read the Industrial Assessment Centers (IAC) Quarterly Update -- Spring 2014 Industrial Assessment Centers (IAC) Quarterly Update...

469

Green Industrial Policy: Trade and Theory  

E-Print Network (OSTI)

Papers Year 2012 Paper 1126 Green Industrial Policy: Trade 2012 by author(s). Green Industrial Policy: Trade andreality and the potential for green indus- trial policy. We

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

470

PIA - Industrial Hygiene Analytical System (IHAS) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) More Documents & Publications PIA - INL...

471

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

472

TG Agro Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a stub. You can help...

473

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

474

Cardinal Glass Industries | Open Energy Information  

Open Energy Info (EERE)

Cardinal Glass Industries Jump to: navigation, search Name: Cardinal Glass Industries Place: Eden Prairie, Minnesota Zip: 55344 Product: Minnesota-based glass products maker. The...

475

Industrial development in Qatar: a geographical assessment.  

E-Print Network (OSTI)

??Before oil discovery and exploitation, industry in Qatar took the form of artisanal activities and traditional crafts. Since the 1960's industry has become modernised, complex (more)

Al-Kubaisi, Mohammed Ali M.

1984-01-01T23:59:59.000Z

476

Energy Efficiency and Management in Industries.  

E-Print Network (OSTI)

?? The judicious use of energy by industries is a key lever for ensuring a sustainable industrial development. The cost effective application of energy management (more)

Apeaning, Raphael Wentemi

2012-01-01T23:59:59.000Z

477

Toray Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

478

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

479

Industrial Buildings Tools and Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rolf Butters Rolf Butters Industrial Technologies Program Industrial Buildings Tools and Resources Webinar - June 11, 2009 Michael MacDonald Agenda  Introduction to Industrial Buildings Opportunity and Tools  EERE Funding, Opportunities, and Resources  Next Steps 6/11/2009 2 Facilities Energy  ITP has been working for a couple years now to develop tools to address facilities energy use, present in most plants, and about 8% of total sector energy use  First tool is a Score Card, implemented both as a stand- alone Excel file and for QuickPEP - Score Card has to be simple, so is approximate - But it can be a very important tool for scoping facilities energy use at a plant  Second tool is an adaptation of the BCHP Screening Tool, originally developed by the Distributed Energy program but

480

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013 Revised ii Introduction The U.S. Environmental Protection Agency's (U.S. EPA) ENERGY STAR program provides guidance, tools, and recognition to help companies improve their energy performance. ENERGY STAR is a voluntary partnership program that companies choose to join. Through ENERGY STAR, U.S. EPA offers a number of forms of recognition for achievements in energy efficiency. The ENERGY STAR Challenge for Industry recognizes individual industrial sites for achieving a 10 percent reduction in energy intensity within 5 years from the conclusion of an established baseline. To be

Note: This page contains sample records for the topic "industry trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tom Rogers Director, Industrial Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development at the Oak Ridge National Laboratory in June, 2008. His responsibilities include directing engagements with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic initiatives such as the Carbon Fiber Composites Cluster and development of the Oak Ridge Science and Technology Park. Prior to joining ORNL, Tom was the founding President and CEO of Technology 2020, a national award-winning public-private partnership focused on a building a robust regional entrepreneurial support system. Tom has also served as the Executive Director of the Tennessee Technology

482

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Reid Industries | Open Energy Information  

Open Energy Info (EERE)

Reid Industries Reid Industries Jump to: navigation, search Name Reid Industries Address PO Box 503 Place San Francisco, CA Zip 94104 Phone number 415-947-1050 Coordinates 37.7923058°, -122.4021273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7923058,"lon":-122.4021273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Jax Industries | Open Energy Information  

Open Energy Info (EERE)

Jax Industries Jax Industries Jump to: navigation, search Name Jax Industries Place Hillsboro, Oregon Product Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates 43.651735°, -90.341144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.651735,"lon":-90.341144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Mechanical and Industrial Engineering John Stuart  

E-Print Network (OSTI)

Mechanical and Industrial Engineering John Stuart Paul Washburn Co-Chairs MIE IAB Meeting #12;2Mechanical and Industrial Engineering Dean Tim Anderson #12;3Mechanical and Industrial Engineering Strategic vision for growing College Goal Method Current resources #12;4Mechanical and Industrial Engineering

Mountziaris, T. J.

