Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect (OSTI)

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

2

The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.  

E-Print Network [OSTI]

The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes

3

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to involve more explicit alignment with BPA's newest demand-side roadmap resource, the Demand Response Technology Roadmap. 1 Roadmap chapters have been arranged in stand-alone...

4

Technology Investment Roadmap 2012 -2017  

E-Print Network [OSTI]

Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview................................................................... 23 #12;3 Introduction & Overview This Technology Investment Roadmap (TIR) has been developed

Hickman, Mark

5

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

SciTech Connect (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

6

ITP Metal Casting: Metalcasting Industry Technology Roadmap | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) |Energy Metalcasting Industry

7

Demand Response Technology Roadmap A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

8

Water Heating Technologies Research and Development Roadmap ...  

Energy Savers [EERE]

Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

9

Emerging Water Heating Technologies Research & Development Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

10

OHVT technology roadmap [2000  

SciTech Connect (OSTI)

The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

Bradley, R.A.

2000-02-01T23:59:59.000Z

11

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers [EERE]

Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

12

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

13

ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001...

14

EE Regional Technology Roadmap Includes comparison  

E-Print Network [OSTI]

EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

15

A ROADMAP FOR TECHNOLOGY ENHANCED PROFESSIONAL  

E-Print Network [OSTI]

A ROADMAP FOR TECHNOLOGY ENHANCED PROFESSIONAL LEARNING (TEPL) Network of Excellence for engaging themselves in open and constructive dialogue with the Roadmapping team and for their contributions to various Roadmapping events - Richard Straub, IBM, Richard Straub Secretary-General ELIG, France - Fabrizio

Paris-Sud XI, Université de

16

DOE Announces Strategic Engineering and Technology Roadmap for...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era...

17

Energy Department Releases Roadmaps on HVAC Technologies, Water...  

Energy Savers [EERE]

Energy Department Releases Roadmaps on HVAC Technologies, Water Heating, Appliances, and Low-GWP Refrigerants Energy Department Releases Roadmaps on HVAC Technologies, Water...

18

Integrated Engine and Aftertreatment Technology Roadmap for EPA...  

Broader source: Energy.gov (indexed) [DOE]

Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010...

19

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

l d i n g D e s i g n E n v e l o p e R&D Program Summaries Effective, cost competitive solar shingles. Building-integrated photovoltaic (PV) technologies helps make solar power...

20

Power Tower Technology Roadmap and cost reduction plan.  

SciTech Connect (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building America Technology-to-Market Roadmaps - Request for...  

Energy Savers [EERE]

Building America Technology-to-Market Roadmaps - Request for Information Building America Technology-to-Market Roadmaps - Request for Information April 3, 2015 - 4:22pm Addthis The...

22

Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

23

Power sources manufactures association : power technology roadmap workshop - 2006.  

SciTech Connect (OSTI)

The Power Sources Manufacturers Association (PSMA) is pleased to announce the release of the latest Power Technology Roadmap Workshop Report. This Fifth Edition Workshop Report includes presentations and discussions from the workshop as seen by the participants that included many of the industry's most influential members representing end-users, power supply manufacturers, component suppliers, consultants and academia. This report provides detailed projections for the next three to four years of various technologies in a quantitative form. There was special emphasis on how the increasing use of digital technologies will affect the industry in the next four years. The technology trend analysis and the roadmap is provided for the following specific product families expected to be the areas of largest market growth: (1) Ac-dc front end power supplies--1 kW from a single phase ac source; (2) External ac-dc power supplies; (3) Dc-dc bus converters; and (4) Non-isolated dc-dc converters. Bruce Miller, Chairman of PSMA, stated that 'the Power Technology Roadmap Workshop Report is an extensive document that analyzes and provides projections for most major technical parameters for a specific power supply. It is a unique document as it contains technology/parametric trends in a roadmap fashion from a variety of diverse sources, giving significant depth to its content. No such information is available from any other source'. The Power Technology Roadmap Workshop Report is available at no cost as to PSMA Regular and Associate members and at a reduced price to Affiliate members as a benefit of membership. The report will be offered to non-members at a price of $2490. For further information or to buy a copy of the report, please visit the publications page or the PSMA website or contact the Association Office.

Bowers, John S.

2006-03-01T23:59:59.000Z

24

Roadmap: Information Technology for Administrative Professionals Associate of Applied Business  

E-Print Network [OSTI]

Roadmap: Information Technology for Administrative Professionals ­ Associate of Applied Business This roadmap is a recommended semester-by-semester plan of study for this major. However, courses Minimum Total Hours Minimum Major GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Information Technology

Sheridan, Scott

25

Roadmap: Technical and Applied Studies Computer Technology Internet/Multimedia  

E-Print Network [OSTI]

Roadmap: Technical and Applied Studies ­ Computer Technology Internet/Multimedia ­ Bachelor Updated: 22-Aug-12/TET This roadmap is a recommended semester-by-semester plan of study for this major and minimum 39 upper-division credit hours #12;Roadmap: Technical and Applied Studies ­ Computer Technology

Sheridan, Scott

26

Railroad and locomotive technology roadmap.  

SciTech Connect (OSTI)

Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry-government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical approaches for engine, locomotive, rail systems, and advanced power plants and fuels are presented.

Stodolsky, F.; Gaines, L.; Energy Systems

2003-02-24T23:59:59.000Z

27

Roadmap for Process Heating Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobased Products in

28

Roadmap: Technology Technology Education Licensure Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Technology ­ Technology Education Licensure ­ Bachelor of Science [AT-BS-TECH-TEDL] College of Applied Engineering, Sustainability and Technology Education Minor [EDUC] College of Education Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics 3 C US 10097 Destination

Sheridan, Scott

29

Technology Roadmap Biofuels for Transport  

E-Print Network [OSTI]

that we are now on; low-carbon energy technologies will play a crucial role in the energy revolution

30

Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study  

E-Print Network [OSTI]

Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However

Sheridan, Scott

31

National Algal Biofuels Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a number of unique scale-up challenges. Algal Lipid: Precursor to Biofuels Bio-Crude * Biogas * Co-products (e.g., animal feed, fertilizers, industrial enzymes, bioplastics, and...

32

AFCI Safeguards Enhancement Study: Technology Development Roadmap  

SciTech Connect (OSTI)

The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

2008-12-31T23:59:59.000Z

33

Building America Webinar: Building America Technology-to-Market Roadmaps  

Broader source: Energy.gov [DOE]

This webinar introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building Americas research, development, and demonstration activities over the coming years and result in an integrated Building America Research-to-Market Plan in 2015. This webinar is intended to be an informative session to assist stakeholders in providing review and comment to the Request for Information that will be issued regarding these Roadmaps.

34

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect (OSTI)

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

35

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate Important Notes Semester One: [17 Credit Hours] EERT 12000 Electric Circuits I 4 MERT 12000 Engineering

Khan, Javed I.

36

ITP Mining: Mining Industry of the Future Mineral Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

37

Text-Alternative Version of Building America Webinar: Technology-to-Market Roadmaps  

Broader source: Energy.gov [DOE]

This is the text-alternative version of the Building America Webinar: Technology-to-Market Roadmaps.

38

Science and Technology Roadmapping to Support Project Planning  

SciTech Connect (OSTI)

Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

2001-07-01T23:59:59.000Z

39

1998 technology roadmap for integrated circuits used in critical applications  

SciTech Connect (OSTI)

Integrated Circuits (ICs) are being extensively used in commercial and government applications that have extreme consequences of failure. The rapid evolution of the commercial microelectronics industry presents serious technical and supplier challenges to this niche critical IC marketplace. This Roadmap was developed in conjunction with the Using ICs in Critical Applications Workshop which was held in Albuquerque, NM, November 11--12, 1997.

Dellin, T.A.

1998-09-01T23:59:59.000Z

40

Vehicle Technologies Office: US DRIVE Partnership Plan, Roadmaps...  

Office of Environmental Management (EM)

Energy Storage: Electrochemical Energy Storage Technical Team Roadmap Fuel Cells: Fuel Cell Technical Team Roadmap Grid Interaction: Grid Interaction Technical Team Roadmap...

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Roadmap: Theatre Studies Design and Technology Bachelor of Fine Arts [CA-BFA-THEA-DT  

E-Print Network [OSTI]

Roadmap: Theatre Studies ­ Design and Technology ­ Bachelor of Fine Arts [CA-BFA-THEA-DT] College This roadmap is a recommended semester-by-semester plan of study for this major. However, courses learning requirement and counts in the major GPA #12;Roadmap: Theatre Studies ­ Design and Technology

Sheridan, Scott

42

Roadmap: Radiologic Technology Associate of Technical Study [RE-ATS-RADT  

E-Print Network [OSTI]

Roadmap: Radiologic Technology ­ Associate of Technical Study [RE-ATS-RADT] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 25-Nov-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

43

Roadmap: Engineering Technology Green and Alternative Energy Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Engineering Technology ­ Green and Alternative Energy ­ Bachelor of Science [RE 26636 Project Management for Administrative Professionals 1 Green and Alternative Energy Elective 3 and Material Science 3 Green and Alternative Energy Elective 3 See note 2 on page 2 Kent Core Requirement 3

Sheridan, Scott

44

Roadmap: Business Management Technology Business Administration Associate of Applied Business  

E-Print Network [OSTI]

Roadmap: Business Management Technology ­ Business Administration ­ Associate of Applied Business Credit Hours] ACTT 11000 Accounting I-Financial 4 BMRT 11000 Introduction to Business 3 COMT 11000 21000 Business Law and Ethics I 3 BMRT 21011 Fundamentals of Financial Management 3 BMRT 21050

Sheridan, Scott

45

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmaps Jump to:

46

Roadmap: Aeronautics-Flight Technology-Bachelor of Science [AT-BS-AERN-FLGT  

E-Print Network [OSTI]

Roadmap: Aeronautics-Flight Technology-Bachelor of Science [AT-BS-AERN-FLGT] College of Applied This roadmap is a recommended semester-by-semester plan of study for this major. However, courses Resource Management 2 Offered in fall only AERN 45721 Crew Resource Management Laboratory 1 #12;Roadmap

Sheridan, Scott

47

Roadmap: Applied Engineering Applied Engineering and Technology Management Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Applied Engineering ­ Applied Engineering and Technology Management ­ Bachelor of Science­2013 Page 1 of 2 | Last Updated: 21-May-12/JS This roadmap is a recommended semester-by-semester plan TECH 43550 Computer-Aided Manufacturing 3 General Elective 6 #12;Roadmap: Applied Engineering

Sheridan, Scott

48

Supplemental Material to Cryogenic Roadmap Current Commercial Technology  

E-Print Network [OSTI]

Supplemental Material to Cryogenic Roadmap Current Commercial Technology Refrigeration Approximate,500 Brayton Turbine $800,000 $69.57 167 14.5 18.94% Liquid Air Plants Cosmodyne GF-1 80 N2 4 T/Day 8,400 Brayton Turbine $700,000 $83.33 372 44.3 6.21% Cosmodyne Aspen 1000 80 N2 1000 nM3 /Hr 64,969 Brayton

49

ITP Industrial Distributed Energy: 3rd Annual National CHP Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

3 rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting A Combined Event for Federal Facility Managers And CHP Advocates October...

50

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

51

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

52

Implementation of a manufacturing technology roadmapping initiative  

E-Print Network [OSTI]

Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

Johnson, Marcus Cullen

2012-01-01T23:59:59.000Z

53

ITP Mining: Exploration and Mining Technology Roadmap  

Broader source: Energy.gov (indexed) [DOE]

disturbance. Low-Cost and Efficient Production- Use advanced technologies to improve process efficiencies from exploration to final product. Advanced Products- Maintain and...

54

Roadmap: Electrical/Electronic Engineering Technology -Electrical Engineering Technology (General) -Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Electrical/Electronic Engineering Technology - Electrical Engineering Technology (General GPA Type Term Taken Semester One [17 Credits] ! EERT 12000 Electric Circuits I 4 ! MERT 12000 Electric Circuits II 3 ! EERT 12010 Introduction to Electronics 4 ENG 20002 Introduction to Technical

Khan, Javed I.

55

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Electrical/Electronic Engineering Technology ­ Electrical Engineering Technology (General Important Notes Semester One: [17 Credit Hours] EERT 12000 Electric Circuits I 4 MERT 12000 Engineering Core Summary Semester Two: [19 Credit Hours] EERT 12001 Electric Circuits II 3 EERT 12010 Introduction

Sheridan, Scott

56

Technology Roadmapping: The Integration of Strategic  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an overarchingInformationTHERMOANALYTICALSLAC, 28Technology

57

A Roadmap to the Future of Learning  

E-Print Network [OSTI]

Federation, a partnership among industry, academia, and private foundations to stimulate research and development in learning science and technology. The Roadmap outlines a detailed research plan for developing next-generation learning environments focused on post-secondary science, math, engineering, and technology education. Developed over a three-year period with advice provided by over seventy experts from educational institutions, government, and industry, the roadmap identifies key research priorities, along with metrics and milestones for each research focus area. The panel, comprised of researchers who participated in the development of the Roadmap, will summarize the key research challenges, R&D chronology, and five and ten-year goals identified in the Roadmap. The panelists will encourage comment from the audience regarding the research priorities identified in the Roadmap and effective management strategies for building multi-disciplinary teams to undertake the research. Index Terms learning, learning technology, technologyenabled learning, roadmap

Session Tb; Kay Howell; Jan Cannon-bowers; Albert Corbett; Max Louwerse; Alfred Moye

58

ITP Metal Casting: Metalcasting Industry Technology Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Target Waste Stream General Requirements Clean Air Act Particulate, hazardous air pollutants Emission control equipment, monitoring, reporting, and permits Clean Water Act...

59

Steel Industry Technology Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot DonSteelSteel

60

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind)Wind

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap  

SciTech Connect (OSTI)

This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

Casey, Leslie A.

2014-01-13T23:59:59.000Z

62

Roadmap Prioritizes Barriers to the Deployment of Wind Technology...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory (NREL) recently published a Built-Environment Wind Turbine Roadmap that outlines a strategy for providing consumers with safe, reliable...

63

Research and Development Roadmap: Windows and Building Envelope...  

Energy Savers [EERE]

Envelope Technologies Overview - 2014 BTO Peer Review Research & Development Roadmap: Emerging HVAC Technologies Research & Development Roadmap: Emerging Water Heating Technologies...

64

Trends in robotics: A summary of the Department of Energy`s critical technology roadmap  

SciTech Connect (OSTI)

Technology roadmaps serve as pathways to the future. They call attention to future needs for research and development; provide a structure for organizing technology forecasts and programs; and help communicate technological needs and expectations among end users and the research and development (R and D) community. Critical Technology roadmaps, of which the Robotics and Intelligent Machines (RIM) Roadmap is one example, focus on enabling or cross-cutting technologies that address the needs of multiple US Department of Energy (DOE) offices. Critical Technology roadmaps must be responsive to mission needs of the offices; must clearly indicate how the science and technology can improve DOE capabilities; and must describe an aggressive vision for the future of the technology itself. The RIM Roadmap defines a DOE research and development path for the period beginning today, and continuing through the year 2020. Its purpose is to identify, select and develop objectives that will satisfy near- and long-term challenges posed by DOE`s mission objectives. If implemented, this roadmap will support DOE`s mission needs while simultaneously advancing the state-of-the-art of RIM. For the purposes of this document, RIM refers to systems composed of machines, sensors, computers and software that deliver processes to DOE operations. The RIM Roadmap describes how such systems will revolutionize DOE processes, most notably manufacturing, hazardous and remote operations, and monitoring and surveillance. The advances in DOE operations and RIM discussed in this document will be possible due to the developments in many other areas of science and technology, including computing, communication, electronics and micro-engineering. Modern software engineering techniques will permit the implementation of inherently safe RIM systems that will depend heavily on software.

Eicker, P.J.

