Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

2

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

3

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

4

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

5

Building technology roadmaps  

SciTech Connect

DOE's Office of Building Technology, State and Community Programs (BTS) is facilitating an industry-led initiative to develop a series of technology roadmaps that identify key goals and strategies for different areas of the building and equipment industry. This roadmapping initiative is a fundamental component of the BTS strategic plan and will help to align government resources with the high-priority needs identified by industry.

1999-01-27T23:59:59.000Z

6

OHVT technology roadmap  

DOE Green Energy (OSTI)

The Office of Heavy Vehicle Technologies (OHVT) Technology Roadmap presents the OHVT multiyear program plan. It was developed in response to recommendations by DOE`s heavy vehicle industry customers, including truck and bus manufacturers, diesel engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The technical plan is presented for three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); and (3) class 1-2 (pickups, vans, and sport utility vehicles). The Roadmap documents program goals, technical targets, and technical approaches. Issues addressed include engine efficiency, fuel efficiency, power requirements, emissions, and fuel flexibility. 8 figs., 9 tabs.

NONE

1997-10-01T23:59:59.000Z

7

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

8

OHVT Technology Roadmap  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) was created in March 1996 to address the public-interest transportation-energy aspects of a set of customers who at that time had been largely unrecognized, namely, the manufacturers, suppliers, and users of heavy transport vehicles (trucks, buses, rail, and inland marine). Previously, the DOE had focused its attention on meeting the needs of the personal-transport-vehicle customer (automobile manufacturers, suppliers, and users). Those of us who were of driving age at the time of the 1973 oil embargo and the 1979 oil price escalation vividly recall the inconvenience and irritation of having to wait in long lines for gasoline to fuel our cars. However, most of us, other than professional truck owners or drivers, were unaware of the impacts that these disruptions in the fuel supply had on those whose livelihoods depend upon the transport of goods. Recognizing the importance of heavy vehicles to the national economic health, the DOE created OHVT with a mission to conduct, in collaboration with its industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy-efficient and able to use alternative fuels while reducing emissions. The Office of Heavy Vehicle Technologies convened a workshop in April 1996 to elicit input from DOE's heavy vehicle industry customers, including truck and bus manufacturers, diesel-engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The preparation of a ''technology roadmap'' was one of the key recommendations by this customer group. Therefore, the OHVT Technology Roadmap* was developed in 1996 as a first step in crafting a common vision for a government research and development (R and D) partnership in this increasingly important transportation sector. The approach used in developing the OHVT Technology Roadmap was to: formulate goals consistent with the U.S. Department of Energy Strategic Plan required by the Government Performance and Results Act (GPRA), assess the status of the technology, identify technical targets, identify barriers to achieving the technical targets, develop an approach to overcoming the barriers, and develop schedules and milestones. This structure was followed for three groups of truck classification: Class 7 and 8: large, on-highway trucks; Class 3-6: medium-duty trucks such as delivery vans; and Class 1 and 2: pickups, vans, and sport utility vehicles (SUVs).

Bradley, R.A.

2001-10-22T23:59:59.000Z

9

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

IEA Technology Roadmaps IEA Technology Roadmaps Jump to: navigation, search Tool Summary Name: IEA Technology Roadmaps Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Industry, Solar, Transportation, Wind Topics: Finance, Implementation, Low emission development planning, Market analysis, Pathways analysis, Technology characterizations Resource Type: Guide/manual Website: www.iea.org/subjectqueries/keyresult.asp?KEYWORD_ID=4156 References: IEA Technology Roadmaps[1] "... the IEA is developing a series of global low-carbon energy technology roadmaps covering the most important technologies. The IEA is leading the process, under international guidance and in close consultation with government and industry. The overall aim is to advance global development

10

OHVT technology roadmap [2000  

DOE Green Energy (OSTI)

The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

Bradley, R.A.

2000-02-01T23:59:59.000Z

11

Wind technology roadmap | OpenEI Community  

Open Energy Info (EERE)

Wind technology roadmap Wind technology roadmap Home > Groups > DOE Wind Vision Community GrandpasKnob's picture Submitted by GrandpasKnob(5) Member 13 August, 2013 - 12:58 I think it would be valuable for DOE to consider the creation of a wind technology roadmap as part of their new vision. In the semiconductor industry, Moore's Law became a self-fulfilling prophecy due to that industry's creation and adherence to a roadmap (see http://www.itrs.net/). A similar shared vision of the wind-energy future could spur the cross-industry cooperation needed to drive increases in penetration. Groups: DOE Wind Vision Community Login to post comments Latest discussions GrandpasKnob Wind technology roadmap Posted: 13 Aug 2013 - 12:58 by GrandpasKnob Groups Menu You must login in order to post into this group.

12

Fuel Cell Technologies Office: Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

This page contains documents that outline U.S. DOE efforts to develop a hydrogen-based energy system. Hydrogen Production Roadmap: Technology Pathways to the Future, published...

13

U.S. Photovoltaic Industry Roadmap | Open Energy Information  

Open Energy Info (EERE)

U.S. Photovoltaic Industry Roadmap U.S. Photovoltaic Industry Roadmap Jump to: navigation, search Tool Summary Name: U.S. Photovoltaic Industry Roadmap Agency/Company /Organization: United States Photovoltaics Industry Sector: Energy Focus Area: Renewable Energy, Solar Topics: Implementation, Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/gen/fy03/30150.pdf References: U.S. Photovoltaic Industry Roadmap[1] Overview "To meet this challenge, we - the U.S.-based PV industry - have developed this roadmap as a guide for building our domestic industry, ensuring U.S. technology ownership, and implementing a sound commercialization strategy that will yield significant benefits at minimal cost. Putting the roadmap into action will call for reasonable and

14

National Electric Delivery Technologies Roadmap: Transforming...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to...

15

Solid-State Lighting: Technology Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Roadmaps to someone Technology Roadmaps to someone by E-mail Share Solid-State Lighting: Technology Roadmaps on Facebook Tweet about Solid-State Lighting: Technology Roadmaps on Twitter Bookmark Solid-State Lighting: Technology Roadmaps on Google Bookmark Solid-State Lighting: Technology Roadmaps on Delicious Rank Solid-State Lighting: Technology Roadmaps on Digg Find More places to share Solid-State Lighting: Technology Roadmaps on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans

16

International Energy Agency Technology Roadmap for Wind Energy | Open  

Open Energy Info (EERE)

Technology Roadmap for Wind Energy Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Market analysis, Technology characterizations Resource Type Guide/manual Website http://www.iea.org/Papers/2009 References Technology Roadmap for Wind Energy[1] Summary "To achieve this ambitious goal, the IEA has undertaken an effort to develop a series of global technology roadmaps covering 19 technologies, under international guidance and in close consultation with industry. These technologies are evenly divided among demand side and supply side technologies. This wind roadmap is one of the initial roadmaps being

17

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

18

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

19

Parabolic-Trough Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Parabolic-Trough Technology Roadmap Parabolic-Trough Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Parabolic-Trough Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory, United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/csp/troughnet/pdfs/24748.pdf References: Parabolic-Trough Technology Roadmap[1] Overview "The working group reviewed the status of today's trough technologies, evaluated existing markets, identified potential future market opportunities, and developed a roadmap toward its vision of the industry's potential-including critical advancements needed over the long term to significantly reduce costs while further increasing

20

Railroad and locomotive technology roadmap.  

Science Conference Proceedings (OSTI)

Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry-government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical approaches for engine, locomotive, rail systems, and advanced power plants and fuels are presented.

Stodolsky, F.; Gaines, L.; Energy Systems

2003-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Case studies of technology roadmapping in mining  

Science Conference Proceedings (OSTI)

Mining is a long established art with legacy processes and institutional structures that face rapidly changing technological environments. The perception is that technology planning and forecasting receives priority attention only as far as they may ... Keywords: L23, O31, Mining, Technology planning and forecasting, Technology roadmapping

Joe Amadi-Echendu; Obbie Lephauphau; Macks Maswanganyi; Malusi Mkhize

2011-03-01T23:59:59.000Z

22

Power Tower Technology Roadmap and cost reduction plan.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

23

Generation IV International Forum Updates Technology Roadmap and Builds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation IV International Forum Updates Technology Roadmap and Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration December 31, 2013 - 12:14pm Addthis GIF Policy Group Meeting in Brussels, Belgium, November 2013 GIF Policy Group Meeting in Brussels, Belgium, November 2013 Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies The Generation IV International Forum (GIF) held its 36th Policy Group (PG) meeting on November 21-22 in Brussels, Belgium. The PG reviewed progress on a number of on-going actions and received progress reports from the GIF Experts Group (EG) and the GIF Senior Industry Advisory Panel (SIAP).

24

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

25

China 2050 Wind Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Wind Technology Roadmap Wind Technology Roadmap Jump to: navigation, search Name China 2050 Wind Technology Roadmap Agency/Company /Organization International Energy Agency Partner NDRC Energy Research Institute Sector Energy Focus Area Wind Topics Low emission development planning, -Roadmap, Pathways analysis, Technology characterizations Country China Eastern Asia References IEA Energy Technology Roadmaps[1] This article is a stub. You can help OpenEI by expanding it. See also: Wind Power in China The International Energy Agency is currently working with the NDRC Energy Research Institute in China to develop a China 2050 Wind Technology Roadmap. References ↑ "IEA Energy Technology Roadmaps" Retrieved from "http://en.openei.org/w/index.php?title=China_2050_Wind_Technology_Roadmap&oldid=384443"

26

China-2050 Wind Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

China-2050 Wind Technology Roadmap China-2050 Wind Technology Roadmap Jump to: navigation, search Name China-2050 Wind Technology Roadmap Agency/Company /Organization International Energy Agency Partner NDRC Energy Research Institute Sector Energy Focus Area Wind Topics Low emission development planning, -Roadmap, Pathways analysis, Technology characterizations Country China Eastern Asia References IEA Energy Technology Roadmaps[1] This article is a stub. You can help OpenEI by expanding it. See also: Wind Power in China The International Energy Agency is currently working with the NDRC Energy Research Institute in China to develop a China 2050 Wind Technology Roadmap. References ↑ "IEA Energy Technology Roadmaps" Retrieved from "http://en.openei.org/w/index.php?title=China-2050_Wind_Technology_Roadmap&oldid=699781"

27

Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

28

Roadmapping Workshop: Measurement of Security ...  

Science Conference Proceedings (OSTI)

Roadmapping Workshop: Measurement of Security Technology Performance Impacts for Industrial Control System. Purpose: ...

2013-10-31T23:59:59.000Z

29

IEA-Technology Roadmap: Smart Grids | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Smart Grids IEA-Technology Roadmap: Smart Grids Jump to: navigation, search Tool Summary LAUNCH TOOL Name: IEA-Technology Roadmap: Smart Grids Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Pathways analysis, Technology characterizations Resource Type: Publications, Guide/manual Website: www.iea.org/papers/2011/smartgrids_roadmap.pdf Cost: Free IEA-Technology Roadmap: Smart Grids Screenshot References: Technology Roadmap: Smart Grid[1] "This roadmap focuses on smart grids - the infrastructure that enables the delivery of power from generation sources to end-uses to be monitored and managed in real time. Smart grids are required to enable the use of a range of low-carbon technologies, such as variable renewable resources and

30

DOE Announces Strategic Engineering and Technology Roadmap for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details...

31

Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Buildings Roadmap Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap Workshop on Facebook Tweet about Fuel Cell...

32

Energy Technology Roadmaps: A Guide to Development and Implementation |  

Open Energy Info (EERE)

Energy Technology Roadmaps: A Guide to Development and Implementation Energy Technology Roadmaps: A Guide to Development and Implementation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Roadmaps: A Guide to Development and Implementation Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Low emission development planning, Pathways analysis Resource Type: Guide/manual, Lessons learned/best practices Website: www.iea.org/papers/roadmaps/guide.pdf Energy Technology Roadmaps: A Guide to Development and Implementation Screenshot References: Energy Technology Roadmaps[1] Summary "Drawing upon the IEA's extensive experience, this guide is aimed at providing countries and companies with the context, information and tools they need to design, manage and implement an effective energy roadmap

33

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

34

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Vision 2020: Lighting Technology Roadmap Vision 2020: Lighting Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vision 2020: Lighting Technology Roadmap Agency/Company /Organization: United States Department of Energy, LBNL International Energy Studies, International Association of Lighting Designers, International Association of Lighting Management Companies Partner: NAED, NEMA, NEMRA, NECA, NAILD Sector: Energy Focus Area: Energy Efficiency Topics: Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/fy00osti/27996.pdf References: Vision 2020: Lighting Technology Roadmap[1] Overview "Continued innovation in lamps and other system components, as well as in design practices, have made lighting progressively more effective,

35

CLEAN-Technology Roadmapping: Lessons, Experiences and Tools Webinar | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » CLEAN-Technology Roadmapping: Lessons, Experiences and Tools Webinar Jump to: navigation, search Tool Summary Name: Technology Roadmapping: Lessons, Experiences and Tools Webinar Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Low emission development planning, Pathways analysis, Technology characterizations Resource Type: Video, Presentation, Webinar, Training materials References: Technology Roadmapping: Lessons, Experiences and Tools Webinar[1] Logo: Technology Roadmapping: Lessons, Experiences and Tools Webinar

36

Observations on A Technology Roadmap for Generation IV Nuclear Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Observations on A Technology Roadmap for Generation IV Nuclear Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new installations in the short term. DOE needs to give those immediate objectives the highest priority and any additional support they require to assure their success. DOE is pursuing two initiatives to encourage a greater use of nuclear energy systems. The initiatives have been reviewed by NERAC Subcommittee on Generation IV Technology Planning (GRNS) and they are: * A Near Term Development (NTD) Roadmap which is in the process of being

37

DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Engineering and Technology Roadmap for Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details initiatives aimed at reducing the technical risks and uncertainties associated with cleaning up Cold War era nuclear waste over the next ten years. The Roadmap also outlines strategies to minimize such risks and proposes how these strategies would be implemented, furthering the Department's goal of protecting the environment by providing a responsible resolution to the environmental legacy of nuclear weapons production.

38

Government and Industry a Force for Collaboration at the Energy Roadmap Update Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industry A Force for Collaboration at the Energy Roadmap Update Workshop and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Sept. 16, 2009 Energy sector leaders in the public and private sectors have once again come together to identify high- priority collaborative actions that will further secure control systems in the electric, oil, and natural gas sectors. More than 80 asset owners and operators, researchers, technology developers, security specialists, equipment vendors, and government stakeholders joined forces at a workshop to help update the Roadmap to Secure Control Systems in the Energy Sector on Sept. 2-3 in La Jolla, CA. Hosted by the Energy Sector Control Systems Working Group, the workshop was supported by the DOE Office of Electricity Delivery and Energy Reliability (OE).

39

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

40

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Implementation of a manufacturing technology roadmapping initiative  

E-Print Network (OSTI)

Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

Johnson, Marcus Cullen

2012-01-01T23:59:59.000Z

42

Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology  

DOE Green Energy (OSTI)

Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

Price, H.; Kearney, D.

1999-01-31T23:59:59.000Z

43

Hydrogen Production Roadmap: Technology Pathways to the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

technology without additional DOE resources. This technology may be applicable to LNG with minimal additional development. Barriers discussed herein remain for industry to...

44

Incorporating the Technology Roadmap Uncertainties into the Project Risk Assessment  

SciTech Connect

This paper describes two methods, Technology Roadmapping and Project Risk Assessment, which were used to identify and manage the technical risks relating to the treatment of sodium bearing waste at the Idaho National Engineering and Environmental Laboratory. The waste treatment technology under consideration was Direct Vitrification. The primary objective of the Technology Roadmap is to identify technical data uncertainties for the technologies involved and to prioritize the testing or development studies to fill the data gaps. Similarly, project management's objective for a multi-million dollar construction project includes managing all the key risks in accordance to DOE O 413.3 - "Program and Project Management for the Acquisition of Capital Assets." In the early stages, the Project Risk Assessment is based upon a qualitative analysis for each risk's probability and consequence. In order to clearly prioritize the work to resolve the technical issues identified in the Technology Roadmap, the issues must be cross- referenced to the project's Risk Assessment. This will enable the project to get the best value for the cost to mitigate the risks.

Bonnema, Bruce Edward

2002-02-01T23:59:59.000Z

45

Incorporating the Technology Roadmap Uncertainties into the Project Risk Assessment  

SciTech Connect

This paper describes two methods, Technology Roadmapping and Project Risk Assessment, which were used to identify and manage the technical risks relating to the treatment of sodium bearing waste at the Idaho National Engineering and Environmental Laboratory. The waste treatment technology under consideration was Direct Vitrification. The primary objective of the Technology Roadmap is to identify technical data uncertainties for the technologies involved and to prioritize the testing or development studies to fill the data gaps. Similarly, project management's objective for a multi-million dollar construction project includes managing all the key risks in accordance to DOE O 413.3 - ''Program and Project Management for the Acquisition of Capital Assets.'' In the early stages, the Project Risk Assessment is based upon a qualitative analysis for each risk's probability and consequence. In order to clearly prioritize the work to resolve the technical issues identified in the Technology Roadmap, the issues must be cross- referenced to the project's Risk Assessment. This will enable the project to get the best value for the cost to mitigate the risks.

Bonnema, B.E.

2002-01-16T23:59:59.000Z

46

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

47

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC proprietary FBSR technology (currently under construction for treatment of sodium bearing waste in Idaho) to process early LAW and future WTP recycle streams and to...

48

'Mini'-Roadmapping - Ensuring Timely Sites' Cleanup/Closure by Resolving Science & Technology Issues  

Science Conference Proceedings (OSTI)

Roadmapping is a powerful tool to manage technical risks and opportunities associated with complex problems. Roadmapping identifies technical capabilities required for both project- and program-level efforts and provides the basis for plans that ensure the necessary enabling activities will be done when needed. Roadmapping reveals where to focus further development of the path forward by evaluating uncertainties for levels of complexity, impacts, and/or the potential for large payback. Roadmaps can be customized to the application, a ''graded approach'' if you will. Some roadmaps are less detailed. We have called these less detailed, top-level roadmaps ''mini-roadmaps''. These mini roadmaps are created to tie the needed enablers (e.g., technologies, decisions, etc.) to the functions. If it is found during the mini-roadmapping that areas of significant risk exist, then those can be roadmapped further to a lower level of detail. Otherwise, the mini-roadmap may be sufficient to manage the project/program risk. Applying a graded approach to the roadmapping can help keep the costs down. Experience has indicated that it is best to do mini-roadmapping first and then evaluate the risky areas to determine whether to further evaluate those areas. Roadmapping can be especially useful for programs/projects that have participants from multiple sites, programs, or other entities which are involved. Increased synergy, better communications, and increased cooperation are the results from roadmapping a program/project with these conditions.

