National Library of Energy BETA

Sample records for industry total oven

  1. Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M206 Mechanical Convection Oven The M206 oven is dedicated to CAMD staff use only. M326 Mechanical Convection Oven Located next to the spinners, the M326 oven is availabe to External Users. VT5042EKP500 Vacuum Oven The vacuum oven is controlled by a Eurotherm 2604 PID controller. The controller is optionally PC interfaced for recipe storage and remote control. The two independent shelves with ramp control make it valuable for SU-8 processing. Additionally, nitrogen is optional for a

  2. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  3. Alabama Natural Gas Percentage Total Industrial Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Deliveries (Percent) Alabama Natural Gas Percentage Total Industrial Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. United States Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United ... Gases",2256,2313,1995,1932,2700 "Nuclear",100334,100266,100755,101004,10116...

  5. United States Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 ...

  6. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  7. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  8. Making a Solar Oven

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students make solar ovens. Student background information is provided. The expected outcome is that students will learn about solar energy transfer.

  9. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  10. Lesson 9 - Solar Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lesson 9 - Solar Ovens Colorado Academic Standards: Standard 3: Earth Systems Science Kindergarten: Concepts and skills students master: 1. The Sun provides heat and light to Earth 1 st grade: Concepts and skills students master: 1. Earth's materials can be compared and classified based on their properties 2 nd grade: Concepts and skills students master: 1. Weather and the changing seasons impact the environment and organisms such as humans, plants, and other animals Math Standard 4: Shape,

  11. 2015,"AK","Total Electric Power Industry","All Sources",18,8...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Industry","All Sources",1,1,12,12 2015,"AR","Total Electric Power Industry","Solar Thermal and Photovoltaic",1,1,12,12 2015,"AZ","Total Electric Power ...

  12. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...e","-","-","-","-","-" "Other","-","-",11,6,"-" "Total",7182,8534,7524,4842,5628 " " "s Value is less than 0.5 of the table metric, but value is included in any associated total.

  13. Coke oven gas injection to blast furnaces

    SciTech Connect (OSTI)

    Maddalena, F.L.; Terza, R.R.; Sobek, T.F.; Myklebust, K.L.

    1995-12-01

    U.S. Steel has three major facilities remaining in Pennsylvania`s Mon Valley near Pittsburgh. The Clairton Coke Works operates 12 batteries which produce 4.7 million tons of coke annually. The Edgar Thomson Works in Braddock is a 2.7 million ton per year steel plant. Irvin Works in Dravosburg has a hot strip mill and a range of finishing facilities. The coke works produces 120 mmscfd of coke oven gas in excess of the battery heating requirements. This surplus gas is used primarily in steel re-heating furnaces and for boiler fuel to produce steam for plant use. In conjunction with blast furnace gas, it is also used for power generation of up to 90 MW. However, matching the consumption with the production of gas has proved to be difficult. Consequently, surplus gas has been flared at rates of up to 50 mmscfd, totaling 400 mmscf in several months. By 1993, several changes in key conditions provided the impetus to install equipment to inject coke oven gas into the blast furnaces. This paper describes the planning and implementation of a project to replace natural gas in the furnaces with coke oven gas. It involved replacement of 7 miles of pipeline between the coking plants and the blast furnaces, equipment capable of compressing coke oven gas from 10 to 50 psig, and installation of electrical and control systems to deliver gas as demanded.

  14. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  15. Oven wall panel construction

    DOE Patents [OSTI]

    Ellison, Kenneth; Whike, Alan S.

    1980-04-22

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  16. Ovenized microelectromechanical system (MEMS) resonator

    DOE Patents [OSTI]

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  17. Solar Pizza Oven Box k - 6

    Office of Environmental Management (EM)

    Ready to Build? BUILD A PIZZA BOX SOLAR OVEN Background The sun is hot enough to bake food. Here's how to make a simple solar oven that gets hot enough to warm up cookies and other...

  18. Solar Oven, Take One: FAIL | Department of Energy

    Energy Savers [EERE]

    Oven, Take One: FAIL Solar Oven, Take One: FAIL June 15, 2011 - 11:56am Addthis Our homemade solar oven. | Courtesy of Moon Choe Our homemade solar oven. | Courtesy of Moon Choe ...

  19. "Table A16. Components of Total Electricity Demand by Census Region, Industry"

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total

  20. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  1. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  2. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  3. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  4. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  5. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  7. U.S. Natural Gas % of Total Industrial Delivered for the Account of Others

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Industrial Delivered for the Account of Others (Percent) U.S. Natural Gas % of Total Industrial Delivered for the Account of Others (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63.1 1990's 64.8 67.3 69.7 70.7 74.8 76.0 80.6 81.9 83.9 81.3 2000's 80.2 79.2 77.3 77.9 76.3 75.9 76.6 77.8 79.6 81.2 2010's 82.8 83.7 83.8 83.4 84.1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  10. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  11. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  12. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  13. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  14. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  15. Solar Pizza Oven Box k - 6

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready to Build? BUILD A PIZZA BOX SOLAR OVEN Background The sun is hot enough to bake ... Be sure to have an adult help you with this Materials - One pizza box from a local pizza ...

  16. Bi-radiant oven: a low-energy oven system. Volume I. Development and assessment

    SciTech Connect (OSTI)

    DeWitt, D.P.; Peart, M.V.

    1980-04-01

    The Bi-Radiant Oven system has three important features which provide improved performance. First, the cavity walls are highly reflective rather than absorptive thereby allowing these surfaces to operate at cooler temperatures. Second, the heating elements, similar in construction to those in a conventional oven, but operating at much lower temperatures, provide a prescribed, balanced radiant flux to the top and bottom surfaces of the food product. And third, the baking and roasting utensil has a highly absorptive finish. Instrumentation and methods of measurements have been developed for obtaining the important oven and food parameters during baking: wall, oven air, food and element temperatures; food mass loss rate; irradiance distribution; and convection heat flux. Observations on an experimental oven are presented and discussed. Thermal models relating the irradiance distribution to oven parameters have been compared with measurements using a new heat flux gage developed for the project. Using the DOE recommended test procedures, oven efficiencies of 20 to 23% have been measured. The heating requirements have been determined for seven food types: biscuits, meat loaf, baked foods, apple crisp, cornbread, macaroni and cheese casserole, and cheese souffle. Comparison of energy use with a conventional electric oven shows that energy savings greater than 50% can be realized. Detailed energy balances have been performed on two foods - beef roasts and yellow cake. Consideration of consumer acceptability of this new oven concept have been addressed.

  17. Development of automatic operation system for coke oven machines at Yawata Works of Nippon Steel Corporation

    SciTech Connect (OSTI)

    Matsunaga, Masao; Uematsu, Hiroshi; Nakagawa, Yoji; Ishiharaguchi, Yuji

    1995-12-01

    The coke plant is a working environment involving heavy dust emissions, high heat and demanding physical labor. The labor-saving operation of the coke plant is an essential issue from the standpoints of not only improvement in working environment, but also reduction in fixed cost by enhancement of labor productivity. Under these circumstances, Nippon Steel has implemented the automation of coke oven machines. The first automatic operation system for coke oven machinery entered service at Oita Works in 1992, followed by the second system at the No. 5 coke oven battery of the coke plant at Yawata Works. The Yawata automatic operation system is characterized by the installation of coke oven machinery to push as many as 140 ovens per day within a short cycle time, such as a preliminary ascension pipe cap opening car and cycle time simulator by the manned operation of the pusher, which is advantageous from the standpoint of investment efficiency, and by the monitoring of other oven machines by the pusher. These measures helped to reduce the manpower requirement to 2 persons per shift from 4 persons per shift. The system entered commercial operation in March, 1994 and has been smoothly working with an average total automatic rate of 97%. Results from the startup to recent operation of the system are reported below.

  18. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency This process heating tip sheet recommends using lower flammable limit monitoring equipment to improve oven efficiency. PROCESS HEATING TIP SHEET #11 Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency (October 2007) (228.04 KB) More Documents & Publications Check

  19. New process to avoid emissions: Constant pressure in coke ovens

    SciTech Connect (OSTI)

    Giertz, J.; Huhn, F.; Hofherr, K.

    1995-12-01

    A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.

  20. "Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," ","

  1. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect (OSTI)

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  2. Purchasing Energy-Efficient Commercial Ovens | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ovens Purchasing Energy-Efficient Commercial Ovens The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial ovens, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law. FEMP's acquisition guidance and

  3. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei

    1997-12-31

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  4. Total quality management (TQM) and the future of the environmental industry: Integration of quality tools and techniques among competing interests

    SciTech Connect (OSTI)

    Bicknell, B.A.; Bicknell, K.D. )

    1993-01-01

    One of the most difficult problems facing industry, regulators, consultants and attorneys involved in the environmental arena is the lack of a functional method of prioritization of the seemingly unreconcilable interests of the varying entities involved in waste reduction, elimination and cleanup. This paper and presentation will address this problem by presenting methodology for problem solving that can be adopted by the competing interests to form a unified systems analysis that has enjoyed widespread use and success in both commercial business and industry, and other regulated government industries such as defense, aerospace and communication. The authors will employ specific examples of case studies with focus on hazardous waste reduction and how the quality tools and techniques commonly referred to as Total Quality Management (such as Quality Function Deployment, Experimental Design, Statistical Process Control and Functional Analysis) are and can be utilized in the process. The authors will illustrate the application of TQM techniques to areas such as process integration (e.g. implementation of the NEPA decision-making), as well as functional implementation in risk assessment, cost analysis and concurrent engineering (in the case of waste minimization technology development).