486

Faculty of Engineering Industrial and Manufacturing  

E-Print Network (OSTI)

Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

487

Industrial & Systems Engineering Areas of Engineering Interests  

E-Print Network (OSTI)

Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

Berdichevsky, Victor

488

What does an Industrial Engineer really do???  

E-Print Network (OSTI)

What does an Industrial Engineer really do??? #12;What you will learn · What Industrial Engineering is · Examples of Industrial Engineering (IE) activities · The advantages of an IE college degree #12;Engineering does that engineer do? Where? #12;Industrial Engineers Find a Better Way... · A better way to make

Massachusetts at Amherst, University of

489

Opportunities for University-Industry Collaboration  

E-Print Network (OSTI)

Opportunities for University-Industry Collaboration: The Center for Analog and Mixed Signal-Industry Collaboration ...," November, 2009! 2! Presentation Overview" ·Background" ·Industry-University Partnership for University-Industry Collaboration ...," November, 2009! 3! Background: Personal" 1979-1983 "A.B. Engineering

McNeill, John A.

490

Industry continues to cut energy demand  

Science Journals Connector (OSTI)

The U.S.'s 10 most energy-intensive industries are continuing to reduce their energy demand, with the chemical industry emerging as a leader in industrial energy conservation, says the Department of Energy in a report to Congress.The chemical industry is ...

1981-01-12T23:59:59.000Z

491

transportation industry | OpenEI  

Open Energy Info (EERE)

25 25 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279625 Varnish cache server transportation industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by the transportation industry. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption

492

Industry turns its attention south  

SciTech Connect

The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

Marhefka, D. [Russian Petroleum Investor, Moscow (Russian Federation)

1997-08-01T23:59:59.000Z

493

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

494

The Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of the Director of Research for the Wool Industries Research Association for 1947-48 summarizes a five-year building plan to provide permanent ... detailed statistical analysis have covered the occurrence of slubs and faults in yarns and the scouring and milling of woollen and worsted pieces. Progress is also reported in the measurement ...

1948-06-05T23:59:59.000Z

495

Central Appalachia: Coal industry profile  

SciTech Connect

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

496

Scientific Management in Nationalized Industries  

Science Journals Connector (OSTI)

... Boards of Nationalized Industries"*, arises out of his experience as governing director of two private engineering firms and as chairman of the British Broadcasting Corporation. It is a noteworthy ... of experience, independence and security of tenure as is common in the best concerns of private enterprise; but it is of wider importance as endorsing the stress laid on the ...

1958-02-22T23:59:59.000Z

497

Applied Research: Harwell for Industry  

Science Journals Connector (OSTI)

... of industrial research regulated by Ministry of Technology requirements, including not merely air pollution and desalination but high temperature fuel cells-a more recent recruit to what Dr Marshall calls the ... to what Dr Marshall calls the establishment's portfolio. He is plainly cheerful about the desalination programme which, he said, has made possible an improvement in the performance of multi ...

1969-05-17T23:59:59.000Z

498

Environmental Effects of Industrial Farming  

E-Print Network (OSTI)

·Water contamination ·Soil contamination ·Solutions #12;US Meat Industry Animals (2009) kg produced (2009 contamination #12;Water contamination ·~9x108 kg of dry waste produced in the US per day day in 2001 #12;Water!" #12;Air contamination ·220kg of CH4 produced in the lifetime of a cow "Smells like money!" #12;Air

Budker, Dmitry

499

Wind Power: Options for Industry  

SciTech Connect

This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

Not Available

2003-03-01T23:59:59.000Z

500

The US coal industry 1996  

SciTech Connect

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z