Luke, D.E.; Dixon, B.W.; Murphy, J.A.

2003-01-14T23:59:59.000Z

49

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

A roadmap for parametric CAD efficiency in the automotive industry  

Science Conference Proceedings (OSTI)

3D CAD systems are used in product design for simultaneous engineering and to improve productivity. CAD tools can substantially enhance design performance. Although 3D CAD is a widely used and highly effective tool in mechanical design, mastery of CAD ... Keywords: Automotive industry, CAD training strategy, Collaboration, Knowledge integration, PLM, Parametric CAD efficiency

Yannick Bodein, Bertrand Rose, Emmanuel Caillaud

2013-10-01T23:59:59.000Z

51

The Korean Roadmap to OTEC Industrialization [ International OTEC Symposium  

E-Print Network (OSTI)

or power plant discharge 6,500MW/Tidal barrage 1,000MW/Tidal current 6,500MW/Wave power 600MW+?/OTE C 4 #12 OTEC plant · LdT OTEC plant for cooling power plant · HdT OTEC plant sourced by multi;R&D and Industrialization Needs for OTEC ~0.2MW OTEC plant 1MW OTEC plant 5~20MW OTEC Plant 50~100MW

52

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

53

A National Roadmap for Vadose Zone Science and Technology  

Science Conference Proceedings (OSTI)

This roadmap is a means of achieving, to the best of our current knowledge, a reasonable scientific understanding of how contaminants of all forms move in the vadose geological environments. This understanding is needed to reduce the present uncertainties in predicting contaminant movement, which in turn will reduce the uncertainties in remediation decisions.

Kowall, Stephen Jacob

2001-08-01T23:59:59.000Z

54

'Mini'-Roadmapping - Ensuring Timely Sites' Cleanup / Closure by Resolving Science and Technology Issues  

Science Conference Proceedings (OSTI)

Roadmapping is a powerful tool to manage technical risks and opportunities associated with complex problems. Roadmapping identifies technical capabilities required for both project- and program-level efforts and provides the basis for plans that ensure the necessary enabling activities will be done when needed. Roadmapping reveals where to focus further development of the path forward by evaluating uncertainties for levels of complexity, impacts, and/or the potential for large payback. Roadmaps can be customized to the application, a graded approach if you will. Some roadmaps are less detailed. We have called these less detailed, top-level roadmaps mini-roadmaps. These miniroadmaps are created to tie the needed enablers (e.g., technologies, decisions, etc.) to the functions. If it is found during the mini-roadmapping that areas of significant risk exist, then those can be roadmapped further to a lower level of detail. Otherwise, the mini-roadmap may be sufficient to manage the project / program risk. Applying a graded approach to the roadmapping can help keep the costs down. Experience has indicated that it is best to do mini-roadmapping first and then evaluate the risky areas to determine whether to further evaluate those areas. Roadmapping can be especially useful for programs / projects that have participants from multiple sites, programs, or other entities which are involved. Increased synergy, better communications, and increased cooperation are the results from roadmapping a program / project with these conditions. And, as with any trip, the earlier you use a roadmap, the more confidence you will have that you will arrive at your destination with few, if any, problems. The longer the trip or complicated the route, the sooner the map is needed. This analogy holds true for using roadmapping for laying out program / project baselines and any alternative (contingency) plans. The mini-roadmapping process has been applied to past projects like the hydrogen gas generation roadmap and the subsurface contaminant focus area (SCFA), and its basic form is being applied in the formulation of the 2012 Plan at the Idaho National Engineering and Environmental Laboratory (INEEL). There are also plans to apply this process in the near future for other projects/programs.

Dale Luke; James Murphy

2003-02-01T23:59:59.000Z

55

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

56

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

57

Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap  

SciTech Connect

Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

Holcomb, David Eugene [ORNL] [ORNL; Flanagan, George F [ORNL] [ORNL; Mays, Gary T [ORNL] [ORNL; Pointer, William David [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Yoder Jr, Graydon L [ORNL] [ORNL

2013-11-01T23:59:59.000Z

58

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

59

Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger  

Science Conference Proceedings (OSTI)

This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

2012-09-01T23:59:59.000Z

60

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thompson Technology Industries TTI | Open Energy Information  

Open Energy Info (EERE)

TTI TTI Jump to: navigation, search Name Thompson Technology Industries (TTI) Place Novato, California Zip 94949 Sector Solar Product Designer and manufacturer of solar tracking and roof mounting systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Roadmapping or development of future investments in environmental science and technology  

SciTech Connect

This paper will summarize efforts in roadmapping SCFA technical targets, which could be used for selection of future projects. The timely lessons learned and insights will be valuable to other programs desiring to roadmap large amounts of workscope, but unsure how to successfully complete it, by adequately defining a strategy to develop alternatives and core technologies to ensure needed environmental technologies are available and allow delivery of viable alternatives. In early FY02, Los Alamos National Laboratory's Environmental Science and Waste Technology Program Office was working jointly with Idaho National Environmental Engineering Laboratory to define and develop science and technology mini-roadmaps. We were defining and developing these mini-roadmaps to provide direction and guidance for DOE's Environmental Management's (DOE-EM) Subsurface Contaminants Focus Area (SCFA) in their development of target technologies. DOE EM's Strategic Plan for Science and Technology provides guidance for meeting science and technology needs with a view of the desired future and the long-term strategy to attain it. Program and technology mini-roadmapping were to be used to establish priorities, set program and project direction, and identify the high-priority science and technology need areas according to this document. In the past, EM science and technology needs collection is achieved through the DOE Site Technology Coordination Groups (STCG) across the complex. A future system for needs collection has not been defined. However, there is a need for gap analyses and a technical approach for the prioritization of these needs for DOE-EM to be strategic and successful in their technology research, development, demonstration, and deployments. To define the R&D projects needed to solve particular problems and select the project with the largest potential payoff will require analysis for project selection. Mini-roadmaps could be used for setting goals and priorities for future program planning and development of future investments in environmental science and technology, which would reduce risk by delivering additional data and technologies with possible incremental improvement to baselines.

Wilburn, D. (Dianne)

2002-01-01T23:59:59.000Z

63

Sitraer 7 (2008) LXIV-LXXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM  

E-Print Network (OSTI)

Sitraer 7 (2008) LXIV- LXXIV LXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM BEING and the operation of aircraft within a future air transportation system achieving these objectives. The conclusion Universität Berlin Department of Aeronautics and Astronautics Chair of Flight Guidance and Air Transportation

Berlin,Technische Universität

64

Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program  

SciTech Connect

A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.

Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

2005-10-03T23:59:59.000Z

65

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

Science Conference Proceedings (OSTI)

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

2009-01-01T23:59:59.000Z

66

Roadmap: Systems/Industrial Engineering Technology Associate of Applied Science  

E-Print Network (OSTI)

Manufacturing Processes 3 COMM 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Notes Semester One: [17 Credit Hours] IERT 22010 Computer Integrated Manufacturing 3 MERT 12000 MATH 11022 Trigonometry 3 Fulfills Kent Core Additional for bachelor's degree Semester Three: [16

Sheridan, Scott

67

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

68

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

69

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

70

LAW ENFORCEMENT TECHNOLOGY ROADMAP: LESSONS TO DATE FROM THE NORTHWEST TECHNOLOGY DESK AND THE NORTHWEST FADE PILOTS  

SciTech Connect

The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.

West, Curtis L.; Kreyling, Sean J.

2011-04-01T23:59:59.000Z

71

Technologies - Industrial Partnerships Office  

Energy, Utilities, & Power Systems. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

72

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. Emerging Energy-Efficient Industrial Technologies,

2005-01-01T23:59:59.000Z

73

Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update  

SciTech Connect

This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

Mc Dannel, Gary Eidson

2001-09-01T23:59:59.000Z

74

Instrumentation, Controls, and Human-Machine Interface Technology Development Roadmap in Support of Grid Appropriate Reactors  

SciTech Connect

Grid Appropriate Reactors (GARs) are a component of the U.S. Department of Energy s (DOE s) Global Nuclear Energy Partnership (GNEP) program. GARs have smaller output power (<~600 MWe), than those intended for deployment on large, tightly coupled grids. This smaller size is important in avoiding grid destabilization, which can result from having a large fraction of a grid s electrical generation supplied by a single source. GARs are envisioned to be deployed worldwide often in locations without extensive nuclear power experience. DOE recently sponsored the creation of an Instrumentation, Controls, and Human-Machine Interface (ICHMI) technology development roadmap emphasizing the specific characteristics of GARs [1]. This roadmapping effort builds upon and focuses the recently developed, more general nuclear energy ICHMI technology development roadmap [2]. The combination of the smaller plant size, smaller grids, and deployment in locations without extensive prior nuclear power experience presents particular infrastructure, regulation, design, operational, and safeguards challenges for effective GAR deployment. ICHMI technologies are central to efficient GAR operation and as such are a dimension of each of these challenges. Further, while the particular ICHMI technologies to be developed would be useful at larger power plants, they are not high-priority development items at the larger plants. For example, grid transient resilience would be a useful feature for any reactor/grid combination and indeed would have limited some recent blackout events. However, most large reactors have limited passive cooling features. Large plants with active safety response features will likely preserve trip preferential grid transient response. This contrasts sharply with GARs featuring passive shutdown cooling, which can safely support grid stability during large grid transients. ICHMI technologies ranging from alternative control algorithms to simplified human-interface system designs are key to enabling GARs to respond properly and thereby stabilize the grid during transients.

Holcomb, David Eugene [ORNL; Upadhyaya, Belle R. [University of Tennessee, Knoxville (UTK); Kisner, Roger A [ORNL; O'Hara, John [Brookhaven National Laboratory (BNL); Quinn, Edward L. [Longenecker & Associates; Miller, Don W. [Ohio State University

2009-01-01T23:59:59.000Z

75

Technologies - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

76

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

DOE Green Energy (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

77

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

78

Smart Grid Roadmap Guidebook  

Science Conference Proceedings (OSTI)

This technical report summarizes the results of the Smart Grid roadmaps developed by the Electric Power Research Institute (EPRI) from 2007 to 2011. The report's major themes are the lessons learned and the methodologies used to develop the roadmaps. Also included are a summary of the roadmaps, key points from follow-up interviews, distilled technology recommendations from the roadmaps, the purpose and benefit of developing a roadmap, the role of standards, and an updated version of the Communications Te...

2012-07-31T23:59:59.000Z

79

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

80

Vision and Roadmap Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vision and Roadmap Documents Vision and Roadmap Documents Vision and Roadmap Documents November 1, 2013 - 11:40am Addthis The combined heat and power (CHP) federal-state partnership began with the National CHP Roadmap. In response to a challenge by the CHP industry, DOE established an active program of CHP research, development, and deployment. The creation of various technology roadmaps ensued. Recent vision documents describe a bright future for CHP technologies that have the power to help the nation meet its energy and climate goals. Accelerating Combined Heat & Power Deployment, 28 pp, Aug. 2011 Annual Workshop Results for the National CHP Roadmap Baltimore, 5 pp, June 2001 and Breakout Session Summary Reports (One Year Later), 3 pp, Oct. 2001 Boston, 2 pp, Oct. 2002 Chicago, 11 pp, Sept. 2003

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Industrial Technologies Available for Licensing - Energy ...  

Industrial Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have technologies ...

82

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

83

EERE-Industrial Technologies Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE-Industrial Technologies Program EERE-Industrial Technologies Program EERE-Industrial Technologies Program EERE-Industrial Technologies Program More Documents & Publications...

84

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for2000. Emerging Energy-Efficient Industrial Technologies,of cleaner, more energy- efficient technologies can play a

2004-01-01T23:59:59.000Z

85

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for2000. Emerging Energy-Efficient Industrial Technologies,of cleaner, more energy- efficient technologies can play a

2001-01-01T23:59:59.000Z

86

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies, Lawrenceinformation about energy efficiency technologies, their

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

87

Clean Technology & Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Technology & Sustainable Industries Organization Technology & Sustainable Industries Organization Jump to: navigation, search Logo: Clean Technology & Sustainable Industries Organization Name Clean Technology & Sustainable Industries Organization Address 4255 Coolidge Hwy Place Royal Oak, Michigan Zip 48073 Number of employees 1-10 Year founded 2007 Phone number 512.692.7267 Website http://www.ct-si.org/ Coordinates 42.5261046°, -83.1842756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5261046,"lon":-83.1842756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

A roadmap for the development ATW technology: Systems scenarios and integration  

SciTech Connect

As requested by the US Congress, a roadmap has been established for development of ATW Technology. The roadmap defines a reference system along with preferred technologies which require further development to reduce technical risk, associated deployment scenarios, and a detailed plan of necessary R and D to support implementation of this technology. Also, the potential for international collaboration is discussed which has the potential to reduce the cost of the program. In addition, institutional issues are described that must be addressed in order to successfully pursue this technology, and the benefits resulting from full implementation are discussed. This report uses as its reference a fast spectrum liquid metal cooled system. Although Lead-Bismuth Eutectic is the preferred option, sodium coolant is chosen as the reference (backup) technology because it represents the lowest technical risk and an excellent basis for estimating the life cycle cost of the systems exists in the work carried out under DOE's ALMR (PRISM) program. Metal fuel and associated pyrochemical treatment is assumed. Similarly a linear accelerator has been adopted as the reference. A reference ATW plant was established to ensure consistent discussion of technical and life cycle cost issues. Over 60 years of operation, the reference ATW plant would process about 10,000 tn of spent nuclear reactor fuel. This is in comparison to the current inventory of about 40,000 tn of spent fuel and the projected inventory of about 86,000 tn of spent fuel if all currently licensed nuclear power plants run until their license expire. The reference ATW plant was used together with an assumed scenario of no new nuclear plant orders in the US to generate the deployment scenario for ATW. In the R and D roadmap, key technical issues are identified and timescales proposed for the resolution of these issues. For the accelerator the main issue is the achievement of the necessary reliability in operation. To avoid frequent thermal transients and maintain grid stability the accelerator must reach levels of performance never previously required. For the target material the main technical choice is between solid or liquid targets. This issue is interlocked with the choice of coolant. Lead-Bismuth eutectic is potentially a superior choice for both these missions but represents a path with greater technical risk. For the blanket metal fuel has been selected. The reference method of processing of spent fuel from LWRs to provide the input material for ATW is chosen to be aqueous because of the large quantity of uranium that needs to be brought to a state that it can be treated as Class C waste. Again this is the path of least technical risk although the pyrometallurgical option will be pursued as an alternative. Processing of the fuel after irradiation in ATW will be undertaken using pyrometallurgical methods. The transmutation of Tc and I represents a special research issue and various options will be pursued to achieve these goals. Finally the system as a whole will need optimization from a reactivity and power control perspective. Varying accelerator power is feasible but can lead to overdesign of the accelerator; other options are movable control rods, burnable poison rods, and adaptations of the fuel management strategy.

Hill, D.; Van Tuyle, G.; Beller, D. [and others

1999-10-06T23:59:59.000Z

89

2006 IEP Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

EXISTING PLANTS PROGRAM: EXISTING PLANTS PROGRAM: ENERGY - WATER R&D NOVEMBER 2009 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory Technology Roadmap & Program Plan Energy-Water Roadmap and Program Plan i November 2009 ENERGY-WATER RESEARCH AND DEVELOPMENT TECHNOLOGY ROADMAP AND PROGRAM PLAN TABLE OF CONTENTS I. Overview ........................................................................................................................................... 1 II. Water and Energy Availability ......................................................................................................... 6 A. Limited Supply of Water ................................................................................................................ 6

90

Vehicle Technologies Office: DOE & Industry Partners Unveil ...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE & Industry Partners Unveil 'More Electric Truck' at Trucking Show to someone by E-mail Share Vehicle Technologies Office: DOE & Industry Partners Unveil 'More Electric Truck'...

91

Technological development under global warning : roadmap of the coal generation technology  

E-Print Network (OSTI)

This thesis explores the measures for the Japanese electric power utilities to meet the Kyoto Target, and the technological development of the coal thermal power generation to meet the further abatement of the carbon dioxide ...

Furuyama, Yasushi, 1963-

2004-01-01T23:59:59.000Z

92

Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy  

Open Energy Info (EERE)

Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Haiti-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Haiti Caribbean References CARICOM Sustainable Energy Roadmap and Strategy [1]

93

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

in the U.S. iron and steel industry. Although the technologyUnited States iron and steel industry, expressed as share ofnet shape casting in the steel industry . Near net shape

2004-01-01T23:59:59.000Z

94

Research and Technology - Industrial Partnerships Office  

Lawrence Livermore National Laboratory (LLNL) is participating in six industry projects for the advancement of energy technologies using high ...

95

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

96

PNNL: Available Technologies: Communications & Media Industry  

Industry: Communications & Media. Click on the portfolios below to view the technologies that may have potential applications in the ...

97

Science & Technology Principal Directo rate Industrial ...  

Erik Stenehjem Science & Technology Principal Directo rate Industrial Partnerships Office Erik Stenehjem Director----Roger Werne Deputy Director

98

Program on Technology Innovation: Electric Efficiency Through Water Supply Technologies-- A Roadmap  

Science Conference Proceedings (OSTI)

Electricity consumption associated with sourcing, treating, and transporting water is expected to increase significantly in the future as a result of a growing population and an increasing need for alternative water supplies. Furthermore, there is a concern that climate change may necessitate an increase in irrigation in some areas of the United States. Consequently, there is a critical need for technologies that can reduce the electricity consumption associated with water supply. This report identifies ...