  5. Coke oven doors: Historical methods of emission control and evaluation of current designs

    SciTech Connect (OSTI)

    Pettrey, J.O.; Greene, D.E. )

    1993-01-01

    The containment of oven door leakage has presented challenges to coke producers for many years as the requirements of environmental regulatory agencies have become increasingly stringent. A description and evaluation of past door modifications, leakage control methodologies and luting practices on Armco Steel Company, L.P.'s Ashland No. 4 Battery is detailed to provide a background for recent work, and to expand the industry's technology base. The strict door leakage standards of the 1990 amendments to the USA Clean Air Act has prompted additional technical studies. Both a joint Armco committee's evaluation of successful systems world wide and test door installations at Ashland were incorporated to determine compliance strategy. The eventual installation of Ikio Model II coke oven doors, along with modifications to ancillary equipment, has resulted in door leakage rates approaching zero. Associated methods, problems, results and evaluations are discussed.

  6. Build a Pizza Box Solar Oven | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Build a Pizza Box Solar Oven Build a Pizza Box Solar Oven Below is information about the student activity/lesson plan from your search. Grades K-4, 5-8, 9-12 Subject Solar Summary Check out this staightforward lesson, that can be adapted for all grade levels, on how to build a solar oven. Curriculum Science, Visual Arts, Language Arts Plan Time One class period Materials One pizza box from a local pizza delivery store, tape, scissors, black construction paper, clear plastic wrap, aluminum foil,

  7. ISSUANCE 2015-07-23: Energy Conservation Program: Energy Conservation Standards for Residential Conventional Ovens

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Residential Conventional Ovens, Comment Period Extension

  8. Use of a scale model for coke oven charging practice development

    SciTech Connect (OSTI)

    Case, E.R.; Pendergras, S.T.

    1982-01-01

    A 1/8 scale model coke oven was designed and built for use as a tool to improve coke oven charging practice. Major goals of the program were to increase coke oven productivity and decrease charging emissions. The material used to simulate coal in the model was chosen on the basis of angle of repose. the proper choice of media to simulate the coke oven charge, under a given set of operating conditions, was essential to obtain correspondence between the model and the production oven. Oven profiles were very similar after individual larry car hoppers were dropped and after leveling. Improved coke oven charging practices developed with the coke oven model, in combination with close control by operating personnel, have resulted in increased coke oven charge weights of over 1.0 ton/oven without increased charging emissions.

  9. A container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

    1988-01-26

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

  10. Container for heat treating materials in microwave ovens

    DOE Patents [OSTI]

    Holcombe, Cressie E.; Dykes, Norman L.; Kimrey, Jr., Harold D.; Mills, James E.

    1989-01-01

    The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

  11. Operating and maintenance benefits of automated oven wall temperature measurement

    SciTech Connect (OSTI)

    Leuchtmann, K.P.; Hinz, D.; Bergbau, D.; Platts, M.

    1997-12-31

    For a very long time and regardless of all shortcomings associated with it, the manual measurement of the heating flue temperature has been the only method of monitoring the temperature prevailing in a coke oven battery and discovering weak points in the heating system. In the course of the last few years a number of automated temperature measuring systems have been developed that are intended to replace or supplement the manual heating flue measurement system. These measuring systems and their advantages/disadvantages are briefly described in this paper. Additionally, operational experience gathered with the oven chamber wall temperature measuring system is discussed in detail.

  12. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  13. New packing in absorption systems for trapping benzene from coke-oven gas

    SciTech Connect (OSTI)

    V.V. Grabko; V.M. Li; T.A. Shevchenko; M.A. Solov'ev

    2009-07-15

    The efficiency of benzene removal from coke-oven gas in absorption units OAO Alchevskkoks with new packing is assessed.

  14. ISSUANCE 2015-05-29: Energy Conservation Program: Energy Conservation Standards for Residential Conventional Ovens, Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program: Energy Conservation Standards for Residential Conventional Ovens, Notice of Proposed Rulemaking

  15. Health-hazard evaluation report No. HETA-88-377-2120, Armco Coke Oven, Ashland Kentucky

    SciTech Connect (OSTI)

    Kinnes, G.M.; Fleeger, A.K.; Baron, S.L.

    1991-06-01

    In response to a request from the Oil, Chemical and Atomic Workers International Union, a study was made of possible hazardous working conditions at ARMCO Coke Oven (SIC-3312), Ashland, Kentucky. The facility produces about 1,000,000 tons of coke annually. Of the approximately 400 total employees at the coke oven site, 55 work in the by products area. Air quality sampling results indicated overexposure to both benzene (71432) and coal tar pitch volatiles (CTPVs). Airborne levels of benzene ranged as high as 117 parts per million (ppm) with three of 17 samples being above the OSHA limit of 1ppm. Airborne concentrations of CTPVs ranged as high as 0.38mg/cu m with two of six readings being above OSHA limit of 0.2mg/cu m. Several polynuclear aromatic hydrocarbons were also detected. The authors conclude that by products area workers are potentially overexposed to carcinogens, including benzene, CTPVs, and polynuclear aromatic hydrocarbons. An epidemiologic study is considered unlikely to yield meaningful information at this time, due to the small number of workers and the short follow up period. The authors recommend specific measures for reducing potential employee exposures, including an environmental sampling program, a preventive maintenance program, improved housekeeping procedures, and reducing exposure in operators' booths.

  16. Development of advanced technology of coke oven gas drainage treatment

    SciTech Connect (OSTI)

    Higashi, Tadayuki; Yamaguchi, Akikazu; Ikai, Kyozou; Kamiyama, Hisarou; Muto, Hiroshi

    1996-12-31

    In April 1994, commercial-scale application of ozone oxidation to ammonia liquor (which is primarily the water condensing from coke oven gas) to reduce its chemical oxygen demand (COD) was started at the Nagoya Works of Nippon Steel Corporation. This paper deals with the results of technical studies on the optimization of process operating conditions and the enlargement of equipment size and the operating purification system.

  17. Automatic coke oven heating control system at Burns Harbor for normal and repair operation

    SciTech Connect (OSTI)

    Battle, E.T.; Chen, K.L.

    1997-12-31

    An automatic heating control system for coke oven batteries was developed in 1985 for the Burns Harbor No. 1 battery and reported in the 1989 Ironmaking Conference Proceedings. The original system was designed to maintain a target coke temperature at a given production level under normal operating conditions. Since 1989, enhancements have been made to this control system so that it can also control the battery heating when the battery is under repair. The new control system has improved heating control capability because it adjusts the heat input to the battery in response to anticipated changes in the production schedule. During a recent repair of this 82 oven battery, the pushing schedule changed from 102 ovens/day to 88 ovens/day, then back to 102 ovens/day, then to 107 ovens/day. During this repair, the control system was able to maintain the coke temperature average standard deviation at 44 F, with a maximum 75 F.

  18. The Videofil probe, a novel instrument to extend the coke oven service life

    SciTech Connect (OSTI)

    Gaillet, J.P.; Isler, D.

    1997-12-31

    To prolong the service life of coke oven batteries, the Centre de Pyrolyse de Marienau developed the Videofil probe, a novel instrument to conduct diagnoses and to help repair operations of coke ovens. The Videofil probe is a flexible non-water-cooled endoscope which is used to locate flue wall damage and estimate its importance, to define the oven zones to repair and guide the repair work and to control the quality of the repair work and its durability.

  19. A coke oven model including thermal decomposition kinetics of tar

    SciTech Connect (OSTI)

    Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi

    1997-12-31

    A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

  20. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 ...

  1. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Maine",706952,91541,3023,0,801516 "Massachusetts",2720128,398717,14896,3,3133744 "New Hampshire",606883,105840,3342,0,716065 "Rhode Island",438879,58346,1884,1,499110 ...

  2. Factors affecting coking pressures in tall coke ovens

    SciTech Connect (OSTI)

    Grimley, J.J.; Radley, C.E.

    1995-12-01

    The detrimental effects of excessive coking pressures, resulting in the permanent deformation of coke oven walls, have been recognized for many years. Considerable research has been undertaken worldwide in attempts to define the limits within which a plant may safely operate and to quantify the factors which influence these pressures. Few full scale techniques are available for assessing the potential of a coal blend for causing wall damage. Inference of dangerous swelling pressures may be made however by the measurement of the peak gas pressure which is generated as the plastic layers meet and coalesce at the center of the oven. This pressure is referred to in this report as the carbonizing pressure. At the Dawes Lane cokemaking plant of British Steel`s Scunthorpe Works, a large database has been compiled over several years from the regulator measurement of this pressure. This data has been statistically analyzed to provide a mathematical model for predicting the carbonizing pressure from the properties of the component coals, the results of this analysis are presented in this report.

  3. Assessment of Replicable Innovative Industrial Cogeneration Applications,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2001 | Department of Energy Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities utilize a wide array of thermal process equipment, including hot water heaters, thermal liquid heaters, ovens, furnaces, kilns, dryers, chillers, and boilers. This report provides a market assessment of innovative industrial distributed generation cogeneration systems that are less

  4. Total U.S.....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Cooking Appliances Conventional Ovens Use an Oven........................................................ 109.6 20.3 14.9 5.4 1....................................................................... 103.3 18.7 13.6 5.2 2 or More.......................................................... 6.2 1.6 1.4 0.2 Do Not Use an Oven............................................ 1.5 0.2 Q Q Most-Used Oven Fuel Electric.............................................................. 67.9 9.7 6.2 3.6

  5. Total U.S.....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Cooking Appliances Conventional Ovens Use an Oven........................................................ 109.6 25.3 17.6 7.7 1....................................................................... 103.3 24.0 16.8 7.3 2 or More.......................................................... 6.2 1.3 0.8 0.5 Do Not Use an Oven............................................ 1.5 0.3 Q Q Most-Used Oven Fuel Electric.............................................................. 67.9 14.7 9.5 5.2

  6. Total U.S.....................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Cooking Appliances Conventional Ovens Use an Oven........................................................ 109.6 23.7 7.5 16.2 1....................................................................... 103.3 22.4 6.8 15.6 2 or More.......................................................... 6.2 1.3 0.6 0.6 Do Not Use an Oven............................................ 1.5 0.5 Q 0.4 Most-Used Oven Fuel Electric.............................................................. 67.9 13.4 4.5