1998-08-10T23:59:59.000Z

65

Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap. This milestone is  

E-Print Network [OSTI]

Next Steps Volume I of the roadmap marks the completion of the first phase of the NIST Cloud Computing program and initiative to collaboratively build a USG Cloud Computing Technology Roadmap, and with the program time line presented in November 2010. As described previously, this roadmap document

66

Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap  

SciTech Connect (OSTI)

Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

2013-11-01T23:59:59.000Z

67

Roadmap for Agriculture  

E-Print Network [OSTI]

A Science Roadmap for Food and Agriculture A Science Roadmap for Food and Agriculture Prepared and Policy (ESCOP)-- Science and Technology Committee November 2010 #12;2 pA Science Roadmap for Food and Agriculture #12;A Science Roadmap for Food and Agriculture p i About this Publication To reference

Buckel, Jeffrey A.

68

Roadmap: Environmental Health and Safety -Environmental Technology -Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Environmental Health and Safety - Environmental Technology - Associate of Applied Science [17 Credits] COMT 11000 Introduction to Computer Systems 3 EVHS 10001 Environmental Technology I or PH] BSCI 10110 Biological Diversity 4 KBS EVHS 20004 Environmental Health and Safety I 3 GEOG 17063 World

Khan, Javed I.

69

ITP Steel: Steel Industry Marginal Opportunity Study September...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bandwidth Study October 2004 ITP Steel: Energy Use in the U.S. Steel Industry: An Historical Perspective and Future Opportunities, September 2000 Steel Industry Technology Roadmap...

70

Roadmap: Horticulture Technology Landscape Design Associate of Applied Science  

E-Print Network [OSTI]

Summer I: [6 Credit Hours] HORT 26018 Landscape Construction I 3 HORT 26021 Cooperative Work Experience Geology 3 Fulfills Kent Core Basic Sciences Technical Elective 3 Students preparing for the Bachelor Cooperative Work Experience in Landscape Management 3 Course is taken twice, in summer I and II #12;Roadmap

Sheridan, Scott

71

Roadmap: Horticulture Technology Turfgrass Management Associate of Applied Science  

E-Print Network [OSTI]

Credit Hours] HORT 26018 Landscape Construction I 3 HORT 26031 Cooperative Work Experience in Turfgrass 3 Fulfills Kent Core Basic Sciences Technical Elective 3 Students preparing for the Bachelor Cooperative Work Experience in Turfgrass Management 3 Course is taken twice, in summer I and II #12;Roadmap

Sheridan, Scott

72

Roadmap: Environmental Health and Safety Environmental Technology Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Environmental Health and Safety ­ Environmental Technology ­ Associate of Applied Science 10110 Biological Diversity 4 Fulfills Kent Core Basic Sciences EVHS 20004 Environmental Health CHEM 10050 Fundamentals of Chemistry 3 Fulfills Kent Core Basic Sciences EVHS 20001 Environmental Law 3

Khan, Javed I.

73

Roadmap: Environmental Health and Safety Environmental Technology Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Environmental Health and Safety ­ Environmental Technology ­ Associate of Applied Science Environmental Geology 3 Fulfills Kent Core Basic Sciences Semester Four: [14-15 Credit Hours] CHEM 10052 Social Sciences (3 credit hours) 3 Basic Sciences (3 credit hours) Fulfilled in this major with CHEM

Sheridan, Scott

74

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformationRoadmaps JumpTool Summary

75

Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger  

SciTech Connect (OSTI)

This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

2012-09-01T23:59:59.000Z

76

Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program  

SciTech Connect (OSTI)

A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.

Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

2005-10-03T23:59:59.000Z

77

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of Oil and GasRules,Energy IncRoadmap

78

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobased ProductsT hisDepartment

79

Energy Efficiency and Industrial Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

80

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

LAW ENFORCEMENT TECHNOLOGY ROADMAP: LESSONS TO DATE FROM THE NORTHWEST TECHNOLOGY DESK AND THE NORTHWEST FADE PILOTS  

SciTech Connect (OSTI)

The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.

West, Curtis L.; Kreyling, Sean J.

2011-04-01T23:59:59.000Z

82

Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update  

SciTech Connect (OSTI)

This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

Mc Dannel, Gary Eidson

2001-09-01T23:59:59.000Z

83

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

SciTech Connect (OSTI)

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL] [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL] [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL)] [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates] [Longenecker & Associates; Miller, Don W. [Ohio State University] [Ohio State University

2009-01-01T23:59:59.000Z

84

Roadmap: Applied Engineering Computer Engineering Technology -Bachelor of Science  

E-Print Network [OSTI]

-BS-AENG-CET] College of Applied Engineering, Sustainability and Technology Catalog Year: 2012-2013 Page 1 of 2 | Last Technology - Bachelor of Science [AT-BS-AENG-CET] College of Applied Engineering, Sustainability Technology 3 Semester Eight: [13 Credit Hours] TECH 43222 Computer Hardware Engineering and Architecture 3

Sheridan, Scott

85

Joint Capability Technology Demonstration (JCTD) Industry Day...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

86

ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 8: COMBINED HEAT...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See "Technology Area Definitions" section No Explicit Systems Integration Renewable power generation creates income stream to support management of waste streams Very high...

87

Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for post-2020 NAFTA line haul trucks deer11gruden.pdf More Documents & Publications High-Efficiency Engine Technologies Session Introduction The New ICE Age The New ICE Age...

88

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

89

Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured Technologies Roadmap Finalized for Low-Temperature, Coproduced, and Geopressured Technologies March 23, 2011 -...

90

Roadmap: Technology Bachelor of Science [AT-BS-TECH  

E-Print Network [OSTI]

Engineering Graphics I 3 TECH 20002 Materials and Processes 3 US 10097 Destination Kent State: FYE 1-Aided Engineering Graphics 3 ECON 22060 Principles of Microeconomics 3 Fulfills Kent Core Social Sciences PSYC; fulfills Kent Core Basic Science TECH 20001 Energy/Power 3 TECH 31015 Construction Technology 3 COMM

Sheridan, Scott

91

Roadmap: Technology Bachelor of Science [AT-BS-TECH  

E-Print Network [OSTI]

Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics I 3 TECH 20002 Materials] MATH 11022 Trigonometry 3 Fulfills Kent Core Additional TECH 23581 Computer-Aided Engineering Graphics offered on Regional Campuses only Semester Four: [14-16 Credit Hours] TECH 20001 Energy/Power 3 TECH

Sheridan, Scott

92

Window and Envelope Technologies Overview - 2014 BTO Peer Review...  

Energy Savers [EERE]

Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating Technologies Research & Development Roadmap: Emerging HVAC...

93

ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 7: INDUSTRIAL FOOD...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

leak detection Preliminary study how laser perforation of blueberry can improve fruit infusion with more yield and better quality Laser food processing (marker and micro...

94

ITP Mining: Mining Industry Roadmap for Crosscutting Technologies  

Broader source: Energy.gov (indexed) [DOE]

and disposal of waste and products containing metals, long range transport of air pollutants, and agreements addressing other environmental concerns presage an increasing global...

95

ITP Aluminum: Aluminum Industry Technology Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department of

96

ITP Glass: Glass Industry Technology Roadmap; April 2002 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | UC

97

ITP Mining: Mining Industry Roadmap for Crosscutting Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) |EnergyEnergy

98

ITP Petroleum Refining: Technology Roadmap for the Petroleum Industry |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999)Bandwidth forDepartment of

99

1. "A Roadmap for Developing Accelerator Transmutation of Waste Technology," Report to Congress, DOE0RW-0519, U.S.  

E-Print Network [OSTI]

1. "A Roadmap for Developing Accelerator Transmutation of Waste Technology," Report to Congress, R. C. Block (RPI) A novel, tunable X-ray source using the 100-MeV electron linear accelerator photons" is associated with electrons moving through a medium at relativistic speeds. These photons

Danon, Yaron

100

Geothermal: Sponsored by OSTI -- Industrial Sector Technology...  

Office of Scientific and Technical Information (OSTI)

Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature  

SciTech Connect (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

102

Recent and Current Research & Roadmapping Activities: Overview (Presentation)  

SciTech Connect (OSTI)

December 2008 DOE Algal Biofuels Technology Roadmap Workshop plenary presentation: summarizes past and current algal biofuels activity, status of research funding, and recent roadmapping activities.

Darzins, A.

2008-09-01T23:59:59.000Z

103

WASTE-TO-ENERGY ROADMAPPING WORKSHOP | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WASTE-TO-ENERGY ROADMAPPING WORKSHOP WASTE-TO-ENERGY ROADMAPPING WORKSHOP The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key...

104

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network [OSTI]

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

105

Technology transfer in the petrochemical industry  

SciTech Connect (OSTI)

The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

Tanaka, M.

1994-01-01T23:59:59.000Z

106

ITP Glass: Industrial Glass Bandwidth Analysis Final Report,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy and Environmental Profile of the U.S. Glass Industry; April, 2002 ITP Glass: Glass Industry Technology Roadmap; April 2002 ITP Glass: A Clear Vision for a Bright Future...

107

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

108

Office of Industrial Technologies research in progress  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

109

Industrial Conservation Technology Energy Savings Monitoring System  

E-Print Network [OSTI]

A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

Crowell, J. J.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

110

The future steelmaking industry and its technologies  

SciTech Connect (OSTI)

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

111

The Office of Industrial Technologies technical reports  

SciTech Connect (OSTI)

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

112

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

113

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect (OSTI)

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

114

Technological development under global warning : roadmap of the coal generation technology  

E-Print Network [OSTI]

This thesis explores the measures for the Japanese electric power utilities to meet the Kyoto Target, and the technological development of the coal thermal power generation to meet the further abatement of the carbon dioxide ...

Furuyama, Yasushi, 1963-

2004-01-01T23:59:59.000Z

115

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

116

Emerging energy-efficient industrial technologies  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

117

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

118

National Hydrogen Roadmap Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy

119

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

120

Industrial Process Heating - Technology Assessment  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs |Industrial

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SPINNING-IN OF TERRESTRIAL MICRO-SYSTEMS AND TECHNOLOGIES TO SPACE ROBOTICS: RESULTS AND TECHNOLOGY ROADMAPS  

E-Print Network [OSTI]

ROADMAPS Iosif S. Paraskevas, Thaleia Flessa, and Evangelos G. Papadopoulos National Technical University & Robotics (A&R) systems can result in more robust, less power- intensive and less expensive systems. These observations motivated this paper that presents (a) the findings of a thorough review and assessment

Papadopoulos, Evangelos

122

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network [OSTI]

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

123

Windows and Building Envelope Research and Development: Roadmap for Emerging Technologies  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy WindR&D Roadmap For

124

21st Century Truck Partnership Roadmap Roadmap and Technical...  

Broader source: Energy.gov (indexed) [DOE]

Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 Report...

125

Characterizing emerging industrial technologies in energy models  

SciTech Connect (OSTI)

Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-07-29T23:59:59.000Z

126

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

127

Materials needs and opportunities in the pulp and paper industry  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

Angelini, P. [comp.

1995-08-01T23:59:59.000Z

128

United States Industrial Motor-Driven Systems Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to...

129

Government and Industry A Force for Collaboration at the Energy...  

Broader source: Energy.gov (indexed) [DOE]

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

130

Science and technology for industrial ecology  

SciTech Connect (OSTI)

Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

131

Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.  

SciTech Connect (OSTI)

In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

1999-08-12T23:59:59.000Z

132

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

133

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network [OSTI]

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

134

A roadmap to the realiza/on of fusion energy  

E-Print Network [OSTI]

A roadmap to the realiza/on of fusion energy Francesco Romanelli, EFDA STAC #12;Why a roadmap · The need for a long-term strategy on energy Strategic Energy Technology plan, Energy Roadmap 2050 · In this context, Fusion must

135

RESEARCH INFRASTRUCTURES Roadmap 2008  

E-Print Network [OSTI]

RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

Horn, David

136

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network [OSTI]

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

137

Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S.  

SciTech Connect (OSTI)

The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I&C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues.

Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

138

Industrial heat pumps in Germany -potentials, technological development  

E-Print Network [OSTI]

1 Industrial heat pumps in Germany - potentials, technological development and application examples of Energy (IER) Universität Stuttgart ACHEMA 2012 Application of industrial heat pumps Improving energy-efficiency of industrial processes 13. Juni 2012 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012 Types of Heat Pumps

Oak Ridge National Laboratory

139

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

140

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect (OSTI)

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

142

DOE and Industry Showcase New Control Systems Security Technologies...  

Broader source: Energy.gov (indexed) [DOE]

led by industry, aimed at moving new technologies closer to commercialization. Vendors and researchers will demonstrate several products at DistribuTECH that are a result...

143

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network [OSTI]

Assistant Vice President, Corporate & Foundation Relations Inside this issue... Greetings to Industry. The founding members are American Axle and Manufacturing, Eaton Corpora- tion and John Deere. This applied

Ginzel, Matthew

144

US DRIVE Electrochemical Energy Storage Technical Team Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles...

145

NATIONAL HYDROGEN ENERGY ROADMAP  

E-Print Network [OSTI]

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

146

The Micro-CHP Technologies Roadmap, December 2003 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11,Industrial Sector,

147

Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

148

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network [OSTI]

Technologies in this issue. Includ- ed are technologies that involve synthetic liquid hydrocarbons, hydrogen bio-oil, crude distillation, chalcogenide nanoparticles, nanoparticle inks and photovoltaic printing (LEDs), photovoltaic (PV) cells, and batteries). Specifically, the ability to fabricate semiconducting

Ginzel, Matthew

149

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

150

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

Renewable Energy. Renewable Energy Policy Project ResearchIndustrial Policy and Renewable Energy Technology.Development of Renewable Energy. Energy Policy, 31, 799-812.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

151

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

152

The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships  

SciTech Connect (OSTI)

A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

NONE

1997-09-01T23:59:59.000Z

153

COSPAR Roadmap team v. 2014/07/281 Advancing space weather science to protect  

E-Print Network [OSTI]

COSPAR Roadmap team v. 2014/07/281 Advancing space weather science to protect society's technological infrastructure: a COSPAR/ILWS roadmap Advancing space weather science to protect society's technological infrastructure: a COSPAR/ILWS roadmap · Alan Aylward; University College London, UK · Sarah Gibson

Schrijver, Karel

154

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

155

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) |System,on the NM

156

Alternatives to Industrial Cogeneration: A Pinch Technology Perspective  

E-Print Network [OSTI]

ALTERNATIVES TO INDUSTRIAL COGENERATION: A PINCH TECHNOLOGY PERSPECTIVE ALAN KARP, Senior Consultant Linnhoff March, Inc., Leesburg, Virginia ABSTRACT Pinch Technology studies across a broad spectrum of processes confirm that existing... irrespective of the individual utility's attitude toward cogeneration. Both the Electric Power Research Institute and a growing number of individual utilities are now using Pinch Technology to assist in the analysis of cogeneration projects...

Karp, A.

157

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

E-Print Network [OSTI]

: Manufacturing Energy and Carbon Footprint, derived from 2006 MECS #12;Management Structure and Project Execution, aqueous-based processes). Develop broadly applicable, manufacturing processes that reduce energy intensity-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

158

Industries of the Future: Creating a Sustainable Technology Edge  

E-Print Network [OSTI]

INDUSTRIES OF THE FUTURE: Creating A Sustainable Technology Edge Sandra L. Glatt Office of Industrial Technologies Energy Efficiency and Renewable Energy U. S. Department of Energy 55 ESL-IE-00-04-10 Proceedings from the Twenty... and Renewable Energy U.S, Department of Energy Industries of the Future: Creating a Sustainable Technology Edge . cUn' OFwlOd CCooI .. LPG .Eleclric~ CNI!hnIG. AgriclAtll'e Mining A1uminu",J Totll1* kldutb't.1 Conllomption: :W, 111 TrtIlion 8tus...

Glatt, S. L.

159

NASA Net Zero Energy Buildings Roadmap  

SciTech Connect (OSTI)

In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

2014-10-01T23:59:59.000Z

160

National Aeronautics and Space Administration NaNotechNology Roadmap  

E-Print Network [OSTI]

National Aeronautics and Space Administration · NaNotechNology Roadmap Technology Area 10 Michael A: Nanotechnology. NASA developed this DRAFT Space Technology Roadmap for use by the National Research Council (NRC Nanotechnology involves the manipulation of matter at the atomic level, where convention- al physics breaks down

Waliser, Duane E.

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Research Roadmap Presentation  

E-Print Network [OSTI]

Research Roadmap Presentation: euCognition Meeting, Munich 12 Jan 2007 http://www.eucognition.org/six_monthly_meeting_2.htm What's a Research Roadmap For? Why do we need one? How can we produce one? Aaron Sloman ( http.cs.bham.ac.uk/research/projects/cosy/papers/#pr0701 See also the euCognition Research Roadmap project: http://www.eucognition.org/wiki/index.php?title=Research_Roadmap

Sloman, Aaron

162

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electric lighting while maintaining good quality lighting that promotes health and productivity. O t h e r S o u r c e s The list below is intended to be broadly representative...

163

Collaborative Transmission Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and bring together organizations with broadly-shared goals but potentially very different corporate cultures, strategic plans, and legal mandates, neither document Back to Table of...

164

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

renewable generation, grid supply, energy storage, distribution, communication, demand control, and end uses. Workshop findings are pending as of March 2013. Lawrence...

165

Collaborative Transmission Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

techniques, and tools to analyze data from power quality recorders Size-up demand response opportunities Transmission level monitoring with PMUs is not sufficient and needs to...

166

Science and technology for industrial ecology  

SciTech Connect (OSTI)

This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

167

AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking  

SciTech Connect (OSTI)

An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

Wei-Kao Lu

2002-09-15T23:59:59.000Z

168

Roadmap: Aeronautics -Aviation Management -Bachelor of Science [AT-BS-AERN-AVMN  

E-Print Network [OSTI]

Roadmap: Aeronautics - Aviation Management - Bachelor of Science [AT-BS-AERN-AVMN] College of 3 | Last Updated: 6-Dec-12/JS This roadmap is a recommended semester-by-semester plan of study on page 2 TECH 36620 Project Management in Engineering and Technology 3 #12;Roadmap: Aeronautics

Sheridan, Scott

169

Roadmap for Venus Exploration: 2014 (Draft for Community Review, Feb. 21, 2014)  

E-Print Network [OSTI]

Roadmap for Venus Exploration: 2014 (Draft for Community Review, Feb. 21, 2014) #12;ii the document prioritizing Goals, Objectives and Investigations for Venus Exploration, (2) develop a Roadmap priorities, and (3) develop a white paper on technologies for Venus missions. Here, we present the Roadmap

Rathbun, Julie A.

170

NSF Workshop On Cyber-Physical Systems Research Motivation, Techniques and Roadmap  

E-Print Network [OSTI]

manufacturing, blackout-free electricity generation and distribution, optimization of energy consumption from industry, research laboratories, academia, and government to develop an attractive roadmap

Rajkumar, Ragunathan "Raj"

171

Diverse Applications of Pinch Technology Within the Process Industries  

E-Print Network [OSTI]

design and retrofit processes. The technology offers a new approach to process integration based on the applic?tion of the pinch principle. Early applications were mostly in the petrochemical and bulk chemical industries. In this paper we report... mostly confined to petrochemical or bulk chemical plants. The technology has now been proven in many more successful projects and this paper describes some of the latest results which demonstrate the applicability of pinch technology in a wide range...

Spriggs, H. D.; Ashton, G.

172

Roadmap for Venus Exploration Roadmap for Venus Exploration  

E-Print Network [OSTI]

Roadmap for Venus Exploration May 2014 #12;ii Roadmap for Venus Exploration At the VEXAG meeting in November 2013, it was resolved and Investigations for Venus Exploration (GOI), (2) develop a Roadmap for Venus exploration

Rathbun, Julie A.

173

Roadmapping - A Tool for Strategic Planning and Leveraging R&D completed by other Agencies  

SciTech Connect (OSTI)

The Department of Energy (DOE) is responsible for management of the environmental legacy of the nation's nuclear weapons and research program. This is the largest, most complex environmental cleanup program in the world. The issues and problems encountered in this program create the need to develop many scientific and technological solutions. To be effective, the process used to create these solutions must be well coordinated through DOE's Environmental Management program, the rest of DOE, and other Federal agencies. Roadmapping is one strategic planning tool to provide the needed coordination. Past roadmapping accomplishments include: (1) Issuance of the Draft EM Roadmapping Guidance; (2) Issuance of the EM R&D Program Plan and Strategic Plan which established the direction for Roadmapping; (3) Issuance of the OST Management Plan which calls out Roadmapping as a key tool in EM Research & Development (R&D) Strategic Planning; (4) Completion of or progress on key EM Roadmaps, i.e., Savannah River High Level Waste (HLW) Salt Dispositioning Roadmaps, Hanford Groundwater/Vadose Zone Roadmap, Robotics and Intelligent Machines Critical Technology Roadmap, Complex-Wide Vadose Zone Roadmap, Long-Term Stewardship Preliminary Roadmap, Hydrogen Gas Generation R&D Plan (Roadmap), Idaho National Engineering and Environmental Laboratory (INEEL) Sodium Bearing Waste Dispositioning Roadmap, INEEL Voluntary Consent Order Tanks Characterization Roadmap, INEEL Vadose Zone/Groundwater Roadmap, Calcine Treatment Alternatives Roadmap. These efforts represent a great start; however, there is more to be accomplished in using Roadmapping as a tool for planning strategic initiatives and in coordinating the R&D performed by multiple federal agencies.

Collins, J. W.

2002-02-28T23:59:59.000Z

174

Office of Industrial Technologies: Summary of program results  

SciTech Connect (OSTI)

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

175

Technological Change, Industry Structure and the Environment  

E-Print Network [OSTI]

applied to the projection of GHG emissions from the energy sector" (p.141). This paper extends the work qualitatively in terms of changes in production scale and resource intensity and their resulting impact technological changes are bound to have important implications for the future state of the environment

Watson, Andrew

176

DCNS, OTEC roadmap May 2013 DCNSDCNS -Ocean Energy Business Unit  

E-Print Network [OSTI]

© DCNS, OTEC roadmap ­ May 2013 © DCNSDCNS - Ocean Energy Business Unit Emmanuel BROCHARD, VP OTEC positioning for DCNS on Ocean Energy Provider of added-value · On Ocean Thermal Energy Conversion, Floating #12;© DCNS, OTEC roadmap ­ May 2013 4 DNCS invests in 4 ocean energy technologies Keypoints OTEC

177

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia|Indonesia:IndurTechnology

178

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

179

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

180

Vehicle Technologies Office: US DRIVE Materials Technical Team...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership...

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Profile of the chemicals industry in California: Californiaindustries of the future program  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

Galitsky, Christina; Worrell, Ernst

2004-06-01T23:59:59.000Z

182

Centers for manufacturing technology: Industrial Advisory Committee Review  

SciTech Connect (OSTI)

An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

NONE

1995-10-01T23:59:59.000Z

183

Heat Pipe Technology for Energy Conservation in the Process Industry  

E-Print Network [OSTI]

and installation eXBenses. Summary The use of heat pipes in recovering t ermal energy has been shown to offer many advant ges over alternative typP. systems. Probably tje most attractive feature of any heat pipe heat e changer is its adaptability to a wine...HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been...

Price, B. L. Jr.

184

27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS  

E-Print Network [OSTI]

-generation industrial solar cells as stated in the International Technology Roadmap [3]. An industrial PERC process flow27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS C.Kranz1 , S. Wyczanowski1 , S

185

SCHOOL OF MEDICINE RESEARCH ROADMAP  

E-Print Network [OSTI]

SCHOOL OF MEDICINE RESEARCH ROADMAP October 2011 #12;OHSU School of Medicine Research Roadmap internal and external stakeholders and the public. #12;OHSU School of Medicine Research Roadmap October human health and well-being. At the Research Roadmap Retreat in December 2010, I issued a charge

Chapman, Michael S.

186

MARSAME Roadmap Introduction to MARSAME  

E-Print Network [OSTI]

MARSAME Roadmap ROADMAP Introduction to MARSAME The Multi-Agency Radiation Survey and Assessment flexibility in the survey process, and this flexibility is incorporated into MARSAME. The Goal of the Roadmap The increased flexibility of MARSAME comes with increased complexity. The goal of the roadmap is to assist

187

Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations Hiring Students in Technical & Biosystems Engineering, Industrial Technology, and Packaging  

E-Print Network [OSTI]

Faurecia FCA Packaging Fischer Controls Fusion PKG Gavilon, LLC General Motors George W. Auch Geotex,000 57,000 12 Engineer, General 56,513 33,000 80,000 34 Equipment Test Technician 46,000 32,000 60,000 510 Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations

188

The photovoltaic manufacturing technology project: A government/industry partnership  

SciTech Connect (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

189

Impact of Control System Technologies on Industrial Energy Savings  

E-Print Network [OSTI]

Modify temperature and pressure setpoints to meet requirements while optimizing energy use CHILLER ROOM TB Static Pressure Setpoint Reset Thermostatic Temperature Setpoint ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology... Conference New Orleans, LA. May 20-23, 2014 1. HVAC: Seasonal Temperature Resets I. SETPOINT ADJUSTMENT Low payback, high savings! Image: http://www.ncelectriccooperatives.com/electricity/homeEnergy/thermostats_intro.htm Average Savings: $10,000 per year...

Parikh, P.; Pasmussen, B. P.

2014-01-01T23:59:59.000Z

190

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

Not Available

2008-12-01T23:59:59.000Z

191

Information Technology Systems for Fusion Industry and ITER Project  

SciTech Connect (OSTI)

The industrial developments in the fusion industry will have to overcome numerous technical challenges and will have a strong need for modern information technology (IT) systems.The fusion industry has manifested itself with an unprecedented international collaboration, the International Thermonuclear Experimental Reactor (ITER). Data accumulated in ITER will be the major output of the project and will create the knowledge base for a future fusion power plant. A modern and effective information infrastructure will be critical to the success of the ITER project.To accumulate and maintain the knowledge base at all stages of the project, we propose to build an integrated information system for ITER: ITER Information Plant (IIP). IIP will minimize lost experiment time and accelerate the understanding, interpretation, and planning of fusion experiments. IIP will allow to reap maximum benefits from the project's scientific and technological achievements, make the ITER results accessible to hundreds of researchers worldwide. This will facilitate collaboration, dramatically increasing the pace of scientific and technological discovery and the rate at which practical use is made of these discoveries.As the first of its kind, the ITER Information Plant could be used in the future as a prototype IT system for national and international fusion projects, in which multicountry collaboration, distributed work sites and operations are catalysts for success.

Putvinskaya, N.; Bulasheva, N.; Cole, G.; Dillon, T.; Frieman, E.; Sabado, M.; Schissel, D. (and others)

2005-04-15T23:59:59.000Z

192

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

SciTech Connect (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

193

Establishment of the roadmap for chlorination process development for zirconium recovery and recycle  

SciTech Connect (OSTI)

Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide future work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)

Collins, E.D.; Del Cul, G.D.; Spencer, B.B.; Brunson, R.R.; Johnson, J.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

2013-07-01T23:59:59.000Z

194

DUF6 Materials Use Roadmap  

SciTech Connect (OSTI)

The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

Haire, M.J.

2002-09-04T23:59:59.000Z

195

Evolution of Ion Implantation Technology and its Contribution to Semiconductor Industry  

SciTech Connect (OSTI)

Industrial aspects of the evolution of ion implantation technology will be reviewed, and their impact on the semiconductor industry will be discussed. The main topics will be the technology's application to the most advanced, ultra scaled CMOS, and to power devices, as well as productivity improvements in implantation technology. Technological insights into future developments in ion-related technologies for emerging industries will also be presented.

Tsukamoto, Katsuhiro [Mitsubishi Electric Corporation (Japan); Kuroi, Takashi; Kawasaki, Yoji [Renesas Electronics Corporation (Japan)

2011-01-07T23:59:59.000Z

196

EUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY FOR A SUSTAINABLE INDUSTRY GROWTH  

E-Print Network [OSTI]

Safety (ETPIS). It is a result of a collective work made by research- ers from organisationsEUROPEAN TECHNOLOGY PLATFORM ON INDUSTRIAL SAFETY (ETPIS), A VISION TO GAIN SAFETY that consider industrial safety as a strategic issue for the sustainable growth of the European Industry

Paris-Sud XI, Université de

197

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

198

High-lift chemical heat pump technologies for industrial processes  

SciTech Connect (OSTI)

Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

Olszewski, M.; Zaltash, A.

1995-03-01T23:59:59.000Z

199

Roadmapping as a Knowledge Creation Process: The PROLEARN Roadmap  

E-Print Network [OSTI]

Abstract: The paper presents a new approach to developing a roadmap for technologyenhanced professional training. The new methodology views roadmapping as a knowledge creation process and involves the key phases of foresight analysis (identification of prevalent visions) and gap analysis. A conceptual model of the roadmapping process as a knowledge creation exercise is introduced and discussed.

Vana Kamtsiou; Ambjrn Naeve; Lampros K. Stergioulas; Tapio Koskinen

200

STRATEGIC ROADMAP College of Engineering  

E-Print Network [OSTI]

STRATEGIC ROADMAP College of Engineering College of Engineering Oregon State University 101 Covell our strate- gic plan once the university's strategic plan is complete. This roadmap is an informal

Tullos, Desiree

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

202

The role of advanced technology in the future of the power generation industry  

SciTech Connect (OSTI)

This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

Bechtel, T.F.

1994-10-01T23:59:59.000Z

203

First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals On May 28-29, 2008, the first...

204

A Roadmap for NEAMS Capability Transfer  

SciTech Connect (OSTI)

The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

205

ITP Mining: Mining Industry of the Future Mineral Processing Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) |EnergyEnergyRoadmap |

206

SPIDERS Joint Capability Technology Demonstration Industry Day | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER's Building Energy CodesPage-1of

207

Using federal technology policy to strength the US microelectronics industry  

SciTech Connect (OSTI)

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

208

Strategic Roadmap 2024: Powering the Energy Frontier  

SciTech Connect (OSTI)

Strategic Roadmap 2024 applies our historic mission to the dynamic and evolving industry environment that includes myriad new regulations, the growing presence of interruptible and intermittent generation resources and constraints on our hydro resources. It also ties together Westerns strategy, initiatives, capital budgets and annual targets to move the agency in one direction, continue to meet customer needs and provide the best value as an organization.

none,

2014-05-01T23:59:59.000Z

209

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary  

SciTech Connect (OSTI)

This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

NONE

1995-04-01T23:59:59.000Z

210

Stochastic Roadmap Simulation: Efficient Representation and Algorithms for  

E-Print Network [OSTI]

Stochastic Roadmap Simulation: Efficient Representation and Algorithms for the Analysis Roadmap Simulation (SRS) #12;Stochastic Roadmap Simulation (SRS) Multiple paths at once; #12;Stochastic Roadmap Simulation (SRS) Multiple paths at once; No local minimum problem; #12;Stochastic Roadmap

Brutlag, Doug

211

Advanced Industrial Materials (AIM) Program annual progress report, FY 1997  

SciTech Connect (OSTI)

The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

NONE

1998-05-01T23:59:59.000Z

212

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network [OSTI]

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

213

Defying value-shift : how incumbents regain values in the industry with new technologies  

E-Print Network [OSTI]

Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

Kuramoto, Yukari

2010-01-01T23:59:59.000Z

214

21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL  

E-Print Network [OSTI]

21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL DETERIORATION IN PRE-INDUSTRIAL SOCIETIES One assumption made by most... [is... Robert Heizer 1955 More than one half [of the extent of the Roman Em- pire] is either deserted

Richerson, Peter J.

215

A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry  

E-Print Network [OSTI]

country also targeted clean technologies, such as waters renewable energy and clean technology industries. (ibid,and clean tech. In clean technologies, in which water

Pilip-Florea, Shadrach Jay

2012-01-01T23:59:59.000Z

216

Roadmap To Success | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Roadmap To Success Roadmap To Success Form that is issued by DOE employees to assist them in creating their Indiviual Development Plan Roadmap to Success for DOE Employees.doc More...

217

Building China's Information Technology Industry: Tariff Policy and China's Accession to the WTO  

E-Print Network [OSTI]

Technology Industry: Tariff Policy and China's Accession toand thereby eliminate China's tariffs on semiconductors,make further substantial tariff reductions. A major issue

Borrus, Michael; Cohen, Stephen

1997-01-01T23:59:59.000Z

218

AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites  

Broader source: Energy.gov [DOE]

Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

219

Industrial Technologies Program ORNL-developed cast nickel aluminide rolls  

E-Print Network [OSTI]

intensity by 25% over ten years and to reduce industry's carbon footprint. The program works to develop). Our program works to reduce industrial energy intensity and to develop energy saving products with industry to reduce energy use and carbon emissions and to improve industrial competitiveness. We

220

South Korean technology policies for the industrial competitiveness between Japan and China  

E-Print Network [OSTI]

(cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

222

A study of building technology in the Natal building industry, South Africa  

E-Print Network [OSTI]

opportunity for technological improvement, (2) identify reasons for the slow technological progress in the building industry, and (3) establish directions for continuing this research focus. Descriptive statistics were used to report the findings of the study...

Pather, Rubintheran

1989-01-01T23:59:59.000Z

223

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry  

SciTech Connect (OSTI)

An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

NONE

1995-04-01T23:59:59.000Z

224

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network [OSTI]

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

225

Lightweighting and Propulsion Materials Roadmapping Workshop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief Lightweighting and Propulsion Materials Roadmapping Workshop Outbrief 2012 DOE Hydrogen and Fuel Cells Program...

226

A Roadmap for Engineering Piezoelectricity in Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale...

227

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect (OSTI)

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

228

Technology Roadmaps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices »

229

Technology Roadmaps | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidentialProducts

230

National Algal Biofuels Technology Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovationHydrogenNRGA CNathan Dexter About

231

Demand Response Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

232

Industrial Revolutions: a graduate seminar Seminar in History of Technology  

E-Print Network [OSTI]

recent industrialization in central Europe, Asia, and Latin America, also begun to reassess the concept of industrial revolution itself. This reassessment includes renewed attention to the scientific and technical

Janssen, Michel

233

Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 19631997  

E-Print Network [OSTI]

Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State, industry level, technological leadership, spatial econometrics JEL codes: C21, I23, O33, R12 Copyright 2007 spatial econometric techniques, and focus on capturing the geographical dimension of growth

234

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy for a comprehensive, physics- based model of dimensional changes and hot tearing. Hot Tear #12;Industrial Technologies

Beckermann, Christoph

235

BPA Transmission Commercial Project Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Project Roadmap 15-Minute Scheduling Dynamic Transfer Program NT Redispatch WECC-Bal- 002 ST Comp & Preemption ST ATC Method. PCM Monthlyweekly Implementation PCM...

236

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network [OSTI]

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

Paris-Sud XI, Université de

237

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network [OSTI]

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

Boyer, Edmond

238

Building America Webinar: Building America Technology-to-Market...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Webinar: Building America Technology-to-Market Roadmaps Building America Webinar: Building America Technology-to-Market Roadmaps April 7, 2015 3:00PM to 4:30PM EDT...

239

Waste-to-Energy Roadmapping Workshop Agenda | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste-to-Energy Roadmapping Workshop Agenda Waste-to-Energy Roadmapping Workshop Agenda Waste-to-Energy Roadmapping Workshop Agenda, November 5-6, 2014, Arlington, Virginia....

240

Roadmap for Agriculture Biomass Feedstock Supply in the United States  

SciTech Connect (OSTI)

The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nations power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the countrys current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: Biomass Availability By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee Sustainability Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner Feedstock Infrastructure An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets System Profitability Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply processproduction, harvesting and collection, storage, preprocessing, system integration, and transportationthis roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

242

EUROPEAN Roadmap Presented by X. LITAUDON  

E-Print Network [OSTI]

EUROfusion EUROfusion EUROPEAN Roadmap Presented by X. LITAUDON Head of ITER Physics Department ROADMAP TO THE REALISATION OF FUSION ENERGY A Roadmap to the realization of fusion energy adopted end of 2012. The roadmap aims at achieving the know-how to start the construction of a demonstration power

243

TUDelftLibrary Roadmap 2014-2020  

E-Print Network [OSTI]

TUDelftLibrary Roadmap 2014-2020 TU Delft Library #12;2 `No crime is so great as daring to excel' Winston Churchill Roadmap 2014-2020 TU Delft Library #12;3 Inhoud 1 Inleiding 5 2 Context 6 2.1 Roadmap TU is deze roadmap die naar 2020 toewerkt. Een strategisch document, waarin we omschrijven hoe we onze

244

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network [OSTI]

60% of total primary energy consumption, compared to theShare of Total Primary Energy Consumption World US Chinaof industrial primary energy consumption in The Netherlands.

Price, Lynn

2008-01-01T23:59:59.000Z

245

ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3323197.pdf Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Roadmap for Bioenergy and Biobased Products in the United States Advanced Manufacturing Home...

246

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network [OSTI]

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

247

Wireless Technology in Industrial Networks Andreas Willig, Member, IEEE, Kirsten Matheus, Member, IEEE, Adam Wolisz, Senior  

E-Print Network [OSTI]

of existing wireless technologies for this specific field of applications, and iii) the creation of hybrid1 Wireless Technology in Industrial Networks Andreas Willig, Member, IEEE, Kirsten Matheus, Member), pp. 1130-1151 Abstract With the success of wireless technologies in consumer electronics, standard

Wichmann, Felix

248

Research and development separation technology: The DOE Industrial Energy Conservation Program  

SciTech Connect (OSTI)

This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

Not Available

1987-07-01T23:59:59.000Z

249

Uranium Mill Tailings Remedial Action 1993 Roadmap  

SciTech Connect (OSTI)

The 1993 Roadmap for the Uranium Mill Tailings Remedial Action (UMTRA) Project office is a tool to assess and resolve issues. The US Department of Energy (DOE) UMTRA Project Office uses the nine-step roadmapping process as a basis for Surface and Groundwater Project planning. This is the second year the Roadmap document has been used to identify key issues and assumptions, develop logic diagrams, and outline milestones. This document is a key element of the DOE planning process. A multi-interest group used the nine-step process to focus on issues, root cause analysis and resolutions. This core group updated and incorporated comments on the basic assumptions, then used these assumptions to identify issues. The list of assumptions was categorized into the following areas: institutional, regulatory compliance, project management, human resource requirements, and other site-specific assumptions. The group identified 10 issues in the analysis phase. All of the issues are ranked according to importance. The number one issue from the 1992 Roadmap, ``Lack of sufficient human resources,`` remained the number one issue in 1993. The issues and their ranking are as follows: Lack of sufficient human resources; increasing regulatory requirements; unresolved groundwater issues; extension of UMTRCA through September 30, 1998; lack of post-UMTRA and post-cell closure policies; unpredictable amounts and timing of Federal funding; lack of regulatory compliance agreements; problem with states providing their share of remedial action costs; different interests and priorities among participants; and technology development/transfer. The issues are outlined and analyzed in detail in Section 8.0, with a schedule for resolution of these issues in Section 9.0.

Not Available

1993-10-18T23:59:59.000Z

250

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

251

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

252

The Soils and Groundwater EM-20 S&T Roadmap Quality Assurance Project Plan  

SciTech Connect (OSTI)

The Soils and Groundwater EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

Fix, N. J.

2008-02-11T23:59:59.000Z

253

York company gets $2 million for efficiency project Industrial Science and Technology Network is one of 58 recent  

E-Print Network [OSTI]

York company gets $2 million for efficiency project Industrial Science and Technology Network Specter. Industrial Science and Technology Network has been awarded the money in a recent round of funding. Industrial Science and Technology Network, 2101 Pennsylvania Ave, specializes in using nanotechnology

Gilchrist, James F.

254

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network [OSTI]

as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand...

Laitner, J. A.

2007-01-01T23:59:59.000Z

255

Manufacturing R&D for the Hydrogen Economy Roadmap Workshop  

E-Print Network [OSTI]

Manufacturing R&D for the Hydrogen Economy Roadmap Workshop In his 2003 State of the Union Address of the hydrogen and fuel cell technologies needed to move the U.S. toward a future hydrogen economy. While many-volume commercial manufacturing has been identified as one potential showstopper to a future hydrogen economy

256

Development of the INEEL Site Wide Vadose Zone Roadmap  

SciTech Connect (OSTI)

The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that the long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.

Yonk, Alan Keith

2001-09-01T23:59:59.000Z

257

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network [OSTI]

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

258

Managing technological innovation and sustaining competitive advantage in the digital imaging industry  

E-Print Network [OSTI]

The emergence and adoption of a disruptive technology that replaces an existing industry platform not only has enormous implications to incumbent firms, but also creates business opportunities that is enabled by the newly ...

Ishii, Katsuki

2005-01-01T23:59:59.000Z

259

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network [OSTI]

in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institutes (EPRI) and member...

Rastler, D. M.

260

Technologies, markets and challenges for development of the Canadian Oil Sands industry  

E-Print Network [OSTI]

This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

Lacombe, Romain H.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FIEA Advancing Wood Technology Forest Industry Engineering Scholarship  

E-Print Network [OSTI]

year. Forestry and wood products companies, key product suppliers, researchers and technology qualification. This FIEA Scholarship has also been set up to encourage and support an outstanding student

Hickman, Mark

262

SSL Manufacturing Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER'sPods BringDepartmentEarly 1

263

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network [OSTI]

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

264

N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?  

E-Print Network [OSTI]

are introducing a new solar cell design: the Passivated Emitter and Rear Cell (PERC), which features a full-PERT (Passivated Emitter, Rear Totally Diffused) solar cells with a processing sequence based on an industrialN-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? Bianca

265

NORTH CAROLINA 2013-2014 CLEAN TRANSPORTATION TECHNOLOGY INDUSTRY DIRECTORY  

E-Print Network [OSTI]

and Propane (CNG/LPG) Heavy Duty Vehicles Diesel Retrofit Technologies Idle Reduction Technologies Motor Spark EV Fiat 500e Ford Focus Electric Honda Fit EV Nissan LEAF Tesla Model S Smart Fortwo Electric Drive Toyota RAV4 EV Via Motors VTRUX Note: some models are currently only available in certain markets

266

Roadmap for Building Lean Supplier Networks (Roadmap Tool)  

E-Print Network [OSTI]

This tool represents a "how-to" implementation guide that lays out a structured process for evolving lean supply chain management capabilities in order to build lean supplier networks. The Roadmap Tool is linked to the ...

Bozdogan, Kirk

2004-03-15T23:59:59.000Z

267

A Roadmap for Engineering Piezoelectricity in Graphene  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A First LookMicroscopyComplex Ion.FlowA RichRoadmap

268

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network [OSTI]

as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

Neely, J. E.; Kasprowicz, L. M.

269

Final Report: Axion "Roadmap" Workshop  

SciTech Connect (OSTI)

Final report for "Vistas in Axion Physics: A Roadmap for Theoretical and Experimental Axion Physics through 2025", which was held at the University of Washington, INT, from April 23 - 26, 2012.

Rosenberg, Leslie J

2013-03-19T23:59:59.000Z

270

The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry  

E-Print Network [OSTI]

) project. The general scope of the work was to determine possible applications of smart materials DoE facilities. The project started with the selection of types of smart materials and technologies1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor

Giurgiutiu, Victor

271

Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program  

E-Print Network [OSTI]

Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewableBringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Beckermann, Christoph

272

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies  

E-Print Network [OSTI]

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

273

Demonstration of Natural Gas Engine Driven Air Compressor Technology at Department of Defense Industrial Facilities  

E-Print Network [OSTI]

of incorporating the NGEDAC performance data directly into their overall energy management control system. All Army industrial installations will be screened for technology application. Technology transfer will be coordinated with Air Force, Navy, and Defense... Technology & Management Paul A. Wenner Laboratory Services, Inc. XENERGY, Inc. Champaign, Illinois Gaithersburg, Maryland Worthington, Ohio ABSTRACT Recent downsizing and consolidation of Department of Defense (DOD) facilities provides an opportunity...

Lin, M.; Aylor, S. W.; Van Ormer, H.

274

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

Lung, R. B.; Masanet, E.; McKane, A.

2006-01-01T23:59:59.000Z

275

Load Management - An Industrial Perspective on This Developing Technology  

E-Print Network [OSTI]

Load Management is a rapidly developing technology which can have a significant impact on all electric users, especially large users. It is mandated by P.U.R.P.A. (Public Utility Regulatory Policy Act) and is akin to energy conservation but its...

Delgado, R. M.

1983-01-01T23:59:59.000Z

276

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network [OSTI]

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

277

Roadmap for preferential logics Dov M Gabbay  

E-Print Network [OSTI]

Roadmap for preferential logics Dov M Gabbay King's College, London Karl Schlechta Laboratoire d. Thus, as a good roadmap should, the article points out easy ways to go from A to B, but also puts up

Paris-Sud XI, Université de

278

Electrochemical Energy Storage Technologies and the Automotive Industry  

ScienceCinema (OSTI)

The first portion of the lecture will relate global energy challenges to trends in personal transportation. Following this introduction, a short overview of technology associated with lithium ion batteries for traction applications will be provided. Last, I shall present new research results that enable adaptive characterization of lithium ion cells. Experimental and modeling results help to clarify the underlying electrochemistry and system performance. Specifically, through chemical modification of the electrodes, it is possible to place markers within the electrodes that signal the state of charge of a battery through abrupt voltage changes during cell operation, thereby allowing full utilization of the battery in applications. In closing, I shall highlight some promising materials research efforts that are expected to lead to substantially improved battery technology

Mark Verbrugge

2010-01-08T23:59:59.000Z

279

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect (OSTI)

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

280

Roadmap: Associate of Science Regional College  

E-Print Network [OSTI]

Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 27-Feb-13/LNHD This roadmap is a recommended semester-by-semester plan of study.000 #12;Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog Year: 2013-2014 Page 2 of 2

Sheridan, Scott

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pilot Plant Options for the MFE Roadmap  

E-Print Network [OSTI]

Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 · Pilot plant ­ mission, motivation, and description. · Role of pilot plants on the Roadmap to Demo. Pilot Plant

282

Roadmap: Associate of Arts Regional College  

E-Print Network [OSTI]

Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year: 2013-2014 Page 1 of 2 | Last Updated: 27-Feb-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major.000 #12;Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year: 2013-2014 Page 2 of 2 | Last

Sheridan, Scott

283

Roadmap: Associate of Arts Regional College  

E-Print Network [OSTI]

Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 12-Mar-12/LNHD This roadmap is a recommended semester-by-semester plan of study for this major GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Associate of Arts [RE-AA-AA] Regional College Catalog Year

Sheridan, Scott

284

Satellite Meteorology and Climatology Division Roadmap  

E-Print Network [OSTI]

Satellite Meteorology and Climatology Division Roadmap NOAA NESDIS Center for Satellite Applications and Research #12;SMCD Roadmap 2 NOAA/NESDIS/STAR Satellite Meteorology and Climatology Division Roadmap September 2005 NOAA Science Center, 5200 Auth Road, Room 712, Camp Springs, MD 20746 #12;SMCD

Kuligowski, Bob

285

Roadmap: Associate of Science Regional College  

E-Print Network [OSTI]

Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 12-Mar-12/LNHD This roadmap is a recommended semester-by-semester plan of study GPA Overall GPA 61 2.000 2.000 #12;Roadmap: Associate of Science [RE-AS-AS] Regional College Catalog

Sheridan, Scott

286

Epigenomics: A Roadmap, But to Where?  

E-Print Network [OSTI]

43 Epigenomics: A Roadmap, But to Where? RECENTLY, THE DIRECTOR OF THE NATIONAL Institutes of Health (NIH) allocated $190 mil- lion for an "Epigenomics" Roadmap initiative (1 to equate the value of this Roadmap initiative with the Human Genome Project, it fails on several grounds

287

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs  

E-Print Network [OSTI]

Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

288

Ministry of Industry and Information Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds JumpMilner DamMinestoTechnology

289

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program | Department ofMembrane Technology and

290

POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL  

SciTech Connect (OSTI)

Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

2004-10-06T23:59:59.000Z

291

N-K Manufacturing Technologies: Industrial Energy Assessment Yields Savings of More than $27,000 Per Year for Molded Plastics Company  

SciTech Connect (OSTI)

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at N-K Manufacturing Technologies by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

Not Available

2005-09-01T23:59:59.000Z

292

BPA seeks research partners to advance technology solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

293

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

294

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

295

Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies  

SciTech Connect (OSTI)

Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

Not Available

1992-07-01T23:59:59.000Z

296

Built-Environment Wind Turbine Roadmap  

SciTech Connect (OSTI)

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

297

Industry  

E-Print Network [OSTI]

SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

298

Innovation and the state : development strategies for high technology industries in a world of fragmented production : Israel, Ireland, and Taiwan  

E-Print Network [OSTI]

One of the most unexpected changes of the 1990s is that firms in a number of emerging economies not previously known for their high-technology industries have leapfrogged to the forefront in new Information Technologies ...

Breznitz, Dan

2005-01-01T23:59:59.000Z

299

Industry  

E-Print Network [OSTI]

of environmentally sound technology, SMEs may not have theSMEs. Energy efficiency and other GHG mitiga- tion technologies

Bernstein, Lenny

2008-01-01T23:59:59.000Z

300

Draft Innovative Exploration Technologies Needs Assessment |...  

Energy Savers [EERE]

Program June 6 - 10, 2011 The Dixie Valley Geothermal Plant in Nevada produces 60 MW of electricity. A Roadmap for Strategic Development of Geothermal Exploration Technologies...

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Roadmap to Secure Control Systems in the Energy Sector 2006 ...  

Broader source: Energy.gov (indexed) [DOE]

2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank...

302

Software Roadmap to Plug and Play Petaflop/s  

E-Print Network [OSTI]

1993). LBNL Software Roadmap to Plug and Play Petaflop/s 7.16, 2005. LBNL Software Roadmap to Plug and Play Petaflop/sChombo. LBNL Software Roadmap to Plug and Play Petaflop/s

2006-01-01T23:59:59.000Z

303

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

Roadmap to Improved Energy Efficiency iii 11-Sept-2009 ListA Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /A Roadmap to Improved Energy Efficiency 11-Sept-2009 Topic /

Singer, Brett C.

2010-01-01T23:59:59.000Z

304

U.S. Department of Energys Industrial Technologies Program and Its Impacts  

SciTech Connect (OSTI)

The U.S. Department of Energys Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNLs most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITPs research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

Weakley, Steven A.; Brown, Scott A.

2011-05-20T23:59:59.000Z

305

U.S. Department of Energys Industrial Technology Program and Its Impacts  

SciTech Connect (OSTI)

The U.S. Department of Energys Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNLs most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITPs research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

Weakley, Steven A.; Roop, Joseph M.

2010-05-15T23:59:59.000Z

306

BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA  

E-Print Network [OSTI]

COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

307

AC 2011-983: USE OF BUZZWORDS IN INDUSTRIAL ENGINEERING Abhijit Gosavi, Missouri University of Science & Technology  

E-Print Network [OSTI]

AC 2011-983: USE OF BUZZWORDS IN INDUSTRIAL ENGINEERING EDUCATION Abhijit Gosavi, Missouri University of Science & Technology Abhijit Gosavi obtained a Ph.D. in industrial engineering from research interests are in simulation-based optimization, production management, and industrial engineering

Gosavi, Abhijit

308

Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

309

Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

310

Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

311

Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

312

Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

313

Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy...

314

Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

315

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

316

US DRIVE Materials Technical Team Roadmap | Department of Energy  

Energy Savers [EERE]

Materials Technical Team Roadmap US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) focuses primarily on reducing the mass of structural systems such as...

317

Windows and Building Envelope Research and Development Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

Windows and Building Envelope Research and Development Roadmap Windows and Building Envelope Research and Development Roadmap Cover of windows and envelope report, depicting a...

318

Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...  

Open Energy Info (EERE)

Regulatory Roadmapping Pgower's picture Submitted by Pgower(45) Member 7 August, 2014 - 13:19 One-day workshop to review regulatory roadmaps for bulk transmission. Date:...

319

21st Century Truck Partnership - Roadmap and Technical White...  

Broader source: Energy.gov (indexed) [DOE]

- Roadmap and Technical White Papers Appendix of Supporting Information - 21CTP-0003, December 2006 21st Century Truck Partnership - Roadmap and Technical White Papers Appendix of...

320

US DRIVE Vehicle Systems and Analysis Technical Team Roadmap...  

Energy Savers [EERE]

Vehicle Systems and Analysis Technical Team Roadmap US DRIVE Vehicle Systems and Analysis Technical Team Roadmap VSATT provides the analytic support and subsystem characterizations...

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Roadmap to the SRS computing architecture  

SciTech Connect (OSTI)

This document outlines the major steps that must be taken by the Savannah River Site (SRS) to migrate the SRS information technology (IT) environment to the new architecture described in the Savannah River Site Computing Architecture. This document proposes an IT environment that is {open_quotes}...standards-based, data-driven, and workstation-oriented, with larger systems being utilized for the delivery of needed information to users in a client-server relationship.{close_quotes} Achieving this vision will require many substantial changes in the computing applications, systems, and supporting infrastructure at the site. This document consists of a set of roadmaps which provide explanations of the necessary changes for IT at the site and describes the milestones that must be completed to finish the migration.

Johnson, A.

1994-07-05T23:59:59.000Z

322

National Aeronautics and Space Administration Space power and energy Storage roadmap  

E-Print Network [OSTI]

National Aeronautics and Space Administration Space power and energy Storage roadmap Technology Energy Storage TA03-16 2.2.3. Power Management & Distribution (PMAD) TA03-17 2.2.3.1. PMAD Overall TA03 activities. This document presents the DRAFT Technology Area 03 input: Space Power and Energy Storage. NASA

Waliser, Duane E.

323

Strategic Roadmap 2024 and Tactical Action Plan  

SciTech Connect (OSTI)

This chart defines the CRITICAL PATHWAYS described in the Strategic Roadmap and the breakdown of the STRATEGIC TARGET AREAS, providing WORK SCOPE ESTIMATES for each heading.

none,

2014-05-14T23:59:59.000Z

324

Partnership Plan, Roadmaps, and Other Documents | Department...  

Broader source: Energy.gov (indexed) [DOE]

As the Partnership updates its documents to reflect the transition to U.S. DRIVE, current roadmaps and previous accomplishments reports are available for reference and information....

325

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

potential as-available renewable over generation issues,examining many of the roadmap renewable integration options.integration of significant renewable resources into the HECO

Levy, Roger

2014-01-01T23:59:59.000Z

326

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Office of Environmental Management (EM)

roadmap in support of the Electricity Sub-sector Coordinating Council, Oil and Natural Gas Sector Coordinating Council, and the Government Coordinating Council for Energy under...

327

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

328

An Assessment of carbon reduction technology opportunities in the petroleum refining industry.  

SciTech Connect (OSTI)

The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

Petrick, M.

1998-09-14T23:59:59.000Z

329

Industry  

E-Print Network [OSTI]

of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

Bernstein, Lenny

2008-01-01T23:59:59.000Z

330

Separations and Actinide Science -- 2005 Roadmap  

SciTech Connect (OSTI)

The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by advanced reactors and reprocessing methods based on pyrochemical methods and by using different fuel cycles that do not readily produce plutonium. SASR will facilitate the deployment of advanced pyrochemical separation technology and support development of reprocessing of thorium-based reactor fuels.

Not Available

2005-09-01T23:59:59.000Z

331

Industry  

E-Print Network [OSTI]

2003: Jupiter oxygen combustion technology of coal and otherOxygen Furnace Gas ME = Main Exhaust WH = Waste Heat Figure 7.1: CO 2 reduction potential of eight energy saving technologies

Bernstein, Lenny

2008-01-01T23:59:59.000Z

332

AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications  

SciTech Connect (OSTI)

A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

Brenda Yan; Dennis Urban

2003-04-21T23:59:59.000Z

333

Hydrogen Production Technical Team Roadmap  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction Technical Team Roadmap June 2013 This

334

Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997  

SciTech Connect (OSTI)

The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

NONE

1998-05-01T23:59:59.000Z

335

Cryogenic Roadmap U.S. Department of Energy  

E-Print Network [OSTI]

06/18/01 1 Cryogenic Roadmap U.S. Department of Energy Superconductivity Program for Electric a "roadmap". The roadmap provides goals and objectives along with the desired outcomes that may result of what needs to be accomplished in the area of cryogenics; hence the need for a roadmap. There have been

336

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

337

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

338

Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams  

SciTech Connect (OSTI)

Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Keiser, J.R.; Wang, D. (Gas Technology Institute); Bischoff, B.; Ciora (Media and Process Technology); Radhakrishnan, B.; Gorti, S.B.

2013-01-14T23:59:59.000Z

339

1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities  

E-Print Network [OSTI]

#12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

Horn, David

340

SAMPLING-BASED ROADMAP OF TREES FOR PARALLEL MOTION PLANNING 1 Sampling-Based Roadmap of Trees for Parallel  

E-Print Network [OSTI]

SAMPLING-BASED ROADMAP OF TREES FOR PARALLEL MOTION PLANNING 1 Sampling-Based Roadmap of Trees for multiple query motion planning (Probabilistic Roadmap Method - PRM) with sampling-based tree methods algorithms, roadmap, tree, PRM, EST, RRT, SRT. I. INTRODUCTION HIGH-DIMENSIONAL problems such as those

Chen, Brian Y.

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

College of Charleston Major Roadmap: Religious Studies, B.A. | 2014-15 Page 1 MAJOR ROADMAP  

E-Print Network [OSTI]

College of Charleston Major Roadmap: Religious Studies, B.A. | 2014-15 Page 1 MAJOR ROADMAP Religious Studies, B.A. Catalog Year: 2014-15 This roadmap is a suggested semester-by-semester planning availability may vary from semester to semester. Roadmaps are not meant to cover every possibility

Kasman, Alex

342

BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA  

E-Print Network [OSTI]

COGENERATION IN CANADA Prepared for: OFFICE OF ENERGY EFFICIENCY NATURAL RESOURCES CANADA Prepared by: NIC technology decision. A survey of 259 industrial firms in Canada was administered in 2002 and a discrete

343

Cluster building by policy design: a sociotechnical constituency study of information communication technology (ICT) industries in Scotland and Hong Kong  

E-Print Network [OSTI]

This thesis investigates whether and how public policies can help build industrial clusters. The research applies a case study method based on 60 interviews to the emerging information communication technology (ICT) ...

Wong, Alexandra Wai Wah

2009-01-01T23:59:59.000Z

344

Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry  

E-Print Network [OSTI]

and health of American manufacturers. This paper examines the market conditions and policy measures that affect the commercialization and adoption rate of promising, new energy-efficient industrial technologies. Market maturity, macroeconomic health, public...

Harris, J.; Bostrom, P.; Lung, R. B.

2011-01-01T23:59:59.000Z

345

Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...  

Energy Savers [EERE]

Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage...

346

Building America Webinar: Building America Technology-to-Market...  

Broader source: Energy.gov (indexed) [DOE]

introduced the integrated Building America Technology-to-Market Roadmaps that will serve as a guide for Building America's research, development, and demonstration activities over...

347

Maximum Achievable Control Technology for New Industrial Boilers (released in AEO2005)  

Reports and Publications (EIA)

As part of Clean Air Act 90 (CAAA90, the EPA on February 26, 2004, issued a final rulethe National Emission Standards for Hazardous Air Pollutants (NESHAP) to reduce emissions of hazardous air pollutants (HAPs) from industrial, commercial, and institutional boilers and process heaters. The rule requires industrial boilers and process heaters to meet limits on HAP emissions to comply with a Maximum Achievable Control Technology (MACT) floor level of control that is the minimum level such sources must meet to comply with the rule. The major HAPs to be reduced are hydrochloric acid, hydrofluoric acid, arsenic, beryllium, cadmium, and nickel. The EPA predicts that the boiler MACT rule will reduce those HAP emissions from existing sources by about 59,000 tons per year in 2005.

2005-01-01T23:59:59.000Z

348

Forest Products Industry of the Future  

SciTech Connect (OSTI)

Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

Los Alamos Technical Associates, Inc

2002-05-01T23:59:59.000Z

349

Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development  

E-Print Network [OSTI]

but it is important to note that many other prograJs into focus the varied and dispersed Federal activi- of the Department have an impact on industrial I ties related to energy is a major change in our conservation, for instance, fluidized bed combusti... technologies in as short a time and regulations on energy production and use, de- substitute, where possible, abund~ntas possible; (2) i I minimize the energr and the Energy Regulatory Administration, impact most10ss embodied in waste streams of all types...

Massey, R. G.

1980-01-01T23:59:59.000Z

350

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network [OSTI]

2005. Navigating Energy Management: A Roadmap for Business.Characteristics and Energy Management Opportunities. BurtonCaffal, C. 1995. Energy Management in Industry. Centre for

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

351

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect (OSTI)

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

352

International Workshop on MFE Roadmapping in the ITER Era Princeton University, McDonnell Hall  

E-Print Network [OSTI]

Status and Prospects 17:00 R. Kurtz, Materials Issues and Facility Needs on the Pathway to Fusion Energy to Demo 11:15 M. Abdou, Fusion Nuclear Science and Technology Issues, Facilities, and Challenges. Prager, Welcome 08:45 D. Maisonnier, Toward a Credible EU Roadmap for Fusion 09:45 J. Li, On Chinese

353

New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts  

Broader source: Energy.gov [DOE]

An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy.

354

A roadmap for carbon capture and storage in the UK Clair Gough a,  

E-Print Network [OSTI]

A roadmap for carbon capture and storage in the UK Clair Gough a, *, Sarah Mander a , Stuart IPCC 2001 scenario (Raupach et al., 2007). Carbon capture and storage (CCS) technology is endorsed Budget through ``a competition to develop the UK's first full-scale demonstration of carbon capture

Haszeldine, Stuart

355

ISTUM PC: industrial sector technology use model for the IBM-PC  

SciTech Connect (OSTI)

A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

Roop, J.M.; Kaplan, D.T.

1984-09-01T23:59:59.000Z

356

Generation IV International Forum Updates Technology Roadmap...  

Office of Environmental Management (EM)

nuclear energy Generation IV International Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors China and Russia to Join the Generation IV International Forum...

357

Desalination and Water Purification Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in this document are those that are produced during oil and gas extraction activities and coal bed methane production, or that are contained in saline aquifers. of water sources of...

358

ITP Chemicals: Technology Roadmap for Computational Chemistry  

Broader source: Energy.gov (indexed) [DOE]

software, coupled with user-friendly graphical user interfaces, access to high performance computing is becoming available to a much broader community of users. In the longer...

359

Power Generation Asset Management Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be done to determine optimal sensor deployment to address these criteria. TC8 Incorporate turbine layouts, make efforts and operational status within wind power plants to have more...

360

Desalination and Water Purification Technology Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINLNuclear262About UsDepthDerek F

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sandia National Laboratories: energy systems technology roadmaps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuelssituations

362

Wind technology roadmap | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Areaarticle is a stub.Wind)

363

Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)  

SciTech Connect (OSTI)

A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Wadsworth, Jeffrey (Battelle Memorial Institute) [Battelle Memorial Institute; Carlson, David E. (BP Solar) [BP Solar; Chiang, Yet-Ming (MIT and A123 Systems) [MIT and A123 Systems; Hunt, Catherine T. (Dow Chemical) [Dow Chemical

2011-05-25T23:59:59.000Z

364

Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)  

ScienceCinema (OSTI)

A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

2012-03-20T23:59:59.000Z

365

Fluoride Salt-Cooled High-Temperature Reactor Development Roadmap  

SciTech Connect (OSTI)

Fluoride salt-cooled high-temperature reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics and fully passive safety. This paper provides an overview of a technology development pathway for expeditious commercial deployment of first-generation FHRs. The paper describes the principal remaining FHR technology challenges and the development path needed to address the challenges. First-generation FHRs do not appear to require any technology breakthroughs, but will require significant technology development and demonstration. FHRs are currently entering early phase engineering development. As such, the development roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant; the lack of an approved licensing framework; the lack of qualified, salt-compatible structural materials; and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2014-01-01T23:59:59.000Z

366

2.0New York solar roadmap  

E-Print Network [OSTI]

2.0New York solar roadmap A plan for energy reliability, security, environmental responsibility support. The U.S. Photovoltaic Manufacturing Consortium (PVMC), a joint initiative between the College

Perez, Richard R.

367

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

368

Innovation in mature industries : recent impacts of the oil & gas and automobile technological trends on the steel industry  

E-Print Network [OSTI]

In order to survive, the steel industry has undergone traumatic changes in the last years. A thirty years old overcapacity combined with a slow growing market led to a steadily eroding profitability of steel companies, ...

Tivelli, Marco M. (Marco Mario), 1964-

2004-01-01T23:59:59.000Z

369

Unrestricted. Siemens AG 2013. All rights reserved.Page 2 October 2013 Corporate Technology Siemens is organized in 4 Sectors: Industry,  

E-Print Network [OSTI]

Smart Grid Building Technologies Osram 2) Corporate functions Corporate Technology Corp. Finance Siemens is organized in 4 Sectors: Industry, Energy, Healthcare and Infrastructure & Cities Siemens: Facts ... Corp. Technology Corp. Development Infrastructure & Cities HealthcareEnergyIndustry ~ 14 bn.1) ~ 18 bn

Oak Ridge National Laboratory

370

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

371

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING, ARCHITECTURE AND TECHNOLOGY  

E-Print Network [OSTI]

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT COLLEGE OF ENGINEERING performance. Candidates must have a Ph.D. in industrial engineering or a related in the industrial engineering and management field. We seek candidates with curricular

Piao, Daqing

372

The dynamics and strategic analysis of wireless communications technology in the healthcare industry  

E-Print Network [OSTI]

The healthcare industry like other industry is on the cross roads as a result of rising demand for healthcare delivery and service, the industry is facing declining revenues and increasing cost. As a result, one of the ...

Eyemaro, John K. (John Kingsley)

2006-01-01T23:59:59.000Z

373

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network [OSTI]

Best practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiencyBest practices/case studies - Indian Industries, Energy-efficiency

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

374

Software Roadmap to Plug and Play Petaflop/s  

E-Print Network [OSTI]

Chem. , 14, 13471363 (1993). LBNL Software Roadmap to PlugSpain, Sep. 1216, 2005. LBNL Software Roadmap to Plug andeffective. ANL, ORNL, and LBNL have expertise here. Memory

2006-01-01T23:59:59.000Z

375

Roadmap: Viticulture -Associate of Applied Science [RE-AAS-VITI  

E-Print Network [OSTI]

Roadmap: Viticulture - Associate of Applied Science [RE-AAS-VITI] Regional College Catalog Year: 2012-2013 Page 1 of 1 | Last Updated: 12-Mar-12/LNHD This roadmap is a recommended semester

Sheridan, Scott

376

Roadmap: Enology -Associate of Applied Science [RE-AAS-ENOL  

E-Print Network [OSTI]

Roadmap: Enology - Associate of Applied Science [RE-AAS-ENOL] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 11-Apr-13/LNHD This roadmap is a recommended semester-by-semester plan

Sheridan, Scott

377

Non-Hardware ("Soft") Cost-Reduction Roadmap for  

E-Print Network [OSTI]

Non-Hardware ("Soft") Cost- Reduction Roadmap for Residential and Small Commercial Solar Golden, CO 80401 303-275-3000 · www.nrel.gov Non-Hardware ("Soft") Cost- Reduction Roadmap

378

Roadmap: Enology -Associate of Applied Science [RE-AAS-ENOL  

E-Print Network [OSTI]

Roadmap: Enology - Associate of Applied Science [RE-AAS-ENOL] Regional College Catalog Year: 2012-2013 Page 1 of 1 | Last Updated: 9-Mar-12/LNHD This roadmap is a recommended semester-by-semester plan

Sheridan, Scott

379

Roadmap: Viticulture -Associate of Applied Science [RE-AAS-VITI  

E-Print Network [OSTI]

Roadmap: Viticulture - Associate of Applied Science [RE-AAS-VITI] Regional College Catalog Year: 2013-2014 Page 1 of 1 | Last Updated: 11-Apr-13/LNHD This roadmap is a recommended semester

Sheridan, Scott

380

Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science [AT

Sheridan, Scott

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Proceedings of the National Hydrogen Energy Roadmap Workshop...  

Broader source: Energy.gov (indexed) [DOE]

National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002 Summary of...

382

Codes and Standards Research, Development and Demonstration Roadmap, May 2006  

Fuel Cell Technologies Publication and Product Library (EERE)

C&S RD&D Roadmap - 2008: This Roadmap is a guide to the Research, Development & Demonstration activities that will provide data required for Standards Development Organizations (SDOs) to develop perfo

383

Obama Administration Releases Roadmap for Solar Energy Development...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Releases Roadmap for Solar Energy Development on Public Lands Obama Administration Releases Roadmap for Solar Energy Development on Public Lands July 24, 2012 - 4:00pm Addthis News...

384

An obstacle-based probabilistic roadmap method for path planning  

E-Print Network [OSTI]

This thesis presents a new obstacle-based probabilistic roadmap method for motion planning for many degree of freedom robots that can be used to obtain high quality roadmaps even when the robot's configuration space is crowded. The main novelty...

Wu, Yan

1996-01-01T23:59:59.000Z

385

NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014  

E-Print Network [OSTI]

NIST Roadmap for Improving Critical Infrastructure Cybersecurity February 12, 2014 1. Introduction This companion Roadmap to the Framework for Improving Critical Infrastructure Cybersecurity ("the Framework, which has been moved to this document. 2. Evolution of the Cybersecurity Framework Since

386

Waste-to-Energy Roadmapping Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste-to-Energy Roadmapping Workshop Waste-to-Energy Roadmapping Workshop November 5, 2014 9:00AM EST to November 6, 2014 12:00PM EST DoubleTree Hotel Crystal City 300 Army Navy...

387

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), New York Hydrogen Energy Roadmap, NYSERDA

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

388

Roadmap: Photo Illustration -Bachelor of Science [CI-BS-PHOI  

E-Print Network [OSTI]

Roadmap: Photo Illustration - Bachelor of Science [CI-BS-PHOI] College of Communication/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However, courses if not satisfied earlier. See note 3 on page 2. #12;Roadmap: Photo Illustration - Bachelor of Science [CI

Sheridan, Scott

389

Roadmap: Fashion Design Bachelor of Arts College of the Arts  

E-Print Network [OSTI]

Roadmap: Fashion Design ­ Bachelor of Arts [CA-BA-FD] College of the Arts School of Fashion Design and Merchandising Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 30-May-12/JS This roadmap is a recommended Requirements 3 See Kent Core Summary on page 2Kent Core Requirements 3 Kent Core Requirements 3 #12;Roadmap

Sheridan, Scott

390

CONSULTATION RESPONSE Wellcome Trust response to RCUK Large Facilities Roadmap  

E-Print Network [OSTI]

CONSULTATION RESPONSE Wellcome Trust response to RCUK Large Facilities Roadmap December 2007 Page 1 of 4 RCUK Large Facilities Roadmap Response by the Wellcome Trust December 2007 1. The Wellcome Trust is pleased to have the opportunity to feed into the process of prioritising the RCUK Large Facilities Roadmap

Rambaut, Andrew

391

Roadmap: Human Development and Family Studies -Gerontology -Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Human Development and Family Studies - Gerontology - Bachelor of Science [EH Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 8-June-12/JS This roadmap is a recommended semester or upper division) 3 See note 2 on page 2 #12;Roadmap: Human Development and Family Studies - Gerontology

Sheridan, Scott

392

Roadmap: Sport Administration -Bachelor of Science [EH-BS-SPAD  

E-Print Network [OSTI]

Roadmap: Sport Administration - Bachelor of Science [EH-BS-SPAD] College of Education, Health of Business Administration Catalog Year: 2012-2013 Page 1 of 2 | Last Updated: 15-May-12/JS This roadmap and Recreation 3 General Elective (lower or upper division) 3 #12;Roadmap: Sport Administration - Bachelor

Sheridan, Scott

393

Roadmap-based Motion Planning in Dynamic Environments  

E-Print Network [OSTI]

Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars propose a practical algorithm based on a roadmap that is created for the static part of the scene. On this roadmap an approximate time-optimal trajectory from a start to a goal configuration is computed

van den Berg, Jur

394

Roadmap: English Bachelor of Arts [AS-BA-ENG  

E-Print Network [OSTI]

Roadmap: English ­ Bachelor of Arts [AS-BA-ENG] College of Arts and Sciences Department of English Catalog Year: 2013-2014 Page 1 of 4 | Last Updated: 7-May-13/LNHD This roadmap is a recommended semester 5 on page 3 General Electives (upper division) 6 #12;Roadmap: English ­ Bachelor of Arts [AS

Sheridan, Scott

395

LERU Roadmap foR REsEaRch data  

E-Print Network [OSTI]

LERU Roadmap foR REsEaRch data LERU REsEaRch data WoRking gRoUp University of Amsterdam, Responsibilities and Skills 28 7 Recommendations 31 #12;3 INTRODUCTION The LERU Roadmap for Research Data that LERU members need to act. In 2011, the LERU community of Chief Information Officers produced a Roadmap

Zürich, Universität

396

Roadmap: Art History Bachelor of Arts [CA-BA-ARTH  

E-Print Network [OSTI]

Roadmap: Art History ­ Bachelor of Arts [CA-BA-ARTH] College of the Arts School of Art Catalog Year: 2013­2014 Page 1 of 2 | Last Updated: 30-Apr-13/JS This roadmap is a recommended semester Elective (upper division) 3 Minor Requirements or General Electives 9 See note 2 on page 2 #12;Roadmap

Sheridan, Scott

397

Roadmap: Physical Education Physical Education Licensure Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Physical Education ­ Physical Education Licensure ­ Bachelor of Science [EH | Last Updated: 31-May-13/JS This roadmap is a recommended semester-by-semester plan of study;Roadmap: Physical Education ­ Physical Education Licensure ­ Bachelor of Science [EH-BS-PEP-PEL] College

Sheridan, Scott

398

Cryogenic Roadmap U.S. Department of Energy  

E-Print Network [OSTI]

i Cryogenic Roadmap U.S. Department of Energy Superconductivity Program for Electric Systems these systems to advance to meet these desired characteristics. Consequently, it is called a "roadmap". The roadmap provides goals and objectives along with the desired outcomes that may result if these goals

399

Roadmap for Venus Exploration (rev. 3, Dec 5, 2013)  

E-Print Network [OSTI]

1 Roadmap for Venus Exploration (rev. 3, Dec 5, 2013) Introduction Venus is so similar, and the likelihood of habitable planets in other solar systems. This Roadmap lays out a framework for the future proposals. Proposals that address the measurement goals expressed in this Roadmap should be recognized

Rathbun, Julie A.

400

Roadmap: Technical and Applied Studies Fire and Emergency Services Administration  

E-Print Network [OSTI]

Roadmap: Technical and Applied Studies ­ Fire and Emergency Services Administration ­ Bachelor Updated: 5-Apr-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major;Roadmap: Technical and Applied Studies ­ Fire and Emergency Services Administration ­ Bachelor

Sheridan, Scott

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Roadmap-based Motion Planning in Dynamic Environments  

E-Print Network [OSTI]

Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars.cs.uu.nl #12;Roadmap-based Motion Planning in Dynamic Environments Jur P. van den Berg Mark H. Overmars April obstacles. We propose a practical algorithm based on a roadmap that is created for the static part

Utrecht, Universiteit

402

Roadmap: Paralegal Studies Bachelor of Arts [AS-BA-PLST  

E-Print Network [OSTI]

Roadmap: Paralegal Studies ­ Bachelor of Arts [AS-BA-PLST] College of Arts and Sciences Department of Sociology Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 7-May-13/LNHD This roadmap is a recommended on page 2 #12;Roadmap: Paralegal Studies ­ Bachelor of Arts [AS-BA-PLST] College of Arts and Sciences

Sheridan, Scott

403

Roadmap for Venus Exploration (Version 4, 1/29/14)  

E-Print Network [OSTI]

1 Roadmap for Venus Exploration (Version 4, 1/29/14) Introduction Venus is so similar solar systems. This Roadmap lays out a framework for the future exploration of Venus, encompassing expressed in this Roadmap should be recognized by NASA review panels as being consistent with VEXAG

Rathbun, Julie A.

404

Roadmap to Residency: From Application to the Match and Beyond  

E-Print Network [OSTI]

Roadmap to Residency: From Application to the Match and Beyond Association of American Medical Colleges Learn Serve Lead #12;Roadmap to Residency: From Application to the Match and Beyond #12;© 2006 with application to U.S. residency programs. iii Roadmap to Residency: From Application to the Match and Beyond

Sherman, S. Murray

405

Roadmap for Real World Internet applications Socioeconomic scenarios  

E-Print Network [OSTI]

Roadmap for Real World Internet applications ­ Socioeconomic scenarios and design recommendations that is feasible to roadmap the dynamic deployment of Real World Internet applications. A multi- faceted scenarios. These scenarios are used as a roadmap for the system and architecture deployment. The application

Paris-Sud XI, Université de

406

Roadmap: Mathematics -Bachelor of Science [AS-BS-MATH  

E-Print Network [OSTI]

Roadmap: Mathematics - Bachelor of Science [AS-BS-MATH] College of Arts and Science Department of Mathematical Sciences Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 11-May-2012/LNHD This roadmap #12;Roadmap: Mathematics - Bachelor of Science [AS-BS-MATH] College of Arts and Science Department

Sheridan, Scott

407

Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments  

E-Print Network [OSTI]

Roadmap Query for Sensor Network Assisted Navigation in Dynamic Environments Sangeeta Bhattacharya approach that integrates a roadmap based navigation algorithm with a novel WSN query protocol called Roadmap Query (RQ). RQ enables collection of frequent, up-to- date information about the surrounding

Lu, Chenyang

408

Roadmap to Residency: From Application to the Match and Beyond  

E-Print Network [OSTI]

Roadmap to Residency: From Application to the Match and Beyond Association of American Medical Colleges Learn Serve Lead Second Edition #12;Roadmap to Residency: From Application to the Match and Beyond in the processes associated with application to U.S. residency programs. iii Roadmap to Residency: From Application

Weber, David J.

409

Roadmap: Art History Bachelor of Arts [CA-BA-ARTH  

E-Print Network [OSTI]

Roadmap: Art History ­ Bachelor of Arts [CA-BA-ARTH] College of the Arts School of Art Catalog Year: 2012­2013 Page 1 of 2 | Last Updated: 29-May-12/JS This roadmap is a recommended semester Elective (upper division) 3 Minor Requirements or General Electives 9 See note 2 on page 2 #12;Roadmap

Sheridan, Scott

410

Roadmap: Biology -Bachelor of Arts [AS-BA-BSCI  

E-Print Network [OSTI]

Roadmap: Biology - Bachelor of Arts [AS-BA-BSCI] College of Arts and Sciences Department of Biological Sciences Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 2-May-12/LNHD This roadmap hours and minimum 42 upper- division credit hours #12;Roadmap: Biology - Bachelor of Arts [AS

Sheridan, Scott

411

Roadmap: Zoology Bachelor of Science [AS-BS-ZOOL  

E-Print Network [OSTI]

Roadmap: Zoology ­ Bachelor of Science [AS-BS-ZOOL] College of Arts and Science Department of Biological Sciences Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 14-May-2012/LNHD This roadmap hours and minimum 42 upper- division credit hours #12;Roadmap: Zoology ­ Bachelor of Science [AS

Sheridan, Scott

412

Roadmap: Electronic Media Electronic Media Sports Production Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Electronic Media ­ Electronic Media Sports Production ­ Bachelor of Science [CI­2013 Page 1 of 4 | Last Updated: 23-May-12/LNHD This roadmap is a recommended semester-by-semester plan requirement #12;Roadmap: Electronic Media ­ Electronic Media Sports Production ­ Bachelor of Science [CI

Sheridan, Scott

413

Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry  

E-Print Network [OSTI]

Energy-Efficiency Technologies and Benchmarking the EnergyEnvironmental Energy Technologies Division Lawrence BerkeleyIsfahan University of Technology Mohamad Abdolrazaghi,

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

414

Technology, Knowledge, Culture, and Management: the keys The shift from industrial societies to information societies  

E-Print Network [OSTI]

Technology, Knowledge, Culture, and Management: the keys to success Abstract The shift from to success: technology, knowledge, culture and management. Organizations employ technology with the goal of improving efficiency and reducing operational costs. Hence technology structures within organizations must

Kopec, Danny

415

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network [OSTI]

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

416

education. Our co-op program is closely associated with the Canadian high technology industry, giving you valuable work  

E-Print Network [OSTI]

of diverse areas including aerospace systems, satellite systems, space applications, mechatronics, robotics, security, etc. Canadian industry in computer-based systems is recognized worldwide for its impressive track of the Communications Research Centre, the National Research Council Canada and local technology companies. Your co

417

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect (OSTI)

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

418

Roadmap for Venus Exploration: 2014 (Draft for Community Review, March 12, 2014)  

E-Print Network [OSTI]

Roadmap for Venus Exploration: 2014 (Draft for Community Review, March 12, 2014) #12;ii Roadmap, (2) develop a Roadmap for Venus exploration that is consistent with VEXAG priorities as well. Here, we present the Roadmap for Venus Exploration: 2014. Developed by Venus Exploration Roadmap

Rathbun, Julie A.

419

Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: A report from California  

SciTech Connect (OSTI)

The potential energy savings from emerging technologies (i.e., those technologies emerging from research and development) represent a significant resource to California and the US This paper describes how California's investor-owned utilities (IOUs) have been promoting emerging technologies over the last three years to increase energy efficiency in the buildings sector. During these years, the IOUs have experienced significant changes in their regulatory environment as part of the restructuring of the energy industry in California. These regulatory changes have impacted the way emerging technologies are treated by the regulatory community and the IOUs. After reviewing these changes, the paper concludes by discussing potential opportunities to improve the market penetration of emerging technologies.

Vine, Edward L.

2000-07-01T23:59:59.000Z

420

Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use  

SciTech Connect (OSTI)

Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United States harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

Roger Hoy

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes  

SciTech Connect (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

1994-12-01T23:59:59.000Z

422

Product strategy in response to technological innovation in the semiconductor test industry  

E-Print Network [OSTI]

After the market boom of 2000 in the semiconductor industry changed significantly. The changes included stricter limits on capital cost spending, and the increased propensity of the industry to outsource the manufacturing ...

Lin, Robert W. (Robert Wei-Pang), 1976-

2004-01-01T23:59:59.000Z

423

Foreign Direct Investment, Intra-organizational Proximity, and Technological Capability: The Case of China's Automobile Industry  

E-Print Network [OSTI]

of China's Automobile Industry by Kyung-Min Nam B.S., Urban Planning and Engineering, Yonsei University Capability: The Case of China's Automobile Industry by Kyung-Min Nam Submitted to the Department of Urban

424

Adjustable Speed Pumping Applications: Industrial Technologies Program (ITP) Pumping Systems Tip Sheet #11  

SciTech Connect (OSTI)

This two-page tip sheet provides practical tips on application of Adjustable Speed Drives in industrial settings.

Not Available

2007-01-01T23:59:59.000Z

425

Industry Leaders, Research Experts Gather for 2006 DOE Solid...  

Broader source: Energy.gov (indexed) [DOE]

five men in suits, standing, smiling at the camera. In the Day 2 keynote address, Alan Allan from Intel Corporation shared an overview of the International Technology Roadmap for...

426

In Future of Software Engineering, 22nd International Conference on Software Engineering, June 2000. Testing: A Roadmap  

E-Print Network [OSTI]

. Testing: A Roadmap Mary Jean Harrold College of Computing Georgia Institute of Technology 801 Atlantic Drive Atlanta, GA 30332-0280 harrold@cc.gatech.edu ABSTRACT Testing is an important process that is performed to support quality assurance. Testing activities support quality assurance by gathering

Harrold, Mary Jean

427

Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Degradable plastic made from potato peels  

SciTech Connect (OSTI)

Stimulated by public demand and state and federal legislation, industry has begun to develop bio- and photo- degradable plastics. so far, however, none of these degradable plastics meets all of the criteria for success - adequate physical and mechanical properties for the desired use, cost-effectiveness, and 100% degradability. Polylactic acid (PLA) plastic is one degradable plastic that shows promise. It has the desired properties and is 100% degradable. However, PLA plastic made by conventional techniques is not cost effective. Made from lactic acid, which is typically made form petroleum using a very costly synthesis process. Lactic acid can also be made from carbohydrates (starches), found in food processing wastes such as potato wastes, cheese whey, and sorghum. Conversion of starch to simple sugars, and fermentation of these sugars can produce lactic acid.

Not Available

1992-07-01T23:59:59.000Z

428

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

new partnerships? H2-FCV Roadmap Report - FINAL December 21,Roadmap for Hydrogen and Fuel Cell Vehicles in California: ACalifornia, Davis H2-FCV Roadmap Report - FINAL December 21,

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

429

Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer@lbl.gov)  

E-Print Network [OSTI]

LBNL-59999 Software Roadmap to Plug and Play Petaflop/s Editor: Bill Kramer (wtkramer Software Roadmap to Plug and Play Petaflop/s 1 Software Roadmap to Plug and Play Petaflop/s In the next

Geddes, Cameron Guy Robinson

430

Roadmap and Technical White Papers for 21st Century Truck Partnership...  

Broader source: Energy.gov (indexed) [DOE]

Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap and Technical White Papers for 21st Century Truck Partnership Roadmap document for 21st Century Truck...

431

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

432

Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries  

SciTech Connect (OSTI)

Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the standard dies by at least 50%. Dies provided by an AST customer, made of plain carbon 1045 steel and used for pellet manufacturing outperformed the standard dies by more than 100%. Concrete crusher liner wear plates provided by an EHT customer and made of 1045 steel, had the same surface hardness as the plates made of more expensive, pre-hardened high alloy HARDOX-500 material supplied by a Swedish company and used currently by the EHT customer. The 1045 material intensively quenched wear plates are currently in the field. Concrete block molding machine wear plates provided by an IQT customer and made of 8620 steel were processed at the AST production IQ system using a 40% reduced carburization cycle. An effective case depth in the intensively quenched wear plates was the same as in the standard, oil quenched parts. Base keys provided by an EHT customer and made of 8620 steel were processed using a 40% reduced carburization cycle. The intensively quenched parts showed the same performance as standard parts. IQT introduced the IQ process in heat treat practices of three commercial heat-treating shops: Akron Steel Treating Co., Summit Heat Treating Co. and Euclid Heat Treating Co. CWRU conducted a material characterization study for a variety of steels to develop a database to support changing/modification of recognized standards for quenching steel parts. IQT conducted a series of IQ workshops, published seven technical papers and participated in ASM Heat Treating Society conference and exposition and in Furnace North America Show. IQT designed and built a fully automated new IQ system installed at the Center for Intensive Quenching. This system includes the following major components: a stand-alone 1,900-gallon IQ water system, a 24'' x 24'' atmosphere pit furnace, and an automated load transfer mechanism. IQT established a ''Center for Intensive Quenching'' at the AST facilities. The 4,000 square feet Center includes the following equipment: High-velocity single part quenching IQ unit developed and built previously under EMTEC CT-65 project. The unit is equipped w

Aronov, Michael A.

2005-12-21T23:59:59.000Z

433

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

434

E-Print Network 3.0 - access technology industry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D in the Steel ... Source: Thomas, Brian G. - Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign Collection: Materials...

435

Improved Technology Transfer Processes for the U.S. Upstream Petroleum Industry  

SciTech Connect (OSTI)

This report covers PTTC's technical progress during the 1st half of FY99, and illustrates its increasing impact on the independent oil and gas producing industry.

Rowell, Deborah; Cole, E. Lance

2003-01-24T23:59:59.000Z

436

Imposed-Dynamo Driven Spheromak Roadmap  

E-Print Network [OSTI]

Imposed-Dynamo Driven Spheromak Roadmap Derek Sutherland and Tom Jarboe University of Washington 34 sustained spheromak with pressure. · NIMROD simulations indicate existence of closed flux with large by Imposed-Dynamo Current Drive (IDCD). · IDCD-enabled spheromak development path. · Conclusions

437

Swarming Behavior Using Probabilistic Roadmap Techniques  

E-Print Network [OSTI]

Swarming Behavior Using Probabilistic Roadmap Techniques O. Bur¸chan Bayazit1 , Jyh-Ming Lien2 behaviors: homing, exploring (covering and goal searching), passing through narrow areas and shepherding. We consider several different behaviors: homing, goal searching, covering, passing through narrow passages

Lien, Jyh-Ming

438

WEB MINING: A ROADMAP Magdalini Eirinaki  

E-Print Network [OSTI]

1 WEB MINING: A ROADMAP Magdalini Eirinaki Dept. of Informatics Athens University of Economics and Business CHAPTER 1 Introduction ­ The three axes of Web Mining 1.1 WWW Impact The World Wide Web, has grown of the Web content, the creation of some meta- knowledge out of the information which is available on the Web

Eirinaki, Magdalini

439

Roadmap for Solar System Research October 2012  

E-Print Network [OSTI]

Roadmap for Solar System Research October 2012 DRAFT Prepared by the Solar System Advisory Panel on behalf of the UK Community of Solar and Planetary Scientists for the STFC Programmatic Review Panel and processes that influence its dynamics. The remit of the Solar System Advisory Panel (SSAP) covers all b

Crowther, Paul

440

Roadmap for Solar System Research November 2012  

E-Print Network [OSTI]

Roadmap for Solar System Research November 2012 Prepared by the Solar System Advisory Panel on behalf of the UK Community of Solar System Scientists for the STFC Programmatic Review Panel membership. The Solar System Advisory Panel (SSAP) invited its community to a Town Meeting in London on 10th September

Crowther, Paul

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY  

E-Print Network [OSTI]

RESEARCH ROADMAP FOR GREENHOUSE GAS INVENTORY METHODS Prepared For: California Energy Commission Consulting · Riitta Pipatti, IPCC Task Force on National Greenhouse Gas Inventories · Dennis Rolston Agency · Fabian Wagner, IPCC Task Force on National Greenhouse Gas Inventories · Wilfried Winiwarter

442

Finnish Research Infrastructure Survey and Roadmap Project  

E-Print Network [OSTI]

location ERA policy ESFRI Roadmap EU27 MS & AS Survey "RI landscape" 2 #12;Background for National RI is appropriate in fields that require major investments in expensive research equipment (e.g. synchrotron light sources, research reactors), special laboratories (e.g. cleanrooms) or research materials (e.g. hazardous

Horn, David

443

PhD student in Energy Technology, specifically in Magnetic Refrigeration The School of Industrial Engineering and Management at the Royal Institute of  

E-Print Network [OSTI]

PhD student in Energy Technology, specifically in Magnetic Refrigeration Processes The School of Industrial Engineering and Management at the Royal Institute of Technology seeks a PhD student in Energy Technology, specifically Magnetic Refrigeration Processes. KTH is the largest technical university in Sweden

Kazachkov, Ivan

444

Managing multi-tiered suppliers in the high-tech industry  

E-Print Network [OSTI]

This thesis presents a roadmap for companies to follow as they manage multi-tiered suppliers in the high-tech industry. Our research covered a host of sources including interviews and publications from various companies, ...

Frantz, Charles E. (Charles Evan)

2009-01-01T23:59:59.000Z

445

Thermally Activated Technologies Technology Roadmap, May 2003 | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy TheAgedMachines |of Energy

446

EM Engineering & Technology Roadmap and Major Technology Demonstrations  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergyDepartment0: DOE512: Alaska EM|of Energy

447

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network [OSTI]

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

448

Technology and policy options for reducing industrial air pollutants in the Mexico City Metropolitan Area  

E-Print Network [OSTI]

Technology plays an important role in dealing with air pollution and other environmental problems faced by developing and developed societies. This research examines if technological solutions alone, such as end-of-pipe ...

Vijay, Samudra, 1968-

2005-01-01T23:59:59.000Z

449

Preliminary definition and characterization of a solar industrial process heat technology and manufacturing plant for the year 2000  

SciTech Connect (OSTI)

A solar industrial process heat technology and an associated solar systems manufacturing plant for the year 2000 has been projected, defined, and qualitatively characterized. The technology has been defined for process heat applications requiring temperatures of 300/sup 0/C or lower, with emphasis on the 150/sup 0/ to 300/sup 0/C range. The selected solar collector technology is a parabolic trough collector of the line-focusing class. The design, structure, and material components are based upon existing and anticipated future technological developments in the solar industry. The solar system to be manufactured and assembled within a dedicated manufacturing plant is projected to consist of the collector and the major collector components, including reflector, absorber, parabolic trough structure, support stand, tracking drive mechanism, sun-sensing device and control system, couplings, etc. Major manufacturing processes to be introduced into the year 2000 plant operations are glassmaking, silvering, electroplating and plastic-forming. These operations will generate significant environmental residuals not encountered in present-day solar manufacturing plants. Important residuals include chemical vapors, acids, toxic elements (e.g. arsenic), metallic and chemical sludges, fumes from plastics, etc. The location, design, and operations of these sophisticated solar manufacturing plants will have to provide for the management of the environmental residuals.

Prythero, T.; Meyer, R. T.

1980-09-01T23:59:59.000Z

450

Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1  

SciTech Connect (OSTI)

This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

Not Available

1993-05-01T23:59:59.000Z

451

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

452

Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy AgencyCompany Organization Inter-American Development Bank, World Watch Institute (WWI) Sector...

453

Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Montserrat-Caribbean Community (CARICOM) Sustainable Energy...

454

Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap...  

Open Energy Info (EERE)

Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy AgencyCompany Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate,...

455

Efficient and Dynamic ? The BMW Group Roadmap for the Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dynamic The BMW Group Roadmap for the Application of Thermoelectric Generators The diesel engine EGR system is a logical application of TE generators because the necessary...

456

Research and Development Roadmaps for Nondestructive Evaluation of Cables, Concrete, Reactor Pressure Vessels, and Piping Fatique  

SciTech Connect (OSTI)

To address these research needs, the MAaD Pathway supported a series of workshops in the summer of 2012 for the purpose of developing R&D roadmaps for enhancing the use of Nondestructive Evaluation (NDE) technologies and methodologies for detecting aging and degradation of materials and predicting the remaining useful life. The workshops were conducted to assess requirements and technical gaps related to applications of NDE for cables, concrete, reactor pressure vessels (RPV), and piping fatigue for extended reactor life. An overview of the outcomes of the workshops is presented here. Details of the workshop outcomes and proposed R&D also are available in the R&D roadmap documents cited in the bibliography and are available on the LWRS Program website (http://www.inl.gov/lwrs).

Clayton, Dwight A [ORNL] [ORNL; Bakhtiari, Sasan [Argonne National Laboratory (ANL)] [Argonne National Laboratory (ANL); Smith, Cyrus M [ORNL] [ORNL; Simmons, Kevin [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Coble, Jamie [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Brenchley, David [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Meyer, Ryan [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

2013-01-01T23:59:59.000Z

457

U.S. Department of Energy's Industrial Technology Program and Its Impacts  

E-Print Network [OSTI]

Vehicles 0.000 0.000 0.001 0.000 0.039 0.010 1.46 Aerogel-Based Insulation for Industrial Steam Distribution Systems 0.01 0...

Weakley, S. A.; Roop, J. M.

458

Document: P1289 Category: Computing Technologies License Status: Available for licensing Texas Industry Cluster: Information and Computer Technology  

E-Print Network [OSTI]

controls · Interactive systems, such as bio-electrical prosthetics interfaces and real-time translationalInventors Document: P1289 Category: Computing Technologies License Status: Available for licensing By rethinking the design of an analog integrator, the system allows for processing of analog signals without

Lightsey, Glenn

459

The advanced manufacturing science and technology program. FY 95 Annual Report  

SciTech Connect (OSTI)

This is the Fiscal Year 1995 Annual Report for the Advanced Manufacturing Science and Technology (AMST) sector of Los Alamos Tactical Goal 6, Industrial Partnering. During this past fiscal year, the AMST project leader formed a committee whose members represented the divisions and program offices with a manufacturing interest to examine the Laboratory`s expertise and needs in manufacturing. From a list of about two hundred interest areas, the committee selected nineteen of the most pressing needs for weapon manufacturing. Based upon Los Alamos mission requirements and the needs of the weapon manufacturing (Advanced Design and Production Technologies (ADaPT)) program plan and the other tactical goals, the committee selected four of the nineteen areas for strategic planning and possible industrial partnering. The areas selected were Casting Technology, Constitutive Modeling, Non-Destructive Testing and Evaluation, and Polymer Aging and Lifetime Prediction. For each area, the AMST committee formed a team to write a roadmap and serve as a partnering technical consultant. To date, the roadmaps have been completed for each of the four areas. The Casting Technology and Polymer Aging teams are negotiating with specific potential partners now, at the close of the fiscal year. For each focus area we have created a list of existing collaborations and other ongoing partnering activities. In early Fiscal Year 1996, we will continue to develop partnerships in these four areas. Los Alamos National Laboratory instituted the tactical goals for industrial partnering to focus our institutional resources on partnerships that enhance core competencies and capabilities required to meet our national security mission of reducing the nuclear danger. The second industry sector targeted by Tactical Goal 6 was the chemical industry. Tactical Goal 6 is championed by the Industrial Partnership Office.

Hill, J. [comp.

1996-03-01T23:59:59.000Z

460

"The Freedom. . . of the Press," from 1791 to 1868 to Now -- Freedom for the Press as an Industry, or the Press as a Technology?  

E-Print Network [OSTI]

that would most closely fit the press-as-industry model.two approaches both fit the press-as-technology model. (The66 They did not fit within the press in the sense of [n

Volokh, Eugene

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution  

E-Print Network [OSTI]

The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

Auh, Jae Hyuck, 1969-

2003-01-01T23:59:59.000Z

462

Careers in Biomedical Engineering Biomedical engineering students will be prepared for careers in the biomedical technology industry, graduate school or professional programs  

E-Print Network [OSTI]

Careers in Biomedical Engineering Biomedical engineering students will be prepared for careers in the biomedical technology industry, graduate school or professional programs such as engineering, medicine-time positions throughout the region. Scholarships Departmental scholarships are offered through the biomedical

Glowinski, Roland

463

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

464

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network [OSTI]

2012b. M&G (Chemtex)/Novozymes commercial scale cellulosicItaly. The plant will use Novozymes enzyme technology to

Kong, Lingbo

2014-01-01T23:59:59.000Z

465

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network [OSTI]

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

466

A survey of industries which interview students through the Texas A&M Placement Office to ascertain their attitude toward the Engineering Technology Department  

E-Print Network [OSTI]

A SURVEY OF INDUSTRIES WHICH INTERVIEW STUDENTS THROUGH THE TEXAS A&M PLACEMENT OFFICE TO ASCERTAIN THEIR ATTITUDE TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Submitted to the Graduate College of Texas A... TOWARD THE ENGINEERING TECHNOLOGY DEPARTMENT A Thesis by ROY NEWELL JOHNSON Approved as to style and content by: (Chairman of Committee) (Head of Departmen (Member) (Memb er ) August 1972 g ". ;, 'j', '~ 0 ABSTRACT A Survey of Industries Which...

Johnson, Roy Newell

1972-01-01T23:59:59.000Z

467

Magnetic Recording Media Technology for the Tb/In2 Era  

SciTech Connect (OSTI)

Magnetic recording has been the technology of choice of massive storage of information. The hard-disk drive industry has recently undergone a major technological transition from longitudinal magnetic recording (LMR) to perpendicular magnetic recording (PMR). However, convention perpendicular recording can only support a few new product generations before facing insurmountable physical limits. In order to support sustained recording areal density growth, new technological paradigms, such as energy-assisted recording and bit-patterined media recording are being contemplated and planned. In this talk, we will briefly discuss the LMR-to-PMR transition, the extendibility of current PMR recording, and the nature and merits of new enabling technologies. We will also discuss a technology roadmap toward recording densities approaching 10 Tv/in2, approximately 40 times higher than in current disk drives.

Bertero, Gerardo (Wester Digital) [Wester Digital

2010-04-07T23:59:59.000Z

468

A Roadmap for the Future of Fermilab  

SciTech Connect (OSTI)

The principal aim of this roadmap is to place the US and Fermilab in the best position to host the International Linear Collider (ILC). The strategy must be resilient against the many vicissitudes that will attend the development of such a large project. Pier Oddone will explore the tension between the needed concentration of effort to move a project as large as the ILC forward and the need to maintain the breadth of our field.

Oddone, Pier

2005-12-12T23:59:59.000Z

469

RAPID/Roadmap | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColorado < RAPID‎ | Geothermal‎ |RAPID<RAPID/Roadmap

470

Stochastic Roadmap Simulation: An Efficient Representation and Algorithm for Analyzing Molecular Motion  

E-Print Network [OSTI]

Stochastic Roadmap Simulation: An Efficient Representation and Algorithm for Analyzing Molecular pathways. We introduce Stochastic Roadmap Simulation (SRS), a new approach for exploring the ki- netics a roadmap. A roadmap is computed by sampling a molecule's conformation space at random. The computation does

Brutlag, Doug

471

U.S. Department of Energy's Industrial Technologies Program and Its Impacts  

E-Print Network [OSTI]

- - - - - - - Shorter Spherodizing Annealing Time for Tube/Pipe Manufacturing 0.138 0.008 - 0.000 - 0.016 2.19 Vanadium Carbide Coating Process 0....02 Advanced Reciprocating Engine Systems (ARES) - - - - - - - Aerogel-Based Insulation for Industrial Steam Distribution Systems 0...

Weakley, S. A.; Brown, S. A.

2011-01-01T23:59:59.000Z

472

Roadmap: Philosophy -Bachelor of Arts [AS-BA-PHIL  

E-Print Network [OSTI]

Roadmap: Philosophy - Bachelor of Arts [AS-BA-PHIL] College of Arts and Sciences Department of Philosophy Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 22-Apr-13/LNHD This roadmap is a recommended Credit Hours] PHIL 11001 Introduction to Philosophy or PHIL11009 Principles of Thinking 3 Both courses

Sheridan, Scott

473

Roadmap: Chemistry Bachelor of Arts [AS-BA-CHEM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Bachelor of Arts [AS-BA-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2012­2013 Page 1 of 3 | Last Updated: 24-May-12/LNHD This roadmap One: [15 Credit Hours] CHEM 10060 General Chemistry I or CHEM 10960 Honors General Chemistry 4

Sheridan, Scott

474

Roadmap: Chemistry Bachelor of Arts [AS-BA-CHEM  

E-Print Network [OSTI]

Roadmap: Chemistry ­ Bachelor of Arts [AS-BA-CHEM] College of Arts and Sciences Department of Chemistry and Biochemistry Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 1-May-13/LNHD This roadmap One: [15 Credit Hours] CHEM 10060 General Chemistry I (4) and CHEM 10062 General Chemistry I

Sheridan, Scott

475

Draft NIST Framework and Roadmap4 Smart Grid Interoperability6  

E-Print Network [OSTI]

1 2 3 Draft NIST Framework and Roadmap4 for5 Smart Grid Interoperability6 Standards,7 Release 2 and Roadmap28 for29 Smart Grid Interoperability30 Standards,31 Release 2.032 33 October 17, 2011 REVISION34 35....................................................................................... 2446 2. Smart Grid Visions

Magee, Joseph W.

476

Roadmap: Special Education Deaf Education Bachelor of Science in Education  

E-Print Network [OSTI]

Roadmap: Special Education ­ Deaf Education ­ Bachelor of Science in Education [EH-BSE-SPED-DFED] College of Education, Health and Human Services School of Lifespan Development and Educational Sciences Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 20-Aug-13/JS This roadmap is a recommended semester

Sheridan, Scott

477

Foreign direct investment, intra-organizational proximity, and technological capability : the case of China's automobile industry  

E-Print Network [OSTI]

This dissertation consists of three self-contained essays, each of which examines part of the causal link among inward/outward foreign direct investment (FDI), intra-organizational proximity, and in-house technology ...

Nam, Kyung-min

2010-01-01T23:59:59.000Z

478

Neural Network Technology as a Pollution Prevention Tool in the Electric Utility Industry  

E-Print Network [OSTI]

This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project...

Johnson, M. L.

479

Technology transfer, resources import, and economic growth of newly industrializing countries  

SciTech Connect (OSTI)

The general characteristics of developing economies are poor resources endowments and relatively backward technologies. These characteristics are considered to be obstacles to economic growth. Yet, despite embodying these characteristics, Hong Kong, Korea, Singapore, and Taiwan have grown rapidly in the past two decades. Their phenomenal growth is attributed to rapid export expansion which serves as a vehicle in securing the financing of resources import and technology transfer. The important role of export expansion was investigated in models of economic growth and international trade. The models generally fall into two classes. The first class is solely concerned with the importation of resources while the second class emphasizes transfer of technology. This dissertation presents a new class of model combining the two existing classes. In the new model, resources are being introduced into the technology transfer model developed by Feldstein and Hartman, Berglas and Jones, and Khang. Thus, the new model contains two types of imports instead of one. The two imports are advanced capital, which embodies advanced technology, and resources. The new model explains fully the phenomenal growth of the four Asian NICs by demonstrating that rapid economic growth requires massive technology transfer and the alleviation of resource constraints.

Cheung, Y.H.

1984-01-01T23:59:59.000Z

480

Feasibility study and roadmap to improve residential hot water distribution systems  

SciTech Connect (OSTI)

Residential building practice currently ignores the losses of energy and water caused by the poor design of hot water systems. These losses include: the waste of water while waiting for hot water to get to the point of use; the wasted heat as water cools down in the distribution system after a draw; and the energy to reheat water that was already heated once before. A feasibility study and an action plan for a proposed research project involving residential hot water distribution systems is being developed. The feasibility study will use past work to estimate of hot water and energy loses caused by current hot water distribution systems in residences. Proposed research project, or roadmap, will develop recommendations for improvements to residential hot water distribution systems. The roadmap addresses the technical obstacles and gaps in our knowledge that prevent water and energy reductions and market adoption of water- and energy-efficient technologies. The initial results of the feasibility study are presented here along with a discussion of a roadmap to improve the efficiency of residential hot water distribution systems.

Lutz, James D.

2004-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

SciTech Connect (OSTI)

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

Not Available

1993-05-30T23:59:59.000Z

482

Productivity Roadmap for the Architecture/Engineering/Construction Industry  

E-Print Network [OSTI]

of construction workers: In simple terms, labor intensity is the number of workers used in a process. This includes all those who are directly engaged in construction process, such as painters, carpenters, plumbers, and electricians. Included are journeymen..., mechanics, apprentices, laborers, truck drivers and helpers, equipment operators, on-site record keepers, and security guards (US Census Bureau, 2010c). Gross margin: U.S Census Bureau defines gross margin as the total sum of sale minus the total...

Zunaira, Saher

2012-10-19T23:59:59.000Z

483

ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term...

484

The Korean Roadmap to OTEC Industrialization [ International OTEC Symposium  

E-Print Network [OSTI]

on time by contribution of Korea, a leading producer of ships, steel and so on 2 #12;Master Plan · Freezing desalination · Design of middle scale pipe · Heat flow simulator · Eco-friendly working fluid

485

U.S. Photovoltaic Industry Roadmap | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:ToyoTurkey:S Army 200px

486

ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department of Energy

487

Compressed Air Storage Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #9 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 * August 2004 Industrial

488

Compressed Air System Control Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #7 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 * August 2004 Industrial7 *

489

Save Energy Now in Your Motor-Driven Systems; Industrial Technologies Program (ITP) BestPractices: Motor System (Fact sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department of EnergyAugust

490

Save Energy Now in Your Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department of EnergyAugustProcess

491

Save Energy Now in Your Steam Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram| Department of EnergyAugustProcessSteam

492

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect (OSTI)

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

493

Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test  

SciTech Connect (OSTI)

The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

Schweitzer, J. K.; Smith, J. D.

1981-03-01T23:59:59.000Z

494

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

Karp, A. D.; Simbeck, D. R.

495

ScienceforEnergyTechnology: StrengtheningtheLinkBetweenBasicResearchandIndustry  

E-Print Network [OSTI]

, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity

Rollins, Andrew M.

496

Assessment of solar technology in the home-building industry. Final report  

SciTech Connect (OSTI)

The NAHB Research Foundation, Inc., conducted a review of existing survey data supplied by home builders. The objective of this effort was to provide data which would serve as a basis for evaluating the completed and/or continuing programs of the Office of Solar Heat Technologies and to identify areas of future program emphasis.

Not Available

1983-06-01T23:59:59.000Z

497

Energy Technology Solutions: Public-Private Partnerships Transforming Industry, November 2010  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupporting Jobs andHVACEnergy Storage6|IndustrIal

498

Energy Efficiency Business in China: A Roadmap For American Companies  

E-Print Network [OSTI]

the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 FIGURE 1. Energy Use by Equipment Type in China, 1990 (l) Coal Electricity ~ Industrial Boilers o Pumps II Power Plant Boilers III Fans D Coke Ovens and Smelting Furnaces o... currency (16). As part of the economic reform program, the Chinese goverrunent stopped paying the coal industry its annual subsidy of $230 million. Coal prices began rising sharply in many areas in 1993 and continued to increase after being...

Hamburger, J.; Sinton, J.

499

Application and Technology Requirements for Heat Pumps at the Process Industries  

E-Print Network [OSTI]

APPLICATION AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows... in an indus trial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert...

Priebe, S.; Chappell, R.

500

Type II Seesaw at LHC: the Roadmap  

E-Print Network [OSTI]

In this Letter we revisit the type-II seesaw mechanism based on the addition of a weak triplet scalar to the standard model. We perform a comprehensive study of its phenomenology at the LHC energies, complete with the electroweak precision constraints. We pay special attention to the doubly-charged component, object of collider searches for a long time, and show how the experimental bound on its mass depends crucially on the particle spectrum of the theory. Our study can be used as a roadmap for future complete LHC studies.

Alejandra Melfo; Miha Nemevsek; Fabrizio Nesti; Goran Senjanovic; Yue Zhang

2012-12-22T23:59:59.000Z