2009-06-18T23:59:59.000Z

99

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature  

Science Conference Proceedings (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

100

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

22nd Industry Growth Forum Presentations. ... Technology: Energy storage ... Technology Transfer Home; About Technology Transfer;

102

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Sustainable Industries Organization Sustainable Industries Organization Jump to: navigation, search Name Clean Technology & Sustainable Industries Organization Place Royal Oak, Michigan Zip 48073 Product A non-profit membership industry organization formed to advance the global development and deployment of clean and sustainable technologies References Clean Technology & Sustainable Industries Organization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clean Technology & Sustainable Industries Organization is a company located in Royal Oak, Michigan . References ↑ "Clean Technology & Sustainable Industries Organization" Retrieved from "http://en.openei.org/w/index.php?title=Clean_Technology_Sustainable_Industries_Organization&oldid=343669"

103

Roadmap for Research, Development, and Demonstration of Instrumentation, Controls, and Human-Machine Interface Technologies  

SciTech Connect

Instrumentation, controls, and human-machine interfaces are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The nuclear power industry is currently engaged in a transition from traditional analog-based instrumentation, controls, and human-machine interface (ICHMI) systems to implementations employing digital technologies. This transition has primarily occurred in an ad hoc fashion through individual system upgrades at existing plants and has been constrained by a number of concerns. Although international implementation of evolutionary nuclear power plants and the progression toward new plants in the United States have spurred design of more fully digital plant-wide ICHMI systems, the experience base in the nuclear power application domain is limited. Additionally, design and development programs by the U.S. Department of Energy (DOE) for advanced reactor concepts, such as the Generation IV Program and Next Generation Nuclear Plant (NGNP), introduce different plant conditions and unique plant configurations that increase the need for enhanced ICHMI capabilities to fully achieve programmatic goals related to economic competitiveness, safety and reliability, sustainability, and proliferation resistance and physical protection. As a result, there are challenges that need to be addressed to enable the nuclear power industry to effectively and efficiently complete the transition to safe and comprehensive use of digital technology.

Miller, Don W.; Arndt, Steven A.; Bond, Leonard J.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

2008-06-01T23:59:59.000Z

104

2006 IEP Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Products for Clean Power MAY 2006 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory IEP Roadmap and Program Plan i May 2006...

105

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Name Canadian Fuel Cell Commercialization Roadmap...

106

Office of Industrial Technologies research in progress  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

107

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

108

The technology roadmap for plant/crop-based renewable resources 2020  

DOE Green Energy (OSTI)

The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

McLaren, J.

1999-02-22T23:59:59.000Z

109

Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Bahamas-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Bahamas Caribbean

110

Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Montserrat-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Montserrat

111

Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Guyana South America

112

Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Grenada-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Grenada Caribbean

113

Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Dominica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Dominica Caribbean

114

Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Saint Lucia-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Saint-LuciaCaribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Saint Lucia

115

Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Belize-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Belize Central America

116

Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Barbados-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Barbados Caribbean

117

NTDG Roadmap to NERAC.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Near-Term Deployment Roadmap Near-Term Deployment Roadmap Near-Term Deployment Roadmap Presented to the Nuclear Energy Research Advisory Committee Tom Miller Office of Technology and International Cooperation November 5, 2001 Office of Nuclear Energy, Science and Technology Oct02_01 NTDG Status to GRNS (2) Near Term Deployment Group Near Term Deployment Group 6 Mission - Identify the technical, institutional and regulatory gaps to the near term deployment of new nuclear plants and recommend actions that should be taken by DOE. 6 Participants - multi-disciplined nuclear industry group * Nuclear Utilities - Duke, Southern Nuclear, Exelon * Reactor Vendors - Westinghouse, General Electric, General Atomics * National Laboratories - ANL, INEEL * Academia - Penn State * Industry - EPRI * NERAC 6 Oversight by NERAC GRNS members

118

Roadmap Integration Team Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Presentation NP03-00 Slide 1 Generation IV Technology Roadmap NERAC Meeting: Washington, D.C. September 30, 2002 Roadmap Integration Team Presentation NP03-00 Slide 2 NERAC Meeting September 30, 2002 Generation IV Technology Roadmap * Identifies systems deployable by 2030 or earlier * Specifies six systems that offer significant advances towards: - Sustainability - Economics - Safety and reliability - Proliferation resistance and physical protection * Summarizes R&D activities and priorities for the systems * Lays the foundation for Generation IV R&D program plans Roadmap Integration Team Presentation NP03-00 Slide 3 NERAC Meeting September 30, 2002 The Technical Roadmap Report * Discusses the benefits, goals and challenges, and the importance of the fuel cycle * Describes evaluation and selection process

119

Industrial Energy Efficient Technology Guide 2007  

Science Conference Proceedings (OSTI)

This report updates the Industrial Energy Efficient Technology Reference Guide, previously known as the Electrotechnology Reference Guide. The last version of the Electrotechnology Reference Guide was published in 1992. This 2007 edition specifically updates information on industrial-sector energy consumption and the status of energy efficient technologies.

2007-07-31T23:59:59.000Z

120

Broadening Uses Put MEMS Technology on the Map(s)  

Science Conference Proceedings (OSTI)

... Industry roadmaps are forecasts of technology advances and processing improvements necessary to sustain progress in enhancing the ...

2011-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

122

Technology Commercialization Showcase 2008: Industrial ...  

Source: McKinsey & Company, 2007. Industry represents 38% of the total global opportunity to reduce energy demand: 6 Agenda Market Overview ...

123

Solar Photovoltaic Hydrogen: The Technologies and Their Place in Our Roadmaps and Energy Economics  

DOE Green Energy (OSTI)

Future solar photovoltaics-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of roadmap predictions on photovoltaic and hydrogen pathways-and whether solar-hydrogen fit in these strategies and timeframes. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined.

Kazmerski, L. L.; Broussard, K.

2004-08-01T23:59:59.000Z

124

NREL: Technology Transfer - 23rd Industry Growth Forum  

Discover future opportunities for the clean energy industry. Panel Discussions. Explore current technology, ... Technology Transfer Home; About Technology ...

125

PNNL: Available Technologies: Security Industry  

Current Control Technology for Quantum Cascade Laser and Other Applications; Identifying Operator Distraction When Driving or Operating Equipment;

126

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

127

Fostering a Renewable Energy Technology Industry  

E-Print Network (OSTI)

LBNL-59116 Fostering a Renewable Energy Technology Industry: An International Comparison of Wind and Renewable Energy, Wind & Hydropower Technologies Program, of the U.S. Department of Energy under Contract No by the Assistant Secretary of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program

128

The Office of Industrial Technologies technical reports  

SciTech Connect

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

129

Roadmap Integration Team Presentation Generation IV Roadmap Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation Presentation Generation IV Roadmap Overview NERAC Meeting: Washington, D.C. April 15, 2002 Roadmap Integration Team Presentation Definition - Generation IV Generation IV is: "...the next generation of nuclear energy systems that can be licensed, constructed, and operated in a manner that will provide a competitively priced and reliable supply of energy to the country where such systems are deployed, while addressing nuclear safety, waste, proliferation and public perception concerns." Roadmap Integration Team Presentation Objective - Gen IV Technology Roadmap The Technology Roadmap: * Describes systems deployable by 2030 or earlier * Determines which systems offer significant advances towards:

130

Technology acquisition: sourcing technology from industry partners  

E-Print Network (OSTI)

chemicals, oil and gas and biofuels. The research adopts the perspective of an acquiring firm, which is interested in incorporating a new technology into its operations in order to meet a particular business need. Such a business need can be, for example...

Ortiz-Gallardo, Victor Gerardo

2013-07-09T23:59:59.000Z

131

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

132

Technology innovation in financial services industry  

E-Print Network (OSTI)

Over the last few decades, we have seen an enormous evolution in the financial services industry driven by technology innovations. Indeed, we cannot imagine the current financial system without electronic fund transfers, ...

Roxo da Fonseca, Gustavo J. C. (Gustavo Jos Costa), 1967-

2004-01-01T23:59:59.000Z

133

Emerging energy-efficient industrial technologies  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

134

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

U.S. industry consumes approximately 37% of the nation's energy to produce 24% of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

2001-05-01T23:59:59.000Z

135

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

136

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

137

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

138

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

139

U.S. Department of Energy PV Roadmaps | Open Energy Information  

Open Energy Info (EERE)

PV Roadmaps PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Resource Type Publications, Guide/manual Website http://www1.eere.energy.gov/so References U.S. Department of Energy PV Roadmaps[1] Abstract Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from universities and private industry. "Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from

140

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

142

United Nations Industrial Development Organization (UNIDO) |...  

Open Energy Info (EERE)

1.2 UNIDO Programs 2 References Resources UNIDO Tools A Global Technology Roadmap on Carbon Capture and Storage in Industry COMFAR III: Computer Model for Feasibility Analysis...

143

Industry Structure Dynamics and the Nature of Technology in The Hearing Instrument Industry  

E-Print Network (OSTI)

Patterns of innovation in industry. Technology Review. Vol.alignment equipment industry. RAND Journal of Economics,in the hearing instrument industry. CISTEMA Working Paper,

Lotz, Peter

1998-01-01T23:59:59.000Z

144

Technologies for the oil and gas industry  

DOE Green Energy (OSTI)

This is the final report of a five-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors performed a preliminary design study to explore the plausibility of using pulse-tube refrigeration to cool instruments in a hot down-hole environment for the oil and gas industry or geothermal industry. They prepared and distributed a report showing that this appears to be a viable technology.

Goff, S.J.; Swift, G.W.; Gardner, D.L.

1998-12-31T23:59:59.000Z

145

Using semantic technologies in digital libraries: a roadmap to quality evaluation  

Science Conference Proceedings (OSTI)

In digital libraries semantic techniques are often deployed to reduce the expensive manual overhead for indexing documents, maintaining metadata, or caching for future search. However, using such techniques may cause a decrease in a collection's quality ... Keywords: digital libraries, information quality, semantic technologies

Sascha Tnnies; Wolf-Tilo Balke

2009-09-01T23:59:59.000Z

146

Duke Energy's Transmission Roadmap Initiative  

Science Conference Proceedings (OSTI)

Duke Energy's Transmission Roadmap Initiative advances a vision for development of a power delivery communications and automation infrastructure. The initiative describes performance of a communications upgrade to substations, implementation of select technologies and applications, and integration of enterprise applications, databases, and systems. This report provides a comprehensive view of Duke's Transmission Roadmap Initiative, with a complete technology assessment, infrastructure overview, and discu...

2009-09-18T23:59:59.000Z

147

Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Suriname-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations

148

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

149

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

150

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

151

Photovoltaic industry manufacturing technology. Final report  

DOE Green Energy (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

152

Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.  

Science Conference Proceedings (OSTI)

In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

1999-08-12T23:59:59.000Z

153

Introduction of New Technologies to Competing Industrial Customers  

Science Conference Proceedings (OSTI)

Motivated by several examples from industry, such as the introduction of a biotechnology-based process innovation in nylon manufacturing, we consider a technology provider that develops and introduces innovations to a market of industrial customers---original ... Keywords: business-to-business, game theory, industrial customers, industrial markets, multistage game, technology adoption, technology introduction

Sanjiv Erat; Stylianos Kavadias

2006-11-01T23:59:59.000Z

154

National Hydrogen Roadmap Workshop Proceedings  

Fuel Cell Technologies Publication and Product Library (EERE)

This document summarizes the presentations and suggestions put forth by officials, industry experts and policymakers in their efforts to come together to develop a roadmap for America''s clean energy

155

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

DOE Green Energy (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750C and provides electricity and/or process heat at 700C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

156

Science and technology for industrial ecology  

SciTech Connect

Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

157

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap...

158

NREL: Technology Transfer - 21st Industry Growth Forum Photos  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Photos. From NREL's 21st Industry Growth Forum on Oct. 28-30, 2008, in Denver ...

159

NREL: Technology Transfer - 21st Industry Growth Forum ...  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Presentations. Here you'll find presentations from NREL's 21 st Industry Growth ...

160

Influence of Industry Characteristics on Information Technology Outsourcing  

Science Conference Proceedings (OSTI)

Despite the extensive research on information technology (IT) outsourcing, our knowledge and understanding of how industry characteristics impact the use of IT outsourcing remain limited. Drawing upon theories from organization behavior and industrial ... Keywords: Capital Intensity, Industry Concentration, Industry Dynamism, Industry Environments, Industry Munificence, It Outsourcing

Wen Qu; Alain Pinsoneault; Wonseok Oh

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

162

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

163

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

164

Frying Technology and PracticesChapter 1 The Frying Industry  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 1 The Frying Industry Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter

165

Recent and Current Research & Roadmapping Activities: Overview (Presentation)  

DOE Green Energy (OSTI)

December 2008 DOE Algal Biofuels Technology Roadmap Workshop plenary presentation: summarizes past and current algal biofuels activity, status of research funding, and recent roadmapping activities.

Darzins, A.

2008-09-01T23:59:59.000Z

166

U.S. Department of Energy Roadmap on Instrumentation, Controls, and Human-Machine Interface Technologies in Current and Future Nuclear Power Plants  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) recently sponsored the creation of a roadmap for instrumentation, controls, and human-machine interface (ICHMI) technology development. The roadmap represents the collective efforts of a group of subject matter experts from the DOE national laboratories, academia, vendors, the U.S. Nuclear Regulatory Commission (NRC), and utilities. It is intended to provide the underpinnings to the government sponsored ICHMI research, development, and demonstration (RD&D) performed in the United States for the next several years. A distinguishing feature of this roadmapping effort is that it is not limited to a technology progression plan but includes a detailed rationale, aimed at the nonspecialist, for the existence of a focused ICHMI RD&D program. Eight specific technology areas were identified for focused RD&D as follows: (1) sensors and electronics for harsh environments,(2) uncertainty characterization for diagnostics/prognostics applications, (3) quantification of software quality for high-integrity digital applications, (4) intelligent controls for nearly autonomous operation of advanced nuclear plants, (5) plant network architecture, (6) intelligent aiding technology for operational support, (7) human system interaction models and analysis tools, and (8) licensing and regulatory challenges and solutions.

Holcomb, David Eugene [ORNL

2007-01-01T23:59:59.000Z

167

Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy |  

Open Energy Info (EERE)

Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations Program Start 2012 Program End 2012 Country Antigua and Barbuda, Bahamas, Barbados, Belize, Dominica, Grenada, Guyana, Haiti, Jamaica, Montserrat, St. Lucia, St. Vincent and the Grenadines, St. Kitts and Nevis, Suriname, Trinidad and Tobago

168

AISI/DOE Technology Roadmap Program: A Technology of Low Coal Rate and High Productivity of RHF Ironmaking  

Science Conference Proceedings (OSTI)

An economical and environment-friendly ironmaking process based on heating the chemiexecy self-sufficient green balls of iron ore and coal in a hearth furnace is being developed with financial support from AISI members and DOE. DRI, which is hot (1400 C), dense (3.2 g/cm) and of high degree of metallization (95%), has been produced in laboratory and in a pilot plant in Genoa, Italy. Products of such quality have been made from American and Brazilian ores, BOF sludge, EAF dust/BOF sludge mixtures and millscale. The removal of zinc and lead from green balls by this process is essentially complete. In comparison with typical blast furnace operation, the new technology with a melter would have a lower total coal rate by 200kg.THM. The elimination of cokemaking and high temperature agglomeration steps, and a simpler gas handling system would lead to lower capital and operating costs. In comparison with commercial RHF practice it is different in atmosphere (fully oxidized at 1600 to 1650 C), in bed height (120 mm instead of 20-25 mm) and in pellet composition (much less coal but of higher VM). The combined effect leads to three times higher furnace productivity, lower coal consumption and superior DRI quality. The risk of re-oxidation (slag formation) and dusty operation are practiexecy eliminated. The process is stable, tolerant and independent of the size, shape and movement of the hearth. However, materials handling (e.g., discharge of hot DRI) and the exact energy savings have to be established in a larger furnace, straight or rotary, and in a continuous mode of operation.

Wei-Kao Lu

2002-09-15T23:59:59.000Z

169

Thompson Technology Industries Inc TTI | Open Energy Information  

Open Energy Info (EERE)

Industries, Inc. (TTI) Industries, Inc. (TTI) Place Novato, California Zip 94949 Product California-based maker of PV tracking systems, mounting and monitoring systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

Commercialization-Analysis-&-Roadmap-  

Industrial!Heating!Ventilation!Air!Conditioning!(HVAC),!own!meltgblown!technology! http://bit.ly/KDU3P5!! Filtration(Group(Inc.((USA)(

171

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

172

Roadmap for the Next Generation Protective Devices  

Science Conference Proceedings (OSTI)

This report presents a high-level industry roadmap for the design and management of protective relaying and substation control system products and installations by manufacturers and utilities. The roadmap follows directly from the current state of the industry, as given in a companion document, EPRI Current State Assessment Report, EPRI report 1017773.

2009-11-04T23:59:59.000Z

173

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

174

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

175

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an average industrial electricity price of $0.039/kWh waskWh (the average industrial electricity price in 1996), withprojected 2015 industrial price for electricity in the AEO

2000-01-01T23:59:59.000Z

176

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Shape Casting in the Steel Industry. Near net shape casting/in the U.S. iron and steel industry. Although the technologythe United States Iron and Steel Industry, as Share of Steel

2005-01-01T23:59:59.000Z

177

National Hydrogen Energy Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen...

178

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Inc. (Alum-1) [ETSU] Energy Technology Support Unit. 1994.In Encyclopedia of Energy Technology and the Environment.Environmental Energy Technologies Division. (Paper-1) (

2000-01-01T23:59:59.000Z

179

First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop was held to assist the energy sector in assessing alignment of current industry projects with the goals outlined in the Roadmap to Secure Control Systems in the...

180

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ministry of Industry and Information Technology | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ministry of Industry and Information Technology Jump to: navigation, search This article is a stub. You...

182

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

183

7th TMS Lead Free Solder and Interconnect Technology Workshop  

Science Conference Proceedings (OSTI)

Overview. This workshop is organized to serve as the industry roadmap for Pb free solder technology in high reliability and consumer electronic packaging and.

184

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network (OSTI)

The discussion surrounding industrial efficiency gains typically focuses on industrys own use of energy and the set of technologies that might cost-effectively reduce that consumption. Often overlooked is industrys role as a primary developer of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, on demand manufacturing capabilities, or new plastics that double as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand the role of innovation. It highlights a number of emerging technologies that may foster an even greater energy savings than might be apparent from looking at industrys own energy use patterns alone.

Laitner, J. A.