  7. Total U.S........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Cooking Appliances Conventional Ovens Use an Oven............................................................ 109.6 20.3 25.3 40.2 23.7 1........................................................................... 103.3 18.7 24.0 38.2 22.4 2 or More.............................................................. 6.2 1.6 1.3 2.1 1.3 Do Not Use an Oven................................................ 1.5 0.2 0.3 0.5 0.5 Most-Used Oven Fuel

  8. Total U.S........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Cooking Appliances Conventional Ovens Use an Oven............................................................ 109.6 40.2 21.5 6.8 11.9 1........................................................................... 103.3 38.2 20.5 6.4 11.3 2 or More.............................................................. 6.2 2.1 1.0 0.4 0.7 Do Not Use an Oven................................................ 1.5 0.5 Q Q Q Most-Used Oven Fuel

  9. Total U.S........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Cooking Appliances Conventional Ovens Use an Oven............................................................ 109.6 46.2 18.8 22.5 22.1 1........................................................................... 103.3 44.1 17.8 21.2 20.2 2 or More.............................................................. 6.2 2.1 1.0 1.3 1.9 Do Not Use an Oven................................................ 1.5 1.0 Q 0.2 Q Most-Used Oven Fuel

  10. Total U.S...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 7.1 7.0 8.0 12.1 Cooking Appliances Conventional Ovens Use an Oven.............................................................. 109.6 7.1 6.9 7.8 11.7 1............................................................................. 103.3 6.5 6.6 7.4 11.2 2 or More................................................................ 6.2 0.6 Q 0.4 0.5 Do Not Use an Oven.................................................. 1.5 Q Q Q 0.4 Most-Used Oven Fuel

  11. ISSUANCE 2016-02-09: Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Standby Mode and Off Mode for Microwave Ovens; Correction

  12. New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Ernest Moniz announced today that the Energy Department has finalized new energy efficiency standards for microwave ovens that will save consumers nearly $3 billion on their energy bills through 2030.

  13. Acoustic emission feedback control for control of boiling in a microwave oven

    DOE Patents [OSTI]

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  14. Heating control methodology in coke oven battery at Rourkela Steel Plant

    SciTech Connect (OSTI)

    Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

    1996-12-31

    A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  16. EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers Energy and Updates the Social Cost of Carbon | Department of Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon EERE Success Story-Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon August 21, 2013 - 9:18am Addthis A typical microwave is used to heat food for about 70 hours each year, but continues to use electricity for the remaining 8,690 hours of the year to power

  17. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  18. Using Coke Oven Gas in a Blast Furnace Saves Over $6 Million Annually at a Steel Mill (U.S. Steel Edgar Thompson Plant)

    SciTech Connect (OSTI)

    2000-12-01

    Like most steel companies, U.S. Steel (USS) had been using coke oven gas (COG), a by-product of coke manufacturing, as a fuel in their coke ovens, boilers, and reheat furnaces.

  19. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  20. Innovative coke oven gas cleaning system for retrofit applications. Volume 1, Public design report

    SciTech Connect (OSTI)

    Not Available

    1994-05-24

    This Public Design Report provides, in a single document, available nonproprietary design -information for the ``Innovative Coke Oven Gas Cleaning System for Retrofit Applications`` Demonstration Project at Bethlehem Steel Corporation`s Sparrows Point, Maryland coke oven by-product facilities. This project demonstrates, for the first time in the United States, the feasibility of integrating four commercially available technologies (processes) for cleaning coke oven gas. The four technologies are: Secondary Gas Cooling, Hydrogen Sulfide and Ammonia Removal, Hydrogen Sulfide and Ammonia Recovery, and Ammonia Destruction and Sulfur Recovery. In addition to the design aspects, the history of the project and the role of the US Department of,Energy are briefly discussed. Actual plant capital and projected operating costs are also presented. An overview of the integration (retrofit) of the processes into the existing plant is presented and is followed by detailed non-proprietary descriptions of the four technologies and their overall effect on reducing the emissions of ammonia, sulfur, and other pollutants from coke oven gas. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. Plant startup provisions, environmental considerations and control monitoring, and safety considerations are also addressed for each process.

  1. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  2. Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries

    SciTech Connect (OSTI)

    Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti

    2006-03-15

    A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

  3. Build an oven, cook a meal: How solar energy empowered women in Costa Rica

    SciTech Connect (OSTI)

    Blankenship, J. )

    1990-12-01

    A pilot solar cooking project in the hot, northern province of Guanacaste promises to serve as a model for community groups wanting to build their own solar ovens. An $8,000 (US) grant has been awarded by the Canadian Embassy in Costa Rica to take the Guanacaste project into a second stage in 1990-91. Two construction workshops, with twelve participants in each, are planned in communities near Oriente. Three women from the Oriente group will have paid jobs as organizational facilitators and workshop supervisors. In popular education this is called the multiplier effect - the users of solar cookers construct the ovens themselves, and then instruct others to do the same. 3 refs.

  4. Mathematical modeling of clearance between wall of coke oven and coke cake

    SciTech Connect (OSTI)

    Nushiro, K.; Matsui, T.; Hanaoka, K.; Igawa, K.; Sorimachi, K.

    1995-12-01

    A mathematical model was developed for estimating the clearance between the wall of the coke oven and the coke cake. The prediction model is based on the balance between the contractile force and the coking pressure. A clearance forms when the contractile force exceeds the coking pressure in this model. The contractile force is calculated in consideration of the visco-elastic behavior of the thermal shrinkage of the coke. The coking pressure is calculated considering the generation and dispersion of gas in the melting layer. The relaxation time off coke used in this model was obtained with a dilatometer under the load application. The clearance was measured by the laser sensor, and the internal gas pressure was measured in a test oven. The clearance calculated during the coking process were in good agreement with the experimental results, which supported the validity of the mathematical model.

  5. Operational improvements at Jewell Coal and Coke Company`s non-recovery ovens

    SciTech Connect (OSTI)

    Ellis, C.E.; Pruitt, C.W.

    1995-12-01

    Operational improvements at Jewell Coal and Coke Company over the past five years includes safety and environmental concerns, product quality, equipment availability, manpower utilization, and productivity. These improvements with Jewell`s unique process has allowed Jewell Coal and Coke Company to be a consistent, high quality coke producer. The paper briefly explains Jewell`s unique ovens, their operating mode, improved process control, their maintenance management program, and their increase in productivity.

  6. Coke oven air and water pollution. (Latest citations from the EI Compendex*Plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The bibliography contains citations concerning coke oven pollution. Monitoring, sampling, analyzing, transport properties, and control of emissions and effluents are cited in this compilation from worldwide journals. Pollutants described are sulfur dioxide, hydrogen sulfide, ammonia, phenols, benzopyrene, particulates, and other trace elements and compounds. Process and equipment modifications, such as pipeline charging, wet and dry quenching, retrofitting, and oven leakage preventives are included. (Contains a minimum of 200 citations and includes a subject term index and title list.)

  7. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tens of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.

  8. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitry and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.

  9. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymore » and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 °C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.« less

  10. A Fully Integrated Oven Controlled Microelectromechanical OscillatorPart II. Characterization and Measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/C, over the commercial temperature range while using tensmoreof milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.less

  11. A fully integrated oven controlled microelectromechanical oscillator Part II. Characterization and measurement

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/C, over the commercial temperature range while using tens of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.

  12. A fully integrated oven controlled microelectromechanical oscillator -- Part I. Design and fabrication

    SciTech Connect (OSTI)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitry and piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.

  13. A fully integrated oven controlled microelectromechanical oscillatorPart I. Design and fabrication

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Baker, Michael S.; Clews, Peggy J.; Olsson, Roy H.

    2015-06-24

    Our paper reports the design and fabrication of a fully integrated oven controlled microelectromechanical oscillator (OCMO). This paper begins by describing the limits on oscillator frequency stability imposed by the thermal drift and electronic properties (Q, resistance) of both the resonant tank circuit and feedback electronics required to form an electronic oscillator. An OCMO is presented that takes advantage of high thermal isolation and monolithic integration of both micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. This was achieved by developing a processing technique where both silicon-on-insulator complementary metal-oxide-semiconductor (CMOS) circuitrymoreand piezoelectric aluminum nitride, AlN, micromechanical resonators are placed on a suspended platform within a standard CMOS integrated circuit. Operation at microscale sizes achieves high thermal resistances (~10 C/mW), and hence thermal stabilization of the oscillators at very low-power levels when compared with the state-of-the-art ovenized crystal oscillators, OCXO. This constant resistance feedback circuit is presented that incorporates on platform resistive heaters and temperature sensors to both measure and stabilize the platform temperature. Moreover, the limits on temperature stability of the OCMO platform and oscillator frequency imposed by the gain of the constant resistance feedback loop, placement of the heater and temperature sensing resistors, as well as platform radiative and convective heat losses are investigated.less

  14. A fully integrated oven controlled microelectromechanical oscillator – Part II. Characterization and measurement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wojciechowski, Kenneth E.; Olsson, Roy H.

    2015-06-24

    Our paper reports the measurement and characterization of a fully integrated oven controlled microelectromechanical oscillator (OCMO). The OCMO takes advantage of high thermal isolation and monolithic integration of both aluminum nitride (AlN) micromechanical resonators and electronic circuitry to thermally stabilize or ovenize all the components that comprise an oscillator. Operation at microscale sizes allows implementation of high thermal resistance platform supports that enable thermal stabilization at very low-power levels when compared with the state-of-the-art oven controlled crystal oscillators. A prototype OCMO has been demonstrated with a measured temperature stability of -1.2 ppb/°C, over the commercial temperature range while using tensmore » of milliwatts of supply power and with a volume of 2.3 mm3 (not including the printed circuit board-based thermal control loop). Additionally, due to its small thermal time constant, the thermal compensation loop can maintain stability during fast thermal transients (>10 °C/min). This new technology has resulted in a new paradigm in terms of power, size, and warm up time for high thermal stability oscillators.« less

  15. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  16. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Massachusetts",3490569.2,3827051.4,1014262.3,31636.4,8363519.3 "New Hampshire",790655.9,640173,234899.8,0,1665728.7 "Rhode Island",527115.5,532578.5,114110.7,41...