2007-01-01T23:59:59.000Z

185

Enforcement Letter, Amer Industrial Technologies - April 13, 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amer Industrial Technologies - April 13, 2010 Amer Industrial Technologies - April 13, 2010 Enforcement Letter, Amer Industrial Technologies - April 13, 2010 April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in safety significant drain pipe fabricated by Amer Industrial Technologies, Inc. (AIT) as a supplier to Parsons Infrastructure & Technology Group, Inc. (Parsons) for the Salt Waste Processing Facility (SWPF) construction project at the Department of Energy (DOE) Savanuah River Site. The contract between Parsons and AIT was

186

The DOE Vadose Zone Science and Technology Roadmap: A National Program to Address Characeterization, Monitoring and Simulation of Subsurface Contaminant Fate and Transport  

Science Conference Proceedings (OSTI)

The vadose zone comprises the region lying between the earths surface and the top of the regional seasonal aquifer. Until recently contamination in the vadose zone was believed to remain relatively immobile. Thus, little attention was paid to understanding the nature of the vadose zone or the potential pathways for contaminants to migrate through it to the water table or other accessible environments. However, recent discoveries of contaminants migrating considerable distances through the vadose zone at several Department of Energy (DOE) sites have changed many assumptions both about the nature and function of the vadose zone and the importance we place on understanding this region. As a result of several vadose zone surprises, DOE Environmental Management (EM) tasked the Idaho National Engineering and Environmental Laboratory (INEEL) to lead the development of a vadose zone science and technology roadmap. The roadmap is focused on identifying research spanning the next 25 years necessary to be able to better predict the fate and transport of contaminants in the vadose zone. This in turn will provide the basis for reducing scientific uncertainty in environmental remediation and, especially, vadose zone related long-term stewardship decisions across the DOE complex. Vadose zone issues are now recognized as a national problem affecting other federal agencies as well as state and municipal sites with similar problems. Over the next few decades, dramatic and fundamental advances in computing, communication, electronics and micro-engineered systems will transform our understanding of many aspects of the scientific and technical challenges we face today. The roadmap will serve to develop a common perspective on possible future science and technology needs in an effort to help make better R&D investment decisions.

Kowall, Stephen Jacob

2001-02-01T23:59:59.000Z

187

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

188

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

189

Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor  

E-Print Network (OSTI)

The Department of Energys Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R&D, incorporating projects with such risk that the private sector will not pursue them independently. This paper describes the Offices major activities, operating premises and research areas. Policy considerations affecting the programs content are identified and criteria applied in project selection are discussed. Achievement of constructive industry involvement in program development and review is viewed as vital to success. This goal, and the means by which it is being pursued, are emphasized.

Gross, T. J.

1986-06-01T23:59:59.000Z

190

The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

Hughes, K.R.; Moore, N.L.

1994-09-01T23:59:59.000Z

191

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2005-01-01T23:59:59.000Z

192

Technology Transfer: For Industry:SBIR Opportunities  

... our lab is not specialized in solar cell fabrication and hence, our solar cell fabrication tools do not meet industrial standards. For instance, ...

193

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2001-01-01T23:59:59.000Z

194

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2004-01-01T23:59:59.000Z

195

Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Jamaica-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Agency/Company /Organization Inter-American Development Bank, World Watch Institute (WWI) Sector Climate, Energy Focus Area Renewable Energy, Economic Development, Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Industry, People and Policy, Transportation Topics Background analysis, Baseline projection, Finance, GHG inventory, Implementation, Low emission development planning, -Roadmap, Market analysis, Policies/deployment programs, Resource assessment, Technology characterizations

196

The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships  

Science Conference Proceedings (OSTI)

A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

NONE

1997-09-01T23:59:59.000Z

197

Climate VISION: Private Sector Initiatives: Mining: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These roadmaps aid both industry and government in making decisions to support R&D critical to the industry's vision of the future. Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader. The Mining Industry of the Future Vision (PDF 122 KB) The industry's unified Vision document outlines broad goals for the future. As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These roadmaps aid both industry and government in making decisions to

198

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lightingSavings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2000-01-01T23:59:59.000Z

199

Two Stage Engine Technology - Industrial Partnerships Office  

... there is an increased need for new engine technologies which can increase fuel efficiency and meet strict pollution standards. Description ...

200

NREL: Technology Transfer - NREL's Industry Growth Forum  

... to 7AC Technologies, Inc., a Massachusetts company that is commercializing a novel membrane-based liquid desiccant HVAC system.

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industrial electronics [Technology 2000 analysis and forecast  

Science Conference Proceedings (OSTI)

Energy savings and higher intelligence are hallmarks of today's highly competitive world of industrial automation. While power electronics devices and systems deliver ever more watts, they also contribute to electromagnetic interference (EMI), and users ...

G. Kaplan

2000-01-01T23:59:59.000Z

202

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Nathan Martin regarding SOFC Fuel Cells. June. (Utilities-3)MCFC), and solid oxide (SOFC). For industrial sectorare the PAFC, MCFC, and the SOFC. Of these, the PAFC is the

2000-01-01T23:59:59.000Z

203

Technologies for the Warfighter and Industry  

Science Conference Proceedings (OSTI)

... Engineering Animation grew their company from 20 employees to over 400 after they developed a new set of computer-based technologies for ...

2010-10-05T23:59:59.000Z

204

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

205

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2004-01-01T23:59:59.000Z

206

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2005-01-01T23:59:59.000Z

207

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2001-01-01T23:59:59.000Z

208

PNNL: Available Technologies: Aerospace & Defense Industry  

Other. Improved Materials for Sampling of Surfaces for Measurement of Explosives and Other Chemicals of Interest; Improved Sensor Technology using Qua ...

209

Technology Transfer: For Industry:SBIR Opportunities  

Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs. FY2013 Phase 1 Release 1. During the FOA open period August 13 - October 16, 2012,

210

Information Technology Solutions - Industrial Partnerships Office  

Information Technology Solutions Development and IP Status A patent application, US2006/0115427 Diagno-sis and assessment of skeletal related disease

211

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

212

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

213

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network (OSTI)

Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone. This program, sponsored by the Office of Industrial Programs of DOE, defines technology needs from an industry viewpoint, so that recommended projects will complement industry's efforts and result in technologies for which there are clearly identifiable markets. The search for RD&D projects is currently focusing in the following technology categories: (i) reduction of fouling in cooling water systems, (ii) alternatives to conventional distillation and separation, (iii) low level waste heat recovery, (iv) advanced concepts in furnaces and boilers, (v) coal utilization, and (vi) advanced concepts in conversion and processing. The future direction of the program will continue to be dictated largely by industry needs.

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

214

Elizondo 'marries' Laboratory technologies to U.S. industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Elizondo 'marries' Laboratory technologies to U.S. industry Stephen P Wampler, LLNL, (925) 423-3107, wampler1@llnl.gov High Resolution Image Catherine Elizondo is a...

215

Science and technology for industrial ecology  

SciTech Connect

This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

216

Current developments of microfiltration technology in the dairy industry  

E-Print Network (OSTI)

Review Current developments of microfiltration technology in the dairy industry Luciana V. SABOYAa of them just patented, in the dairy industry. Combination of the use of uniform trans- membrane hydraulic porosity gradient and of new ceramic membrane materials allows nowa- days to get a differential separation

Recanati, Catherine

217

DOE and Industry Showcase New Control Systems Security Technologies at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Energy Delivery Systems Technology Development » Energy Delivery Systems Cybersecurity » Control Systems Security News Archive » DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DistribuTECH Conference Tuesday-Thursday, March 23-25, 2010 Tampa Convention Center Booth #231 Tampa, FL Join the Department of Energy and its industry partners as they showcase six new products and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth #231 at the DistribuTECH 2010 Conference & Exhibition in Tampa, FL, to see first-hand demonstrations of several newly commercialized control systems security products-each developed through a

218

From Roadmaps to Implementation Workshop | Open Energy Information  

Open Energy Info (EERE)

From Roadmaps to Implementation Workshop From Roadmaps to Implementation Workshop Jump to: navigation, search Tool Summary LAUNCH TOOL Name: From Roadmaps to Implementation Workshop Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Market analysis, Technology characterizations Resource Type: Workshop, Lessons learned/best practices Website: www.iea.org/work/workshopdetail.asp?WS_ID=433 References: IEA Workshop proceedings [1] "This workshop examined the tools that roadmaps provide and explored the necessary steps to achieve implementation. It built upon the Experts' Group's previous analysis of roadmaps, and approaches and strategies for enhancing international technology collaboration. The IEA wind roadmap was

219

Improve Compressed Air System Performance with AIRMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program AIRMaster+ software tool can help industrial plants optimize compressed air system efficiency.

2008-12-01T23:59:59.000Z

220

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

222

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

223

Efficient Electric Technologies for Industrial Heating: Emerging Activities  

Science Conference Proceedings (OSTI)

Industrial process heating is typically accomplished with fossil- and by-product fuels. However, new high-efficiency electric technologies for process heating applications are under development and commercially available, including three efficient electric process heating technologies covered in this Brief: Induction heating and melting Microwave (MW) heating, drying and curing Radio frequency (RF) heating, drying, and curing These technologies were selected for three reasons. First, in each case there a...

2007-12-18T23:59:59.000Z

224

Environmental technology development through industry partnership  

Science Conference Proceedings (OSTI)

The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system. The precision measurement capability of the coherent laser radar (CLR) technology has already been demonstrated in the form of the CLR 3D Mapper, of which several copies have been delivered or are under order. The CLVS system, in contrast to the CLR 3D Mapper, will have substantially greater imaging speed with a compact no-moving parts scanner, more suitable for real-time robotic operations.

Sebastion, R.L.

1995-12-31T23:59:59.000Z

225

SmartGrid Consortium: Smart Grid Roadmap for the State of New York |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York SmartGrid Consortium: Smart Grid Roadmap for the State of New York Throughout its history, New York State has been a leader in the world of energy generation, distribution, discovery and innovation. With the rapidly evolving industry and the escalating strains being placed on the infrastructure through new technologies and ncreased consumer demands NY is in a position to be a pioneer in modernizing the electric grid. New York is the proud home of key industrial smart grid players including GE and IBM,and it represents an epicenter of major energy research within academia, industry and government. As a world leader in global finance and media, NY is strategically positioned to finance the smart grid

226

Office of Industrial Technologies: Summary of program results  

Science Conference Proceedings (OSTI)

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

227

Geothermal Regulatory Roadmap Workshop at GRC | Open Energy Information  

Open Energy Info (EERE)

Roadmap Workshop at GRC Roadmap Workshop at GRC Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections GRR Project Review and Workshop Register for this Event The Geothermal Regulatory Roadmap project team will be holding a project review and summary workshop in Reno in early October. We are inviting all industry and agency personnel who have participated in this process, and any other interested parties to attend and continue to participate in this roadmapping process. Note that although this workshop is timed to be held during the GRC/GEA Conference and Tradeshow, this workshop is not part of that conference; therefore, conference registration is not required to attend the Regulatory Roadmapping workshop. From 10 AM to noon, come and view the permitting roadmaps from the 8 states

228

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

229

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

230

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand response-enabling technologies, which can help an industrial plant effectively address demand response needs. Finally, the paper is concluded with a discussion of case study projects that illustrate application of some of these demand response enabling technologies for process operations. These case studies, illustrating some key projects from the NYSERDA Peak Load Reduction program, will describe the technologies and approaches deployed to achieve the demand reduction at the site, the quantitative impact of the project, and a discussion of the overall successes at each site.

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

231

Food Industry 2000: Food Processing Opportunities, Challenges, New Technology Applications  

Science Conference Proceedings (OSTI)

This report presents a summary of some of the major factors affecting the food processing industry, i. e., economic pressures, consumer concerns and pressures, regulatory restrictions, and general conservatism. The food industry must be responsive to the growing consumer interest in the relationship between diet and general health, to the changes in consumer demographics and desires, and to the opportunities offered by new technology, especially electrotechnologies.

2000-09-18T23:59:59.000Z

232

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

233

Colorado/Transmission/Regulatory Roadmap | Open Energy Information  

Open Energy Info (EERE)

Roadmap Roadmap < Colorado‎ | Transmission Jump to: navigation, search Colorado Transmission Transmission Regulatory Roadmap Roadmap State Data Regulatory Overview General TOOLS Regulatory Roadmap Regulatory Wizard Best Practices Document Library NEPA Database Glossary TECHNOLOGIES Geothermal Solar Water Wind TOPICS Land Use Planning Land Access Exploration Well Field Power Plant Transmission Water Rights Environment The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart

234

Materials needs and opportunities in the pulp and paper industry  

SciTech Connect

The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

Angelini, P. [comp.

1995-08-01T23:59:59.000Z

235

Industrial Wastewater Minimization in the Chemicals and Petroleum Industries Industry Technology Commentary  

Science Conference Proceedings (OSTI)

Although water is employed in all major industries, the chemicals and petroleum industries stand out as relying on a vast amount of water for their production needs. In the petroleum industry, more than half of the water is used for cooling, followed by boiler feed (roughly one-third), and then process and other uses. In the chemicals industry, the majority of water is used for cooling, followed by process applications, and then boiler and other uses. Both of these market segments have made great strides...

2011-03-31T23:59:59.000Z

236

Centers for manufacturing technology: Industrial Advisory Committee Review  

Science Conference Proceedings (OSTI)

An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

NONE

1995-10-01T23:59:59.000Z

237

National Algal Biofuels Technology Roadmap  

E-Print Network (OSTI)

, and hydrogen are activated with energetic sources such as microwaves to generate plasmas, direct current (DC include the hot filament [2] and many types of microwave plasma [3], which typically have *Corresponding is expected to be negligible since the diamond phase of carbon is very stable and gasification of dia- mond

238

Alternatives to Industrial Cogeneration: A Pinch Technology Perspective  

E-Print Network (OSTI)

Pinch Technology studies across a broad spectrum of processes confirm that existing plants typically consume 15-40% more thermal energy than they should. Consequently, many cogeneration schemes have been based on thermal requirements and characteristics that are inconsistent with a properly designed and integrated process. Pinch Technology studies also frequently identify projects, based on conventional technology, that require lower capital outlays, achieve more rapid paybacks, and entail less risk than those associated with proposed cogeneration projects. Cogeneration schemes that survive the scrutiny of Pinch Technology are often smaller -- but invariably more cost-effective -- than those being contemplated or now being operated. Most importantly, only the results of such a study truly enable the process operator to evaluate the relative merits of cogeneration and other options for reducing operating costs. Recognizing that cogeneration will, at times, be an appropriate part of an industrial process, utilities have an opportunity to work with their industrial customers using Pinch Technology to insure that the alternatives are properly defined and well understood. Recent case study results show that such cooperation can often yield sounder capital investment decisions and lower operating costs for the industrial operator and load-building and load-retention opportunities for the utility.

Karp, A.

1988-09-01T23:59:59.000Z

239

Microsoft Word - ieRoadmap Workshop_FINAL.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals First-ever ieRoadmap Workshop Reviews Progress in Achieving Roadmap Goals On May 28-29, 2008, the first ieRoadmap Workshop was held to assist the energy sector in assessing alignment of current industry projects with the goals outlined in the Roadmap to Secure Control Systems in the Energy Sector. Held in Chicago, Illinois, the workshop was sponsored by the Energy Sector Control Systems Working Group (ESCSWG), made up of private sector and government leaders working to facilitate and guide the implementation of the Roadmap Approximately 50 participants, including asset owners, project leaders, vendors, researchers, and program managers, attended the two-day workshop. Project leads from 25 industry projects focusing on securing energy control systems presented their research

240

Heat Pipe Technology for Energy Conservation in the Process Industry  

E-Print Network (OSTI)

Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems range from residential and commercial air-to-air heat exchangers to giant air preheaters for the process and utility industries. The heat pipe offers a unique, efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our expertise in engineering heat recovery products for the process industry. This paper discusses two such products, the heat pipe air preheater and waste heat recovery boiler. These heat pipe products have been used in many successful installations all over the world and some important, distinctive features of these systems will be presented.

Price, B. L. Jr.

1985-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar technology and the insurance industry: Issues and applications  

DOE Green Energy (OSTI)

Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. Solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. This report will address the above issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses and offer suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers.

Deering, A.; Thornton, J. P.

1999-07-01T23:59:59.000Z

242

Hydrogen Production Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Production Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

243

Roadmap Update Workshop Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Delivery Systems Energy Delivery Systems Roadmap to Secure Energy Delivery Systems - i - Roadmap Development Process hile much progress has been made, the public and private partners are keenly aware that there is more work to do with today's rapid pace of change and dynamic energy delivery systems landscape. The Energy Sector Control Systems Working Group (ESCSWG) collaborated with energy sector stakeholders to update the Roadmap in four phases:  Over-the-Horizon Analysis: On July 7, 2009, nearly 20 asset owners, government leaders, vendors, and researchers convened to examine the solid foundation of the 2006 Roadmap-the vision and goal areas-and provided recommendations to better align the framework with the wide range of complex energy delivery systems security needs the sector will need to address today and in the

244

Roadmap to the Project: DOE Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiments List Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report HUMAN RADIATION EXPERIMENTS: The Department of Energy Roadmap to the Story and the Records United States Department of Energy Assistant Secretary for Environment, Safety, and Health February 1995 Contents Foreword Acknowledgments List of Photographs Chapter 1. Overview of the DOE Project Introduction Background DOE Archives and Records DOE Strategy for Finding Experiment Information Information as an Engine for Democratic Government Looking Forward Chapter 2. Narratives and Records Series Descriptions Introduction DOE Predecessor Agencies and Human Radiation Experimentsation: A Headquarters Overview

245

Information Technology Standards Choices and Industry Structure Outcomes: The Case of the U.S. Home Mortgage Industry  

Science Conference Proceedings (OSTI)

Vertical IS standards prescribe data structures and definitions, document formats, and business processes for particular industries, in contrast to generic information technology (IT) standards, which concern IT characteristics applicable to many industries. ... Keywords: Adoption, Effects Of Standards, Implementation, Industry Structure, Industry-Level Effects, Is Standards, It Choices, Vertical Standards

Rolf T. Wigand; Charles W. Steinfield

2005-11-01T23:59:59.000Z

246

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

247

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

St. Louis, Missouri. Energy Technology Support Unit (ETSU),de Beer, 1997. "Energy Efficient Technologies in Industry -and MAIN, 1993. Energy Technology in the Cement Industrial

Sathaye, J.

2011-01-01T23:59:59.000Z

248

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

249

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

250

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

Not Available

2008-12-01T23:59:59.000Z

251

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

252

Program on Technology Innovation: Industrial Electrotechnology Development Opportunities  

Science Conference Proceedings (OSTI)

With the industrial sector accounting for about one-third of all energy consumed, continued development of new electrotechnologies will result in improved energy utilization, gross domestic product (GDP) growth, and job creation in this sector. Customers need to be made aware of the operational benefits of energy-efficient technologies, including improved process throughput and quality, reduced energy costs, ease of environmental compliance, enhanced productivity, and greater profits. Utilities can help ...

2009-07-09T23:59:59.000Z

253

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

254

ICCT Roadmap Model | Open Energy Information  

Open Energy Info (EERE)

ICCT Roadmap Model ICCT Roadmap Model Jump to: navigation, search Tool Summary Name: ICCT Roadmap Model Agency/Company /Organization: International Council on Clean Transportation (ICCT) Sector: Climate, Energy User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.theicct.org/global-transportation-roadmap-model Cost: Free Related Tools Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Threshold 21 Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An Excel-based modeling tool intended to aid policy makers with identifying trends, evaluating emissions and energy efficiency with respect to various policy options, and generate strategies to reduce greenhouse gas emissions

255

ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMMER* 2000 SUMMER* 2000 ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 2 S A N D I A T E C H N O L O G Y ON THE COVER: MARV (Miniature Autonomous Robotic Vehicle) is one of the world's smallest autonomous vehicles, containing all necessary power, sensors, computers, and controls on board. MARV is a three-year-old technology measuring one cubic inch in size. (Photo by Randy Montoya) Sandia Technology is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram

256

New techniques and products solve industry problems. [New technology available for the natural gas pipeline industry  

SciTech Connect

Recently introduced technology advances in data handling, manipulation and delivery; new gas and storage marketing products; a nonintrusive pipe-crack arrester; and responsive pipe-coating mill construction show promise for cutting industry costs by increasing efficiency in pipe line construction, repair, rehabilitation, and operations. The products, services and methods described in this new technology survey include: a PC-compatible dataserver that requires no user programming; flexible, responsive gas transportation scheme; evaluation of possible further uses on brittle transmission lines for fiberglass-reinforced resin composite; new multilayer epoxy PE coating mill in Corinth, Greece, near areas where large pipe line construction and rehabilitation projects are contemplated.

Bullion, L.

1993-09-01T23:59:59.000Z

257

Frying Technology and PracticesChapter 12 Regulatory Requirements for Frying Industryg Industry  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 12 Regulatory Requirements for Frying Industry g Industry Food Science Health Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Nutrition Press Do

258

DUF6 Materials Use Roadmap  

Science Conference Proceedings (OSTI)

The U.S. government has {approx}500,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms stored at U.S. Department of Energy (DOE) sites across the United States. This DU, most of which is DU hexafluoride (DUF{sub 6}) resulting from uranium enrichment operations, is the largest amount of nuclear material in DOE's inventory. On July 6, 1999, DOE issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as required by Public Law 105-204'', in which DOE committed to develop a ''Depleted Uranium Hexafluoride Materials Use Roadmap'' in order to establish a strategy for the products resulting from conversion of DUF{sub 6} to a stable form. This report meets the commitment in the Final Plan by providing a comprehensive roadmap that DOE will use to guide any future research and development activities for the materials associated with its DUF{sub 6} inventory. The Roadmap supports the decision presented in the ''Record of Decision for Long-Term Management and Use of Depleted Uranium Hexafluoride'', namely to begin conversion of the DUF{sub 6} inventory as soon as possible, either to uranium oxide, uranium metal, or a combination of both, while allowing for future uses of as much of this inventory as possible. In particular, the Roadmap is intended to explore potential uses for the DUF{sub 6} conversion products and to identify areas where further development work is needed. It focuses on potential governmental uses of DUF{sub 6} conversion products but also incorporates limited analysis of using the products in the private sector. The Roadmap builds on the analyses summarized in the recent ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride''. It also addresses other surplus DU, primarily in the form of DU trioxide and DU tetrafluoride. The DU-related inventory considered here includes the following: (1) Components directly associated with the DUF{sub 6} presently being stored at gaseous diffusion plant sites in Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee--470,500 MT of DU, 225,000 MT of fluorine chemically combined with the DU, and 74,000 MT of carbon steel comprising the storage cylinders; (2) Approximately 27,860 MT of DU in the form of uranium trioxide, tetrafluoride, and various other forms containing varying amounts of radioactive and chemical impurities, presently stored primarily at DOE's Savannah River Site. This Roadmap characterizes and analyzes alternative paths for eventual disposition of these materials, identifies the barriers that exist to implementing the paths, and makes recommendations concerning the activities that should be undertaken to overcome the barriers. The disposition paths considered in this roadmap and shown in Fig. ES.1 are (a) implementation of cost-effective and institutionally feasible beneficial uses of DU using the products of DUF{sub 6} conversion and other forms of DU in DOE's inventory, (b) processing the fluorine product resulting from DUF{sub 6} conversion to yield an optimal mix of valuable fluorine compounds [e.g., hydrogen fluoride (hydrofluoric acid), boron trifluoride] for industrial use, and (c) processing emptied cylinders to yield intact cylinders that are suitable for reuse, while maintaining an assured and cost-effective direct disposal path for all of the DU-related materials. Most paths consider the potential beneficial use of the DU and other DUF{sub 6} conversion products for the purpose of achieving overall benefits, including cost savings to the federal government, compared with simply disposing of the materials. However, the paths provide for assured direct disposal of these products if cost-effective and institutionally feasible beneficial uses are not found.

Haire, M.J.

2002-09-04T23:59:59.000Z

259

Biopower Technical Assessment: State of the Industry and the Technology  

DOE Green Energy (OSTI)

This report provides an assessment of the state of the biopower industry and the technology for producing electricity and heat from biomass. Biopower (biomass-to-electricity generation), a proven electricity generating option in the United States and with about 11 GW of installed capacity, is the single largest source of non-hydro renewable electricity. This 11 GW of capacity encompasses about 7.5 GW of forest product industry and agricultural industry residues, about 3.0 GW of municipal solid waste-based generating capacity and 0.5 GW of other capacity such as landfill gas based production. The electricity production from biomass is being used and is expected to continue to be used as base load power in the existing electrical distribution system. An overview of sector barriers to biopower technology development is examined in Chapter 2. The discussion begins with an analysis of technology barriers that must be overcome to achieve successful technology pathways leading to the commercialization of biomass conversion and feedstock technologies. Next, an examination of institutional barriers is presented which encompasses the underlying policies, regulations, market development, and education needed to ensure the success of biopower. Chapter 3 summarizes biomass feedstock resources, characteristics, availability, delivered prices, requirements for processing, and the impediments and barriers to procurement. A discussion of lessons learned includes information on the California biomass energy industry, lessons from commercial biopower plants, lessons from selected DOE demonstration projects, and a short summary of the issues considered most critical for commercial success is presented in Chapter 4. A series of case studies, Chapter 5, have been performed on the three conversion routes for Combined Heat and Power (CHP) applications of biomass--direct combustion, gasification, and cofiring. The studies are based on technology characterizations developed by NREL and EPRI. Variables investigated include plant size and feed cost, and both cost of electricity and cost of steam are estimated using a discounted cash flow analysis. The economic basis for cost estimates is given. Environmental considerations are discussed in Chapter 6. Two primary issues that could create a tremendous opportunity for biomass are global warming and the implementation of Phase II of Title IV of the Clean Air Act Amendment of 1990 (CAAA). The environmental benefits of biomass technologies are among its greatest assets. Global warming is gaining greater salience in the scientific community and among the general population. Biomass use can play an essential role in reducing greenhouse gases, thus reducing the impact on the atmosphere. Cofiring biomass and fossil fuels and the use of integrated biomass gasification combined cycle systems can be an effective strategy for electric utilities to reduce their emissions of greenhouse gases. The final chapter reviews pertinent Federal government policies. U.S. government policies are used to advance energy strategies such as energy security and environmental quality. Many of the benefits of renewable energy are not captured in the traditional marketplace economics. Government policies are a means of converting non-economic benefits to an economic basis, often referred to as ''internalizing'' of ''externalities.'' This may be accomplished by supporting the research, development, and demonstration of new technologies that are not funded by industry because of projected high costs or long development time lines.

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L.

2003-01-01T23:59:59.000Z

260

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 1617, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Program on Technology Innovation: Carbon Nanotube Technology for the Electric Power Industry  

Science Conference Proceedings (OSTI)

A couple decades ago, a new molecular form of carbon exhibiting extraordinary properties was discovered. This resulted in a frenzy of basic and applied research, and tremendous strides have been made. The technology that ensued is still relatively immature, but there is the prospect that the technology may be used in the future for a wide range of applications in the electric power industry. In fact, the three new materials discussed in this report (fullerenes, nanotubes, and graphene) have the potential...

2011-11-22T23:59:59.000Z

262

Program on Technology Innovation: Technology R&D Strategy for the Electric Power Industry: "Wild Cards"  

Science Conference Proceedings (OSTI)

To address the many challenges facing the electric power industry during the next 20 years, an effective process of technology R&D planning is needed. To augment recently completed scenario-based planning, this report identifies the technology and R&D needs that result from 21 additional institutional, political, financial, technical, or social changes ("wild cards") not addressed in the prior scenarios project (see EPRI Report 1014385). This report also identifies key R&D priorities that occur in multip...

2008-03-14T23:59:59.000Z

263

Wireless communications deployment in industry: a review of issues, options and technologies  

Science Conference Proceedings (OSTI)

Present basis of knowledge management is the efficient share of information. The challenges that modern industrial processes have to face are multimedia information gathering and system integration, through large investments and adopting new technologies. ... Keywords: Information and communication technology in industry, Wireless networking technologies and industrial application

Esteban Egea-Lopez; Alejandro Martinez-Sala; Javier Vales-Alonso; Joan Garcia-Haro; Josemaria Malgosa-Sanahuja

2005-01-01T23:59:59.000Z

264

Wireless communications deployment in industry: a review of issues, options and technologies  

Science Conference Proceedings (OSTI)

Present basis of knowledge management is the efficient share of information. The challenges that modern industrial processes have to face are multimedia information gathering and system integration, through large investments and adopting new technologies. ... Keywords: information and communication technology in industry, wireless networking technologies and industrial application

Esteban Egea-Lopez; Alejandro Martinez-Sala; Javier Vales-Alonso; Joan Garcia-Haro; Josemaria Malgosa-Sanahuja

2005-01-01T23:59:59.000Z

265

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

266

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

267

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

268

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

2008-12-01T23:59:59.000Z

269

A Roadmap for NEAMS Capability Transfer  

SciTech Connect

The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place requirements gathering from prospective users on a more formal footing, updating requirements on a regular basis and incorporate them into planning and execution of the project in a traceable fashion; (4) Seek out the best available data for validation purposes, and work with experimental programs to design and carry out new experiments that satisfy the need for data suitable for validation of high-fidelity M&S codes; (5) Develop and implement program-wide plans and policies for export control, licensing, and distribution of NEAMS software products; (6) Establish a program of sponsored alpha testing by experienced users in order to obtain feedback on NEAMS codes; (7) Provide technical support for NEAMS software products; (8) Develop and deliver documentation, tutorial materials, and live training classes; and (9) Be prepared to support outside users who wish to contribute to the codes.

Bernholdt, David E [ORNL

2011-11-01T23:59:59.000Z

270

Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry  

Science Conference Proceedings (OSTI)

The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

NONE

1999-02-01T23:59:59.000Z

271

Test results, Industrial Solar Technology parabolic trough solar collector  

DOE Green Energy (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

272

Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Focus Area: Hydrogen Topics: Potentials & Scenarios Website: www.chfca.ca/files/IC_FC_PDF_final.pdf Equivalent URI: cleanenergysolutions.org/content/canadian-fuel-cell-commercialization- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This roadmap update provides an overview of global hydrogen and fuel cell markets as context for the activities of the Canadian industry. It presents

273

Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms  

SciTech Connect

This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

Lewis, Joanna; Wiser, Ryan

2005-11-15T23:59:59.000Z

274

Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms  

SciTech Connect

This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

Lewis, Joanna; Wiser, Ryan

2005-11-15T23:59:59.000Z

275

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 3: Historical ITP Technology Successes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

157 DOE Industrial Technologies Program 157 DOE Industrial Technologies Program Appendix 3: Historical ITP Technology Successes u Absorption Heat Pump/Refrigeration Unit ........................................................................................................................................160 u Advanced Turbine System..................................................................................................................................................................160 u Aerocylinder Replacement for Single-Action Cylinders....................................................................................................................160 u Aluminum Roofing System................................................................................................................................................................160

276

Hydrogen Delivery Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery Delivery Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; United States Council for Automotive Research (USCAR), representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BPAmerica, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Delivery Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose

277

Cleveland Transportation Electrification Roadmap  

Science Conference Proceedings (OSTI)

This document defines a strategy, called a roadmap, to be used by Cleveland area stakeholders (business, government, universities, planning and economic development organizations, environmental advocates, and utilities) to shift away from fossil fuel toward electricity as the fuel of choice for vehicular transportation. It provides recommendations in the form of action plans to move the region forward to capture the value made clear in the companion to this report, Regional Economic Impacts of Electric D...

2009-07-30T23:59:59.000Z

278

Low-Carbon Energy: A Roadmap | Open Energy Information  

Open Energy Info (EERE)

Low-Carbon Energy: A Roadmap Low-Carbon Energy: A Roadmap Jump to: navigation, search Tool Summary Name: Low-Carbon Energy: A Roadmap Agency/Company /Organization: World Watch Institute Sector: Energy Topics: Implementation, Low emission development planning, Pathways analysis Resource Type: Publications Website: www.worldwatch.org/node/7069#summary Cost: Free, Paid Low-Carbon Energy: A Roadmap Screenshot References: Low-Carbon Energy: A Roadmap[1] Logo: Low-Carbon Energy: A Roadmap Summary "Technologies available today, and those expected to become competitive over the next decade, will permit a rapid decarbonization of the global energy economy. New renewable energy technologies, combined with a broad suite of energy-efficiency advances, will allow global energy needs to be

279

Using federal technology policy to strength the US microelectronics industry  

Science Conference Proceedings (OSTI)

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

280

The role of advanced technology in the future of the power generation industry  

Science Conference Proceedings (OSTI)

This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

Bechtel, T.F.

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U.S. National Hydrogen Energy Roadmap | Open Energy Information  

Open Energy Info (EERE)

U.S. National Hydrogen Energy Roadmap U.S. National Hydrogen Energy Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: U.S. National Hydrogen Energy Roadmap Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Hydrogen Resource Type: Guide/manual Website: hydrogendoedev.nrel.gov/pdfs/national_h2_roadmap.pdf References: U.S. National Hydrogen Energy Roadmap[1] Overview "This Roadmap is neither a government research and development plan nor an industrial commercialization plan. Rather, it explores the wide range of activities required to realize hydrogen's potential in solving U.S. energy security, diversity, and environmental needs. It is intended to inspire the organizations that invest in hydrogen energy systems-public

282

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary  

SciTech Connect

This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

NONE

1995-04-01T23:59:59.000Z

283

Nuclear Energy Research and Development Roadmap | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Roadmap Nuclear Energy Research and Development Roadmap NuclearEnergyRoadmapFinal.pdf More Documents & Publications Before the House Science and...

284

Developing genome-enabled sustainable lignocellulosic biofuels technologies  

E-Print Network (OSTI)

Developing genome-enabled sustainable lignocellulosic biofuels technologies Timothy Donohue a technically advanced biofuels industry that is economically & environmentally sustainable." [GLBRC Roadmap sugars, lignin content, etc.) Cellulosic Biofuels "Opportunities & Challenges" 5 #12;Variable Composition

285

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

286

Climate VISION: Private Sector Initiatives: Cement: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways The DOE's Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to target cost-shared solicitations and guide development of a balanced R&D portfolio that yields useful results in the near, mid, and long term. Industry Vision & Roadmaps Two documents address the cement industry's challenges and priorities: Vision 2030, which outlines broad goals for the future, and Roadmap 2030, which established the industry's R&D priorities. ITP and the Strategic Development Council, a council of the American Concrete Institute's

287

roadmap | OpenEI Community  

Open Energy Info (EERE)

roadmap roadmap Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 August, 2013 - 13:18 Geothermal Regulatory Roadmap featured on NREL Now geothermal NREL OpenEI regulatory roadmap Navigating the complex system of federal and state regulations to secure project approvals is one of the biggest hurdles geothermal power developers face-but not if they've got a map outlining every twist and turn. Alevine's picture Submitted by Alevine(5) Member 29 July, 2013 - 14:46 Texas Legal Review BHFS flora and fauna leasing Legal review permitting roadmap Texas The NREL roadmap team recently met with our legal team Brownstein Hyatt Farber and Schreck (www.bhfs.com) for a review of the Texas portion of the Geothermal Regulatory Roadmap (GRR). BHFS provided excellent suggestions

288

A Roadmap for Engineering Piezoelectricity in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmap for Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale Devices, Simulations Reveal February 23, 2012 | Tags: Carver, Chemistry, Franklin, Materials Science Linda Vu, lvu@lbl.gov, +1 510 495 2402 This illustration shows lithium atoms (red) dopped on graphene (black hexagons) and generating electricity. Graphic courtesy of Mitchell Ong, Stanford University. Some scientists refer to graphene as the "miracle material" of the 21st century. Composed of a single sheet of carbon atoms, this material is tougher than diamond, more conductive than copper, and has potential applications in a variety of technologies. Now with the help of supercomputers at the Department of Energy's

289

Estimating energy-augmenting technological change in developing country industries  

E-Print Network (OSTI)

trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 19801997 Energy price bias (standard error)

Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

2006-01-01T23:59:59.000Z

290

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

and Renewable Energy Technology. Proceedings of the 2003Technological Issues in Technology Transfer, Special Reportof Renewable Energy Technologies: Wind Power in the United

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

291

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

292

Defying value-shift : how incumbents regain values in the industry with new technologies  

E-Print Network (OSTI)

Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

Kuramoto, Yukari

2010-01-01T23:59:59.000Z

293

Technology strategy of competing with industrial design in markets of high-tech consumer products  

E-Print Network (OSTI)

This thesis explores the role of industrial design in the formulation of technology strategy for certain firms that compete in markets of high-tech consumer products. The initial intuition is that the role of industrial ...

Mak, Arthur T

2009-01-01T23:59:59.000Z

294

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Efficiency and Clean Energy Technologies, 2000. ScenariosProgram, 2007. Energy Technology Solutions: Public-PrivatePrice Environmental Energy Technologies Division March 2008

Price, Lynn

2008-01-01T23:59:59.000Z

295

Government and Industry A Force for Collaboration at the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

296

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

2002 Manufacturing Energy Consumption Survey, Washington,impacts on industrial energy consumption. The cumulativeemerging technologies on energy consumption in the U.S. food

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

297

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

298

Highlights of Biopower Technical Assessment: State of the Industry and the Technology  

SciTech Connect

This report summarizes the findings of the Biopower Technical Assessment, which reviews the state of the biopower industry and the technology for producing electricity and heat from biomass.