  17. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    300,412 0 1,518,372 Massachusetts 3,490,569 3,827,051 1,014,262 31,636 8,363,519 New Hampshire 790,656 640,173 234,900 0 1,665,729 Rhode Island 527,116 532,579 114,111 4,158 ...

  18. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    ...84570,3357486,0,12002661 "Massachusetts",20071160,26076208,7960941,360983,54469292 "New Hampshire",4510487,4464530,1969064,0,10944081 "Rhode Island",3070347,3657679,887150,27928,76...

  19. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  20. System to acquire and monitor operating machinery positions for horizontal coke oven batteries

    SciTech Connect (OSTI)

    Bierbaum, D.; Teschner, W.

    1980-02-26

    In a horizontal coke oven battery with at least one coke receiving device movable along one longitudinal side of the battery and at least one coke driving device movable along an opposite longitudinal side of the battery, an apparatus is disclosed for determining the relative position of the coke receiving device with respect to the coke driving device and for activating the coke driving device when its position corresponds with that of the coke receiving device. A first wheel is mounted on the coke receiving device for rotation with the movement of the coke receiving device, a first angle encoder is connected to the first wheel for producing a first signal corresponding to the location of the first wheel and the position of the coke receiving device along the coke oven, and an input storage in the form of a magnetic disc is connected to the first angle encoder for recording and storing the signal. A second wheel is mounted on the coke driving device for rotation with the movement of the coke driving device and a second angle encoder is connected thereto for producing a second signal which corresponds to the rotation of the second wheel and the position of the coke driving device along the coke oven. A comparator is connected to the second signal encoder for receiving the second signal and a data link is provided between the comparator and the input storage of the coke receiving device so that the first signal from the coke receiving device can be impressed on the comparator. An activator is connected to the comparator for activating the coke driving device when the first signal corresponds to the second signal indicating a corresponding positional relationship between the coke receiving device and the coke driving device.

  1. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect (OSTI)

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  2. Demonstration of a fuel-saving system for paint-curing ovens

    SciTech Connect (OSTI)

    Jensen, W P

    1980-12-01

    Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

  3. High-strength insulating castable used behind coke-oven buckstays and jambs

    SciTech Connect (OSTI)

    Sich, G. Jr. ); Gladfelder, L.A. . Iron and Steel Monolithics); Cox, F.S.

    1993-10-01

    Conventional pumpable, clay-based grouting materials used behind the armor/jamb systems were inadequate. Open brick joints caused reduced end flue temperatures which resulted in improper coking with reduced yields and coke quality, as well as difficulties in controlling door emissions. Based on criteria established by an Armco task force, a unique commercial product supplied by North American Refractories was located that had the potential of meeting these requirements. A laboratory trial casting program was undertaken by Armco that verified the potential of this castable refractory. Development programs by Armco and North American Refractories were established to optimize the properties of the refractory. Actual oven repairs have demonstrated that the castable developed meets all requirements for successful performance. These include: absence of castable failures; nonspalling; repairable through ceramic welding; and acceptable flowability.

  4. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  5. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  6. Use Lower Flammable Limit Monitoring Equipment to Improve Process Oven Efficiency

    SciTech Connect (OSTI)

    Not Available

    2007-10-01

    This is one in a series of tip sheets to help manufacturers optimize their industrial process heating systems.

  7. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  8. Introduction to IEEE 841-1994, IEEE standard for petroleum and chemical industry: Severe duty totally enclosed fan-cooled (TEFC) squirrel cage induction motors -- up to and including 500 hp

    SciTech Connect (OSTI)

    Doughty, R.L.

    1995-12-31

    IEEE 841, Recommended Practice for Chemical Industry Severe Duty Squirrel-Cage Induction Motors--600 V and Below, first issued in 1986, has been significantly revised and reissued as a Standard. The scope has been increased to include severe duty TEFC squirrel-cage induction motors with antifriction bearings in sizes up to and including 500 horsepower. Motor rated voltages of 2,300 V and 4,000 V have been added. Changes to the standard are reviewed in detail. Requirements are identified that improve motor reliability and increase motor life.

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  15. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  16. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  17. Million U.S. Housing Units Total U.S.........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ........................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 77.3 63.4 4.1 1.8 2.3 5.6 1............................................................ 103.3 71.9 58.6 3.9 1.6 2.2 5.5 2 or More............................................... 6.2 5.4 4.8 Q Q Q Q Do Not Use an Oven................................. 1.5 0.8 0.6 Q N Q Q Most-Used Oven Fuel

  18. Save Energy Now in Your Process Heating Systems; Industrial Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Process heating accounts for about 36% of the total energy used in industrial manufacturing applications. And in some industries, this percentage is much ...

  19. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  20. Industry Economists

    U.S. Energy Information Administration (EIA) Indexed Site

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  1. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  2. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  12. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  13. Colorado Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48211,50980,48334,45490,45639 " Coal",36269,35936,34828,31636,34559 " Petroleum",21,28,19,13,17 " Natural ...

  14. Connecticut Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16046,14982,12970,12562,14743 " Coal",4282,3739,4387,2453,2604 " Petroleum",1279,1311,514,299,409 " Natural ...

  15. Arkansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",33626,34203,34639,36385,40667 " Coal",24183,25744,26115,25075,28152 " Petroleum",161,94,64,88,45 " Natural ...

  16. Georgia Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",100299,107165,99661,90634,97823 " Coal",86504,90298,85491,69478,73298 " Petroleum",834,788,742,650,641 " Natural ...

  17. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural ...

  18. Florida Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",184530,188433,180167,181553,197662 " Coal",65423,67908,64823,54003,59897 " Petroleum",22904,20203,11971,9221,9122 " ...

  19. Alaska Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5443,5519,5598,5365,5308 " Coal",617,641,618,631,620 " Petroleum",768,1010,978,1157,937 " Natural Gas",4058,3868,4002,3577...

  20. Arizona Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",73385,79794,82715,74509,73386 " Coal",40443,41275,43840,39707,43644 " Petroleum",73,49,52,63,66 " Natural ...

  1. Illinois Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97212,103072,101101,94662,99605 " Coal",91649,95265,96644,89967,93611 " Petroleum",136,132,143,113,110 " Natural ...

  2. California Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",112317,122151,125699,118679,112376 " Coal",2235,2298,2280,2050,2100 " Petroleum",2368,2334,1742,1543,1059 " Natural ...

  3. Idaho Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1381,1741,1790,1726,1778 " Coal",82,84,90,83,88 " Petroleum","s","s","s","s","s" " Natural Gas",1298,1657,1700,1644,1689 " ...

  4. Hawaii Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10646,10538,10356,9812,9655 " Coal",1549,1579,1648,1500,1546 " Petroleum",9054,8914,8670,8289,8087 " Natural ...

  5. Alabama Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",97827,101561,97376,87580,102762 " Coal",78109,77994,74605,55609,63050 " Petroleum",180,157,204,219,200 " Natural Gas",19407,23232,22363,31617,39235 " Other Gases",131,178,204,135,277 "Nuclear",31911,34325,38993,39716,37941 "Renewables",11136,7937,9493,15585,11081 "Pumped

  6. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " ... "Renewables",7,7,7,7,10 "Pumped Storage","-","-","-","-","-" ...

  7. Connecticut Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " ... "Renewables",316,285,287,287,281 "Pumped Storage",4,29,29,29,29 "Other",27,27,27,27,27 ...

  8. Connecticut Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16046,14982,12970,12562,147...wables",1307,1093,1290,1268,1130 "Pumped Storage","-",-15,7,5,9 "Other",739,726,710,713,71...

  9. Kentucky Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",95720,95075,95478,86937,95182 " Coal",91198,90483,91621,84038,91054 " Petroleum",3341,2791,2874,2016,2285 " Natural Gas",1177,1796,979,878,1841 " Other Gases",4,5,4,4,3 "Nuclear","-","-","-","-","-" "Renewables",3050,2134,2377,3681,3020 "Pumped

  10. Tennessee Total Electric Power Industry Net Summer Capacity,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13051,12974,12999,12982,13517 ... " Other Gases","-","-","-","-","-" "Nuclear",3398,3397,3397,3401,3401 ...

  11. Missouri Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18197,18099,18126,18101,18861 ... " Other Gases","-","-","-","-","-" "Nuclear",1190,1190,1190,1190,1190 ...

  12. Virginia Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14968,15080,15543,15740,15880 ... " Other Gases","-","-","-","-","-" "Nuclear",3432,3404,3404,3404,3501 ...

  13. Wyoming Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6105,6065,6150,6147,6253 " ... " Other Gases",92,92,92,92,92 "Nuclear","-","-","-","-","-" ...

  14. New Jersey Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14363,13741,13771,13759,13676 " ... " Other Gases",44,44,44,44,44 "Nuclear",3984,3984,4108,4108,4108 ...

  15. Wisconsin Total Electric Power Industry Net Summer Capacity,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14000,13926,15015,14928,14964 ... " Other Gases","-","-","-","-","-" "Nuclear",1582,1582,1582,1583,1584 ...

  16. Utah Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6398,6830,6819,6897,6969 " ... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  17. Nebraska Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5478,5423,5459,6123,6169 " ... " Other Gases","-","-","-","-","-" "Nuclear",1238,1240,1252,1252,1245 ...

  18. Washington Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4436,4343,5130,5145,5183 " ... " Other Gases","-","-","-","-","-" "Nuclear",1131,1131,1131,1131,1097 ...

  19. Vermont Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",108,101,101,100,100 " ... " Other Gases","-","-","-","-","-" "Nuclear",620,620,620,620,620 ...

  20. Texas Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92088,91494,91450,87547,92136 " ... " Other Gases",287,308,187,184,306 "Nuclear",4860,4860,4927,4927,4966 ...

  1. West Virginia Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",16113,15769,15756,15766,1... " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" ...

  2. Mississippi Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,142... " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 ...

  3. Montana Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2671,2671,2682,2701,2782 " ... " Other Gases","-","-",2,2,2 "Nuclear","-","-","-","-","-" ...

  4. Kansas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35172,38590,36363,35033,34895 " Coal",33281,36250,34003,32243,32505 " Petroleum",51,207,130,121,103 " Natural ...

  5. Table 19. Total Delivered Industrial Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 ...

  6. "Table 19. Total Delivered Industrial Energy Consumption, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...2008,2009,2010,2011,2012,2013 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO ...

  7. Illinois Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Energy Source",2006,2007,2008,2009,2010 "Fossil",30626,30435,30662,30795,30554 " Coal",15731,15582,15653,15852,15551 " Petroleum",1143,1097,1099,1090,1106 " Natural ...

  8. Florida Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Energy Source",2006,2007,2008,2009,2010 "Fossil",48044,50280,50166,53733,53791 " Coal",10333,10297,10265,10261,9975 " Petroleum",11677,11671,13128,12602,12033 " Natural ...

  9. Arizona Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18784,18756,18942,19351,19338 " Coal",5830,5818,5818,6227,6233 " Petroleum",90,93,93,93,93 " Natural ...

  10. Alabama Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21804,21784,22372,22540,23519 " Coal",11557,11544,11506,11486,11441 " Petroleum",43,43,43,43,43 " Natural ...

  11. Iowa Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9496,10391,10340,10467,10263 " Coal",6097,6967,6928,7107,6956 " Petroleum",1027,1023,1017,1014,1007 " Natural ...

  12. Iowa Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Energy Source",2006,2007,2008,2009,2010 "Fossil",37014,41388,42734,38621,42749 " Coal",34405,37986,40410,37351,41283 " Petroleum",208,312,161,85,154 " Natural ...

  13. Arkansas Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10965,11807,11756,11753,12451 " Coal",3846,3846,3861,3864,4535 " Petroleum",23,22,22,22,22 " Natural ...

  14. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural ...

  15. Indiana Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",129345,129576,128206,114118,121101 " Coal",123645,122803,122036,108312,112328 " Petroleum",148,170,178,157,155 " Natural ...

  16. Indiana Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26899,26922,26850,26808,26186 " Coal",19718,19759,19721,19757,19096 " Petroleum",503,503,503,503,504 " Natural ...

  17. Alaska Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1485,1561,1593,1591,1618 " Coal",105,105,112,111,111 " Petroleum",575,622,643,644,663 " Natural Gas",805,834,838,836,845 " ...

  18. California Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Energy Source",2006,2007,2008,2009,2010 "Fossil",39351,39961,39950,41443,42654 " Coal",389,389,367,367,374 " Petroleum",789,754,752,734,701 " Natural ...

  19. Idaho Total Electric Power Industry Net Summer Capacity, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Energy Source",2006,2007,2008,2009,2010 "Fossil",667,667,828,834,834 " Coal",17,17,17,17,17 " Petroleum",5,5,5,5,5 " Natural Gas",645,645,805,812,812 " Other ...

  20. Colorado Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9644,9979,10229,10545,11204 " Coal",4939,4961,4965,5010,5702 " Petroleum",181,182,184,178,178 " Natural ...

  1. Connecticut Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5498,5361,5466,5582,5845 " Coal",551,551,553,564,564 " Petroleum",2926,2709,2741,2749,2989 " Natural ...

  2. District of Columbia Total Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81,75,72,35,200 " Coal","-","-","-","-","-" " Petroleum",81,75,72,35,200 " Natural Gas","-","-","-","-","-" ...

  3. Hawaii Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2208,2209,2208,2223,2196 " Coal",180,180,180,180,180 " Petroleum",2019,2020,2019,2034,2007 " Natural Gas","-","-","-","-",...

  4. Georgia Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28238,28096,28078,28103,28087 " Coal",13438,13275,13256,13211,13230 " Petroleum",2182,2169,2187,2188,2189 " Natural ...

  5. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  6. Maine Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8214,7869,8264,7861,8733 " Coal",321,376,352,72,87 " Petroleum",595,818,533,433,272 " Natural Gas",7298,6675,7380,7355,8374 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",8246,7945,8515,8150,7963 "Pumped

  7. Maryland Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32091,33303,29810,26529,27102 " Coal",29408,29699,27218,24162,23668 " Petroleum",581,985,406,330,322 " Natural Gas",1770,2241,1848,1768,2897 " Other Gases",332,378,338,269,215 "Nuclear",13830,14353,14679,14550,13994 "Renewables",2730,2256,2587,2440,2241 "Pumped Storage","-","-","-","-","-"

  8. Massachusetts Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36773,40001,34251,30913,34183 " Coal",11138,12024,10629,9028,8306 " Petroleum",2328,3052,2108,897,296 " Natural Gas",23307,24925,21514,20988,25582 " Other Gases","-","-","-","-","-" "Nuclear",5830,5120,5869,5396,5918 "Renewables",2791,2038,2411,2430,2270 "Pumped

  9. Michigan Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",80004,84933,80179,75869,78535 " Coal",67780,70811,69855,66848,65604 " Petroleum",402,699,458,399,382 " Natural Gas",11410,13141,9602,8420,12249 " Other Gases",412,282,264,203,299 "Nuclear",29066,31517,31484,21851,29625 "Renewables",3963,3687,3956,3995,4083 "Pumped Storage",-1039,-1129,-916,-857,-1023 "Other",563,303,286,344,332

  10. New Hampshire Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2411,2371,2235,2226,2262 " Coal",528,528,528,528,546 " Petroleum",529,503,503,501,501 " Natural ...

  11. New Hampshire Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Hampshire" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10331,10066,10660,8411,8519 " Coal",3885,3927,3451,2886,3083 " Petroleum",439,385,136,183,72 " Natural ...

  12. New Mexico Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",6520,6620,7366,7308,7312 " Coal",3957,3957,3957,3977,3990 " Petroleum",28,28,28,28,24 " Natural Gas",2535,2634,3381,3302,3...

  13. Mississippi Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural ...

  14. Washington Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Energy Source",2006,2007,2008,2009,2010 "Fossil",14255,16215,18879,19747,19211 " Coal",6373,8557,8762,7478,8527 " Petroleum",38,37,35,54,32 " Natural ...

  15. Wisconsin Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Energy Source",2006,2007,2008,2009,2010 "Fossil",46352,47530,47881,43477,46384 " Coal",40116,40028,41706,37280,40169 " Petroleum",877,1013,931,712,718 " Natural ...

  16. Nevada Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28459,29370,31801,33436,30702 " Coal",7254,7091,7812,7540,6997 " Petroleum",17,11,14,16,11 " Natural Gas",21184,22263,2397...

  17. Tennessee Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Energy Source",2006,2007,2008,2009,2010 "Fossil",61336,61205,57753,42242,46203 " Coal",60498,60237,57058,41633,43670 " Petroleum",160,232,216,187,217 " Natural ...

  18. Montana Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",17583,18960,18822,16181,19068 " Coal",17085,18357,18332,15611,18601 " Petroleum",419,479,419,490,409 " Natural ...

  19. Virginia Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",42343,48422,42242,38888,43751 " Coal",34288,35421,31776,25599,25459 " Petroleum",839,2097,1150,1088,1293 " Natural ...

  20. North Carolina Total Electric Power Industry Net Generation,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",79134,84935,80312,70232,80692 " Coal",75487,79983,75815,65083,71951 " Petroleum",451,496,320,297,293 " Natural ...

  1. South Carolina Total Electric Power Industry Net Generation,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",45778,47765,47449,44781,48789 " Coal",39473,41583,41540,34478,37671 " Petroleum",237,217,180,523,191 " Natural ...

  2. Utah Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Energy Source",2006,2007,2008,2009,2010 "Fossil",40306,44634,45466,42034,40599 " Coal",36856,37171,38020,35526,34057 " Petroleum",62,39,44,36,50 " Natural ...

  3. West Virginia Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",92063,92511,89481,68395,78482 " Coal",91473,91866,89113,68080,78148 " Petroleum",175,200,137,169,155 " Natural ...

  4. New Mexico Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Energy Source",2006,2007,2008,2009,2010 "Fossil",35790,34308,35033,37823,34180 " Coal",29859,27604,27014,29117,25618 " Petroleum",41,44,53,45,50 " Natural ...

  5. Minnesota Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",36125,36463,34879,32263,32454 " Coal",33070,32190,31755,29327,28083 " Petroleum",494,405,232,65,31 " Natural ...

  6. Oregon Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",13621,19224,21446,19338,19781 " Coal",2371,4352,4044,3197,4126 " Petroleum",12,14,15,8,3 " Natural Gas",11239,14858,17387,...

  7. Missouri Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Energy Source",2006,2007,2008,2009,2010 "Fossil",81245,80127,78788,75122,79870 " Coal",77450,75084,73532,71611,75047 " Petroleum",61,60,57,88,126 " Natural ...

  8. Texas Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",349849,351720,344813,333227,341054 " Coal",146391,147279,147132,139107,150173 " Petroleum",1789,1309,1034,1405,708 " ...

  9. Nebraska Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Energy Source",2006,2007,2008,2009,2010 "Fossil",21461,20776,22273,23684,23769 " Coal",20683,19630,21480,23350,23363 " Petroleum",19,36,35,23,31 " Natural ...

  10. Rhode Island Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",5813,6891,7224,7547,7595 " Coal","-","-","-","-","-" " Petroleum",33,34,26,17,12 " Natural Gas",5780,6857,7198,7530,...

  11. North Dakota Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28987,29283,29721,29712,28552 " Coal",28879,29164,29672,29607,28462 " Petroleum",42,51,49,45,38 " Natural ...

  12. South Dakota Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3586,3069,3912,3306,3439 " Coal",3316,2655,3660,3217,3298 " Petroleum",5,63,23,8,6 " Natural Gas",266,351,229,80,135 " ...

  13. Ohio Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",137494,138543,134878,119712,126652 " Coal",133400,133131,130694,113712,117828 " Petroleum",1355,1148,1438,1312,1442 " ...