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L.

2003-04-01T23:59:59.000Z

299

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

300

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry  

SciTech Connect

An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network (OSTI)

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

302

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

303

South Korean technology policies for the industrial competitiveness between Japan and China  

E-Print Network (OSTI)

(cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

2006-01-01T23:59:59.000Z

304

Frying Technology and PracticesChapter 7 Critical Factors in the Selectrion of an Industrial Fryer  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 7 Critical Factors in the Selectrion of an Industrial Fryer Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

305

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

306

Telematics industry dynamics and strategies for converging technologies  

E-Print Network (OSTI)

The Telematics Industry faces tremendous challenges for growth. Regardless of the efforts and investment from vehicle manufacturers and suppliers, telematics has not been that profitable industry that many analyst forecasted ...

Luis, Rodrigo, 1973-

2004-01-01T23:59:59.000Z

307

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Petroleum Refineries: An ENERGY STAR Guide for Energy andGlass Industry: An ENERGY STAR Guide for Energy and PlantAssembly Industry: An ENERGY STAR Guide for Energy and Plant

Price, Lynn

2008-01-01T23:59:59.000Z

308

NREL: Technology Transfer - 23rd Industry Growth Forum  

Join NREL at its 23rd Industry Growth Forum on Oct. 1921, 2010, in Denver, Colo. The Industry Growth Forum is the premier event for clean energy ...

309

Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 Roadmap to Achieve Energy Delivery Systems Cybersecurity - 2011 As part of the Obama Administration's goals to enhance the security and reliability of the Nation's energy infrastructure, the U.S. Department of Energy released the 2011 Roadmap to Achieve Energy Delivery Systems Cybersecurity. Developed as an update to the 2006 Roadmap to Secure Control Systems in the Energy Sector, the report outlines a strategic framework over the next decade among industry, vendors, academia and government stakeholders to design, install, operate, and maintain a resilient energy delivery system capable of surviving a cyber incident while sustaining critical functions. Developed by the Energy Sector Control Systems Working Group, a partnership

310

NREL: Technology Transfer - 21st Industry Growth Forum ...  

Presentation: Biomass to Energy Solutions. Speakers. The following speakers gave presentations at the Industry Growth Forum. Dan E. Arvizu, ...

311

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

312

California Independent System Operator's Smart Grid Roadmap Initiative  

Science Conference Proceedings (OSTI)

With the significant opportunities and challenges facing the California Independent Service Operator (ISO) driven by California energy and environmental goals along with emerging technologies expected to prove essential in meeting these goals, the ISO engaged the Electric Power Research Institute (EPRI) to provide input and guidance in developing a roadmap for smart grid-related technology investments. To develop the roadmap, the EPRI team used the EPRI IntelliGrid methodology through use cases to discov...

2011-06-20T23:59:59.000Z

313

Nondestructive Evaluation: Assessment of NDE Technologies and Practices in Other Industries, Volume 2  

Science Conference Proceedings (OSTI)

This report provides a summary of technical information collected on nondestructive evaluation (NDE) technologies that are used in other industries. The purpose of this report is to assess NDE technologies used in other industries to determine if they could be useful for nuclear inspection applications.

2010-10-21T23:59:59.000Z

314

Role of mobile technology in the construction industry a case study  

Science Conference Proceedings (OSTI)

The construction industry is facing a number of pressures to decrease costs, improve productivity and have a competitive edge in terms of quality of service and customer satisfaction. Recent advancements in mobile technology provide new avenues for addressing ... Keywords: New Zealand, adoption barriers, construction industry, mobile communications, mobile fax, mobile technologies, productivity, remote site, workflow

Sitalakshmi Venkatraman; Pak Yoong

2009-01-01T23:59:59.000Z

315

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

316

NREL: Technology Transfer - 21st Industry Growth Forum Photos  

At the 21st NREL Industry Growth Forum on Oct. 30, 2008, Jay Herrmann of Xcel Energy (far right), Forum Co-Chair Lawrence "Marty" Murphy (far left), ...

317

Power Quality Mitigation Technology Demonstration at Industrial Customer Sites: Industrial and Utility Harmonic Mitigation Guideline s and Case Studies  

Science Conference Proceedings (OSTI)

However the restructuring of the electric power industry shakes out, the commercial/industrial customer's need for quality power will increase; and customer service will remain a key to retaining current accounts and attracting new customers. The need for demonstrating new harmonics mitigation technologies will thus be an important factor for the wire side of the business as well as for energy service companies. This report provides guidelines for implementing harmonics mitigation demonstration projects ...

2000-11-30T23:59:59.000Z

318

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

319

Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20 years, an effective process of technology R&D planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report presents a comprehensive technology R&D strategy for the next two decades that spans the breadth and depth of challenges and opportunities facing the North American electric utility industry.

2006-12-14T23:59:59.000Z

320

Industry Survey and Assessment of Available Corrosion Mitigation Technologies: 20th Century State of the Art  

Science Conference Proceedings (OSTI)

This report summarizes the findings of searching various industry databases and soliciting information from suppliers regarding available corrosion detection of mitigation technologies. The focus of the search was for methods that can mitigate, detect, or monitor corrosion on pipe-type cable systems; methods appropriate for submarine cables were also considered. Special attention was given to new corrosion technologies or the application of different technologies from associated industries. Information w...

2000-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Technology Transfer - NREL's 20th Industry Growth Forum ...  

Porous Power Technologies, LLC Tim Feaver, CEO Presentation: Microporous Membranes for Highly Efficient Lithium Batteries ... Vortex Hydro Energy, LLC

322

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Advisory Committee Technology Development Transmission Planning Smart Grid Energy Delivery Systems Cybersecurity Control Systems Security News Archive Control...

323

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 7: Methodology for Technology Tracking and Assessment of Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

191 DOE Industrial Technologies Program 191 DOE Industrial Technologies Program Appendix 7: Methodology for Technology Tracking and Assessment of Benefits u Technology Tracking............................................................................................................................................ 192 u Methods of Estimating Benefits.............................................................................................................................. 192 u Deriving the ITP Cost/Benefit Curve ...................................................................................................................... 193 Methodology for Technology Tracking and Assessment of Benefits

324

A research analysis on the concept of converging technology and converging types of information technology  

Science Conference Proceedings (OSTI)

The future technological revolution is expected to be led by converging technologies, having enormous effects on economic and industrial environments in the future. But there have been few attempts to make empirical approach to the concept of converging ... Keywords: converging technology roadmap, converging theory, converging type

K. H. Choi

2009-11-01T23:59:59.000Z

325

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

326

Fluoride Control in the Aluminum Industry: 100 Years of Technology  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description The aluminum industry...

327

Electrochemical Energy Storage Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

328

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Kyoung Geothermal NEPA Workshop at GRC Posted by: Kyoung 14 Oct 2013 - 20:19 On Tuesday, October 2, the Geothermal Technology Office and the National Renewable Energy Laboratory held a 1/2-day NEPA workshop. The workshop was held at the MGM Grand in Las Vegas, in conjunction... Tags: Categorical Exclusions, CX, Database, EA, EIS, FONSI, GEA, GRC, GRR, NEPA Jweers New Robust References! Posted by: Jweers 7 Aug 2013 - 18:23 Check out the new Reference Form. Adding... 1 comment(s) Tags: citation, citing, developer, formatting, reference, Semantic Mediawiki, wiki Graham7781

329

Fuel Pathway Integration Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pathway Integration Fuel Pathway Integration Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Fuel Pathway Integration Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

330

Appendix 2 - IManageRoadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the iManage Roadmap the iManage Roadmap Stakeholder Discussions 7/27/2012 - Draft 1 Stakeholder Discussions July 2012 1. Align DOE's strategic plan, and CF/MA/HC objectives, with iManage initiatives. 2. Use business goals to drive urgency and help explain the value proposition of what we are planning on the roadmap. 3. Create a framework to coordinate planning across iManage Roadmap goals 3. Create a framework to coordinate planning across multiple iManage systems and customer groups. 4. Capture cross-functional implications of the plan, such as dependencies on other systems and initiatives (a truly iManage view). 5. Determine reuse opportunities across domains. 6. Reflect consensus among all iManage stakeholders 7/27/2012 - Draft 2 1. Expand Business Process Improvement Services (DOE Strategic Plan 2011--

331

Roadmapping - A Tool for Strategic Planning and Leveraging R&D completed by other Agencies  

DOE Green Energy (OSTI)

The Department of Energy (DOE) is responsible for management of the environmental legacy of the nation's nuclear weapons and research program. This is the largest, most complex environmental cleanup program in the world. The issues and problems encountered in this program create the need to develop many scientific and technological solutions. To be effective, the process used to create these solutions must be well coordinated through DOE's Environmental Management program, the rest of DOE, and other Federal agencies. Roadmapping is one strategic planning tool to provide the needed coordination. Past roadmapping accomplishments include: (1) Issuance of the Draft EM Roadmapping Guidance; (2) Issuance of the EM R&D Program Plan and Strategic Plan which established the direction for Roadmapping; (3) Issuance of the OST Management Plan which calls out Roadmapping as a key tool in EM Research & Development (R&D) Strategic Planning; (4) Completion of or progress on key EM Roadmaps, i.e., Savannah River High Level Waste (HLW) Salt Dispositioning Roadmaps, Hanford Groundwater/Vadose Zone Roadmap, Robotics and Intelligent Machines Critical Technology Roadmap, Complex-Wide Vadose Zone Roadmap, Long-Term Stewardship Preliminary Roadmap, Hydrogen Gas Generation R&D Plan (Roadmap), Idaho National Engineering and Environmental Laboratory (INEEL) Sodium Bearing Waste Dispositioning Roadmap, INEEL Voluntary Consent Order Tanks Characterization Roadmap, INEEL Vadose Zone/Groundwater Roadmap, Calcine Treatment Alternatives Roadmap. These efforts represent a great start; however, there is more to be accomplished in using Roadmapping as a tool for planning strategic initiatives and in coordinating the R&D performed by multiple federal agencies.

Collins, J. W.

2002-02-28T23:59:59.000Z

332

Roadmapping - A Tool for Strategic Planning and Leveraging R&D completed by other Agencies  

SciTech Connect

The Department of Energy (DOE) is responsible for management of the environmental legacy of the nation's nuclear weapons and research program. This is the largest, most complex environmental cleanup program in the world. The issues and problems encountered in this program create the need to develop many scientific and technological solutions. To be effective, the process used to create these solutions must be well coordinated through DOE's Environmental Management program, the rest of DOE, and other Federal agencies. Roadmapping is one strategic planning tool to provide the needed coordination. Past roadmapping accomplishments include: (1) Issuance of the Draft EM Roadmapping Guidance; (2) Issuance of the EM R&D Program Plan and Strategic Plan which established the direction for Roadmapping; (3) Issuance of the OST Management Plan which calls out Roadmapping as a key tool in EM Research & Development (R&D) Strategic Planning; (4) Completion of or progress on key EM Roadmaps, i.e., Savannah River High Level Waste (HLW) Salt Dispositioning Roadmaps, Hanford Groundwater/Vadose Zone Roadmap, Robotics and Intelligent Machines Critical Technology Roadmap, Complex-Wide Vadose Zone Roadmap, Long-Term Stewardship Preliminary Roadmap, Hydrogen Gas Generation R&D Plan (Roadmap), Idaho National Engineering and Environmental Laboratory (INEEL) Sodium Bearing Waste Dispositioning Roadmap, INEEL Voluntary Consent Order Tanks Characterization Roadmap, INEEL Vadose Zone/Groundwater Roadmap, Calcine Treatment Alternatives Roadmap. These efforts represent a great start; however, there is more to be accomplished in using Roadmapping as a tool for planning strategic initiatives and in coordinating the R&D performed by multiple federal agencies.

Collins, J. W.

2002-02-28T23:59:59.000Z

333

EPRI Smart Grid Roadmap Workshop  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) hosted the third Smart Grid Roadmap Workshop on August 7 and 8, 2012, at EPRIs office in Palo Alto, California. The objective of the workshop was to bring together the people responsible for developing and maintaining the smart grid roadmaps for their companies in order to encourage dialogue about their experiences, share lessons learned and best practices, and discuss topics of mutual interest. Workshop participants presented on their ...

2012-10-04T23:59:59.000Z

334

Tennessee Valley Smart Grid Roadmap  

Science Conference Proceedings (OSTI)

This document is the final report resulting from a Smart Grid road-mapping process conducted collaboratively by the power distributors of the Tennessee Valley in coordination with the Tennessee Valley Authority. The project spanned twelve months and was facilitated through a series of topical workshops in which domain experts from throughout the Valley met to develop the plan. The roadmap takes a ten-year look at Smart Grid developments and plans for the Valley, identifying key focus areas, specific goal...

2011-12-05T23:59:59.000Z

335

Technology transfer expert to lead Lawrence Livermore's Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

immediate release: 07092013 | NR-13-07-02 The commercialization of laser peening technology, used for critical jet engine components, has proven to be one of the most...

336

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

supportive government policies to promote wind energyPolicy and Renewable Energy Technology. Proceedings of the 2003 Conference on Government

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

337

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American

338

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the...

339

A Roadmap for Engineering Piezoelectricity in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmap for Engineering Piezoelectricity in Graphene A Roadmap for Engineering Piezoelectricity in Graphene Doping this 'Miracle Material' May Lead to New Array of Nanoscale...

340

Delayed ILC Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

ILCTA plans and opportunities ILCTA plans and opportunities ILCTA plans and opportunities November 27, 2007 Sergei Nagaitsev FNAL S. Nagaitsev 2 ILC ILC Cryomodule Cryomodule Cryomodules are complex 8 or 9 Cavities, ultra clean surfaces Operate in 2K superfluid He Quad Focusing magnets Couplers feed RF energy to cavities Tuners adjust cavity resonant frequency to match klystron 1200 parts ! Cryomodules are expensive Single most expensive component of the ILC About 2000 are needed for the ILC, 40 for Project X FNAL leads an international team working to improve the TESLA CM design for ILC (DESY, INFN, KEK, CERN, SLAC, India, etc ILC must industrialize cavities, components, & maybe assembly Developing the extensive infrastructure to build and test CM's

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications  

SciTech Connect

A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

Brenda Yan; Dennis Urban

2003-04-21T23:59:59.000Z

342

Nondestructive Evaluation: Assessment of NDE Technologies and Practices in Other Industries, Volume 5  

Science Conference Proceedings (OSTI)

This report provides a summary of technical information collected on nondestructive evaluation (NDE) technologies that are used in other industries and research into new NDE technologies. The purpose of this report is to assess these NDE technologies to determine if they could be useful for nuclear inspection applications. In addition, this study also evaluates some NDE technologies that are currently being researched by universities and other research ...

2013-10-14T23:59:59.000Z

343

Roadmap to Secure Control Systems in the Energy: Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foreword Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years. The Roadmap provides a strategic framework for guiding industry and government efforts based on a clear vision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctive feature of this collaborative effort is the active involvement and leadership of energy asset owners and operators in developing the Roadmap content and priorities. The Roadmap synthesizes

344

Roadmap to Secure Control Systems in the Energy Sector  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic framework for guiding industry and goernment efforts based on a clear ision supported by goals and time-based milestones. It addresses the energy sector's most urgent challenges as well as longer-term needs and practices. A distinctie feature of this collaboratie effort is the actie inolement and leadership of energy asset

345

Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry  

Science Conference Proceedings (OSTI)

The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

Johnston, S.F. Jr. (ed.)

1980-08-01T23:59:59.000Z

346

Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry  

Science Conference Proceedings (OSTI)

This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

Marcuse, W.

1987-01-01T23:59:59.000Z

347

The Biodiesel Handbook, 2nd EditionChapter 11 Glycerol Technology Options for Biodiesel Industry  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 11 Glycerol Technology Options for Biodiesel Industry Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters Press Downloadable pdf of Ch

348

Technologies, markets and challenges for development of the Canadian Oil Sands industry  

E-Print Network (OSTI)

This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

Lacombe, Romain H.

2007-01-01T23:59:59.000Z

349

NEXRAD and the Broadcast Weather Industry: Preparing to Share the Technology  

Science Conference Proceedings (OSTI)

This paper describes results from a survey designed to establish the current level of radar and computer technology of the television weather industry, and to assess the awareness and attitudes of television weather forecasters toward the Next ...

Michele M. Robertson; Kelvin K. Droegemeier

1990-01-01T23:59:59.000Z

350

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

2008-12-01T23:59:59.000Z

351

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American families, and weaken a sector of the economy that serves as the backbone of U.S. gross domestic product. The Industrial Technologies Program (ITP) is actively

352

Lodging Industry Solutions: Heating and Cooling Space Conditioning Technology Guidebook  

Science Conference Proceedings (OSTI)

This guidebook provides utility representatives with a tool to help understand the lodging industry and its space conditioning needs and options. It also provides information to help build and maintain customer loyalty. The guidebook will enable utility personnel to provide additional services to their lodging clients by informing them of space conditioning choices and solutions for their facilities.

1998-12-18T23:59:59.000Z

353

Estimating energy-augmenting technological change in developing country industries  

E-Print Network (OSTI)

over time is calculated. Second, prices and the energy costTime averages of sectoral productivity and autonomous energy efficiency trend Industry Prices and energy costTime averages (in percent) of sectoral productivity and autonomous energy efficiency trend Prices and energy cost

Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

2006-01-01T23:59:59.000Z

354

Industrial heat pumps in Germany -potentials, technological development  

E-Print Network (OSTI)

jet nozzle Closed Cycles: Absorption/Adsorption heat pump thermal compressor driven by waste heat to 80 COP heating 2.5 to 5.8 Cooling function 50% of manufacturers offer cooling functions Cooling capacity [kW] 20 to 2500 COP cooling 1 to 6 #12;ACHEMA 2012 - Industrial heat pumps 21st June 2012

Oak Ridge National Laboratory

355

DOE Openess: Human Radiation Experiments - Roadmap to the Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Experiments: Roadmap to the Project DOE Shield DOE Openness: Human Radiation Experiment Roadmap to the Project Roadmap to the Project Home Roadmap What's New Search HREX...

356

Emerging Industrial Process Heating Technologies:An Update on Electrotechnologies, Applications, and Case Studies  

Science Conference Proceedings (OSTI)

In this technical update, emerging technologies as well as applications of electrotechnologies in industrial process heating are discussed. This technical update is a continuation of the Electric Power Research Institutes (EPRIs) research from the previous years and adds new state-of-the-art process heating technologies to the list. The main focus of the research is given to energy-intensive industrial sectors such as primary metals and metal treatment. Successful implementation of the ...