  14. Oklahoma Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural ...

  15. New York Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69880,75234,66756,57187,64503 " Coal",20968,21406,19154,12759,13583 " Petroleum",6778,8195,3745,2648,2005 " Natural ...

  16. Wyoming Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Energy Source",2006,2007,2008,2009,2010 "Fossil",43749,44080,44635,42777,43781 " Coal",42892,43127,43808,41954,42987 " Petroleum",46,47,44,50,56 " Natural ...

  17. Vermont Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9,10,7,7,8 " Coal","-","-","-","-","-" " Petroleum",7,8,4,2,5 " Natural Gas",2,2,3,4,4 " Other Gases","-","-","-","-","-" ...

  18. New Jersey Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Energy Source",2006,2007,2008,2009,2010 "Fossil",26910,29576,30264,26173,31662 " Coal",10862,10211,9028,5100,6418 " Petroleum",270,453,325,278,235 " Natural ...

  19. Pennsylvania Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",138173,143909,137862,136047,145210 " Coal",122558,122693,117583,105475,110369 " Petroleum",1518,1484,938,915,571 " ...

  20. Model Documentation Report: Industrial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  1. Final Technical Report for Industrial Assessment Center at West Virginia University

    SciTech Connect (OSTI)

    Gopalakrishnan, Bhaskaran

    2008-01-09

    ,036. The overall implementation rate of the assessment recommendations is 60.6% for the 101 industrial assessments conducted since 2002. The implemented recommendations resulted in total energy savings of 62,328,006 kWh from electricity, 295,241 MMBtu from natural gas, and 43,593 MMBtu from other fuels, totaling 551,557 MMBtu. The average implemented energy savings per industrial facility is 5,461 MMBtu and the average implemented energy cost savings is $ 59,879. The average implemented energy and productivity cost savings exceeds the program average of $ 60,000 per assessment. The IAC at WVU has produced a variety of energy efficiency recommendations in areas of industrial energy consumption such as Boilers and Steam systems (19), Air Compressors (15), HVAC (4), Chillers (12), Furnaces and Ovens (17), Motors (8), Lighting (20), Insulation (3), CHP and Cogeneration (4), and Process Equipment (7). The project has benefited the public by enabling the reduction of CO2 emissions by 89,726 tons due to the implemented energy saving recommendations at 101 small and medium sized manufacturing facilities. Since CO2 is a green house gas, its reduction will improve the quality of the environment significantly. The reduction in operating costs for the manufacturing facilities in terms of energy cost savings will increase the manufacturing facilities profits and improve their competitive edge, thus causing possible expansion in the manufacturing activities, leading to increase in good paying jobs.

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  3. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  7. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  10. Energy-Related Carbon Emissions, by Industry, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million...

  11. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  12. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  13. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  14. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  15. Percentage of Total Natural Gas Commercial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  16. Percentage of Total Natural Gas Residential Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S.

  17. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  18. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  20. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  2. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  3. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  4. " Generation by Census Region, Industry Group, Selected Industries, Presence of"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row"

  5. Million U.S. Housing Units Total U.S.........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 33.0 8.0 3.4 5.9 14.4 1.2 Cooking Appliances Conventional Ovens Use an Oven............................................. 109.6 32.3 7.9 3.3 5.9 14.1 1.1 1............................................................ 103.3 31.4 7.6 3.3 5.7 13.7 1.1 2 or More............................................... 6.2 0.9 0.3 Q Q 0.4 Q Do Not Use an Oven................................. 1.5 0.7 Q Q Q 0.3 Q Most-Used Oven Fuel Electric.................................................. 67.9 19.4 4.5

  6. Million U.S. Housing Units Total U.S.............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .... 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Cooking Appliances Conventional Ovens Use an Oven................................................. 109.6 14.4 7.2 12.4 12.4 18.6 18.3 17.2 9.1 1................................................................ 103.3 13.5 6.8 11.8 11.5 17.7 17.5 16.1 8.4 2 or More................................................... 6.2 1.0 0.4 0.6 0.8 0.9 0.8 1.1 0.7 Do Not Use an Oven..................................... 1.5 0.3 Q Q Q 0.3 0.3 Q Q Most-Used Oven Fuel

  7. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  8. Million U.S. Housing Units Total............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Oven Use an Oven......................................................... 109.6 71.3 7.4 7.7 16.4 6.8 More Than Once a Day..................................... 8.9 5.7 0.5 0.6 1.3 0.7 Once a Day....................................................... 19.2 13.3 1.3 1.4 2.1 1.0 Between Once a Day and Once a Week........... 32.0 22.7 2.1 1.8 4.0 1.5 Once a Week.................................................... 19.1 12.2 1.2 1.3 3.0 1.4 Less than Once a

  9. Table A1. Total First Use (formerly Primary Consumption) of...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Manufacturing Industries"," W ",613,0," W ",2," W ",0,0," W ",0,28.1 ,"Total",1947,98827,2220,2397,500,6887,13448,1627,728,48,8.2 ,,"West South Central Census Division" ...

  10. Table A1. Total First Use (formerly Primary Consumption) of...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Manufacturing Industries"," W ",2,0," W ",2," W ",0,0," W ",0,28.1 ,"Total",1947,337,14,14,515,26,320,40,728,48,8.3 ,,"West South Central Census Division" ,"RSE Column ...

  11. Mining Industry Energy Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  12. Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing

  13. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  14. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  15. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Census Region",,,,,,,"Census Division",,,,,"RSE" "SIC"," ",,,,,,,"Middle","East North","West

  16. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  17. Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS"

  18. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  19. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  20. Table 5. Electric power industry generation by primary energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Total electric industry", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, ...

  1. Model Documentation Report: Industrial Demand Module of the National...

    Gasoline and Diesel Fuel Update (EIA)

    are multiplicative for all fuels that have consumption values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  2. Microsoft Word Viewer - Industrial Documentation _7-10-06_.doc

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  3. International Energy Outlook 2016-Industrial sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 7. Industrial sector energy consumption print version Overview The industrial sector uses more delivered energy [294] than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across

  4. Industrial-Strength UPF | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 7 Industrial sector energy consumption Overview The industrial sector uses more delivered energy 294 than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across regions and countries, depending on the level

  5. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  6. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  7. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  8. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  9. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  10. RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"

    U.S. Energy Information Administration (EIA) Indexed Site

    "RESIDENTIAL",,,,"COMMERCIAL",,,,"INDUSTRIAL",,,,"TRANSPORTATION",,,,"OTHER",,,,"TOTAL"

  11. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  12. Industrial Technologies Funding Profile by Subprogram

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Profile by Subprogram (dollars in thousands) FY 2008 Current Appropriation a FY 2009 Original Appropriation FY 2009 Additional Appropriation FY 2010 Request Industrial Technologies Industries of the Future (Specific) 10,969 15,575 - 12,627 Industries of the Future (Crosscutting - Including Inventions and Innovations) 52,223 74,425 - 87,373 Efficiency of Information and Communications Technology and Standards - - 50,000 - Total, Industrial Technologies 63,192 90,000 50,000 100,000 Public

  13. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  14. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  15. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  16. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  17. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  18. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  19. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  20. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  1. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  2. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  3. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  4. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  5. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  6. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  7. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  8. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  9. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  10. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  11. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  12. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  13. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  14. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  15. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  19. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  20. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  1. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  2. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  3. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  4. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  5. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  6. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  7. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  8. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  11. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  14. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  15. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings ... Attics Attic in Single-Family Homes and Apartments in 2-4 Unit Buildings ...

  17. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  18. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Air-Conditioning Equipment 1, 2 Central System......Central Air-Conditioning...... 65.9 1.1 6.4 6.4 ...

  19. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  1. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  2. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ...

  3. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  4. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ...

  5. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  6. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  7. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  9. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  12. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  13. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Per Household Member Average Square Feet Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC1.2.2 ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  16. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  17. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Renter-Occupied Housing Unit Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Owner-Occupied Housing Unit U.S. Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  20. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table ... At Home Behavior Home Used for Business Yes......

  1. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  2. Uranium industry annual 1997

    SciTech Connect (OSTI)

    1998-04-01

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  3. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  4. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  5. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  6. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  7. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  8. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  9. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  10. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  11. EERE INDUSTRY DAY

    Office of Energy Efficiency and Renewable Energy (EERE)

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  12. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  13. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  14. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  15. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  16. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAN RAMON, CA-May 11, 2015-GE Software (NYSE: GE) today announced its 'Industrial Dojo,' ... The Cloud Foundry Dojo program allows software developers to immerse themselves in open ...

  17. China develops natural gas industry

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    As of 1981, more than 60 natural gas fields with a total annual output of 12.74 billion cu m have been discovered in China, placing the country among the top 12 gas producers in the world. In addition, there are prospects for natural gas in the Bohai-North China Basin and the Qaidam Basin, NW. China, providing a base for further expansion of the gas industry. Gas reservoirs have been found in 9 different geologic ages: Sinian, Cambrian, Ordovician, Carboniferous, Permian, Triassic, Jurassic, Tertiary, and Quaternary. Of the 60 gas field now being exploited, there are more than 40 fields in Sichuan. The Sichuan Basin gas industry is described in detail.

  18. Uranium industry annual 1994

    SciTech Connect (OSTI)

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  19. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  20. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  1. Simulation of industrial coking -- Phase 1

    SciTech Connect (OSTI)

    Todoschuk, T.W.; Price, J.T.; Gransden, J.F.

    1997-12-31

    Two statistically designed experimental programs using an Appalachian and a Western Canadian coal blend were run in CANMET`s 460mm (18 inch) movable wall oven. Factors included coal grind, moisture, oil addition, carbonization rate and final coke temperature. Coke quality parameters including CSR, coal charge characteristics and pressure generation were analyzed.

  2. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  3. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Performance Period Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee

  4. Uranium industry annual, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-09-29

    This report provides current statistical data on the US uranium industry for the Congress, federal and state agencies, the uranium and utility industries, and the public. It utilizes data from the mandatory ''Uranium Industry Annual Survey,'' Form EIA-858; historical data collected by the Energy Information Administration (EIA) and by the Grand Junction (Colorado) Project Office of the Idaho Operations Office of the US Department of Energy (DOE); and other data from federal agencies that preceded the DOE. The data provide a comprehensive statistical characterization of the industry's annual activities and include some information about industry plans and commitments over the next several years. Where these data are presented in aggregate form, care has been taken to protect the confidentiality of company-specific data while still conveying an accurate and complete statistical representation of the industry data.

  5. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  6. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  7. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  8. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  9. Baytown Industrial Park

    SciTech Connect (OSTI)

    2005-06-01

    This is a combined heat and power (CHP) project profile on an 830 MW combined-cycle CHP application at Baytown Industrial Park in Baytown, Texas.

  10. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  11. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  12. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  13. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... Uses renewable resources grown with sustainable forestry practices Encourages ...

  14. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Green Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the Free-Electron Laser that retains sulfur hexafluoride gas when it isn't being used in the FEL's gun test stand. The concept received a 2011 Virginia Governor's Environmental Excellence Program Gold Award. Industrial Green On behalf of work done by Kevin Jordan, a senior engineer in the Free-Electron Laser

  15. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  16. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum ... Information & Communications Technology Data Centers Materials for Industrial Use ...

  17. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  18. "Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and

  19. "Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and

  20. "Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and

  1. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and

  2. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  3. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  4. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual ... International. Environmental Programs Design Storm for "Total Retention" under ...

  5. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One

  6. "Table A22. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  7. Laclede Gas Company - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Steamer: 475 Food Service Gas Fryer: 350 Food Service Griddle: 400 Food Service Convection Oven: 200 Kitchen Low-Flow Spray Nozzle: 100 Program Info Sector Name Utility...

  8. Reduce Natural Gas Use in Your Industrial Process Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Think again. Cutting your natural gas bill can be as simple as adjusting a dial. Get ... water, and oils or in preheating charge material going into a furnace or oven. n Consider ...

  9. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  10. Total Energy - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections Major Topics Most popular Annual Monthly Projections Recurring U.S. States All reports Browse by Tag Alphabetical Frequency Tag Cloud Current Issues & Trends See more › Composition of trade influences goods output, shaping industrial sector energy intensity exportsimportsindustrialAEO2016 Changing U.S. energy mix reflects growing use of natural gas, petroleum, and renewables natural

  11. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  12. NREL Teams with Industry to Validate Methanol Fuel Cell Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Teams with Industry to Validate Methanol Fuel Cell Technology February 18, 2011 The ... The total cost of the project is just over 2 million; NREL will contribute 900,000 to ...

  13. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  14. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  15. DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational

  16. Uranium industry annual 1995

    SciTech Connect (OSTI)

    1996-05-01

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  17. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. Total 9,010 5,030 8,596 6,340 4,707 8,092 1936-2016 PAD District 1 3,127 2,664 2,694 1,250 1,327 2,980 1981-2016 Connecticut 1995-2015 Delaware 280 1995-2016 Florida 858 649 800 200 531 499 1995-2016 Georgia 210 262 149 106 1995-2016 Maine 1995-2015 Maryland 84 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,283 843 1,073 734 355 1,984 1995-2016 New York 234 824 210 196 175 1995-2016 North Carolina 1995-2011

  18. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  19. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  20. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  1. Total heat gain and the split between radiant and convective heat gain from office and laboratory equipment in buildings

    SciTech Connect (OSTI)

    Hosni, M.H.; Jones, B.W.; Sipes, J.M.; Xu, Y.

    1998-10-01

    An accurate determination of the cooling load is important in the proper sizing of air-conditioning equipment. Improvements on the thermal insulation characteristics of building materials and recent advances in building envelope systems have reduced the building cooling load from external sources. However, the number of internal cooling load sources have increased due to the addition of various office and laboratory equipment (e.g., microcomputer, monitor, printer copier, scanner, overhead projector, microwave oven, incubator, etc.). In this article, typical office and laboratory equipment such as desktop computers (with a Pentium and a 486DX2-33 processor), monitors, a copier, a laser printer, and a biological incubator are evaluated to determine the total heat gain and the split between radiant and convective heat gain from these items. In addition, two standard objects with well-defined radiant heat loss characteristics, a heated flat slab, and a heated sphere are used to verify the accuracy of measurement and data reduction procedures. The total heat gain from tested office equipment was significantly less than the name plate ratings even when operated continuously. The actual power consumption ranged from 14% to 36% of the name plate ratings. Thus, care must be taken when using equipment nameplate ratings in estimating total heat gain for air-conditioning equipment sizing.

  2. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  3. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  4. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  5. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  6. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  7. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  8. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  9. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  10. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  11. Presentations for Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  12. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  13. Steel Industry Profile

    Broader source: Energy.gov [DOE]

    The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

  14. Macro Industrial Working Group

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... 22 Industrial Team Washington DC, September 29, 2014 Macro Team: Kay Smith (lead) (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov Russell ...

  15. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  16. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  17. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced

  18. CASL Industry Council Members:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL Industry Council Members: We are looking forward to hosting you at the upcoming CASL Industry Council Meeting on Tuesday, April 12, 2016 through Wednesday, April 13, 2016 at the following location: ALOFT Greenville Downtown Converge Conference Room 5 North Laurens Street Greenville, SC 29601 864-297-6100 Meeting Contact: Lorie Fox (865) 548-5178 Lodging: ALOFT Greenville Downtown: http://www.aloftgreenvilledowntown.com/ Hotel Information * Check-in time: 4 PM * Checkout time: 12 PM * Fast

  19. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  4. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  5. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  6. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  7. ,"North Dakota Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Total Consumption ... 9:10:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Total Consumption ...

  8. ,"North Carolina Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Total Consumption ... 9:10:33 AM" "Back to Contents","Data 1: North Carolina Natural Gas Total Consumption ...

  9. Table 3. Distribution of total U.S. greenhouse gas emissions by sector, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of total U.S. greenhouse gas emissions by sector, 2009 " "Greenhouse Gas and Source","Sector" ,"Residential","Commercial","Industrial","Transportation","Total" "Carbon Dioxide" " Energy-Related",1172.297835,1012.323586,1417.683142,1757.250685,5359.555248 " Industrial Processes",,,87.282832,,87.282832 "Total CO2",1172.297835,1012.323586,1504.965974,1757.250685,5446.83808

  10. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and ... All Issues submit Industry Cluster Development Grant winners Recipients include Picuris ...

  11. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  12. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  13. Agile Biomanufacturing Industry Listening Workshop

    Broader source: Energy.gov [DOE]

    A consortium of nine national laboratories is holding the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, California, to increase understanding of industry needs...

  14. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  15. " Level: National Data and Regional Totals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... by" "petroleum refineries, rather than purchased ... ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal ...

  16. Workshop proceeding of the industrial building energy use

    SciTech Connect (OSTI)

    Akbari, H.; Gadgil, A.

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  17. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    SciTech Connect (OSTI)

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-04-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U{sup 235}/U{sup 238} ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U{sup 234} and U{sup 236} isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given.

  18. Conducting polymers: Synthesis and industrial applications

    SciTech Connect (OSTI)

    Gottesfeld, S.

    1997-04-01

    The Conducting Polymer project funded by the AIM Program has developed new methods for the synthesis of conducting polymers and evaluated new industrial applications for these materials which will result in significant reductions in energy usage or industrial waste. The applications specifically addressed during FY 1996 included two ongoing efforts on membranes for gas separation and on electrochemical capacitors and a third new application: electrochemical reactors (ECRs) based on polymeric electrolytes. As a gas separation membrane, conducting polymers offer high selectivity and the potential to chemically or electrically adapt the membrane for specific gas combinations. Potential energy savings in the US for this application are estimated at 1 to 3 quads/yr. As an active material in electrochemical capacitors, electronically conducting polymers have the potential of storing large amounts of electric energy in low cost materials. Potential energy savings estimated at 1 quad/yr would result from introduction of electrochemical capacitors as energy storage devices in power trains of electric and hybrid vehicles, once such vehicles reach 20% of the total transportation market in the US. In the chlor-alkali industry, electrochemical reactors based on polymer electrolyte membranes consume around 1 % of the total electric power in the US. A new activity, started in FY 1996, is devoted to energy efficient ECRs. In the case of the chlor-alkali industry, energy savings as high as 50% seem possible with the novel ECR technology demonstrated by the author in 1996.

  19. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  20. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  1. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... coke, waste oil, and propane gas." "Wood and Wood Derived Fuels includes paper pellets, railroad ties, utility poles, wood chips, bark, red liquor, sludge wood, spent ...