2013-12-07T23:59:59.000Z

357

Technology Challenges & Opportunities in the Biotechnology, Pharmaceutical & Medical Device Industries  

Science Conference Proceedings (OSTI)

Realization of the projected benefits of biotechnology involves a variety of challenges and portends many opportunities.ᅠᅠThis article focuses on technology challenges as seen by executives in the biotechnology, pharmaceutical, and medical device ...

Martha S. Farley; William B. Rouse

2000-04-01T23:59:59.000Z

358

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

359

Shale oil technology: status of the industry. Working paper no. 7  

SciTech Connect

This paper reviews the status of the shale oil industry, with emphasis upon the engineering options for producing synthetic oil from shale. The first section describes alternate technologies to extract the process oil from shale. The second section evaluates resource, environmental, and economic factors which influence the shale oil industry.

Eaton, D.

1977-01-01T23:59:59.000Z

360

RADIATION: A TOOL FOR INDUSTRY. A Survey of Current Technology  

SciTech Connect

This one-year survey of industrial applications of ionizing radiation is based on interviews with workers in the field and on analysis of selected literature. ionizing radiation at kilowatt power levels from electron accelerators and from radionuclides is finding a few special applications, notably sterilization and be in various stages of process development and tcsting. These are concentrated heavily in the plastics field, though examples are found in petrochemical synthesis, product sterilization, and portable energy sources such as batteries. Ionizing radiation is not yet a processing tool of major importance to industry generally, however, because it has not yet demonstrated sufficient advantages over established methods of achieving a similar result. Thus, though ionizing radiation produces free radicals under a wide variety of conditions, it has, with few exceptions, not proved superior to other agents, such as heat and chemicals, that also produce free radicals. Insufficient specificity of action, low yields, and costs higher than those of competitive processes are among the chief difficulties found. Possible unique features of radiation have not been fully explored. Optimization of enviromental variables has not been thoroughly studied. Indirect advantages associated with radiation, such as greater processing or packaging flexibility, have already proved significantly important but have not yet been thoroughly evaluated in most potential applications. Even radiation engineering is relatively undeveloped and radiation economics uncertain. Skillfully oriented research and development on such problems will improve the likelihood of radiation becoming a tool of major importance for U.S. industry. (auth)

1959-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

362

Climate VISION: Private Sector Initiatives: Aluminum: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways U.S. aluminum producers recognize that reducing greenhouse gas emissions and improving energy efficiency offers a competitive edge in world markets. In 1996, the U.S. industry entered into partnership with DOE's Industrial Technologies Program (ITP) to work toward shared goals. Since then, the Aluminum Industry of the Future partnership has been feeding the technology pipeline so that U.S. producers will have the technologies they need to achieve their long-term economic, energy and environmental goals. The Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to

363

Design for Location? The Impact of Manufacturing Offshore on Technology Competitiveness in the Optoelectronics Industry  

Science Conference Proceedings (OSTI)

This paper presents a case study of the impact of manufacturing offshore on technology competitiveness in the optoelectronics industry. It examines a critical design/facility location decision being faced by optoelectronic component manufacturers. This ... Keywords: design for manufacturing, international, product development, technology choice

Erica Fuchs; Randolph Kirchain

2010-12-01T23:59:59.000Z

364

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

365

Report to NIST on the Smart Grid Interoperability Standards Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to NIST on the Smart Grid Interoperability Standards Roadmap to NIST on the Smart Grid Interoperability Standards Roadmap Report to NIST on the Smart Grid Interoperability Standards Roadmap Under the Energy Independence and Security Act (EISA) of 2007, the National Institute of Standards and Technology (NIST)has "primary responsibility to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems..." [EISA Title XIII, Section 1305] Report to NIST on the Smart Grid Interoperability Standards Roadmap More Documents & Publications NIST Activities in Support of the Energy Independence and Security Act (EISA) of 2007 Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2012 Update

366

DOE Publishes Roadmap for Developing Cleaner Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Publishes Roadmap for Developing Cleaner Fuels Publishes Roadmap for Developing Cleaner Fuels DOE Publishes Roadmap for Developing Cleaner Fuels July 7, 2006 - 2:52pm Addthis Research Aimed at Making Cellulosic Ethanol a Practical Alternative to Gasoline WASHINGTON, DC -- The U.S. Department of Energy (DOE) today released an ambitious new research agenda for the development of cellulosic ethanol as an alternative to gasoline. The 200-page scientific "roadmap" cites recent advances in biotechnology that have made cost-effective production of ethanol from cellulose, or inedible plant fiber, an attainable goal. The report outlines a detailed research plan for developing new technologies to transform cellulosic ethanol-a renewable, cleaner-burning, and carbon-neutral alternative to gasoline-into an economically viable

367

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

368

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institutes (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

369

Roadmap for Agriculture Biomass Feedstock Supply in the United States  

SciTech Connect

The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nations power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the countrys current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: Biomass Availability By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee Sustainability Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner Feedstock Infrastructure An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets System Profitability Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply processproduction, harvesting and collection, storage, preprocessing, system integration, and transportationthis roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

2003-11-01T23:59:59.000Z

370

New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts January 11, 2011 - 12:00pm Addthis Washington, DC - An overview of research, development, and demonstration (RD&D) efforts to supply cost-effective, advanced carbon capture and storage (CCS) technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy (DOE). Link to the 2010 CCS Roadmap Prepared by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the latest DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap outlines the program's efforts to develop advanced CCS technology. CCS is considered by many experts as an important component in

371

Home Smoke Alarms A Technology Roadmap  

E-Print Network (OSTI)

additional sensors into alarms. Besides aerosols, other primary products of combustion, including carbon and implemented with various proprietary modifications, depending upon the manufacturer. Virtually all ionization as improving fire recognition with minimal false alarms. With mass manufacturing and low-cost, solid

372

Industrial Waste Heat Recovery Opportunities: An Update on Industrial High Temperature Heat Pump Technologies  

Science Conference Proceedings (OSTI)

It is estimated that as much as 20% to 50% of energy consumed is lost via waste heat contained in streams of exhaust gases and hot liquids, as well as through conduction, convection or radiation emanating from the surface of hot equipment. It is also estimated that in some cases, such as industrial furnaces, efficiency improvements resulting from waste heat recovery can improve efficiency by 10% to as much as 50%. This technical update is a continuation of research conducted by the Electric Power ...

2013-12-04T23:59:59.000Z

373

Science for Energy Technology: Strengthening the Link Between Basic Research and Industry  

SciTech Connect

The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology.

2010-04-01T23:59:59.000Z

374

Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development  

E-Print Network (OSTI)

The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum implementation of existing and new energy conservation technologies; substitute, where possible, abundant fuels for scarce fuels; and minimize energy loss in waste streams. The basic strategy is cost-shared research, development, and demonstration leading to commercialization of energy-efficient technology. Considerations for project selection are: energy savings, acceleration of implementation, level of private effort, benefits to industry, cost-sharing, and degree of risk. Projected industry savings of the current program are 1.5 Quads by 1985 and 5.5 Quads by 2000.

Massey, R. G.

1980-01-01T23:59:59.000Z

375

The Technology Information Environment with Industry (TIE-In): A mechanism for accessing laboratory solutions  

SciTech Connect

The Technology Information Environment with Industry (TIE-In) is a system that helps users obtain laboratory-developed technical solutions without requiring that they duplicate the technical resources (in people, hardware and software) at the national laboratories. TIE-In is based on providing users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users obtain technical solutions without requiring that the user have specialized technical and computer expertise. As a designated DOE Technology Deployment Center/User Facility, industry users can access a broad range of laboratory-developed technologies on a cost-recovery basis. TIE-In will also be used to share laboratory resources with partners in US industry that help the DOE meet future manufacturing needs for the stewardship of our nation`s nuclear weapons stockpile.

Ang, J.A.; Machin, G.D.; Marek, E.L.

1994-12-31T23:59:59.000Z

376

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

377

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

378

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

379

Microsoft Word - IESP-roadmap-1.1.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Contents Contents 1. Introduction ................................................................................ 1 2. Destination of the IESP Roadmap ................................................ 3 3. Technology Trends and Their Impact on Exascale ....................... 3 3.1 Technology Trends ........................................................................... 4 3.2 Science Trends ................................................................................. 6 3.3 Key Requirements Imposed by Trends on the X-Stack ..................... 7 3.4 Relevant Politico-Economic Trends................................................... 8 4. Formulating Paths Forward for X-Stack Component Technologies9 4.1 System Software ..............................................................................

380

Metal casting industry of the future: An integrated approach to delivering energy efficiency products and services  

SciTech Connect

The Industries of the Future process is driven by industry. Through technology roadmaps, industry participants set technology priorities, assess the progress of R and D, and ultimately lead the way in applying research results. This approach to private-public partnerships ensures the most strategic allocation possible of limited resources for the development of new technologies and the enhancement of industrial processes. Based on industry`s request, OIT`s role is to help facilitate the Industries of the Future strategy and to support the development and deployment of technologies that will shape the future of the metal casting industry. Part of this role is to encourage industry to undertake long-term, sector-wide technology planning and to selectively cost-share with OIT in collaborative R and D activities that match OIT`s mission. OIT metal casting research requires a dollar for dollar industry cost share.

1998-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS The 21 st Century Truck Partnership would like to acknowledge the time and resource investment that all our partners have made in developing this roadmap and technical white paper document, and in remaining committed to the goals and objectives outlined herein. We would also like to extend our appreciation to the industry and government teams that produced the individual technical white papers, and the leaders of those teams who are listed below. Engines: Ron Graves (Oak Ridge National Laboratory) with Dennis Siebers (Sandia National Laboratories) Hybrids: Terry Penney (National Renewable Energy Laboratory) Parasitic Losses: Jud Virden (Pacific Northwest National Laboratory) Idle Reduction: Glenn Keller (Argonne National Laboratory)

382

OpenEI Community - roadmap  

Open Energy Info (EERE)

2 at http://en.openei.org/community Texas Legal Review 2 at http://en.openei.org/community Texas Legal Review http://en.openei.org/community/blog/texas-legal-review The NREL roadmap team recently met with our legal team Brownstein Hyatt Farber and Schreck (www.bhfs.com) for a review of the Texas portion of the Geothermal Regulatory Roadmap (GRR).  BHFS provided excellent suggestions to the Section 3 flowcharts for geothermal leases on Texas state lands.  The Texas portion of the GRR now encompasses a flowchart for Texas state land leasing on Permanent School Fund Lands, Texas Parks and Wildlife Department Lands, Land Trade Lands, and Relinquishment Act Lands.  Additionally, BHFS provided many other helpful tips for clarifying other issue

383

Profile of the chemicals industry in California: Californiaindustries of the future program  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in Califor

Galitsky, Christina; Worrell, Ernst

2004-06-01T23:59:59.000Z

384

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

385

The Impacts of Information Technology, the Internet and Electronic Commerce on Firm and Industry Structure: The Personal Computer Industry  

E-Print Network (OSTI)

network. Impact of IT on PC industry structure for web.docto Rapid Change in the PC Industry. California ManagementDataquest (1995), Computer Industry Forecasts. Dataquest.

Dedrick, Jason; Kraemer, Kenneth L.

2002-01-01T23:59:59.000Z

386

Built-Environment Wind Turbine Roadmap  

DOE Green Energy (OSTI)

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

387

Built-Environment Wind Turbine Roadmap  

SciTech Connect

Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

2012-11-01T23:59:59.000Z

388

Examining U.S. ESCO Industry Trends:Examining U.S. ESCO Industry Trends: Practices and Applied Technologies:Practices and Applied Technologies  

E-Print Network (OSTI)

: Energy Analysis Department ESCO Industry has experiencedESCO Industry has Companies Other Energy Companies Utility Affiliates ESCO Industry OwnershipESCO Industry Ownership Structure improvements Power supply Industrial process improvements Plumbing Measure Category No

389

MRL Industries Inc | Open Energy Information  

Open Energy Info (EERE)

MRL Industries Inc MRL Industries Inc Jump to: navigation, search Name MRL Industries Inc Place Sonora, California Zip 95370 Sector Solar Product MRL Industries is a US company committed to developing heating technology. They are a supplier for crystalline silicon solar cell production. Coordinates 30.567043°, -100.64392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.567043,"lon":-100.64392,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies  

DOE Green Energy (OSTI)

Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

Kutscher, C.F. (ed.)

1981-03-01T23:59:59.000Z

391

Outsourcing in the Healthcare Industry: Information Technology, Intellectual Property, and Allied Aspects  

Science Conference Proceedings (OSTI)

The healthcare industry is being impacted by advances in information technology in four major ways: first, a broad spectrum of tasks that were previously done manually can now be performed by computers; second, some tasks can be outsourced to other countries ...

Amar Gupta; Raj K. Goyal; Keith A. Joiner; Sanjay Saini

2008-01-01T23:59:59.000Z

392

Information technology support for knowledge management in the chemical process industry  

Science Conference Proceedings (OSTI)

Effective knowledge management in the Chemical Process Industry (CPI) is intimately linked with the level of development in collection, transfer, analysis, flow and absorption of data/information/knowledge and the implementation of decisions. ... Keywords: ERP, control, cpi, information technology, knowledge management, optimisation, plant information, simulation, supply chain

Amalendu Datta

2003-07-01T23:59:59.000Z

393

Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis  

Science Conference Proceedings (OSTI)

This study examines technological collaboration in the solar cell industry using the information of patent assignees and inventors as defined by the United States Patent and Trademark Office. Three different collaborative types, namely local (same city), ... Keywords: Assignee, Collaboration, Inventor, PV system, Patent analysis, Solar cell

Xiao-Ping Lei; Zhi-Yun Zhao; Xu Zhang; Dar-Zen Chen; Mu-Hsuan Huang; Jia Zheng; Run-Sheng Liu; Jing Zhang; Yun-Hua Zhao

2013-08-01T23:59:59.000Z

394

Industrial energy conservation technology: proceedings of the 1984 conference and exhibition. Volume 1  

SciTech Connect

The Sixth Annual Industrial Energy Conservation Technology Conference and Exhibition was held at the Shamrock Hilton Hotel, Houston, Texas, April 15-18, 1984. Fifty-nine papers from Vol. I of the proceedings have been entered individually into EDB and ERA; one has been entered previously from other sources. (LTN)

Williams, M.A. (ed.)

1984-01-01T23:59:59.000Z

395

Innovation and the state : development strategies for high technology industries in a world of fragmented production : Israel, Ireland, and Taiwan  

E-Print Network (OSTI)

One of the most unexpected changes of the 1990s is that firms in a number of emerging economies not previously known for their high-technology industries have leapfrogged to the forefront in new Information Technologies ...

Breznitz, Dan

2005-01-01T23:59:59.000Z

396

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

397

Emerging Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps *...

398

U.S. Department of Energy's Industrial Technologies Program and Its Impacts  

E-Print Network (OSTI)

The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL's most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP's research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

Weakley, S. A.; Brown, S. A.

2011-01-01T23:59:59.000Z

399

U.S. Department of Energy's Industrial Technology Program and Its Impacts  

E-Print Network (OSTI)

The U.S. Department of Energys Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNLs most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITPs research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.

Weakley, S. A.; Roop, J. M.

2009-05-01T23:59:59.000Z

400

International Workshop: MFE Roadmapping in the ITER Era | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop: MFE Roadmapping in the ITER Era International Workshop: MFE Roadmapping in the ITER Era Contact Information Website: International Workshop: MFE Roadmapping...

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

402

Poland-Roadmap 2050 | Open Energy Information  

Open Energy Info (EERE)

Poland-Roadmap 2050 Poland-Roadmap 2050 Jump to: navigation, search Name Poland-Roadmap 2050 Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Non-renewable Energy, Buildings, Buildings - Commercial, Buildings - Residential, Transportation Topics Low emission development planning, -Roadmap Website http://www.roadmap2050.eu/ Country Poland Eastern Europe References ECF-Poland-Roadmap 2050[1] "The roadmap will concentrate on those sectors that are key for low-carbon transition: Initial analysis for the overall economy including buildings and transport to figure out the role played by the power sector in providing for this demand. First phase will look at technical scenarios for the power system including generation grid, efficiency and demand side management

403

A Roadmap to Funding Infrastructure Development | Open Energy Information  

Open Energy Info (EERE)

Roadmap to Funding Infrastructure Development Roadmap to Funding Infrastructure Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Roadmap to Funding Infrastructure Development Agency/Company /Organization: OECD/ITF Complexity/Ease of Use: Not Available Website: www.internationaltransportforum.org/jtrc/DiscussionPapers/DP201209.pdf Related Tools European Green Cars Initiative Asian Development Bank - Transport TRANSfer - Towards climate-friendly transport technologies and measures ... further results Find Another Tool FIND TRANSPORTATION TOOLS This paper discusses the initiatives and procedures necessary for the successful development of large-scale transportation Public Private Partnership projects from a developer's point of view. The topics covered in this paper include: Project Procurement, Proper Risk Allocation, and

404

Report to NIST on the Smart Grid Interoperability Standards Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About This Document: About This Document: Report to NIST on the Smart Grid Interoperability Standards Roadmap-Post Comment Period Version Under the Energy Independence and Security Act (EISA) of 2007, the National Institute of Standards and Technology (NIST) has "primary responsibility to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems..." [EISA Title XIII, Section 1305] In late March 2009, NIST awarded the Electric Power Research Institute (EPRI) a contract to engage Smart Grid stakeholders developing a draft interim standards roadmap. On June 17, EPRI delivered its Report to NIST on the Smart Grid Interoperability Standards Roadmap.* This document

405

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader A Climate Contingency Roadmap for the U.S. Electricity Sector: Phase II (PDF 192 KB) This roadmap examines the role of the electric sector in climate change and the sectoral impacts of alternative climate policy designs. The document explores the capabilities and costs of emissions reduction options and the influence of company-specific circumstances on the design of cost-effective response strategies. It also investigates mechanisms to create incentives for support of advanced climate-related technology research, development, and demonstration. Electric Power Research Institute Roadmap The Electric Power Research Institute is initiating an effort to develop an

406

Reallocation and Technology: Evidence from the U.S. Steel Industry ?  

E-Print Network (OSTI)

This paper studies the role of technology and competition in industry-wide productivity growth. We rely on a unique producer-level dataset covering U.S. steel producers between 1963 and 2002 to measure the impact of a drastic new production technology, the minimill, on aggregate productivity. In addition we trace out its associated impact on productivity and market power through increased competition as measured by the reshuffling of market shares over time and across producers. We provide direct evidence that technological change can itself bring about a process of resource reallocation over a long period of time and lead to substantial productivity growth for the industry as a whole. More specifically, we find that the introduction of a new production technology spurred productivity growth through two channels. First, the entry of minimills lead to a slow but steady drop in the market share of the incumbent technology, the vertically integrated producers. Second, while the new technology started out with a significant productivity premium, by the end of the sample minimills and vertically integrated producers are very similar in terms of efficiency. This catching-up process of the incumbents came about from a large within reallocation of resources among vertically integrated plants.

Allan Collard-wexler; Jan De Loecker

2012-01-01T23:59:59.000Z

407

Industry  

E-Print Network (OSTI)

55 Energy and technologysaved. In Ja- pan, the New Energy and Technology Developmentgases (EC, 2006c). Energy and technology policies Regulation

Bernstein, Lenny

2008-01-01T23:59:59.000Z

408

Separations and Actinide Science -- 2005 Roadmap  

SciTech Connect

The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by advanced reactors and reprocessing methods based on pyrochemical methods and by using different fuel cycles that do not readily produce plutonium. SASR will facilitate the deployment of advanced pyrochemical separation technology and support development of reprocessing of thorium-based reactor fuels.

2005-09-01T23:59:59.000Z

409

Thai decision makers in the United States: attitudes toward technology transfer in a newly industrializing country  

SciTech Connect

The problem of the study was to determine the attitudes of Thai policy makers toward technology transfer into newly industrializing countries such as Thailand. These opinions were considered crucial in determining the direction of industrialization of the country. The study was conducted with a sample of Thai government administrators and business leaders employed in the State of California. Analysis consisted of an item by item comparison of responses and of a ranking of suitable types of technology for Thailand. The study attempted to ascertain attitudes and to determine any similarities and differences between the responses of the two groups. The study concerned itself with three broad questions: (1) do Thai government administrators agree with one another about technology transfer; (2) do Thai business leaders agree with one another; and (3) how do the attitudes of government administrators and business leaders compare. The findings indicated that no appreciable differences could be measured among the government administrators in technology transfer issues. Similarly, business respondents also strongly agreed with one another regarding aspects of technology transfer. Lastly, there was no real difference between the attitudes of business leaders and government administrators.

Suriyakumpol, C.

1985-01-01T23:59:59.000Z

410

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

411

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

DOE Green Energy (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

412

Advanced Industrial Materials (AIM) Program annual progress report, FY 1997  

SciTech Connect

The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

NONE

1998-05-01T23:59:59.000Z

413

An Assessment of carbon reduction technology opportunities in the petroleum refining industry.  

Science Conference Proceedings (OSTI)

The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

Petrick, M.

1998-09-14T23:59:59.000Z

414

Mineral-wool industry: opportunities for natural gas technologies. Topical report, January-July 1987  

SciTech Connect

To quantify the opportunities for natural gas and identify technological advances needed to capture such opportunities, the mineral-wool industry was analyzed with respect to the principal companies, their capabilities, and markets. The mineral-wool industry is stable with a slightly declining market. Of its market segments, only commercial acoustic insulation (which is currently dominant) is likely to be affected by growth in the next ten years. The principal process is based on treatment of blast-furnace slags in a cupola furnace using coke as the fuel and reducing agent. Expanded use of gas, as a substitute for coke, would eliminate environmental problems and expand the latitude of suitable raw materials. The study provides insights into the mineral-wool industry and identifies factors that may constitute bases for future usage of natural gas.

Not Available

1988-05-01T23:59:59.000Z

415

Climate VISION: PrivateSector Initiatives: Oil and Gas: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways The oil and gas industry is a very diverse and complex sector of the energy economy. It ranges from exploration to production, processing, transportation, and distribution. All of these segments are elements of the natural gas industry and the oil industry but are different for oil than for natural gas. An example of a technology pathway for the oil refining industry is the Petroleum Refining Vision and Roadmap, which was developed through a joint effort of government and industry. Other technology roadmaps of relevance to Climate VISION participants either are being developed or will be developed in the future. The oil refining example is provided initially. Others will be added as they become available. Petroleum refining is one of nine energy-intensive industries that is

416

Industrial energy conservation technology: proceedings of the 1984 conference and exhibition. Volume II  

Science Conference Proceedings (OSTI)

The Sixth Industrial Energy Conservation Technology Conference and Exhibition was held at the Shamrock Hilton Hotel, Houston, Texas, April 15-18, 1984. This was a project of the Texas State Energy Conservation Program sponsored by the Texas Economic Development Commission and the Public Utility Commission of Texas. Sixty-seven papers from Volume 2 of the proceedings have been entered individually into EDB and ERA. (LTN)

Williams, M.A. (ed.)

1984-01-01T23:59:59.000Z

417

Tennessee Valley Smart Grid Roadmap Workshops  

Science Conference Proceedings (OSTI)

The power distributors of the Tennessee Valley are developing a smart grid roadmap in coordination with the Tennessee Valley Authority. The road-mapping process included the identification of a set of key applications, each of which served as the topic of a dedicated workshop. This report provides a compilation of the reports that resulted from these workshops. The report was produced to ensure that the meeting minutes are maintained and available for future reference. The overall smart grid roadmap is d...

2011-10-11T23:59:59.000Z

418

Beckons Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Beckons Industries Ltd Beckons Industries Ltd Jump to: navigation, search Name Beckons Industries Ltd Place Mohali, Chandigarh, India Zip 160055 Sector Biofuels Product India-based algae technology developer for biofuels. Coordinates 30.7011°, 76.72079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7011,"lon":76.72079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

420

Arizona/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

Roadmap Roadmap < Arizona‎ | Transmission Jump to: navigation, search ArizonaTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart for Section 8: Transmission. The General Flowchart will lead you to the

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

HECO-DR-roadmap-FinalReport-040313  

NLE Websites -- All DOE Office Websites (Extended Search)

5E Hawaiian Electric Company Demand Response Roadmap Project Roger Levy and Sila Kiliccote Lawrence Berkeley National Laboratory January 2013 DISCLAIMER This document was prepared...

422

Geothermal Regulatory Roadmap featured on NREL Now | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap featured on NREL Now Geothermal Regulatory Roadmap featured on NREL Now Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 August, 2013 - 13:18 geothermal NREL OpenEI regulatory roadmap Navigating the complex system of federal and state regulations to secure project approvals is one of the biggest hurdles geothermal power developers face-but not if they've got a map outlining every twist and turn. DOE's Geothermal Regulatory Roadmap, a new online tool for agency, industry, and policymaker use, helps developers make it through regulatory requirements at every level of government more easily to deploy geothermal energy projects. Designed to help strengthen collaboration between federal and state agencies, the roadmap should also speed the review of proposed projects and

423

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

424

The Soils and Groundwater EM-20 S&T Roadmap Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

The Soils and Groundwater EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

Fix, N. J.

2008-02-11T23:59:59.000Z

425

Microsoft Word - IESP-roadmap.docx - IESP-roadmap.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Exascale Software Exascale Software Project Roadmap 1   

426

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

427

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

428

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

429

Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams  

SciTech Connect

Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

Keiser, J. R.; Wang, D. [Gas Technology Institute; Bischoff, B.; Ciora, [Media and Process Technology; Radhakrishnan, B.; Gorti, S. B.

2013-01-14T23:59:59.000Z

430

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

431

Nondestructive Evaluation: Buried Pipe NDE Technology Assessment and Development Interim Report  

Science Conference Proceedings (OSTI)

This is an interim progress report for the Electric Power Research Institute (EPRI) project Assessment and Development of Buried Pipe Nondestructive Evaluation Technology, which is planned to continue through 2013. The project is a part of EPRIs overall strategy to close the industrys underground pipe infrastructure gaps, as described in the nuclear power industrys Underground Piping and Tank Integrity Strategic Roadmap. ...

2012-09-28T23:59:59.000Z

432

Industry  

E-Print Network (OSTI)

than 1400 energy policies being considered by governmentsof its energy and climate policy the Dutch government hasgovernment intervention on the development of strip casting technology. Energy Policy,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

433

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network (OSTI)

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric power generation business. Included is a comparison between heavy-duty industrial combustion turbines and their rapidly evolving competition, aeroderivative machines, with emphasis on the appropriate application of each. The prospects for future improvements in the cost and performance of combustion turbines are reviewed, and the likely impact of advanced combustion turbine power generation concepts is considered. Also summarized is the outlook for power generation fuels, including the longer term reemergence of coal and the potential for widespread use of coal gasification-based combustion turbine systems. The paper draws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy companies that includes utilities, independent power producers (IPPs), and power industry equipment vendors.

Karp, A. D.; Simbeck, D. R.

1994-04-01T23:59:59.000Z

434

U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry  

SciTech Connect

Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

Hsieh, B.C.B. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Wang Yingshi [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics

1997-11-01T23:59:59.000Z

435

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Colorado Type Term Title Author Replies Last Post sort icon Blog entry Colorado Colorado Meeting Kyoung 21 Mar 2013 - 10:24 Blog entry Colorado Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

436

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FY12 Type Term Title Author Replies Last Post sort icon Blog entry FY12 Thank You! Kyoung 21 Mar 2013 - 08:40 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253755

437

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: CX Type Term Title Author Replies Last Post sort icon Blog entry CX Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

438

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: feedback Type Term Title Author Replies Last Post sort icon Blog entry feedback Geothermal Stakeholder Feedback on the GRR Kyoung 21 Mar 2013 - 10:01 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

439

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Fish and Wildlife Type Term Title Author Replies Last Post sort icon Blog entry Fish and Wildlife Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

440

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EIS Type Term Title Author Replies Last Post sort icon Blog entry EIS Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry Database Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

442

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Cost Recovery Type Term Title Author Replies Last Post sort icon Blog entry Cost Recovery GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Cost Recovery GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers

443

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: flora and fauna Type Term Title Author Replies Last Post sort icon Blog entry flora and fauna Texas Legal Review Alevine 29 Jul 2013 - 14:46 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

444

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Categorical Exclusions Type Term Title Author Replies Last Post sort icon Blog entry Categorical Exclusions Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Blog entry Categorical Exclusions GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Categorical Exclusions GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review

445

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EA Type Term Title Author Replies Last Post sort icon Blog entry EA Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

446

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: analysis Type Term Title Author Replies Last Post sort icon Blog entry analysis GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry analysis GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Blog entry analysis Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers:

447

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FWS Type Term Title Author Replies Last Post sort icon Blog entry FWS Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253965

448

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: BHFS Type Term Title Author Replies Last Post sort icon Blog entry BHFS Texas Legal Review Alevine 29 Jul 2013 - 14:46 Blog entry BHFS Happy New Year! Kyoung 21 Mar 2013 - 10:09 Blog entry BHFS Legal Reviews are Underway Kyoung 21 Mar 2013 - 09:17 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill

449

Japanese power electronics inverter technology and its impact on the American air conditioning industry  

SciTech Connect

Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

Ushimaru, Kenji.

1990-08-01T23:59:59.000Z

450

Effective policymaking for developing ICT industries : lessons from three African governments' approach to information and communications technology  

E-Print Network (OSTI)

This thesis studies the effect of different information and communication technology (ICT) policies on the performance of the ICT industry in a given country. Many developing country governments are in the process of ...

Watkins, Kristen D

2012-01-01T23:59:59.000Z

451

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

Science Conference Proceedings (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

452

Industry  

E-Print Network (OSTI)

of 81 Chapter 7 Final Draft 2030 production (Mt) a A1 B2 GHGpotential and cost in 2030 Notes and sources: a Price etelectrode technology by 2030. g Humphreys and Mahasenan,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

453

Web services roadmap: The Semantic Web perspective  

E-Print Network (OSTI)

Recently the field of Web services has gained focus both in industry and academia. While industry has been mostly interested in standardisation and promotion of the technology, academia has been looking for ways to fit the technology into other frameworks, such as the Semantic Web. Anyway, despite of the increased academic and commercial interest to Web services, there are currently only few case studies available about Web services in the Semantic Web context. Moreover, according to authors knowledge, there is no publicly available study analysing which data is currently mostly provided/required by Web services. In this paper we target these shortcomings by providing a case study of semantically annotated commercial and governmental Web services. We analyse interaction and potential synergy between commercial and governmental Web services. Also the role ontologies for semantic integration of Web services is analysed. Moreover, we identify the most common data exploited by current Web services. 1

Peep Kngas

2006-01-01T23:59:59.000Z

454

Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model  

Science Conference Proceedings (OSTI)

Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

2000-04-13T23:59:59.000Z

455

Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry  

E-Print Network (OSTI)

Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the component-level and system-level, are one important means of capturing significant, lasting efficiency gains. Public policy can play a decisive role in enabling and encouraging industrial energy efficiency, whether the efficiency improvements come through equipment upgrades or best operating practices. In the United States the industrial sector is impacted by many policies-fiscal and monetary, economic development, energy pricing, climate legislation, tax code, and direct subsidies, among others-all of which help shape the strategy and health of American manufacturers. This paper examines the market conditions and policy measures that affect the commercialization and adoption rate of promising, new energy-efficient industrial technologies. Market maturity, macroeconomic health, public and private investment, perceived risk, organizational decision-making, and regulatory certainty are all factors that influence the market penetration of emerging industrial technologies. Understanding their interplay is crucial to providing a policy environment that fosters industrial energy efficiency. In addition to a thorough literary review, this paper draws from a series of discussions with research experts, government officials, academics, equipment manufacturers, technical experts, trade representatives, and leading spokespersons from industry in the US. Authors then distill key findings into a suite of policy options that can help catalyze private technology investment and increase the uptake of emerging, energy-efficient, industrial technologies. Proposed policy options are organized within four central themes: 1) Greater emphasis on emerging technologies within existing energy efficiency activities; 2) Emerging technology at the intersection of energy efficiency and air quality priorities; 3) Diffusion of reliable information and technical data; and 4) Alignment and coordination of public and private activities.

Harris, J.; Bostrom, P.; Lung, R. B.

2011-01-01T23:59:59.000Z

456

CUSTOMER RESPONSE TO BESTPRACTICES TRAINING AND SOFTWARE TOOLS PROVIDED BY DOE'S INDUSTRIAL TECHNOLOGIES PROGRAM  

Science Conference Proceedings (OSTI)

The BestPractices program area, which has evolved into the Save Energy Now (SEN) Initiative, is a component of the U.S. Department of Energy's (DOE's) Industrial Technologies Program (ITP) that provides technical assistance and disseminates information on energy-efficient technologies and practices to U.S. industrial firms. The BestPractices approach to information dissemination includes conducting training sessions which address energy-intensive systems (compressed air, steam, process heat, pumps, motors, and fans) and distributing DOE software tools on those same topics. The current report documents a recent Oak Ridge National Laboratory (ORNL) study undertaken to determine the implementation rate, attribution rate, and reduction factor for industrial end-users who received BestPractices training and registered software in FY 2006. The implementation rate is the proportion of service recipients taking energy-saving actions as a result of the service received. The attribution rate applies to those individuals taking energy-saving actions as a result of the services received and represents the portion of the savings achieved through those actions that is due to the service. The reduction factor is the saving that is realized from program-induced measures as a proportion of the potential savings that could be achieved if all service recipients took action. In addition to examining those factors, the ORNL study collected information on selected characteristics of service recipients, the perceived value of the services provided, and the potential energy savings that can be achieved through implementation of measures identified from the training or software. Because the provision of training is distinctly different from the provision of software tools, the two efforts were examined independently and the findings for each are reported separately.

Schweitzer, Martin [ORNL; Martin, Michaela A [ORNL; Schmoyer, Richard L [ORNL

2008-03-01T23:59:59.000Z

457

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

458

Idaho/Transmission/Roadmap | Open Energy Information  

Open Energy Info (EERE)

Idaho/Transmission/Roadmap Idaho/Transmission/Roadmap < Idaho‎ | Transmission Jump to: navigation, search IdahoTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The flowcharts listed below cover the major requirements for developing transmission - both interconnects and major, multi-jurisdictional lines - including, land access, siting, and relevant environmental considerations. Reading the Roadmap The flowcharts are divided into General, Federal, and State columns to allow for ease of use. To use the flowcharts, start with General Flowchart for Section 8: Transmission. The General Flowchart will lead you to the

459

Cultural Roadmap Meeting | OpenEI Community  

Open Energy Info (EERE)

Cultural Roadmap Meeting Cultural Roadmap Meeting Home > Groups > Geothermal Regulatory Roadmap Kyoung's picture Submitted by Kyoung(155) Contributor 31 August, 2012 - 08:05 Yesterday, members of the GRR Team met with members of the geothermal permitting community who had experience and involvement in navigating the tribal and cultural process. During the afternoon workshop, participants mapped out the process in a series of flowcharts, discussing simiarities and differences in the way various agencies address these issues. The meeting was very successful and we have a clean series of flowcharts that we will be posting to the GRR Site on OpenEI soon. Groups: Geothermal Regulatory Roadmap Login to post comments Kyoung's blog Latest blog posts Kyoung Geothermal NEPA Workshop at GRC

460

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Groups > Groups > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

Note: This page contains sample records for the topic "industry technology roadmap" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Roadmap to Achieve Energy Delivery Systems Cybersecurity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Roadmap to Achieve Energy Delivery Systems Cybersecurity Roadmap to Achieve Energy Delivery Systems Cybersecurity ii Acknowledgements The Energy Sector Control Systems Working Group (ESCSWG) developed this roadmap in support of the Electricity Sub-sector Coordinating Council, Oil and Natural Gas Sector Coordinating Council, and the Government Coordinating Council for Energy under the Critical Infrastructure Partnership Advisory Council (CIPAC) Framework; the roadmap has been approved for release by these councils. The ESCSWG members volunteered their time and expertise to this effort and would like to thank the other participants for their valuable perspectives and contributions to this important effort. Special thanks go to the U.S. Department of Energy, which provided the funds and support needed to convene participants

462

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term Content Group Activity By term Q & A Feeds 1031 regulations (1) Alaska (1) analysis (3) appropriations (1) BHFS (3) Categorical Exclusions (3) citation (1) citing (1) Colorado (2) Coordinating Permit Office (2) Cost Mechanisms (2) Cost Recovery (2) CX (1) D.C. (1) data (1) Database (1) developer (2) EA (1) EIS (1) endangered species (1) Fauna (1) feedback (1) Fish and Wildlife (1)