  2. District of Columbia Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Energy Source",2006,2007,2008,2009,2010 "Fossil",806,806,790,790,790 " Coal","-","-","-","-","-" " Petroleum",806,806,790,790,790 " Natural Gas","-","-","-","-","-" " Other Gases","-","-","-","-","-"

  3. Kansas Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9592,9709,10017,10355,10302 " Coal",5203,5208,5190,5180,5179 " Petroleum",565,569,564,564,550 " Natural Gas",3824,3932,4262,4611,4573 " Other Gases","-","-","-","-","-" "Nuclear",1166,1166,1160,1160,1160 "Renewables",366,366,815,1014,1082 "Pumped

  4. Kentucky Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19177,19088,19016,19268,19560 " Coal",14386,14374,14301,14553,14566 " Petroleum",135,77,77,77,70 " Natural Gas",4656,4638,4638,4638,4924 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",871,880,886,893,893 "Pumped

  5. Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 18.1 16.1 18.8 2000's 19.8 20.8 22.7 22.1 23.6 24.0 23.4 22.2 20.4 18.8 2010's 18.0 16.3 16.2 16.6 15.9 14.7

  6. Percent of Industrial Natural Gas Deliveries in U.S. Total Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    the Price (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 23.5 23.2 22.0 21.0 19.5 19.2 20.2 19.6 19.8 20.3 20.2 20.7 2002 20.3 20.5 20.2 26.3 23.9 25.5 24.0 22.5 22.5 21.7 21.8 23.1 2003 21.4 22.1 21.3 20.9 20.3 19.1 24.7 22.9 22.9 23.3 22.7 23.5 2004 23.1 23.6 22.8 23.3 23.4 25.0 24.9 24.0 22.8 22.6 23.5 24.5 2005 24.8 24.3 24.6 23.9 24.2 23.7 24.5 24.6 23.2 23.2 23.4 23.7 2006 23.7 23.7 23.8 23.5 23.8 23.3 23.6 23.7 22.0 22.9 23.0 23.4 2007 22.7 23.0 22.4 22.3 23.2

  7. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  8. Maine Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2770,2751,2761,2738,2738 " Coal",85,85,85,85,85 " Petroleum",1030,1031,1031,1008,1008 " Natural Gas",1655,1636,1645,1645,1645 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1418,1462,1478,1606,1692 "Pumped

  9. Maryland Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Energy Source",2006,2007,2008,2009,2010 "Fossil",10071,10028,10125,10050,10012 " Coal",4958,4958,4944,4876,4886 " Petroleum",3140,2965,2991,2986,2933 " Natural Gas",1821,1953,2038,2035,2041 " Other Gases",152,152,152,152,152 "Nuclear",1735,1735,1735,1705,1705 "Renewables",693,723,725,727,799 "Pumped Storage","-","-","-","-","-"

  10. Massachusetts Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Energy Source",2006,2007,2008,2009,2010 "Fossil",11050,10670,10621,10770,10763 " Coal",1743,1744,1662,1668,1669 " Petroleum",3219,3137,3120,3125,3031 " Natural Gas",6089,5789,5839,5977,6063 " Other Gases","-","-","-","-","-" "Nuclear",685,685,685,685,685 "Renewables",554,560,557,564,566 "Pumped Storage",1643,1643,1643,1680,1680

  11. Michigan Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23693,23826,23805,23691,23205 " Coal",11860,11910,11921,11794,11531 " Petroleum",1499,673,667,684,640 " Natural Gas",10322,11242,11218,11214,11033 " Other Gases",12,"-","-","-","-" "Nuclear",4006,3969,3969,3953,3947 "Renewables",618,638,773,792,807 "Pumped Storage",1872,1872,1872,1872,1872

  12. Minnesota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",9714,9550,10548,10752,10519 " Coal",5444,5207,5235,4826,4789 " Petroleum",746,764,782,801,795 " Natural Gas",3524,3579,4531,5126,4936 " Other Gases","-","-","-","-","-" "Nuclear",1668,1668,1668,1668,1594 "Renewables",1259,1658,2008,2192,2588 "Pumped

  13. Nevada Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Energy Source",2006,2007,2008,2009,2010 "Fossil",8412,8638,9942,9950,9914 " Coal",2657,2689,2916,2916,2873 " Petroleum",45,45,45,45,45 " Natural Gas",5711,5905,6982,6990,6996 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1236,1316,1355,1446,1507 "Pumped

  14. 2014 Total Electric Industry- Average Retail Price (cents/kWh...

    Gasoline and Diesel Fuel Update (EIA)

    17.05 Maine 15.27 12.70 8.95 0.00 12.65 Massachusetts 17.39 14.68 12.74 8.76 15.35 New Hampshire 17.53 14.34 11.93 0.00 15.22 Rhode Island 17.17 14.56 12.86 14.89 15.41 Vermont ...

  15. "2014 Total Electric Industry- Average Retail Price (cents/kWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Massachusetts",17.390969,14.676411,12.740483,8.7639584,15.354558 "New Hampshire",17.52928,14.339091,11.929516,0,15.220362 "Rhode Island",17.167946,14.560559,12.86...

  16. New York Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28071,27582,26726,27022,26653 " Coal",4014,3570,2899,2804,2781 " Petroleum",7241,7286,7273,7335,6421 " Natural Gas",16816,16727,16554,16882,17407 " Other Gases","-","-","-","-",45 "Nuclear",5156,5156,5264,5262,5271 "Renewables",5027,5087,5433,6013,6033 "Pumped Storage",1297,1297,1297,1374,1400

  17. North Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",19673,20247,20305,20230,20081 " Coal",13113,13068,13069,12952,12766 " Petroleum",563,564,558,560,573 " Natural Gas",5997,6616,6679,6718,6742 " Other Gases","-","-","-","-","-" "Nuclear",4975,4975,4958,4958,4958 "Renewables",2292,2301,2294,2294,2499 "Pumped Storage",84,84,90,86,86

  18. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  19. Ohio Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Energy Source",2006,2007,2008,2009,2010 "Fossil",31582,31418,31154,31189,30705 " Coal",22264,22074,21815,21858,21360 " Petroleum",1057,1075,1047,1047,1019 " Natural Gas",8161,8169,8192,8184,8203 " Other Gases",100,100,100,100,123 "Nuclear",2120,2124,2124,2134,2134 "Renewables",175,213,214,216,231 "Pumped Storage","-","-","-","-","-"

  20. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  1. Oregon Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3349,3686,3653,3626,3577 " Coal",585,585,585,585,585 " Petroleum","-","-","-","-","-" " Natural Gas",2764,3101,3068,3041,2992 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  2. Pennsylvania Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Energy Source",2006,2007,2008,2009,2010 "Fossil",32893,32751,32654,32663,32530 " Coal",18771,18581,18513,18539,18481 " Petroleum",4664,4660,4540,4533,4534 " Natural Gas",9349,9410,9507,9491,9415 " Other Gases",110,100,94,101,100 "Nuclear",9234,9305,9337,9455,9540 "Renewables",1365,1529,1619,1971,1984 "Pumped Storage",1513,1521,1521,1521,1521

  3. Rhode Island Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1743,1754,1754,1754,1754 " Coal","-","-","-","-","-" " Petroleum",31,29,26,16,16 " Natural Gas",1712,1725,1728,1738,1738 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-"

  4. South Carolina Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Energy Source",2006,2007,2008,2009,2010 "Fossil",12100,12682,13281,13189,13207 " Coal",6088,6641,7242,7210,7230 " Petroleum",685,685,705,669,670 " Natural Gas",5327,5355,5335,5311,5308 " Other Gases","-","-","-","-","-" "Nuclear",6472,6472,6472,6486,6486 "Renewables",1594,1587,1592,1580,1623 "Pumped Storage",2616,2826,2666,2716,2666

  5. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  6. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  7. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  8. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  9. DEVELOPMENT AND DEMONSTRATION OF NOVEL LOW-NOx BURNERS IN THE STEEL INDUSTRY

    SciTech Connect (OSTI)

    Cygan, David

    2006-12-28

    Gas Technology Institute (GTI), together with Hamworthy Peabody Combustion Incorporated (formerly Peabody Engineering Corporation), the University of Utah, and Far West Electrochemical have developed and demonstrated an innovative combustion system suitable for natural gas and coke-oven gas firing within the steel industry. The combustion system is a simple, low-cost, energy-efficient burner that can reduce NOx by more than 75%. The U.S. steel industry needs to address NOx control at its steelmaking facilities. A significant part of NOx emissions comes from gas-fired boilers. In steel plants, byproduct gases – blast furnace gas (BFG) and coke-oven gas (COG) – are widely used together with natural gas to fire furnaces and boilers. In steel plants, natural gas can be fired together with BFG and COG, but, typically, the addition of natural gas raises NOx emissions, which can already be high because of residual fuel-bound nitrogen in COG. The Project Team has applied its expertise in low-NOx burners to lower NOx levels for these applications by combining advanced burner geometry and combustion staging with control strategies tailored to mixtures of natural gas and byproduct fuel gases. These methods reduce all varieties of NOx – thermal NOx produced by high flame temperatures, prompt NOx produced by complex chain reactions involving radical hydrocarbon species and NOx from fuel-bound nitrogen compounds such as ammonia found in COG. The Project Team has expanded GTI’s highly successful low-NOx forced internal recirculation (FIR) burner, previously developed for natural gas-fired boilers, into facilities that utilize BFG and COG. For natural gas firing, these burners have been shown to reduce NOx emissions from typical uncontrolled levels of 80-100 vppm to single-digit levels (9 vppm). This is done without the energy efficiency penalties incurred by alternative NOx control methods, such as external flue gas recirculation (FGR), water injection, and selective non

  10. Total Quality Management (TQM) concepts applied to instruction

    SciTech Connect (OSTI)

    Nuccio, E.J.

    1992-05-01

    Drawing on DOE Order 5700.6C and other industry standards, this document presents several concepts and tools of Total Quality Management (TQM), a brief history of their use at EG&G Rocky Flats, and how they are being applied to address processes of instruction common to TAP. Concepts presented and applied include: statistical process control (SPC), e.g. using control charts, as an evaluation methodology for learners and instructors; TQM conceptual tools, e.g. brainstorming, affinity diagrams, and interrelationship digraphs, as a methodology for planning programs of instruction such as TAP; and team activities to construct instructional process systems.

  11. Total Quality Management (TQM) concepts applied to instruction

    SciTech Connect (OSTI)

    Nuccio, E.J.

    1992-01-01

    Drawing on DOE Order 5700.6C and other industry standards, this document presents several concepts and tools of Total Quality Management (TQM), a brief history of their use at EG G Rocky Flats, and how they are being applied to address processes of instruction common to TAP. Concepts presented and applied include: statistical process control (SPC), e.g. using control charts, as an evaluation methodology for learners and instructors; TQM conceptual tools, e.g. brainstorming, affinity diagrams, and interrelationship digraphs, as a methodology for planning programs of instruction such as TAP; and team activities to construct instructional process systems.

  12. Industry Partners Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  13. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  14. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  15. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  16. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  17. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or

  18. "Table A32. Total Quantity of Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC","

  19. "Table A46. Total Expenditures for Purchased Electricity, Steam, and Natural"

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, Industry Group, and Selected Industries," 1991 " (Estimates in Million Dollars)" ,," Electricity",," Steam",," Natural Gas" ,,"-","-----------","-","-----------","-","------------","-","RSE"

  20. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent