National Library of Energy BETA

Sample records for industry surveys electric

  1. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  2. A utility survey and market assessment on repowering in the electric power industry

    SciTech Connect (OSTI)

    Klara, J.M.; Weinstein, R.E.; Wherley, M.R.

    1996-08-01

    Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

  3. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  4. Aftertreatment Research Prioritization: A CLEERS Industrial Survey...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Prioritization: A CLEERS Industrial Survey Aftertreatment Research Prioritization: A CLEERS Industrial Survey Presentation given at the 2007 Diesel Engine-Efficiency &...

  5. Nongqishi Electric Power Industrial Corporation | Open Energy...

    Open Energy Info (EERE)

    Nongqishi Electric Power Industrial Corporation Jump to: navigation, search Name: Nongqishi Electric Power Industrial Corporation Place: Kuitun City, Xinjiang Autonomous Region,...

  6. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  7. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  8. Rural electric cooperatives IRP survey

    SciTech Connect (OSTI)

    Garrick, C.

    1995-11-01

    This report summarizes the integrated resource planning (IRP) practices of US rural electric cooperatives and the IRP policies which influence these practices. It was prepared by the National Renewable Energy Laboratory (NREL) and its subcontractor Garrick and Associates to assist the US Department of Energy (DOE) in satisfying the reporting requirements of Title 1, Subtitle B, Section 111(e)(3) of the Energy Policy Act of 1992 (EPAct), which states: (e) Report--Not later than 2 years after the date of the enactment of this Act, the Secretary (of the US Department of Energy) shall transmit a report to the President and to the Congress containing--(the findings from several surveys and evaluations, including:); (3) a survey of practices and policies under which electric cooperatives prepare IRPs, submit such plans to REA, and the extent to which such integrated resource planning is reflected in rates charged to customers.

  9. Electric industry restructuring in Massachusetts

    SciTech Connect (OSTI)

    Wadsworth, J.W.

    1998-07-01

    A law restructuring the electric utility industry in Massachusetts became effective on November 25, 1997. The law will break up the existing utility monopolies into separate generation, distribution and transmission entities, and it will allow non-utility generators access to the retail end user market. The law contains many compromises aimed at protecting consumers, ensuring savings, protecting employees and protecting the environment. While it appears that the legislation recognizes the sanctity of independent power producer contracts with utilities, it attempts to provide both carrots and sticks to the utilities and the IPP generators to encourage renegotiations and buy-down of the contracts. Waste-to-energy contracts are technically exempted from some of the obligations to remediate. Waste-to-energy facilities are classified as renewable energy sources which may have positive effects on the value to waste-to-energy derived power. On November 25, 1997, the law restructuring the electric utility industry in Massachusetts became effective. The law will have two primary effects: (1) break up the existing utility monopolies into separate generation, distribution and transmission entities, and (2) allow non-utility generators access to the retail end-user market.

  10. Aftertreatment Research Prioritization: A CLEERS Industrial Survey |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Prioritization: A CLEERS Industrial Survey Aftertreatment Research Prioritization: A CLEERS Industrial Survey Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_blint.pdf More Documents & Publications CLEERS Aftertreatment Modeling and Analysis

  11. A Brief History of the Electricity Industry

    Gasoline and Diesel Fuel Update (EIA)

    data and evaluating electricity restructuring James Bushnell University of California Energy Inst. www.ucei.berkeley.edu Outline * Shameless flattery - Why EIA data are so important * Why are people so unhappy? - With electricity restructuring * What EIA data have helped us learn - Production efficiencies - Market efficiency - Market competition - Environmental compliance Why EIA is so important * Important industries undergoing historic changes - Restructuring/deregulation - Environmental

  12. Shenzhen Soyin Electrical Appliance Industrial Co Ltd | Open...

    Open Energy Info (EERE)

    Soyin Electrical Appliance Industrial Co Ltd Jump to: navigation, search Name: Shenzhen Soyin Electrical Appliance Industrial Co Ltd Place: Xixiang Town,Shenzhen, Guangdong...

  13. 2014 Total Electric Industry- Customers

    Gasoline and Diesel Fuel Update (EIA)

    Customers (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 6,243,013 862,269 28,017 8 7,133,307 Connecticut 1,459,239 155,372 4,648 4 1,619,263 Maine 706,952 91,541 3,023 0 801,516 Massachusetts 2,720,128 398,717 14,896 3 3,133,744 New Hampshire 606,883 105,840 3,342 0 716,065 Rhode Island 438,879 58,346 1,884 1 499,110 Vermont 310,932 52,453 224 0 363,609 Middle Atlantic 15,806,914 2,247,455 44,397 17

  14. Carbon Constraints and the Electric Power Industry

    SciTech Connect (OSTI)

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  15. Industry survey for horizontal wells. Final report

    SciTech Connect (OSTI)

    Wilson, D.D.; Kaback, D.S. [CDM Federal Programs Corp., Denver, CO (United States); Denhan, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Watkins, D. [CDM Federal Programs Corp., Aiken, SC (United States)

    1993-07-01

    An international survey of horizontal environmental wells was performed during May and June of 1993. The purpose of the survey was to provide the environmental industry with an inventory of horizontal environmental wells and information pertaining to the extent of the use of horizontal environmental wells, the variety of horizontal environmental well applications, the types of geologic and hydrogeologic conditions within which horizontal environmental wells have been installed, and the companies that perform horizontal environmental well installations. Other information, such as the cost of horizontal environmental well installations and the results of tests performed on the wells, is not complete but is provided as general information with the caveat that the information should not be used to compare drilling companies. The result of the survey is a catalogue of horizontal environmental wells that are categorized by the objective or use of the wells, the vertical depth of the wells, and the drilling company contracted to install the wells.

  16. CMI Industry Survey | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMI Industry Survey Thank you for your interest in Critical Materials Institute Education, Training and Outreach. Please share how you are interested in education and training about critical materials. There are additional comment boxes below to allow for any additional ideas you may have. My name is: * I would like to be contacted by telephone, so I am providing a phone number: I would like to be contacted by e-mail; please use this e-mail address: My role in education and outreach about

  17. Electric and Gas Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Gas Industries Association Jump to: navigation, search Name: Electric and Gas Industries Association Place: Sacramento, CA Zip: 95821 Website: www.egia.org Coordinates:...

  18. Challenges of Electric Power Industry Restructuring for Fuel Suppliers

    Reports and Publications (EIA)

    1998-01-01

    Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

  19. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  20. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were...

  1. Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: March 14, 2011 Survey says Electric Vehicle Prices are Key Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key November/December 2010 surveys of 1,716 drivers and 123 automobile industry executives indicate that both groups believe a low electric vehicle price would motivate consumers to switch from a conventional vehicle to an electric-only vehicle (EV). More than half of the drivers surveyed also indicated that an extended vehicle range, the

  2. Hubei Electric Power Survey Design Institute | Open Energy Information

    Open Energy Info (EERE)

    Survey Design Institute Jump to: navigation, search Name: Hubei Electric Power Survey&Design Institute Place: Hubei Province, China Product: Wuhan-based power project design and...

  3. Workforce Trends in the Electric Utility Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. PDF icon Workforce Trends in the Electric Utility

  4. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect (OSTI)

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  5. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to the system benefits charge ...

  6. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  7. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives to their commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are...

  8. Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

  9. Green Button Initiative Makes Headway with Electric Industry and Consumers

    Office of Environmental Management (EM)

    | Department of Energy Button Initiative Makes Headway with Electric Industry and Consumers Green Button Initiative Makes Headway with Electric Industry and Consumers July 22, 2015 - 3:01pm Addthis Photo courtesy of San Diego Gas & Electric Photo courtesy of San Diego Gas & Electric Kristen Honey Science and Technology Policy Fellow, Office of Energy Efficiency and Renewable Energy David Wollman Deputy Director of the Smart Grid and Cyber-Physical Systems Program at the National

  10. American Indian tribes and electric industry restructuring: Issues and opportunities

    SciTech Connect (OSTI)

    Howarth, D.; Busch, J.; Starrs, T.

    1997-07-01

    The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

  11. Household Response To Dynamic Pricing Of Electricity: A Survey...

    Open Energy Info (EERE)

    Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic...

  12. Geothermal Energy Growth Continues, Industry Survey Reports

    Broader source: Energy.gov [DOE]

    A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

  13. Salem Electric - Residential, Commercial, and Industrial Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Local Government Nonprofit Residential State Government Federal Government Multifamily Residential Savings Category Clothes Washers RefrigeratorsFreezers Equipment...

  14. Electric Power Industry Needs for Grid-Scale Storage Applications |

    Energy Savers [EERE]

    Department of Energy Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding

  15. FORM EIA-861 ANNUAL ELECTRIC POWER INDUSTRY REPORT INSTRUCTIONS

    Gasoline and Diesel Fuel Update (EIA)

    61 ANNUAL ELECTRIC POWER INDUSTRY REPORT INSTRUCTIONS Approval: OMB No. 1905-0129 Approval Expires: 05/31/2017 Burden Hours: 10.97 Page 1 PURPOSE Form EIA-861 collects information on the status of electric power industry participants involved in the generation, transmission, distribution, and sale of electric energy in the United States, its territories, and Puerto Rico. The data from this form are made available in EIA publications and databases. The data collected on this form are used to

  16. Public-policy responsibilities in a restructured electricity industry

    SciTech Connect (OSTI)

    Tonn, B.; Hirst, E.; Bauer, D.

    1995-06-01

    In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

  17. Dakota Electric Association - Commercial and Industrial Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Industrial Agricultural Savings Category Geothermal Heat Pumps Lighting Chillers Heat Pumps Air conditioners Compressed air Energy Mgmt. SystemsBuilding Controls Motors Motor VFDs...

  18. 2014 Total Electric Industry- Sales (Megawatthours

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47211525,53107038,19107433,557463,119983459 "Connecticut",12777579,12893531,3...

  19. (Electric) Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy Efficiency Fund. The Connecticut Light and Power...

  20. A Survey of Wireless Communications for the Electric Power System

    SciTech Connect (OSTI)

    Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

    2010-01-27

    A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nations energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: IEEE 802.16 d and e (WiMAX) IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

  1. Hydro and geothermal electricity as an alternative for industrial petroleum consumption in Costa Rica

    SciTech Connect (OSTI)

    Mendis, M.; Park, W.; Sabadell, A.; Talib, A.

    1982-04-01

    This report assesses the potential for substitution of electricity for petroleum in the industrial/agro-industrial sector of Costa Rica. The study includes a preliminary estimate of the process energy needs in this sector, a survey of the principal petroleum consuming industries in Costa Rica, an assessment of the electrical technologies appropriate for substitution, and an analysis of the cost trade offs of alternative fuels and technologies. The report summarizes the total substitution potential both by technical feasibility and by cost effectiveness under varying fuel price scenarios and identifies major institutional constraints to the introduction of electric based technologies. Recommendations to the Government of Costa Rica are presented. The key to the success of a Costa Rican program for substitution of electricity for petroleum in industry rests in energy pricing policy. The report shows that if Costa Rica Bunker C prices are increased to compare equitably with Caribbean Bunker C prices, and increase at 3 percent per annum relative to a special industrial electricity rate structure, the entire substitution program, including both industrial and national electric investment, would be cost effective. The definition of these pricing structures and their potential impacts need to be assessed in depth.

  2. Working With Industry and Utilities to Promote Electric Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Working With Industry and Utilities to Promote Electric Vehicles Working With Industry and Utilities to Promote Electric Vehicles June 10, 2015 - 10:45am Addthis Tom Kuhn, President of EEI and Secretary Moniz at the MOU signing on Monday, June 8, at Edison Electric Institute (EEI) Annual Convention in New Orleans, LA. | Photo courtesy of EEI Tom Kuhn, President of EEI and Secretary Moniz at the MOU signing on Monday, June 8, at Edison Electric Institute (EEI) Annual

  3. "Annual Electric Power Industry Report (EIA-861 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Sales, Revenue, and Average Price CorrectionUpdate Annual data revisions: January 13, 2016 The re-release of the form EIA-861 survey data: January 13, 2016 Revenue data ...

  4. "2014 Total Electric Industry- Revenue (Thousands Dollars)"

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",8414175.4,7806276.7,2262752.4,57837.4,18541041.8 "Connecticut",2523348.7,2004...

  5. Empire District Electric- Commercial & Industrial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers a Commercial/Industrial Prescriptive Rebate Program to its non-residential customers in Arkansas who purchase certain high-efficiency equipment for...

  6. Changing Structure of the Electric Power Industry: Selected Issues, 1998

    Reports and Publications (EIA)

    1998-01-01

    Provides an analytical assessment of the changes taking place in the electric power industry, including market structure, consumer choice, and ratesetting and transition costs. Also presents federal and state initiatives in promoting competition.

  7. Changing Structure of the Electric Power Industry: An Update, The

    Reports and Publications (EIA)

    1996-01-01

    Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

  8. Lodi Electric Utility- Commercial and Industrial Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility provides an on-bill financing program for the commercial and industrial customers. To participate, the customer must receive a rebate through the utility's rebate program, and...

  9. The changing structure of the electric power industry: An update

    SciTech Connect (OSTI)

    1996-12-01

    The U. S. electric power industry today is on the road to restructuring a road heretofore uncharted. While parallels can be drawn from similar journeys taken by the airline industry, the telecommunications industry, and, most recently, the natural gas industry, the electric power industry has its own unique set of critical issues that must be resolved along the way. The transition will be from a structure based on a vertically integrated and regulated monopoly to one equipped to function successfully in a competitive market. The long-standing traditional structure of the electric power industry is the result of a complex web of events that have been unfolding for over 100 years. Some of these events had far-reaching and widely publicized effects. Other major events took the form of legislation. Still other events had effects that are less obvious in comparison (e.g., the appearance of technologies such as transformers and steam and gas turbines, the invention of home appliances, the man-made fission of uranium), and it is likely that their significance in the history of the industry has been obscured by the passage of time. Nevertheless, they, too, hold a place in the underpinnings of today`s electric industry structure. The purpose of this report, which is intended for both lay and technical readers, is twofold. First, it is a basic reference document that provides a comprehensive delineation of the electric power industry and its traditional structure, which has been based upon its monopoly status. Second, it describes the industry`s transition to a competitive environment by providing a descriptive analysis of the factors that have contributed to the interest in a competitive market, proposed legislative and regulatory actions, and the steps being taken by the various components of the industry to meet the challenges of adapting to and prevailing in a competitive environment.

  10. 2014 Total Electric Industry- Revenue (Thousands Dollars)

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 8,414,175 7,806,277 2,262,752 57,837 18,541,042 Connecticut 2,523,349...

  11. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  12. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  13. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  14. Assistance to States on Electric Industry Issues

    SciTech Connect (OSTI)

    Glen Andersen

    2010-10-25

    This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors’ staffs. NCSL’s activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

  15. Institutional contexts of market power in the electricity industry

    SciTech Connect (OSTI)

    Foer, A.A.

    1999-05-01

    Market power is widely recognized as one of the principal issues that must be dealt with if the electricity industry is to make the transition from regulation to competition. In this article, the author provides a legal and economic introduction to what the antitrust community means by market power and offers a primer on why market power is so central an issue in the electricity industry. Finally and most importantly, he offers comments on the institutional contexts of market power, exploring a process which he calls Shermanization that helps explain the institutional aspect of moving from regulation to competition and holds implications for where oversight should reside during this complex transition.

  16. Securing the Electricity Grid: Government and Industry Exercise Together at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GridEx III | Department of Energy Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III Securing the Electricity Grid: Government and Industry Exercise Together at GridEx III November 24, 2015 - 10:00am Addthis Dr. Elizabeth Sherwood-Randall Dr. Elizabeth Sherwood-Randall Deputy Secretary of Energy I had the opportunity this past week to represent the Department of Energy at a critically important exercise here in our Nation's Capital - an exercise, just like

  17. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B.; Schaffhauser, A.

    1994-04-01

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  18. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    O R E W O R D I United States Industrial Electric Motor Systems Market Opportunities Assessment December 2002 This document was originally published by the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) in Decem- ber 1998. As of fiscal year 2000, DOE's Motor Challenge Program was inte- grated into BestPractices, a broad initiative within EERE. EERE's BestPractices introduces industrial end users to emerging technolo- gies and cost-saving opportunities

  19. Changing Structure of the Electric Power Industry: 1970-1991

    Reports and Publications (EIA)

    1993-01-01

    The purpose of this report is to provide a comprehensive overview of the ownership of the U.S. electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects.

  20. PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA

    Office of Legacy Management (LM)

    WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA At the request of the Department of Energy (DOE, then ERDA), a preliminary survey

  1. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect (OSTI)

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  2. An International Survey of Electric Storage Tank Water Heater Efficiency and Standards

    SciTech Connect (OSTI)

    Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

    2013-11-13

    Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

  3. Local government: The sleeping giant in electric industry restructuring

    SciTech Connect (OSTI)

    Ridley, S.

    1997-11-01

    Public power has long been a cornerstone of consumer leverage in the electric industry. But its foundation consists of a much broader and deeper consumer authority. Understanding that authority - and present threats to it - is critical to restructuring of the electric industry as well as to the future of public power. The country has largely forgotten the role that local governments have played and continue to play in the development of the electric industry. Moreover, we risk losing sight of the options local governments may offer to protect consumers, to advance competition in the marketplace, and to enhance opportunities for technology and economic development. The future role of local government is one of the most important issues in the restructuring discussion. The basic authority of consumers rests at the local level. The resulting options consumers have to act as more than just respondents to private brokers and telemarketing calls are at the local level. And the ability for consumers to shape the marketplace and standards for what it will offer exists at the local level as well.

  4. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  5. Results of Electric Survey in the Area of Hawaii Geothermal Test...

    Open Energy Info (EERE)

    Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in...

  6. Energy conservation by hyperfiltration: food industry background literature survey

    SciTech Connect (OSTI)

    Not Available

    1980-04-15

    The application of hyperfiltration to selected food product streams and food processing wastewaters for energy conservation was examined. This literature survey had led to the following conclusions: no research has been conducted in the food industry using membranes with hot process streams due to the temperature limitation (< 40/sup 0/C) of the typically studied cellulose acetate membranes; based on the bench-scale research reviewed, concentration of fruit and vegetable juices with membranes appears to be technically feasible; pretreatment and product recovery research was conducted with membranes on citrus peel oil, potato processing and brine wastewaters and wheys. The experiments demonstrated that these applications are feasible; many of the problems that have been identified with membranes are associated with either the suspended solids or the high osmotic pressure and viscosity of many foods; research using dynamic membranes has been conducted with various effluents, at temperatures to approx. 100/sup 0/C, at pressures to 1200 psi and with suspended solids to approx. 2%; and, the dynamic membrane is being prototype tested by NASA for high temperature processing of shower water. The literature review substantiates potential for dynamic membrane on porous stainless tubes to process a number of hot process and effluent streams in the food processing industry. Hot water for recycle and product concentrations are major areas with potential for economic application. The two plants involved in the first phase of the project should be reviewed to identify potential energy conservation applications. As many as possible of the conservation applications should be tested during the screening phase at each site. The most promising applications at each site should be evaluated more intensively to establish engineering estimates of the economics of this technology for the canned fruit and vegetable segment of the food industry.

  7. Demand Response is Focus of New Effort by Electricity Industry Leaders |

    Office of Environmental Management (EM)

    Department of Energy is Focus of New Effort by Electricity Industry Leaders Demand Response is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area PDF icon Demand Response is Focus of New Effort by Electricity Industry Leaders More Documents & Publications SEAD-Fact-Sheet.pdf The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 2011

  8. Manufacturing-Industrial Energy Consumption Survey(MECS) Historical...

    U.S. Energy Information Administration (EIA) Indexed Site

    reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring...

  9. Electric power equipment - Paraguay. Foreign market survey report

    SciTech Connect (OSTI)

    Ceuppens, H.D.

    1982-03-01

    The market research was undertaken to study the present and potential US share of the market in Paraguay for electric power equipment; to examine growth trends in Paraguayan end-user industries over the next few years; to identify specific project categories that offer the most promising export potential for US companies; and to provide basic data which will assist US suppliers in determining current and potential sales and marketing opportunities. The trade promotional and marketing techniques which are likely to succeed in Paraguay were also reviewed.

  10. Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM)

    Gasoline and Diesel Fuel Update (EIA)

    1S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM) INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 05/31/2017 Burden: 0.75 Hours Page 1 PURPOSE Form EIA-861S collects information on the status of selected electric power industry participants involved in the sale, and distribution of electric energy in the United States. The data collected on this form are used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED

  11. Microsoft Word - Wind Industry Work Order Information Flow Survey...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... summarizes the findings of a preliminary survey of wind turbine maintenance management. ... With current mobile technology CMMS can solve many of the challenges associated with ...

  12. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    The re-release of the Survey form EIA-860 data for reporting year 2014. The 860 web file ... The re-release of the Survey form EIA-860 data for reporting year 2014. The 860 web files ...

  13. National Grid (Electric) Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    National Grid offers various rebate programs for industrial and commercial customers to install energy efficiency measures. 

  14. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric will conduct an inspection of the project site prior to approval, and grant applications must earn pre-approval from Dakota Electric before any work begins. To qualify for rebates...

  15. Salem Electric- Residential, Commercial, and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric provides incentives for members to increase the energy efficiency of eligible homes and facilities. Available rebates include:

  16. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  17. Austin Utilities (Gas and Electric) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    commercial location per year, 5,000 per industrial location per year Program Info Sector Name Utility Administrator Austin Utilities Website http:www.austinutilities.compages...

  18. Visioning the 21st Century Electricity Industry: Outcomes and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry: Strategies and Outcomes for America http:teeic.anl.govertransmissionrestechdistindex.cfm We all have "visions," in one form or another: * ...

  19. DTE Energy (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Program for Business offers prescriptive incentives for both electric and natural gas energy efficient improvements in areas of lighting, HVAC, processes, compressed air,...

  20. Oncor Electric Delivery - Commercial and Industrial Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    Contact Oncor Program Info Sector Name Utility Administrator Oncor Electric Delivery Website http:www.takealoadofftexas.comindex.aspx?idcommercial-standard-offer...

  1. "Annual Electric Power Industry Report (EIA-861 data file)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 DETAILED DATA Revisions Corrections for electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Annual data revisions: January 13, 2016 The ...

  2. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  3. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  4. Workforce Development: A Survey of Industry Needs and Training Approaches

    SciTech Connect (OSTI)

    Ventre, Jerry; Weissman, Jane

    2009-04-01

    This paper presents information and data collected during 2008 on PV workforce needs by the Interstate Renewable Energy Council for the U.S. Department of Energy. The data was collected from licensed contractors, PV practitioners, educators and expert instructors at training sessions, and at focus group and advisory committee meetings. Respondents were primarily from three states: Florida, New York and California. Other states were represented, but to a lesser extent. For data collection, a 12-item questionnaire was developed that addressed key workforce development issues from the perspectives of both the PV industry and training institutions. A total of 63 responses were collected, although not every respondent answered every question. Industry representatives slightly outnumbered the educators, although the difference in responses was not significant.

  5. RG&E (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NYSEG and RG&E offer rebates to non-residential customers installing energy efficient equipment that have an electricity Systems Benefits Charge (SBC) included in their energy bills. Both...

  6. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  7. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  8. Changing Structure of the Electric Power Industry 2000: An Update, The

    Reports and Publications (EIA)

    2000-01-01

    Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

  9. Changing Structure of the Electric Power Industry 1999: Mergers and Other Corporate Combinations, The

    Reports and Publications (EIA)

    1999-01-01

    Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

  10. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Broader source: Energy.gov [DOE]

    The objectives of the Market Assessment were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the energy efficiency of industrial motor systems; Develop a profile of motor system purchase and maintenance practices; Develop and implement a procedure to update the detailed motor profile on a regular basis using readily available market information; and, Develop methods to estimate the energy savings and market effects attributable to the Motor Challenge Program.

  11. Survey of Productive Uses of Electricity in Rural Areas | Open...

    Open Energy Info (EERE)

    English The objective of the assignment is to survey and summarize the published literature as well as informal knowledge about the experience with promoting productive uses of...

  12. Performance Issues for a Changing Electric Power Industry

    Reports and Publications (EIA)

    1995-01-01

    Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

  13. Low-income energy policy in a restructuring electricity industry: an assessment of federal options

    SciTech Connect (OSTI)

    Baxter, L.W.

    1997-07-01

    This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

  14. United States Industrial Electric Motor Systems Market Opportunities Assessment - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M OFFICE OF INDUSTRIAL TECHNOLOGIES United States Industrial Electric Motor Systems Market Opportunities Assessment Executive Summary United States Industrial Electric Motor Systems Market Opportunities Assessment Executive Summary TABLE OF CONTENTS PROJECT OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . 1 OVERVIEW OF FINDINGS . . . . . . . .

  15. "2014 Total Electric Industry- Customers"

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6243013,862269,28017,8,7133307 "Connecticut",1459239,155372,4648,4,1619263 "Maine",706952,91541,3023,0,801516 "Massachusetts",2720128,398717,14896,3,3133744 "New Hampshire",606883,105840,3342,0,716065

  16. Efficiency, equity and the environment: Institutional challenges in the restructuring of the electric power industry

    SciTech Connect (OSTI)

    Haeri, M.H.

    1998-07-01

    In the electric power industry, fundamental changes are underway in Europe, America, Australia, New Zealand and, more recently, in Asia. Rooted in increased deregulation and competition, these changes are likely to radically alter the structure of the industry. Liberalization of electric power markets in the United Kingdom is, for the most part, complete. The generation market in the United States began opening to competition following the 1987 Public Utility Regulatory Policies Act (PURPA). The Energy Policy Act of 1992 set the stage for a much more dramatic change in the industry. The most far-reaching provision of the Act was its electricity title, which opened access to the electric transmission grid. With legal barriers now removed, the traditionally sheltered US electric utility market is becoming increasingly open to entry and competition. A number of important legislative, regulatory and governmental policy initiatives are underway in the Philippines that will have a profound effect on the electric power industry. In Thailand, the National Energy Planning Organization (NEPO) has undertaken a thorough investigation of industry restructuring. This paper summarizes recent international developments in the deregulation and liberalization of electricity markets in the U.K., U.S., Australia, and New Zealand. It focuses on the relevance of these experiences to development underway in the Philippines and Thailand, and presents alternative possible structures likely to emerge in these countries, drawing heavily on the authors' recent experiences in Thailand and the Philippines. The impact of these changes on the business environment for power generation and marketing will be discussed in detail, as will the opportunities these changes create for investment among private power producers.

  17. Electric Industry Structure and Regulatory Responses in a High Distributed Energy Resources Future

    SciTech Connect (OSTI)

    Corneli, Steve; Kihm, Steve; Schwartz, Lisa

    2015-11-01

    The emergence of distributed energy resources (DERs) that can generate, manage and store energy on the customer side of the electric meter is widely recognized as a transformative force in the power sector. This report focuses on two key aspects of that transformation: structural changes in the electric industry and related changes in business organization and regulation that are likely to result from them. Both industry structure and regulation are inextricably linked. History shows that the regulation of the power sector has responded primarily to innovation in technologies and business models that created significant structural changes in the sector’s cost and organizational structure.

  18. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  19. Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20

    SciTech Connect (OSTI)

    Ray, D.

    1997-01-01

    Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

  20. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    Reports and Publications (EIA)

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  1. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  2. " and Electricity Generation by Census Region, Census Division, Industry Group,"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " ","

  3. SO{sub 2} trading program as a metaphor for a competitive electric industry

    SciTech Connect (OSTI)

    O`Connor, P.R.

    1996-12-31

    This very brief presentation focuses on the competitive market impacts of sulfur dioxide SO{sub 2} emissions trading. Key points of the presentation are highlighted in four tables. The main principles and results of the emissions trading program are outlined, and the implications of SO{sub 2} trading for the electric industry are listed. Parallels between SO{sub 2} trading and electric utility restructing identified include no market distortion by avoiding serious disadvantages to competitors, and avoidance of stranded costs through compliance flexibility. 4 tabs.

  4. The revenue requirement approach to analysis of alternative technologies in the electric utility industry

    SciTech Connect (OSTI)

    Lohrasbi, J. )

    1990-01-01

    The advancement of coal-based power generation technology is of primary interest to the U.S. Department of Energy (DOE). The interests are well-founded due to increasing costs for premium fuels and, more importantly, the establishment of energy independence to promote national security. One of DOE's current goals is to promote the development of coal-fired technology for the electric utility industry. This paper is concerned with the economic comparison of two alternative technologies: the coal gasification-combined cycle (GCC) and the coal-fired magnetohydrodynamic (MHD)-combined cycle. The revenue requirement analysis was used for the economic evaluation of engineering alternatives in the electric utility industry. The results were compared based on year-by-year revenue requirement analysis. A computer program was written in Fortran to perform the calculations.

  5. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect (OSTI)

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  6. Different approaches to estimating transition costs in the electric- utility industry

    SciTech Connect (OSTI)

    Baxter, L.W.

    1995-10-01

    The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

  7. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  8. Conduct an In-Plant Pumping System Survey; Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #1 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 * September 2005 Conduct an In-Plant Pumping System Survey In the United States, more than 2.4 million pumps, which consume more than 142 billion kWh annually, are used in industrial manufacturing processes. At an electricity cost of 5 cents per kWh, energy used for fluids transport costs more than $7.1 billion per year. Even one pump can consume substantial energy. A continuously operated centrifugal pump driven by a fully loaded 100-horsepower motor requires 726,000 kWh per year. This costs

  9. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    SciTech Connect (OSTI)

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups. For the last group a self-propelled system with an onboard self-contained power and welding system is required. (4) Pipe size range requirements range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.) in diameter. The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.) diameter, with 95% using 558.8 mm (22 in.) diameter pipe.

  10. Process Heating Assessment and Survey Tool | Department of Energy

    Energy Savers [EERE]

    methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity,...

  11. Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

    2005-09-15

    The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

  12. Renewable Resource Electricity in the Changing Regulatory Environment

    Reports and Publications (EIA)

    1995-01-01

    This article surveys in the development of renewable resource electricity recent actions and proposals and summarizes their implications for the renewables industry.

  13. The Energy Information Administration is proposing the following revisions to their electricity survey forms in 2011:

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration proposed the following revisions to their electricity survey forms in 2011: F or m E I A -411, " C oor dinated B ulk Power Supply Pr ogr am R epor t." * Change form name to "Coordinated Bulk Power Supply & Demand Program Report;" return to collecting projected reliability data on a 10-year basis as opposed to 5 years. Change "Council" to "Regional Entity" and add submission of Sub-regional level breakout of data. *

  14. Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malikopoulos, Andreas

    2014-03-31

    The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.

  15. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  16. Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  17. 2013 Electricity Form Proposals

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Survey Form Changes in 2013 The U.S. Energy Information Administration (EIA) proposed changes to its electricity data collection in 2013. These changes involve three forms: Form EIA-861, "Annual Electric Power Industry Report" The addition of a new form, the Form EIA-861S, "Annual Electric Power Industry Report (Short Form)" Form EIA-923, "Power Plant Operations Report." The proposals were initially announced to the public via a Federal Register Notice

  18. Mergers, acquisitions, divestitures, and applications for market-based rates in a deregulating electric utility industry

    SciTech Connect (OSTI)

    Cox, A.J.

    1999-05-01

    In this article, the author reviews FERC's current procedures for undertaking competitive analysis. The current procedure for evaluating the competitive impact of transactions in the electric utility industry is described in Order 592, in particular Appendix A. These procedures effectively revised criteria that had been laid out in Commonwealth Edison and brought its merger policy in line with the EPAct and the provisions of Order 888. Order 592 was an attempt to provide more certainty and expedition in handling mergers. It established three criteria that had to be satisfied for a merger to be approved: Post-merger market power must be within acceptable thresholds or be satisfactorily mitigated, acceptable customer protections must be in place (to ensure that rates will not go up as a result of increased costs) and any adverse effect on regulation must be addressed. FERC states that its Order 592 Merger Policy Statement is based upon the Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the Antitrust Division Department of Justice (FTC/DOJ Merger Guidelines). While it borrows much of the language and basic concepts of the Merger Guidelines, FERC's procedures have been criticized as not following the methodology closely enough, leaving open the possibility of mistakes in market definition.

  19. Ultra-Efficient and Power Dense Electric Motors for U. S. Industry

    SciTech Connect (OSTI)

    Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

    2013-03-12

    The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

  20. Walk-through survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc. , Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.

    1994-08-12

    A walk through survey was conducted at the East Penn Manufacturing Company (SIC-3341), Lyon Station, Pennsylvania to identify and evaluate potentially effective controls and work practices in the lead (7439921) reclamation industry. The facility was a secondary lead smelter which operated 7 days a week, and recycled about 20,000 batteries a day, primarily automobile batteries. The company employed automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory furnace operations, blast furnace operations, and casting and refinery area to reduce employee exposure to lead. The arsenic (7440382) personal exposure time weighted averages ranged from 0.10 to 1.14 microg/cubic m in the industrial battery breaking area and ranged from nondetected to 6.16 microg/cubic m in the alloying/pots area.

  1. This document is to provide input for a probable future state of the electric system and electric industry in 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce Renz - Renz Consulting State of the Electric System in 2030 The Issue Last month's SGN article by Joe Miller discussed how the transition to a Smart Grid might take place. Joe's article was part of a series that has discussed the seven Principal Characteristics of a Smart Grid. While those seven characteristics promise a future in which the power grid supports and enables the needs of 21 st century society, such a grid does not exist today. And it will not exist tomorrow unless there is a

  2. Electric sales and revenue 1991

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenue, and average revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  3. 1990,"AK","Total Electric Power Industry","All Sources",4208809...

    U.S. Energy Information Administration (EIA) Indexed Site

    Cogen","Petroleum",49092,1984,263 1990,"AK","Industrial Non-Cogen","All ... 1991,"OK","IPP NAICS-22 Cogen","Coal",1984516,4744,7324 1991,"OK","IPP NAICS-22 ...

  4. "2014 Total Electric Industry- Average Retail Price (cents/kWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",17.822291,14.699138,11.842263,10.37511,15.452998 "Connecticut",19.748254,15.5...

  5. Electric industry restructuring and environmental issues: A comparative analysis of the experience in California, New York, and Wisconsin

    SciTech Connect (OSTI)

    Fang, J.M.; Galen, P.S.

    1996-08-01

    Since the California Public Utilities Commission (CPUC) issued its April 20, 1994, Blue Book proposal to restructure the regulation of electric utilities in California to allow more competition, over 40 states have initiated similar activities. The question of how major public policy objectives such as environmental protection, energy efficiency, renewable energy, and assistance to low-income customers can be sustained in the new competitive environment is also an important element being considered. Because many other states will undergo restructuring in the future, the experience of the {open_quotes}early adopter{close_quotes} states in addressing public policy objectives in their electric service industry restructuring processes can provide useful information to other states. The Competitive Resource Strategies Program of the U.S. Department of Energy`s (DOE`s) Office of Utility Technologies, is interested in documenting and disseminating the experience of the pioneering states. The Center for Energy Analysis and Applications of the National Renewable Energy Laboratory assisted the Office of Utility Technologies in this effort with a project on the treatment of environmental issues in electric industry restructuring.

  6. "Annual Electric Power Industry Report (EIA-861 data file)

    Gasoline and Diesel Fuel Update (EIA)

    FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date: October 21, 2015 Final 2014 data Next Release date: October 15, 2016 Annual data for 2014 re-released: January 13, 2016 (Revision\Correction) The Form EIA-861 and Form EIA-861S (Short Form) data files include information such as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and

  7. Surveys

    Broader source: Energy.gov [DOE]

    Surveys can be a useful way to gauge the opinions of your readers and learn more about your website's audiences, but you'll often need approval from the Office of Management and Budget (OMB) to run...

  8. Electricity and technical progress: The bituminous coal mining industry, mechanization to automation

    SciTech Connect (OSTI)

    Devine, W.D. Jr.

    1987-07-01

    Development and use of electric mobile machinery facilitated the mechanization of underground bituminous coal mining and has played a lesser but important role in the growth of surface mining. Electricity has been central to the rise of mechanically integrated mining, both underground (after 1950) and on the surface (recently). Increasing labor productivity in coal mining and decreasing total energy use per ton of coal mined are associated with penetration of new electric technology through at least 1967. Productivity declined and energy intensity increased during the 1970s due in part to government regulations. Recent productivity gains stem partly from new technology that permits automation of certain mining operations. On most big electric excavating machines, a pair of large alternating current (ac) motors operate continuously at full speed. These drive direct current (dc) generators that energize dc motors, each matched to the desired power and speed range of a particular machine function. Direct-current motors provide high torque at low speeds, thus reducing the amount of gearing required; each crawler is independently propelled forward or backward by its own variable-speed dc motors. The principal advantages of electric power are that mechanical power-transmission systems - shafts, gears, etc. - are eliminated or greatly simplified. Reliability is higher, lifetime is longer, and maintenance is much simpler with electric power than with diesel power, and the spare parts inventory is considerably smaller. 100 refs., 11 figs., 12 tabs.

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. Annual Public Electric Utility data - EIA-412 data file

    Gasoline and Diesel Fuel Update (EIA)

    412 Archive Data (The EIA-412 survey has been terminated.) The EIA-412 "Annual Electric Industry Financial Report" collected information such as income statements, balance sheets, sales and purchases, and transmission line data. Form EIA-412 data Schedules Year 2 Electric Balance Sheet 3 Electric Income Statement 4 Electric Plant 5 Taxes, Tax Equivalents, Contributions, and Services During Year 6 Sales of Electricity for Resale (Account 447) 7 Electric Operation and Maintenance

  11. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    SciTech Connect (OSTI)

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch

    2009-03-30

    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we inverted, yielding a velocity model that shows lateral heterogeneity similar to the 2006 DC resistivity models. Finally, we collected P-wave data along a second transect in Area 2, located north of the first line and in an area of a very minor fault that was targeted by another 2006 DC resistivity survey. The P-wave refraction velocity model shows generally high velocities, with a zone of somewhat lower velocities in the central part of the transect. The position of the low velocity zone corresponds with the location of a minor fault, though it is unclear whether the two are related. Together, these results demonstrate the value of geophysical data for mapping the subsurface extent of faults. The 2007 DC resistivity data complement the 2006 data and provide important new detail of the overlapping fault splays. The seismic data demonstrate the ability of P-wave refraction methods to identify the damage zones at faults, and they show the difficulties associated with S-wave methods in areas with caliche. Combining all of the geophysical data from the Area 7 studies, we are able to develop a coherent interpretation of the relation between the site geology, the fault, and the observations.

  12. Results of industry experience survey on coiled tubing uses and failures

    SciTech Connect (OSTI)

    Maldonado, J.G.; Cayard, M.S.; Kane, R.D.

    1999-11-01

    A survey of coiled tubing failures in various field applications was conducted. The survey included the collection of information on failure type, number of strain cycles to failure, service environment, well depth, failure location on the coiled tubing string, and coiled tubing grade employed. The most prevalent causes of failures and the impact of localized corrosion on the performance of coiled tubing were assessed from over thirty case studies herein reported. Pitting and tensile overload were the primary causes for failure in fifty percent of the cases reported from the field. Fatigue and weld area failures were the next most common types of failure. Most failures occurred within the range of 10 to 50 strain cycles. H{sub 2}S and brine/water containing environments were the most prevalent service conditions. Most failures occurred at well depths between 5,001 to 10,000 feet (1,524.3 to 3,048 meters). Also, most failures occurred in the coiled tubing string near the surface (less than 1,000 feet (304.8 meters)). Failures in roughly similar numbers were reported in 70, 80 and 100 coiled tubing grades. The understanding of the principal modes of failure herein reported should help in the development of improved handling and running procedures to minimize coiled tubing failures.

  13. 2014 Total Electric Industry- Average Retail Price (cents/kWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 17.82 14.70 11.84 10.38 15.45 Connecticut 19.75 15.55 12.92 13.08 17.05 Maine...

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  4. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  5. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  6. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  7. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  8. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  9. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  10. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  11. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  12. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  13. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  14. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  15. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  16. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  17. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  18. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Viriginia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  19. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  3. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric

  4. Energy Department Announces $25 Million to Develop Next Generation of Electric Machines for Industrial Energy Savings

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's Mission Innovation effort to double clean energy research and development (R&D) investments over the next five years, the Energy Department today announced up to $25 million in available funding aimed at advancing technologies for energy-efficient electric motors through applied R&D.

  5. Industrial hygiene survey report of worker exposures to organotins at Norfolk Naval Shipyard, Portsmouth, Virginia

    SciTech Connect (OSTI)

    Eissler, A.W.; Ferrel, T.W.; Bloom, T.F.; Fajen, J.M.

    1985-06-24

    Breathing-zone samples were analyzed for organotin compounds, copper, and xylene during spray application of organotin containing marine antifouling paint at Norfolk Naval Shipyard, Portsmouth, Virginia, March, 1984. The survey was part of a NIOSH study of occupational exposures to organotin compounds, conducted as a component of an assessment to determine the feasibility of conducting a study of reproductive effects. Company personnel records were reviewed. Work practices were observed. The authors conclude that a potential exists for exposures to organotins and copper. As all employees were wearing respiratory protective equipment, actual exposures may be less than that indicated by the analytical data. The facility could contribute 16 potentially exposed workers to the reproductive effects study.

  6. 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9

    U.S. Energy Information Administration (EIA) Indexed Site

    "Planned Year","State Code","Producer Type","Fuel Source","Generators","Facilities","Nameplate Capacity (Megawatts)","Summer Capacity (Megawatts)" 2014,"AK","Total Electric Power Industry","All Sources",10,6,59.1,52.9 2014,"AK","Total Electric Power Industry","Hydroelectric",2,1,4.8,4.8 2014,"AK","Total Electric Power

  7. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  8. An overview of market power issues in today`s electricity industry

    SciTech Connect (OSTI)

    Guth, L.A.

    1998-07-01

    With the tendency for vertical disintegration of control and/or ownership of assets within the industry, however, properly defining the relevant product in horizontal competition at each stage of production, transmission, distribution, and marketing assumes increasing importance. There is every reason to expect that market power issues and antitrust concerns will arise in each of the five dimensions outlined above. In each case, the author believes the framework will continue to be properly measuring market shares and concentration for carefully defined product and geographic markets as a basis for making informed judgments about market power concerns. The modeling of industry demand, supply, and competitive interactions certainly helps to inform this process by testing the proper scopes of product and geographic markets and of the economic significance of productive assets in the market defined. Modeling should also help the screening process where the issue is possible market power in markets being restructured for retail competition.

  9. Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report

    SciTech Connect (OSTI)

    Grainger, J.J.; Lee, S.S.H.

    1993-11-26

    There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",23419,23615,23642,23642,23285,23144,23182,23218,23252,23346,22943,23429,22532,22366,21461,21292,20840,20692,20463,19878,19972,19972,19902,19354,95,72.9,72.4

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",11559,13131,11464,11488,11456,11459,11467,10669,10434,9769,9774,9551,9615,9330,9279,9619,9688,9639,9639,9168,9033,9000,8996,8944,96,71.9,78.2

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric Utilities",2205,1946,1891,1889,1868,1847,1820,1736,1769,1722,1752,1740,1770,1775,1725,1702,1763,1739,1737,1740,1715,1679,1551,1547,84,91.4,92.5

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    " "Arizona" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20668,20277,20168,20115,20127,19717,19551,19566,18860,16854,15542,15516,15284,15140,15091,15084,15164,15147,15222,15067,14990,14970,14911,14906,98.9,76.2,74.1

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",28165,30294,29011,28685,28021,26467,26334,26346,25248,23739,23171,24390,24347,24321,24324,30665,43711,43936,43303,42329,43140,42673,42780,42822,46.5,42.6,38.2

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10238,10475,10580,9114,8454,8142,8008,8034,7955,7954,7883,7596,7479,7271,7255,6938,6851,6795,6648,6675,6637,6629,6610,6533,86.6,66.2,69.3

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",152,152,154,160,111,111,111,37,25,174,210,78,185,2204,2454,5617,6295,6321,6723,6579,6600,6600,6764,7079,34.2,1.9,1.7

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",102,98,56,55,55,55,56,58,194,58,58,233,184,969,2285,2285,2277,2239,2239,2269,2269,2267,2162,1777,40.1,1.6,3.1

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",0,0,0,0,0,0,0,0,0,0,0,0,0,0,806,806,806,806,806,806,806,806,806,806,0,0,0

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",50967,51373,51298,50853,50781,47222,47224,45184,45196,42619,41996,40267,38238,37265,36537,36472,39460,36899,35857,34769,33663,33403,32204,32103,89.7,86,86.7

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",28875,29293,27146,26639,26558,26462,26432,26542,26538,25404,24804,25821,24099,24861,23331,23392,23148,22791,22299,21698,21163,21160,20752,20731,89.6,72.7,75.6

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",1821,1821,1821,1828,1859,1730,1730,1730,1705,1691,1624,1622,1622,1627,1609,1617,1597,1611,1603,1603,1603,1602,1522,1488,68.1,72.1,66.1

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",3394,3394,3035,3035,3029,2686,2547,2558,2558,2394,2439,2674,2521,2585,2571,2576,2576,2553,2559,2500,2300,2308,2282,2282,85.7,76.1,68.9

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",5269,5274,5280,4789,4819,4680,4630,4731,3976,4233,3007,4151,4420,17497,16817,30367,33550,33169,33143,32951,32770,33644,32644,32597,48.1,10.9,11.7

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",23309,23031,22763,23008,23631,23598,22012,22021,22017,21261,21016,20392,20616,20554,20358,20337,20201,20681,20712,20632,20901,20901,20702,20588,85.9,83.2,85.7

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",12092,12179,11863,11282,11479,11274,10669,9562,10090,9895,9039,8457,8402,8511,8438,8370,8217,8161,8237,8219,8069,8074,8093,7702,93.5,77.3,75.9

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",11485,11593,11746,11732,11733,11246,10944,10829,10734,10705,10729,10244,10223,10089,10023,9918,9789,9697,9678,9525,9525,9518,9507,9475,99.5,93.5,80.6

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",19599,19681,19601,18945,18763,16759,16819,16878,16234,15860,15349,15419,15229,14781,14708,13995,15660,15686,15425,15397,15297,15297,15333,15511,88,92.6,93.3

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",17297,16661,15991,16471,15615,15755,14756,15176,15137,14249,12728,14233,14165,14317,16339,17014,17080,17150,17019,16433,16221,16221,15883,15839,67.8,61.6,65.9

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",14,19,19,19,19,19,19,19,19,19,19,16,17,21,63,1457,1502,2388,2433,2253,2222,2222,2379,2369,0.5,0.4,0.3

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",85,85,81,80,80,80,80,79,79,79,70,70,70,753,10955,10971,11105,10958,10958,10838,10709,10709,10723,9758,7.2,0.6,0.7

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",969,991,956,936,930,829,827,837,983,981,981,945,993,997,2216,3386,11295,9366,9289,9219,9461,9452,9770,9909,8.1,6.8,7.1

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",22148,22517,22401,21639,21759,21885,21894,22734,23029,23310,23345,23575,22833,22757,22378,21948,21916,21990,21986,22396,22395,22347,22258,22298,88.3,72.6,73.5

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",11901,11685,11650,11547,11639,11432,10719,10458,10543,10175,10129,10073,9885,9069,8988,9090,9217,9181,8925,8936,8853,8830,8854,8806,88.4,78.5,75.5

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",12842,12691,11442,10858,10081,10093,9377,9407,8904,8431,8656,8888,7964,7057,6817,7156,7159,7177,7170,7041,6972,6972,6839,6839,78.3,69.2,82.5

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20562,20767,20831,20360,19600,19621,19570,19675,18970,18602,18587,18409,18221,17182,16757,16284,16215,15980,15727,15490,15429,15405,15311,15179,99.4,93.7,94.3

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",2568,2570,2483,2340,2232,2190,2179,2163,2186,2189,2274,2237,2235,2265,2257,4945,4943,4943,4943,4907,4871,4871,4829,4912,38.7,39.9,40.6

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",7911,7810,7834,7647,7675,7011,6959,7056,7007,6722,6667,6154,6112,6043,5963,5944,5894,5765,5663,5651,5645,5637,5584,5586,99.7,97.3,93.6

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",7915,7807,8939,8713,8741,8741,6998,6771,5611,5389,5323,5384,5388,5434,5434,5642,5642,5643,5556,5478,5235,5235,5125,4944,80.9,76.3,74.3

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",1121,1121,1134,1132,1118,1125,1121,1116,1121,1121,1121,1105,1128,2290,2294,2292,2715,2705,2698,2692,2692,2692,2793,2821,80.2,27.1,25.4

  20. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",544,517,473,460,466,477,558,1005,1005,1190,1244,1244,1244,1005,12085,13390,13684,13645,13817,13500,13850,13850,13725,13648,6.2,2.5,2.9

  1. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",5912,6359,6321,6345,6344,6324,6324,6223,5692,5348,5398,5463,5250,5250,5299,5294,5183,5077,5078,4940,4967,4967,4950,4947,93.8,78,74.5

  2. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10736,10739,11022,11032,11871,11784,12056,12046,11927,11386,11902,11675,11572,15807,17679,29587,29987,30061,32149,31567,32323,30163,31177,31020,44.4,28,26.9

  3. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",26706,27265,26158,25398,25376,25405,25345,24553,23822,23984,24036,23650,23478,22015,21182,21020,21054,20923,20597,19691,20041,20043,19990,20049,89.9,91.8,88.9

  4. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",5292,5217,4908,4912,4852,4691,4668,4634,4622,4673,4561,4659,4677,4679,4676,4657,4733,4208,4485,4487,4476,4476,4497,4476,99.2,79.4,80.6

  5. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20779,21072,20120,20179,20356,20340,20012,20147,19312,27713,27547,27304,27081,26301,27083,26768,26630,27279,27365,26347,26388,26388,26939,25365,92.3,61,64

  6. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",16951,17148,16487,16015,16187,15913,14495,14648,13992,13460,13463,13387,12941,13438,12861,12622,12931,13092,12928,12546,12348,12348,12308,12284,94.6,76.2,72.8

  7. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10973,10888,10892,10846,10683,10491,10502,9971,9839,9805,10298,10357,10354,10337,10293,10449,10537,10526,10445,10165,10132,10132,11235,11235,91.7,76.1,70.1

  8. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",455,455,455,455,455,455,455,455,455,4921,4921,4887,4887,13394,25251,33781,33825,34060,33699,32710,32509,32505,32423,32526,36.3,1,1.1

  9. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",21039,21280,22227,22082,22100,22062,21730,21019,20787,20406,19402,19103,18246,17717,17682,17627,17431,17165,16693,16152,16131,16118,16162,14909,94.8,92.1,91.4

  10. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",3480,3428,3130,2994,3042,2911,2826,2889,2759,2618,2650,2752,2712,2710,2763,2791,2795,2822,2818,2831,2543,2543,2519,2517,100,82.6,84.7

  11. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20635,20635,20474,20761,20211,20249,19770,19768,19120,19044,19011,19137,18600,17893,17253,17546,18212,17253,16144,16334,16076,16076,16121,16848,92,96.9,96.8

  12. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",28705,28463,27389,26533,25140,25005,24569,24991,24033,23587,22629,38903,38940,65384,65293,65209,64858,64768,64425,63351,63214,63213,61420,61261,79.8,24.5,26.2

  13. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",6669,6637,6641,6648,6581,6499,6710,6212,6053,5754,5574,5575,5131,5113,5104,5079,4947,4927,4930,4818,4678,4670,4645,4563,97.9,88.7,86.6

  14. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",329,329,265,260,257,259,258,259,258,261,260,261,262,778,783,775,904,901,899,902,911,911,908,882,78.9,23,26.2

  15. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",20601,20626,19999,19430,19131,18824,18372,18162,18087,17547,17045,15817,15761,15608,15312,15316,15293,14764,14300,13764,14055,14020,13652,13661,79.5,80.6,83

  16. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",27070,27037,26375,26498,26322,26243,24511,24303,24046,23828,24166,24132,24191,23841,25190,25236,25274,24277,24278,24254,24243,24242,24243,24173,91.5,86.9,88.3

  17. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",10625,10590,11740,11719,11698,11698,11711,11975,10890,10164,10164,10172,10188,14475,14505,14495,14491,14492,14495,14510,14448,14448,14435,14435,95.9,71,65.3

  18. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",13358,13464,13408,13098,12998,12975,11767,12911,12877,12405,12523,12335,12246,12211,12086,11862,11866,11866,11536,11264,10909,10747,10504,10545,89.8,73.4,77

  19. Table 4. Electric power industry capability by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatts" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",7279,7278,7333,6931,6713,6450,6142,6137,6241,6086,6088,6083,6050,6048,6012,6018,6045,5966,5971,5864,5842,5842,5817,5800,97.1,86.8,86.9

  20. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric utilities",0,0,71199,0,0,0,0,0,0,0,0,0,0,97423,230003,243975,70661,109809,188862,274252,188452,73991,179814,361043,67.5,0,0 "Natural

  1. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric utilities",597,168,754,1759,867,1080,1317,489,827,1121,1409,865,0,2781,1189273,3549008,3222785,7800149,2668381,9015544,8075919,8334852,9518506,9063595,0,0,0

  2. Table 5. Electric power industry generation by primary energy source, 1990 through 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatthours" "Item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2013" "Electric utilities",10659,10552,10473,10827,10612,10612,11075,11008,10805,12402,11771,11836,0,10823,9436,2061351,3562833,3301111,653076,68641,53740,109308,171457,591756,0.2,0.1,0.2

  3. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  4. Table 4. Electric power industry capability by primary energy source, 1990 throu

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "megawatts" "item", 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990,"Percent share 2000","Percent share 2010","Percent share 2013" "Electric utilities",8,8,7,7,7,7,8,8,6,7,9,9,7,6,7,7,441,441,442,148,148,148,162,263,0.5,0.4,0.4 "Hydroelectric",0,0,0,0,0,0,1,1,1,0,1,1,1,2,2,2,2,2,2,2,2,1,1,1,0.2,0,0 "Natural

  5. A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys

    SciTech Connect (OSTI)

    Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

    2003-11-01

    A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small-medium commercial and industrial customer, and $82,000 for large commercial and industrial customer. Future work to improve the quality and coverage of information on the value of electricity reliability to customers is described.

  6. The roles of antitrust law and regulatory oversight in the restructured electricity industry

    SciTech Connect (OSTI)

    Glazer, C.A.; Little, M.B.

    1999-05-01

    The introduction of retail wheeling is changing the roles of regulators and the courts. When states unbundle the vertically integrated investor-owned utility (IOU) into generation companies, transmission companies, and distribution companies, antitrust enforcement and policy setting by the state public utility/service commissions (PUCs) will be paramount. As was seen in the deregulation of the airline industry, vigorous enforcement of antitrust laws by the courts and proper policy setting by the regulators are the keys to a successful competitive market. Many of the problems raised in the airline deregulation movement came about due to laxity in correcting clear antitrust violations and anti-competitive conditions before they caused damage to the market. As retail wheeling rolls out, it is critical for state PUCs to become attuned to these issues and, most of all, to have staff trained in these disciplines. The advent of retail wheeling changes the application of the State Action Doctrine and, in turn, may dramatically alter the role of the state PUC--meaning antitrust law and regulatory oversight must step in to protect competitors and consumers from monopolistic abuse.

  7. Methods to estimate stranded commitments for a restructuring US electricity industry

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.; Baxter, L.

    1996-01-01

    Estimates of stranded commitments for US investor-owned electric utilities range widely, from as little as $20 billion to as much as $500 billion (more than double the shareholder equity in US utilities). These potential losses are a consequence of the above-market book values for some utility-owned power plants, long-term power-purchase contracts, deferred income taxes, regulatory assets, and public-policy programs. Because of the wide range of estimates and the potentially large dollar amounts involved, state and federal regulators need a clear understanding of the methods used to calculate these estimates. In addition, they may want simple methods that they can use to check the reasonableness of the estimates that utilities and other parties present in regulatory proceedings. This report explains various top-down and bottom-up methods to calculate stranded commitments. The purpose of this analysis is to help regulators and others understand the implications of different analytical approaches to estimating stranded-commitment amounts. Top-down methods, because they use the utility as the unit of analysis, are simple to apply and to understand. However, their aggregate nature makes it difficult to determine what specific assets and liabilities affect their estimates. Bottom-up methods use the individual asset (e.g., power plant) or liability (e.g., power-purchase contract, fuel-supply contract, and deferred income taxes) as the unit of analysis. These methods have substantial data and computational requirements.

  8. Electric sales and revenue 1991. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenue, and average revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  9. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  10. Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s

    SciTech Connect (OSTI)

    Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

    1986-09-01

    There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

  11. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  12. Electric sales and revenue, 1990

    SciTech Connect (OSTI)

    Not Available

    1992-02-21

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenues, and average revenue. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1990. The electric revenue reported by each electric utility includes the revenue billed for the amount of kilowatthours sold, revenue from income, unemployment and other State and local taxes, energy or demand charges, consumer services charges, environmental surcharges, franchise fees, fuel adjustments, and other miscellaneous charges. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  13. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  14. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  15. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    SciTech Connect (OSTI)

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  16. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  17. Electric sales and revenue: 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour data provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1993. Operating revenue includes energy charges, demand charges, consumer service charges, environmental surcharges, fuel adjustments, and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. Because electric rates vary based on energy usage, average revenue per kilowatthour are affected by changes in the volume of sales. The sales of electricity, associated revenue, and average revenue per kilowatthour data provided in this report are presented at the national, Census division, State, and electric utility levels.

  18. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  19. Industrial hygiene walk-through survey report of E. I. Dupont de Nemours and Company, Inc. , Chocolate Bayou Plant, Alvin, Texas

    SciTech Connect (OSTI)

    Fajen, J.M.

    1985-05-01

    A walkthrough survey of EI duPont deNemours and Company, Incorporated, Alvin, Texas was conducted in November, 1984. The purpose of the survey was to obtain information on the 1,3-butadiene monomer manufacturing process and the potential for exposure. The facility manufactured a crude product stream containing 1,3-butadiene as a coproduct of its ethylene process. The crude was refined to a 99.5% 1,3-butadiene product. The refining process occurred in a closed system, tightly maintained for economic, fire, and health-hazard reasons. The product was transferred by way of a pipeline to storage spheres for later transport off site. The facility used an open-loop cylinder (bomb) technique for quality control sampling. All pumps were equipped with single mechanical seals, which were in the process of being replaced by tandem seals. Since 1962, the facility had experienced process changes and three changes of ownership. Because of these changes, records from previous owners of industrial hygiene monitoring were not available. Job titles identified as having potential exposure were processors, wage employee supervisors, production engineers, and laboratory technicians. The author concludes that a closed-loop manual quality-control sampling system should be installed to reduce exposure from this source.

  20. Electric trade in the United States 1992

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This publication, Electric Trade in the US 1992 (ELECTRA), is the fourth in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1992. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. Information on the physical transmission system are being included for the first time in this publication. Transmission data covering investor-owned electric utilities were shifted from the Financial Statistics of Selected Investor-Owned Electric Utilities to the ELECTRA publication. Some of the prominent features of this year`s report include information and data not published before on transmission lines for publicly owned utilities and transmission lines added during 1992 by investor-owned electric utilities.

  1. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  2. Electric power annual 1994. Volume 1

    SciTech Connect (OSTI)

    1995-07-21

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels.

  3. EIA Electric Power Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EIA Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection

  4. Energy-efficient electric motors study

    SciTech Connect (OSTI)

    Not Available

    1981-03-23

    The study identifies the industrial decision makers, investigated the information they needed to know, how they can best be reached, and the motivating factors for purchasing energy-efficient electric motors. A survey was conducted of purchasers of integral horsepower polyphase motors. The survey measured current knowledge of and awareness of energy-efficient motors, decision-making criteria, information sources, purchase and usage patterns, and related factors. The survey data were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. A description of study findings, conclusions, and recommendations is presented. Sample questionnaires and copies of letters to respondents are presented in 3 appendices. Appendices D and E contain descriptions of the methods used. (MCW)

  5. Impact on the steam electric power industry of deleting Section 316(a) of the Clean Water Act: Energy and environmental impacts

    SciTech Connect (OSTI)

    Veil, J.A.; VanKuiken, J.C.; Folga, S.; Gillette, J.L.

    1993-01-01

    Many power plants discharge large volumes of cooling water. In some cases, the temperature of the discharge exceeds state thermal requirements. Section 316(a) of the Clean Water Act (CWA) allows a thermal discharger to demonstrate that less stringent thermal effluent limitations would still protect aquatic life. About 32% of the total steam electric generating capacity in the United States operates under Section 316(a) variances. In 1991, the US Senate proposed legislation that would delete Section 316(a) from the CWA. This study, presented in two companion reports, examines how this legislation would affect the steam electric power industry. This report quantitatively and qualitatively evaluates the energy and environmental impacts of deleting the variance. No evidence exists that Section 316(a) variances have caused any widespread environmental problems. Conversion from once-through cooling to cooling towers would result in a loss of plant output of 14.7-23.7 billion kilowatt-hours. The cost to make up the lost energy is estimated at $12.8-$23.7 billion (in 1992 dollars). Conversion to cooling towers would increase emission of pollutants to the atmosphere and water loss through evaporation. The second report describes alternatives available to plants that currently operate under the variance and estimates the national cost of implementing such alternatives. Little justification has been found for removing the 316(a) variance from the CWA.

  6. Electric and hybrid electric vehicles: A technology assessment based on a two-stage Delphi study

    SciTech Connect (OSTI)

    Vyas, A.D.; Ng, H.K.; Santini, D.J.; Anderson, J.L.

    1997-12-01

    To address the uncertainty regarding future costs and operating attributes of electric and hybrid electric vehicles, a two stage, worldwide Delphi study was conducted. Expert opinions on vehicle attributes, current state of the technology, possible advancements, costs, and market penetration potential were sought for the years 2000, 2010, and 2020. Opinions related to such critical components as batteries, electric drive systems, and hybrid vehicle engines, as well as their respective technical and economic viabilities, were also obtained. This report contains descriptions of the survey methodology, analytical approach, and results of the analysis of survey data, together with a summary of other factors that will influence the degree of market success of electric and hybrid electric vehicle technologies. Responses by industry participants, the largest fraction among all the participating groups, are compared with the overall responses. An evaluation of changes between the two Delphi stages is also summarized. An analysis of battery replacement costs for various types is summarized, and variable operating costs for electric and hybrid vehicles are compared with those of conventional vehicles. A market penetration analysis is summarized, in which projected market shares from the survey are compared with predictions of shares on the basis of two market share projection models that use the cost and physical attributes provided by the survey. Finally, projections of market shares beyond the year 2020 are developed by use of constrained logit models of market shares, statistically fitted to the survey data.

  7. Electric sales and revenue, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1992-02-21

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. Previous publications presented data on typical electric bills at specified consumption levels as well as sales, revenues, and average revenue. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1990. The electric revenue reported by each electric utility includes the revenue billed for the amount of kilowatthours sold, revenue from income, unemployment and other State and local taxes, energy or demand charges, consumer services charges, environmental surcharges, franchise fees, fuel adjustments, and other miscellaneous charges. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  8. Electric sales and revenue 1992, April 1994

    SciTech Connect (OSTI)

    Not Available

    1994-04-20

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1992. The electric revenue reported by each electric utility includes the applicable revenue from kilowatthours sold; revenue from income; unemployment and other State and local taxes; energy, demand, and consumer service charges; environmental surcharges; franchise fees; fuel adjustments; and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. The sales of electricity, associated revenue, and average revenue per kilowatthour provided in this report are presented at the national, Census division, State, and electric utility levels.

  9. 2015 Electricity Form Proposals

    U.S. Energy Information Administration (EIA) Indexed Site

    Proposed Changes to Electricity and Renewable (Photovoltaic) Survey Forms November 19, 2015 In early 2016 the U.S. Energy Information Administration (EIA) will formally propose ...

  10. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  11. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change Per KWh map showing U.S. electric industry percent...

  12. Everbrite Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  13. Hebei Huazheng Industry | Open Energy Information

    Open Energy Info (EERE)

    Hebei Province, China Zip: 53500 Product: Hebei Huazheng Industry manufactures electrical semiconductor devices. References: Hebei Huazheng Industry1 This article is a stub. You...

  14. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  15. March 2012 Electrical Safety Occurrences

    Energy Savers [EERE]

    - Electrical Wiring 08J--OSHA ReportableIndustrial Hygiene - Near Miss (Electrical) 11G--Other - Subcontractor 12C--EH Categories - Electrical Safety 14D--Quality Assurance -...

  16. Analysis of the Efficiency of the U.S. Ethanol Industry 2007

    SciTech Connect (OSTI)

    Wu, May

    2008-03-27

    In 2007, the Renewable Fuels Association (RFA) conducted a survey of US ethanol production plants to provide an assessment of the current US ethanol industry. The survey covers plant operations in both corn dry mills and wet mills. In particular, it includes plant type, ownership structure, capacity, feedstocks, production volumes, coproducts, process fuel and electricity usage, water consumption, and products transportation and distribution. This report includes a summary and analysis of these results.

  17. Electric power monthly, July 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels. Data on quantity, quality, and cost of fossil fuels lag data on net generation, fuel consumption, fuel stocks, electricity sales, and average revenue per kilowatthour by 1 month. This difference in reporting appears in the US, Census division, and State level tables. However, for purposes of comparison, plant-level data are presented for the earlier month.

  18. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  19. Category:Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Resistivity Survey E Electrical Techniques Electromagnetic Techniques R Radiometrics S Self Potential T Telluric Survey Retrieved from "http:en.openei.orgw...

  20. Proposed Changes to Electricity and Renewable (Photovoltaic)...

    U.S. Energy Information Administration (EIA) Indexed Site

    2017 Proposed Solar & Electricity Survey Form Changes 1 November 2015 Proposed Changes to Electricity and ... U.S. Energy Information Administration | 2017 Proposed Solar & ...

  1. NIPSCO Prescriptive Electric and Natural Gas Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Prescriptive Natural Gas & Electric Program offers rebates to NIPSCO's large commercial, industrial, non-profit, governmental and institutional customers, who...

  2. American Solar Electric Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Inc Jump to: navigation, search Name: American Solar Electric Inc Place: Scottsdale, Arizona Zip: 85251 Product: US installer of residential, commercial and industrial PV...

  3. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  4. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  5. " Row: NAICS Codes; Column: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Energy Consumption Survey.'" X-Input-Content-Type: applicationvnd.ms-excel X-Translator-Status: translating "Table N13.1. Electricity: Components of Net Demand,...

  6. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  7. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  8. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  9. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  10. Electric Power annual 1996: Volume II

    SciTech Connect (OSTI)

    1997-12-01

    This document presents a summary of electric power industry statistics. Data are included on electric utility retail sales of electricity, revenues, environmental information, power transactions, emissions, and demand-side management.

  11. Electric Power Annual 2012

    Gasoline and Diesel Fuel Update (EIA)

    Electric industry retail statistics by state State Retail sales (million kWh) Retail revenue (thousand dollars) Customers Alabama 87,852 7,923,662 2,524,639 Alaska 6,268 1,033,347...

  12. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

  13. Electric power annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-08

    This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

  14. Direct-Current Resistivity Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    the findings from the other resistivity surveys conducted in the area. References James Kauahikaua, Douglas Klein (1978) Results of Electric Survey in the Area of Hawaii...

  15. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  16. Federal Utility Partnership Working Group Industry Commitment

    Broader source: Energy.gov [DOE]

    Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of...

  17. Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -000 Electric Power Research Institute (EPRI) Workshop on High Performance Computing and Modeling Simulation Heather Feldman, Brenden Mervin Electric Power Research Insititute (EPRI) October 15-16, 2014 CASL-U-2015-0200-000 1 AGENDA WORKSHOP ON HIGH PERFORMANCE COMPUTING AND MODELING & SIMULATION "Overcoming Barriers to Enable the Electric Power Industry to Realize the Benefits of High Performance Computing and Modeling & Simulation" October 15-16, 2014 * EPRI Charlotte

  18. Sandia Energy - Standards and Industry Outreach/Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Industry OutreachPartnerships Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric...

  19. Model Documentation Report: Industrial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  20. EIA Energy Efficiency-Table 4f. Industrial Production Indexes...

    Gasoline and Diesel Fuel Update (EIA)

    f Page Last Modified: May 2010 Table 4f. Industrial Production Indexes by Selected Industries, 1998, 2002, and 2006 (2000 100) MECS Survey Years NAICS Subsector and Industry 1998...

  1. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  2. Microsoft PowerPoint - Electricity Workshop Presentation v2b

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA Electricity Survey Clearance Stakeholders Meeting December 1, 2015 Washington, DC U.S. Energy Information Administration Office of Energy Statistics Office of Electricity, ...

  3. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (358) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  4. Electric power monthly, March 1995

    SciTech Connect (OSTI)

    1995-03-20

    This report for March 1995, presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  5. Rising Electricity Costs: A Challenge For Consumers, Regulators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity: 30 Years of Electricity: 30 Years of Industry ... 30 Years of Energy Information and Analysis April 7, ... California 20092012 Rocky Mtn 20082011 SPP 20152016+ MRO ...

  6. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect (OSTI)

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  7. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary › FAQS › Overview Data 2009 2005 2001 1997 1993 Previous Analysis & Projections RECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial,"

  8. EIA - Electric Power Data

    Gasoline and Diesel Fuel Update (EIA)

    Survey-Level Detailed Data Files The electric power data collected by EIA surveys are, for the most part, not proprietary and are available in these files at the level of plants, generators, and companies. Examples of the available data include generation by plant and prime mover for each fuel consumed; retail sales by sector, seller and state; and the quality and volumes of fossil fuels delivered to power plants. Aggregated data tables and graphical displays are available through the

  9. Partnership Helps Alleviate Electric Vehicle Range Anxiety (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle charging stations.

  10. Electric power monthly

    SciTech Connect (OSTI)

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  11. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  12. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  13. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  14. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  15. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  16. Bringing electricity reform to the Philippines

    SciTech Connect (OSTI)

    Fe Villamejor-Mendoza, Maria

    2008-12-15

    Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

  17. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Next Generation Electric Machines Next Generation Electric Machines AMO's Next Generation Electric Machines (NGEM) program is an RD&D effort leveraging recent technology advancements in power electronics and electric motors to develop a new generation of energy efficient, high power density, high speed, integrated MV drive systems for a wide variety of critical energy applications. Industrial electric motor systems are employed in a wide range of applications including

  18. Small Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    because of equipment age, suboptimal components, or inherently inefficient part-load control. Incentives may be available (check with your electric utility) to help cover the...

  19. Electricity Monthly Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapid growth in photovoltaic capacity. Solar electricity output in June is a good indicator of the recent growth of the solar industry, because June has the highest monthly...

  20. Mass Save (Electric)- Large Commercial Retrofit Program

    Broader source: Energy.gov [DOE]

    Mass Save organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  1. El Paso Electric Company- Commercial Efficiency Program

    Broader source: Energy.gov [DOE]

    The El Paso Electric (EPE) Commercial Efficiency Program pays incentives to commercial and industrial customers who install energy efficiency measures in facilities located within EPE's New Mexico...

  2. Western Massachusetts Electric- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Western Massachusetts Electric (WMECO) helps commercial and industrial customers offset the additional costs of purchasing and installing energy efficient equipment. WMECO offers rebates for...

  3. Denton Municipal Electric- Standard Offer Rebate Program

    Broader source: Energy.gov [DOE]

    Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

  4. Integrated Inverter Control for Multiple Electric Machines -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Find More Like This Return to Search Integrated Inverter Control for Multiple Electric Machines Oak Ridge National Laboratory Contact ORNL About This...

  5. Electric Drive Transportation Association EDTA | Open Energy...

    Open Energy Info (EERE)

    Transportation Association EDTA Jump to: navigation, search Name: Electric Drive Transportation Association (EDTA) Product: EDTA is the preeminent U.S. industry association...

  6. DOE - Office of Legacy Management -- Canonsburg Industrial Park - PA 05

    Office of Legacy Management (LM)

    Canonsburg Industrial Park - PA 05 FUSRAP Considered Sites Site: Canonsburg Industrial Park (PA.05 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Canonsburg, Pennsylvania, Disposal Site Documents Related to Canonsburg Industrial Park 2014 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act

  7. Electric power annual 1995. Volume II

    SciTech Connect (OSTI)

    1996-12-01

    This document summarizes pertinent statistics on various aspects of the U.S. electric power industry for the year and includes a graphic presentation. Data is included on electric utility retail sales and revenues, financial statistics, environmental statistics of electric utilities, demand-side management, electric power transactions, and non-utility power producers.

  8. Antitrust policy in the new electricity industry

    SciTech Connect (OSTI)

    Pierce, R.J. Jr.

    1996-12-31

    The Federal Energy Regulatory Commission should encourage all potential consolidations of transmission assets. It should defer to the position of state Public Utility Commissions with respect to all proposed consolidations of distribution assets. It should take a conservative initial attitude toward all proposed changes in the structure of the wholesale market, both proposed consolidations and potential coerced divestitures. It should eliminate price controls on virtually all wholesales on an experimental basis and use the data made available by that experiment as the basis for a more refined set of policies applicable to the structure of the wholesale market in the dramatically new environment that it is in the process of creating.

  9. NYSEG (Electric)- Commercial and Industrial Efficiency Program

    Broader source: Energy.gov [DOE]

    NOTE: As of March 2016, the incentives for program year 2016 are being updated. Please check the program website for updated information. 

  10. Electric Power Industry--Chap6

    U.S. Energy Information Administration (EIA) Indexed Site

    and carbon dioxide (CO2). Coal-fired generating units produce more SO2 and NOx than other fossil-fuel units for two reasons. First, because coal generally contains more sulfur than...

  11. Unitil (Electric) - Commercial and Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    rebate New Construction Air Compressors: 45-140 New Construction High Efficiency Dryer: 5-7CFM New Construction Custom: 75% of incremental cost Summary Unitil offers...

  12. Minnesota Valley Electric Cooperative - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    lighting, motors, and ASDs, there is a maximum of 50% of the project cost, or 5,000 Agriculture Ventilation: 50% of cost or 100,000 Program Info Sector Name Utility Administrator...

  13. " Electricity Generation by Census Region, Industry...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...4317,2966,497,1429,6913,"W","W",5.9 2011," Meat Packing Plants",48,3410,170,252,31,157,27,...79,5443,1164,889,40,222,99,0,3,13.9 2011," Meat Packing Plants",1,141,"W",34,1,"Q",0,0,"*"...

  14. " Electricity Generation by Census Region, Industry...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...922,172,27,17,512,5,154,"W","W",5.9 2011," Meat Packing Plants",48,12,1,1,32,1,1,0,1,10.2 ... Products",79,19,7,5,42,1,2,0,3,13.9 2011," Meat Packing Plants",1,"*","W","*",1,"Q",0,0,"*...

  15. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  16. Financial statistics of major US publicly owned electric utilities 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

  17. Electric power monthly

    SciTech Connect (OSTI)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  18. Monument Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photographs from the WIPP Permanent Marker Monument Survey [John Hart & Associates, 2000] Photograph of the Gnome Marker located about 10 miles SW of the WIPP site For more photographs and information about the survey, read the report

  19. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  20. Docket No. EERE–2010–BT–STD–0027 Energy Conservation Standards for Commercial and Industrial Electric Motors: Public Meeting and Availability of the Preliminary Technical Support Document 77 Fed. Reg. 43015 (July 23, 2012)

    Broader source: Energy.gov [DOE]

    This memorandum memorializes a communication involving members of the Motor Coalition (industry and energy advocates) in connection with this proceeding.

  1. State Renewable Electricity Profiles

    Reports and Publications (EIA)

    2012-01-01

    Presents a summary of current and recent historical data for the renewable electric power industry. The data focuses on net summer capacity and net generation for each type of renewable generator, as well as fossil-fired and nuclear power plant types, for the period 2006 through 2010.

  2. Electric power monthly, April 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  3. Electric power monthly, May 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  4. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  5. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Thursday, 21 January 2016 12:47 A collaboration between Bay Area company aBeam Technologies, the ALS, and the Molecular Foundry is bringing cutting-edge metrology instrumentation to the semiconductor market, which will enable a new level of quality control. Summary Slide Read more... Takeda Advances Diabetes Drug Development at the ALS Print Tuesday, 19 May 2015 12:25 Type 2

  6. Deregulation-restructuring: Evidence for individual industries

    SciTech Connect (OSTI)

    Costello, K.W.; Graniere, R.J.

    1997-05-01

    Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

  7. Electric power annual 1997. Volume 1

    SciTech Connect (OSTI)

    1998-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Electric Power Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1 -- with a focus on US electric utilities -- contains final 1997 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1997 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold (based on a monthly sample: Form EIA-826, ``Monthly Electric Utility Sales and Revenue Report with State Distributions``). Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA.

  8. Digital Surveying Directional Surveying Specialists | Open Energy...

    Open Energy Info (EERE)

    Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying...

  9. Electric Power monthly, November 1996

    SciTech Connect (OSTI)

    1996-11-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  10. Electric power monthly, May 1996

    SciTech Connect (OSTI)

    1996-05-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and Stage agencies, the electric utility industry, and the general public. Purpose is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information to fulfill its data collection and dissemination responsibilities in Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  11. PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST...

    Office of Legacy Management (LM)

    MED contract during an early phase of the Manhattan project. Wayne Bickerstaff, Jerry Brady, Dave Whitehead, and Paul Curtis provided background information about the project and...

  12. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  13. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  14. Survey Statisticians

    Gasoline and Diesel Fuel Update (EIA)

    Survey Statisticians The U.S.Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Survey Statistician, who measures the amounts of energy produced and consumed in the United States. Responsibilities: Survey Statisticians perform or participate in one or more of the following important

  15. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  16. radiological. survey

    National Nuclear Security Administration (NNSA)

    7%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  17. DOE Seeks Industry Participation for Engineering Services to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry ... Gen IV Reactor Capable of Producing Process Heat, Electricity andor ...

  18. Nanjing Auheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Nanjing, Jiangsu Province, China Zip: 210005 Sector: Hydro, Solar, Wind energy Product: Manufactures industrial components, including electric vehicle...

  19. Ames Lab Interns Make Their Research Mark in Industry, Academia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interns Make Their Research Mark in Industry, Academia and at DOE National Labs Kevin Yang, Science Undergraduate Laboratory Internship - 2008 B.S., Electrical and Computer...

  20. Model Documentation Report: Industrial Demand Module of the National...

    Gasoline and Diesel Fuel Update (EIA)

    are multiplicative for all fuels that have consumption values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  1. Microsoft Word Viewer - Industrial Documentation _7-10-06_.doc

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  2. Save Energy Now for Maryland Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    disseminate the resources and information to industrial manufacturers in ... goal of a 15% reduction in both electricity and peak demand by 2015. This policy initiative was ...

  3. Eck Industries, Inc. Realizes Savings Through Smarter Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    This case study discusses how Eck Industries pursued a lighting retrofit project that reduced its Manitowoc, Wisconsin, facility's plant-wide electricity use, achieved annual...

  4. Rebuilding the American Auto Industry

    Broader source: Energy.gov [DOE]

    The Administration made strategic investments to help U.S. auto manufacturers retool to produce the hybrid, electric, and highly fuel efficient advanced vehicles of the future. With the help of these investments -- and the incredible talent and commitment of America's auto workers -- the auto industry is growing again.

  5. Annual Electric Utility Data - EIA-906/920/923 Data File

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    923 detailed data with previous form data (EIA-906920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel...

  6. Department of Energy Launches Initiative with Industry to Better Protect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Nation's Electric Grid from Cyber Threats | Department of Energy Launches Initiative with Industry to Better Protect the Nation's Electric Grid from Cyber Threats Department of Energy Launches Initiative with Industry to Better Protect the Nation's Electric Grid from Cyber Threats January 5, 2012 - 12:20pm Addthis Washington, D.C. - As part of the Obama Administration's efforts to enhance the security and reliability of the nation's electrical grid, U.S. Energy Secretary Steven Chu today

  7. Consumer preferences for electric vehicles. Final report

    SciTech Connect (OSTI)

    Garrison, W.L.; Calfee, J.E.; Bruck, H.W.

    1986-06-01

    A small-sample survey of consumer preferences for a second car - featuring both conventional and electric vehicle choices - indicates a proelectric bias. The potential of electric cars in the utility market largely depends on dramatic improvements in battery technology and the right mix of electricity and gasoline prices.

  8. Commonwealth Scientific and Industrial Research Organisation - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Electricity Transmission Electricity Transmission Return to Search Commonwealth Scientific and Industrial Research Organisation National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date CSIRO Australia Other March 16, 2015 Summary NREL has joined forces with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) to develop a plug-and-play technology that will result in newly connected solar

  9. Electric power monthly, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-13

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  10. Electric power monthly, September 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-17

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EPM is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  11. State Geological Survey Contributions to NGDS Data Development...

    Open Energy Info (EERE)

    Arizona Geological Survey Awardee Website http:www.azgs.az.gov Partner 1 Microsoft Research Partner 2 Energy Industry Metadata Standards Working Group Partner 4 String...

  12. GEA Industry Briefing | Department of Energy

    Office of Environmental Management (EM)

    Industry Briefing GEA Industry Briefing U.S. Department of Energy progress in geothermal energy deployment was addressed at the State of the Industry Geothermal Briefing in Washington, DC on February 24, 2015. Eric Hass, hydrothermal program manager for the Geothermal Technologies Office presented. Exploration drilling in the Wind River Valley basin validates the geothermal resource there. Source: Wyoming State Geological Survey U.S. Department of Energy progress in geothermal energy deployment

  13. Direct-Current Resistivity Survey At Beowawe Hot Springs Area...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References Sabodh K. Garg, John W. Pritchett, Philip E. Wannamaker, Jim Combs (2007) Use Of Electrical Surveys For Geothermal Reservoir...

  14. Financial statistics of major U.S. publicly owned electric utilities 1997

    SciTech Connect (OSTI)

    1998-12-01

    The 1997 edition of the ``Financial Statistics of Major U.S. Publicly Owned Electric Utilities`` publication presents 5 years (1993 through 1997) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator (Tables 3 through 11) and nongenerator (Tables 12 through 20) summaries are presented in this publication. Five years of summary financial data are provided (Tables 5 through 11 and 14 through 20). Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided in Appendix C. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, ``Annual Report of Public Electric Utilities.`` Public electric utilities file this survey on a fiscal year basis, in conformance with their recordkeeping practices. The EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents. The review indicated that financial indicators differ most according to whether or not a publicly owned electric utility generates electricity. Therefore, the main body of the report provides summary information in generator/nongenerator classifications. 2 figs., 101 tabs.

  15. Industry Profile

    Broader source: Energy.gov [DOE]

    Combined heat and power (CHP)—sometimes referred to as cogeneration—involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

  16. Electric power monthly, July 1993

    SciTech Connect (OSTI)

    Not Available

    1993-07-29

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  17. Electric power monthly, June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  18. Electric power monthly, August 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-24

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  19. Building a More Efficient Industrial Supply Chain

    Broader source: Energy.gov [DOE]

    This infographic highlights some of the ways businesses can save money at each step of the energy supply chain. Many companies can identify low-cost ways to reduce energy costs in electricity generation, electricity transmission, industrial processes, product delivery, and retail sales.

  20. Title: Collaborative Industry - Academic Synchrophasor Engineering Program

    Energy Savers [EERE]

    Title: Collaborative Industry - Academic Synchrophasor Engineering Program Principal Investigator: Stephen B. Bayne University: Texas Tech University Contact Information: Phone number 806 742 0526, Email Stephen.bayne@ttu.edu Project description Texas Tech University (TTU) in collaboration with the Center for the Commercialization of Electric Technologies (CCET), Group NIRE (National Institute for Renewable Energy), South Plains Electric Cooperative (SPEC), and National Instruments (NI) has

  1. Sample Employee Survey for Workplace Charging Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORKPLACE CHARGING CHALLENGE Sample Employee Survey for Workplace Charging Planning Plug-in electric vehicles (PEVs) use electricity as either their primary fuel or to improve fuel efficiency. Fifteen new PEVs are expected for market availability in 2013, expanding driver options. We are considering the installation of charging infrastructure to assist employees who drive PEVs to work. Your responses to this survey will be used to determine employee interest in this benefit. Participation in

  2. Colorado Dairy Industry Boosts Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dairy Industry Boosts Energy Efficiency Colorado Dairy Industry Boosts Energy Efficiency December 21, 2015 - 2:12pm Addthis Colorado Dairy Industry Boosts Energy Efficiency Historically, the U.S. dairy industry has been one of the most energy-intensive forms of agriculture. Colorado is at the forefront of the fight to increase energy efficiency in this sector. In 2014, the Colorado Energy Office invested $240,000 of State Energy Program funds to help reduce the dairy industry's electricity

  3. Energy 101: Electric Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicles Energy 101: Electric Vehicles January 9, 2012 - 4:22pm Addthis A look at how electric vehicles (EVs) work and what current and future models are doing to cut transit costs, reduce emissions, and strengthen our nation's energy security. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs While the North American International Auto Show is slated to kick off today in Detroit, and the industry is already abuzz with the latest innovations in electric

  4. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    SciTech Connect (OSTI)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total technical fuel efficiency potential equal to 7,949 terajoules (TJ), accounting for 8% of total fuel used in the studied cement plants in 2008. All the fuel efficiency potential is shown to be cost effective. Carbon dioxide (CO{sub 2}) emission reduction potential associated with cost-effective electricity saving is 383 kiloton (kt) CO{sub 2}, while total technical potential for CO{sub 2} emission reduction from electricity-saving is 940 ktCO{sub 2}. The CO{sub 2} emission reduction potentials associated with fuel-saving potentials is 950 ktCO{sub 2}.

  5. Electric power emergency handbook

    SciTech Connect (OSTI)

    Labadie, J.R.

    1980-09-01

    The Emergency Electric Power Administration's Emergency Operations Handbook is designed to provide guidance to the EEPA organization. It defines responsibilities and describes actions performed by the government and electric utilities in planning for, and in operations during, national emergencies. The EEPA Handbook is reissued periodically to describe organizational changes, to assign new duties and responsibilities, and to clarify the responsibilities of the government to direct and coordinate the operations of the electric utility industry under emergencies declared by the President. This Handbook is consistent with the assumptions, policies, and procedures contained in the National Plan for Emergency Preparedness. Claimancy and restoration, communications and warning, and effects of nuclear weapons are subjects covered in the appendices.

  6. Electric power monthly, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Statistics by company and plant are published on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  7. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  8. National Electric Delivery Technologies Roadmap: Transforming the Grid to

    Office of Environmental Management (EM)

    Revolutionize Electric Power in North America | Department of Energy Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America National Electric Delivery Technologies Roadmap: Transforming the Grid to Revolutionize Electric Power in North America This Roadmap provides a framework for all of the stakeholders that comprise the electric industry to work together to achieve common aims. PDF icon National Electric Delivery Technologies Roadmap:

  9. Electricity Delivery and Energy Reliability

    Broader source: Energy.gov (indexed) [DOE]

    Delivery and Energy Reliability The Office of Electricity Delivery and Energy Reliability (OE) drives electric grid modernization and resiliency in the energy infrastructure while working to enable innovation across the energy sector, empowering American consumers, and securing our energy future. The OE mission and the leadership role OE plays in the energy industry directly support the President's effort to accelerate the transformation of America's energy system through research and

  10. Mass Save (Electric)- Small Business Direct Install Program

    Broader source: Energy.gov [DOE]

    Mass Save organizes commercial, industrial, and institutional conservation services for programs administered by Massachusetts electric companies, gas companies and municipal aggregators. These...

  11. Ames Electric Department- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The rebate programs available include: The Appliance Rebate...

  12. DOE Releases New Video on Electric Vehicles, Highlights Administration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Club Speech DOE Releases New Video on Electric Vehicles, Highlights Administration Support for U.S. Auto Industry in Detroit Economic Club Speech January 9, 2012 - ...

  13. DOE Releases New Analysis Showing Significant Advances in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    foreign oil and ensure that the U.S. leads the world in the growing electric vehicle manufacturing industry," said DOE Assistant Secretary for Policy and International Affairs ...

  14. Low Interest Energy Efficiency Loan Program (Electric and Gas)

    Broader source: Energy.gov [DOE]

    Energize CT offers low interest loans for commercial and industrial customers for investments in energy efficiency improvements. Electric customers of Connecticut Light & Power, United...

  15. Electric Utility Energy Efficiency Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    national trends in electric utility energy efficiency programs for industrial customers, insights from investor-owned utilities, and national trendsdevelopments among ...

  16. El Paso Electric Company- Small Business and Large Commercial Programs

    Broader source: Energy.gov [DOE]

    El Paso Electric (EPE) offers several incentive programs targeting small business owners as well as larger commercial and industrial EPE customers.

  17. Energy Department Names Virginia and Illinois Electric Co-ops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electric cooperatives that demonstrate outstanding leadership in advancing U.S. wind power. The two power providers were selected by a panel of judges from the wind industry,...

  18. U.S. Electric Utility Demand-Side Management

    Reports and Publications (EIA)

    2002-01-01

    Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

  19. DOE Issues Notice of Proposed Rulemaking for Electric Motors...

    Broader source: Energy.gov (indexed) [DOE]

    regarding energy conservation standards for certain commercial and industrial electric motors, under subpart B of Title 10 of the Code of Federal Regulations, Part 431, including a...

  20. Electric power monthly, June 1997 with data for March 1997

    SciTech Connect (OSTI)

    1997-06-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 63 tabs.

  1. Electric power monthly, July 1997 with data for April 1997

    SciTech Connect (OSTI)

    1997-07-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. 57 tabs.

  2. Electric Drive Transportation Association Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Transportation Association Conference Electric Drive Transportation Association Conference Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar drives a Chevrolet Spark EV during the Electric Drive Transportation Association conference in Indianapolis, Indiana on May 20, 2014. The conference brings together industry leaders who are advancing electric vehicle technologies and expanding the nation's charging infrastructure. Image: Photo

  3. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  4. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  5. Antitrust issues and the restructuring of the power industry

    SciTech Connect (OSTI)

    Moritz, T.F.

    1999-11-01

    Because of extensive federal oversight and state regulation of the utility area, few antitrust cases have been brought concerning the electric power industry. The limited prior case law that exists in this area nonetheless provides valuable guidance regarding how the antitrust laws will protect consumers and, therefore, competition in the electric power industry. This article will discuss the primary antitrust doctrines likely to be utilized to protect competition in this industry.

  6. Industrial Applications for Micropower: A Market Assessment, November 1999

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Industrial Applications for Micropower: A Market Assessment, November 1999 Industrial Applications for Micropower: A Market Assessment, November 1999 Micropower (defined here as electricity generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. Based on the analysis conducted for this 1999 study, these technologies can cost-effectively provide thermal and electric

  7. Federal Utility Partnership Working Group Industry Commitment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Federal Utility Partnership Working Group Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist Federal agencies in achieving energy-saving goals. These goals are set in the Energy Policy Act of 1992 and subsequent executive orders. Federal agencies can contact Federal Utility Partnership Working Group utility partners for more information on assistance.

  8. Energy Department Partners with State, City and Industry Stakeholders to

    Energy Savers [EERE]

    Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy | Department of Energy State, City and Industry Stakeholders to Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy Energy Department Partners with State, City and Industry Stakeholders to Help Hoboken Region Improve Its Electric Grid in the Aftermath of Hurricane Sandy June 13, 2013 - 1:29pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama

  9. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect (OSTI)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  10. Electric power annual 1997. Volume 2

    SciTech Connect (OSTI)

    1998-10-01

    The Electric Power Annual 1997, Volume 2 contains annual summary statistics at national, regional, and state levels for the electric power industry, including information on both electric utilities and nonutility power producers. Included are data for electric utility retail sales of electricity, associated revenue, and average revenue per kilowatthour of electricity sold; financial statistics; environmental statistics; power transactions; and demand-side management. Also included are data for US nonutility power producers on installed capacity; gross generation; emissions; and supply and disposition of energy. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with historical data that may be used in understanding US electricity markets. 15 figs., 62 tabs.

  11. Electric trade in the United States 1994

    SciTech Connect (OSTI)

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  12. Industrial Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (358) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Industrial Technologies

  13. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  14. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Reddy, Patel Bhageerath (Madison, WI)

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  15. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  16. Electric power annual 1989. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17

    This publication presents a summary of electric utility statistics at the national, regional and state levels. The Industry At A Glance'' section presents a profile of the electric power industry ownership and performance; a review of key statistics for the year; and projections for various aspects of the electric power industry through 2010. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; electricity sales, revenue and average revenue per kilowatthour sold; financial statistics; environmental statistics; and electric power transactions. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. 24 figs., 57 tabs.

  17. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

  18. The Impacts of the Energy Policy Act of 1992 on Industrial End Users of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Motor-Driven Systems | Department of Energy The Impacts of the Energy Policy Act of 1992 on Industrial End Users of Electric Motor-Driven Systems The Impacts of the Energy Policy Act of 1992 on Industrial End Users of Electric Motor-Driven Systems Answers to frequently asked questions about the impacts of the Energy Policy Act of 1992 on industrial end users of electric motor-driven systems. PDF icon The Impacts of the Energy Policy Act of 1992 on Industrial End Users of Electric

  19. Electricity market players subgroup report

    SciTech Connect (OSTI)

    Borison, A.

    1990-03-01

    The purpose of this study is to examine competition in the electric power industry from an ``industrial organization`` point of view. The remainder of this report is organized as follows. Chapter 2 describes the ``industrial organization`` approach used to analyze the electric power market. Industrial organization emphasizes specific market performance criteria, and the impact of market structure and behavior on performance. Chapter 3 identifies the participants in the electric power market, grouped primarily into regulated producers, unregulated producers, and consumers. Chapter 4 describes the varieties of electric power competition, organized along two dimensions: producer competition and consumer competition. Chapters 5 and 6 identify the issues raised by competition along the two dimensions. These issues include efficiency, equity, quality, and stability. Chapters 7 through 9 describe market structure, behavior and performance in three competitive scenarios: minimum competition, maximum competition, and moderate competition. Market structure, behavior and performance are discussed, and the issues raised in Chapters 5 and 6 are discussed in detail. Chapter 10 provides conclusions about ``winners and losers`` and identifies issues that require further study.

  20. Electricity market players subgroup report

    SciTech Connect (OSTI)

    Borison, A.

    1990-03-01

    The purpose of this study is to examine competition in the electric power industry from an industrial organization'' point of view. The remainder of this report is organized as follows. Chapter 2 describes the industrial organization'' approach used to analyze the electric power market. Industrial organization emphasizes specific market performance criteria, and the impact of market structure and behavior on performance. Chapter 3 identifies the participants in the electric power market, grouped primarily into regulated producers, unregulated producers, and consumers. Chapter 4 describes the varieties of electric power competition, organized along two dimensions: producer competition and consumer competition. Chapters 5 and 6 identify the issues raised by competition along the two dimensions. These issues include efficiency, equity, quality, and stability. Chapters 7 through 9 describe market structure, behavior and performance in three competitive scenarios: minimum competition, maximum competition, and moderate competition. Market structure, behavior and performance are discussed, and the issues raised in Chapters 5 and 6 are discussed in detail. Chapter 10 provides conclusions about winners and losers'' and identifies issues that require further study.

  1. Electric trade in the United States, 1996

    SciTech Connect (OSTI)

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  2. Competition, antitrust, and the marketplace for electricity

    SciTech Connect (OSTI)

    Szymanski, P.A.

    1995-03-01

    As the electric industry continues its unprecedented restructuring, state public utility regulators must determine which rules and analytical tools will best enable the industry`s participants to compete to provide electricity and its functional components. Even in the early stages of transformation, elements of a competitive marketplace are pervasive: generation markets are battlegrounds for increasingly diverse, numerous, and zealous participants; boundaries delineating traditional service territories are becoming blurred; associations of similarly-situated participants are forming to promote their interests; increased concentration through mergers and joint ventures looms as a possibility; vertically integrated utilities are considering or are being challenged to consider reconfiguration into a more horizontal structure; and generally, the industry`s end-users, its retail customers, are demanding choice. Large industrial customers, groups of residential customers, or entire municipalities are seeking to obtain electric service outside their native electric utilities service territories. These demands for increased consumer choice threaten the legislatively defined franchise rules, which grant monopolies to utilities in exchange for a system of regulation which includes an obligation to serve customers in the service territories both reliably and at reasonable cost. These events foreshadow an industry-wide transition to a customer-driven, competitive system for the provision of electric service in which the price for the service is determined by market-based signals. It would be unrealistic if state utility regulators did not expect commensurate change in the issues they confront and the existing methods of analysis.

  3. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  4. Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment

    SciTech Connect (OSTI)

    Brockway, N.

    2001-05-21

    As the electric industry goes through a transformation to a more market-driven model, traditional grounds for utility energy efficiency have come under fire, undermining the existing mechanisms to fund and deliver such services. The challenge, then, is to understand why the electric industry should sustain investments in helping low-income Americans use electricity efficiently, how such investments should be made, and how these policies can become part of the new electric industry structure. This report analyzes the opportunities and barriers to leveraging electric utility energy efficiency assistance to low-income customers during the transition of the electric industry to greater competition.

  5. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  6. electricity.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed questionnaire is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our

  7. Annual Outlook for US Electric Power, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-08-12

    This report provides a history and projections of US electric utility markets. It includes summary information on the production of electricity, its distribution to end-use sectors, and on electricity, its distribution to end-use sectors, and on electricity costs and prices. Further, this publication describes the ownership structure of the industry and the operations of utility systems and outlines basic electricity generating technologies. The historical information covers the period from 1882 through 1984, while projections extend from 1985 through 1995. 9 figs., 8 tabs.

  8. Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions Working with Wisconsin's Focus on Energy, Eck Industries, Inc. pursued a lighting retrofit project that reduced its facility's electricity use, achieved annual operating savings, and provided higher quality lighting When Eck Industries, Inc. made the decision to advance its energy effciency efforts, the company took stock of the resources made available to industry through Wisconsin's Focus on Energy program-a state-based

  9. MSET: An Early Warning System with Broad Industrial Application - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search MSET: An Early Warning System with Broad Industrial Application Argonne National Laboratory Contact ANL About This Technology MSET Fault Detection Algorithm MSET Fault Detection Algorithm Technology Marketing Summary The success of modern industries- especially those that are electricity-intensive-depends on complex engineering systems to ensure safe,

  10. Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions |

    Office of Environmental Management (EM)

    Department of Energy Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions This case study discusses how Eck Industries pursued a lighting retrofit project that reduced its Manitowoc, Wisconsin, facility's plant-wide electricity use, achieved annual operating savings, and provided higher quality lighting. PDF icon Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions (January 2011)

  11. Electricity Transmission and Distribution Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing - Energy Innovation Portal Electricity Transmission Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Marketing Summaries (70) Success Stories (2) Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual

  12. Electricity reform abroad and US investment

    SciTech Connect (OSTI)

    1997-10-01

    This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

  13. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  14. Steel Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Technology Roadmap Steel Industry Technology Roadmap Table of Contents Introduction Process Improvement 2.1 Cokemaking 2.2 Ironmaking 2.3 Basic Oxygen Furnace (BOF) Steelmaking 2.4 Electric Arc Furnace (EAF) Steelmaking 2.5 Ladle Refining 2.6 Casting 2.7 Rolling and Finishing 2.8 Refractories Iron Recycling Unit 3.1 By-products 3.2 Obsolete Scrap Environment 4.1 Cokemaking 4.2 Ironmaking 4.3 Steelmaking - Basic Oxygen Furnace (BOF) 4.4 Steelmaking - Electric Arc Furnace (EAF) 4.5

  15. Buying Clean Electricity | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. The electricity industry is changing. At least 50% of customers have

  16. Workplace Charging Challenge Partner: Phil Haupt Electric | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Phil Haupt Electric Workplace Charging Challenge Partner: Phil Haupt Electric Workplace Charging Challenge Partner: Phil Haupt Electric Phil Haupt Electric has more than 28 years of experience in the electrical industry. The company demonstrated its commitment to sustainability by adding a PEV as the company vehicle in (INSERT YEAR) and encouraging its employees to adopt PEVs. Upon purchasing the PEV, the company recognized the need for workplace charging and now benefits from its

  17. EIA Energy Efficiency-Table 3d. Value Added by Selected Industries...

    Gasoline and Diesel Fuel Update (EIA)

    d Page Last Modified: May 2010 Table 3d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Current Brillion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  18. EIA Energy Efficiency-Table 4d. Value Added by Selected Industries...

    Gasoline and Diesel Fuel Update (EIA)

    d Page Last Modified: May 2010 Table 4d. Value Added1 by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  19. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  20. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  1. Electric power annual 1996. Volume 1

    SciTech Connect (OSTI)

    1997-08-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policy-makers, analysts, and the general public with data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. Volume 1--with a focus on US electric utilities--contains final 1996 data on net generation and fossil fuel consumption, stocks, receipts, and cost; preliminary 1996 data on generating unit capability, and retail sales of electricity, associated revenue, and the average revenue per kilowatthour of electricity sold. Additionally, information on net generation from renewable energy sources and on the associated generating capability is included in Volume 1 of the EPA. Data published in the Electric Power Annual Volume 1 are compiled from three statistical forms filed monthly and two forms filed annually by electric utilities. These forms are described in detail in the Technical Notes. 5 figs., 30 tabs.

  2. Electric power annual 1995. Volume I

    SciTech Connect (OSTI)

    1996-07-01

    The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

  3. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  4. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  5. Process Heating Assessment and Survey Tool (PHAST) Introduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Assessment and Survey Tool (PHAST) Introduction Process Heating Assessment and Survey Tool (PHAST) Introduction This presentation provides an introduction to PHAST, shows how to use the tool to survey process heating equipment that uses fuel, steam, or electricity, and helps plant personnel identify the most energy-intensive equipment. PDF icon Process Heating Assessment and Survey Tool Introduction (January 30, 2007) More Documents & Publications Process Heating

  6. DOE - Office of Legacy Management -- Pinellas Plant General Electric Co -

    Office of Legacy Management (LM)

    FL 07 Pinellas Plant General Electric Co - FL 07 FUSRAP Considered Sites Site: Pinellas Plant General Electric Co. (FL.07) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Pinellas, Florida, Site Documents Related to Pinellas Plant General Electric Co. Building 100 Area Corrective Measures Study Report Addendum; DOE-LM/GJ1241-2006;

  7. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  8. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  9. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  10. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  11. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  12. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration (EIA) 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates

  13. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  14. The Impacts of the Energy Policy Act of 1992 on Industrial End...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Impacts of the Energy Policy Act of 1992 on Industrial End Users of Electric Motor-Driven Systems The Impacts of the Energy Policy Act of 1992 on Industrial End Users of...

  15. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships Webinar Series: Electric Utility Energy Efficiency Programs October 5, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Consortium for Energy Efficiency (CEE), Industrial Program Manager, Kellem Emanuele, will discuss national trends in electric energy efficiency programs for industrial customers. * Xcel Energy, Trade Relations Manager in Colorado, Bob Macauley, and Trade Relations Manager in Minnesota, Brian Hammarsten, will provide insight from a large

  16. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  17. Ultra-Efficient and Power-Dense Electric Motors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power-Dense Electric Motors Advanced Electric Motors Offer Large Energy Savings in Industrial Applications Pumps, fans, and compressors use more than 60% of industrial electric motor energy in the United States. The most widely used motors in these applications are constant-speed motors that are started and run across the line. In some applications, variable- speed motors, powered from an open-loop variable-speed drive, are utilized without any rotor position feedback device to achieve more

  18. 2012 NERSC User Survey Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 User Survey Text 2010/2011 User Survey Results 2009/2010 User Survey Results 2008/2009 User Survey Results 2007/2008 User Survey Results 2006 User Survey Results 2005 User Survey Results 2004 User Survey Results 2003 User Survey Results 2002 User Survey Results 2001 User Survey Results 2000 User Survey Results 1999 User Survey Results 1998 User Survey Results HPC Requirements for Science HPC Workshop Reports NERSC Staff Publications & Presentations Journal Cover Stories Galleries

  19. Steam System Survey Guide | Department of Energy

    Energy Savers [EERE]

    Steam System Survey Guide Steam System Survey Guide This guide provides technical information for steam system operational personnel and plant energy managers on some of the major opportunities available to improve the energy efficiency and productivity of industrial steam systems. The guide covers five main areas of investigation: (1) profiling a steam system, (2) identifying steam properties for the steam system, (3) improving boiler operations, (4) improving resource utilization in the steam

  20. Statistics for Industry Groups and Industries, 2003

    SciTech Connect (OSTI)

    2009-01-18

    Statistics for the U.S. Department of Commerce including types of manufacturing, employees, and products as outlined in the Annual Survey of Manufacturers (ASM).

  1. Demand response medium sized industry consumers (Smart Grid Project...

    Open Energy Info (EERE)

    demand and regulation power in Danish Industry consumers via a price and control signal from the supplier of electricity. The aim is to develop a valuable solution for the...

  2. AEP (SWEPCO)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    South Western Electric Power Company (SWEPCO) as part of its C&I solutions program provides various incentives to its commercial and industrial customers to save energy. 

  3. Financial statistics of major publicly owned electric utilities, 1991

    SciTech Connect (OSTI)

    Not Available

    1993-03-31

    The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

  4. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  5. Electric power monthly, October 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-20

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  6. Electric power monthly, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-26

    The Electric Power Monthly (EPM) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  7. Electric power monthly, February 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-16

    The Electric Power Monthly (EMP) presents monthly electricity statistics. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Data in this report are presented for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. Statistics by company and plant are published in the EPM on the capability of new generating units, net generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fossil fuels.

  8. " Generation by Program Sponsorship, Industry Group, Selected"

    U.S. Energy Information Administration (EIA) Indexed Site

    A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local

  9. " Generation, by Program Sponsorship, Industry Group, Selected"

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity" " Generation, by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 2" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third

  10. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  11. Ultra-Efficient and Power-Dense Electric Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Efficient and Power-Dense Electric Motors Ultra-Efficient and Power-Dense Electric Motors PDF icon electric_motors.pdf More Documents & Publications Advance Patent Waiver W(A)2009-030 Improving Motor and Drive System Performance - A Sourcebook for Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

  12. Electrical Cable Testing by Pulse-Arrested Spark Discharge (PASD) - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Startup America Startup America Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Electrical Cable Testing by Pulse-Arrested Spark Discharge (PASD) Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (796 KB) Technology Marketing SummarySandia

  13. Annual outlook for US electric power, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-04-24

    This document includes summary information on the ownership structure of the US electric utility industry, a description of electric utility regulation, and identification of selected factors likely to affect US electricity markets from 1985 through 1995. This Outlook expands upon projections first presented in the Annual Energy Outlook 1985, offering additional discussion of projected US electricity markets and regional detail. It should be recognized that work on the Annual Energy Outlook 1985 had been completed prior to the sharp reductions in world oil prices experienced early in 1986.

  14. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One

  15. The antitrust wild card and electricity restructuring

    SciTech Connect (OSTI)

    Adelberg, A.W.; Ongman, J.W.

    1997-03-01

    If competitive policy issues in electricity restructuring are not addressed soon--preferably in federal legislation--it`s likely that someone will use the antitrust wild card to achieve its ends. Experience teaches that this may not be the best way to make public policy. As the electric utility industry restructures, it is widely assumed that Congress, the state legislatures, and regulators will set the ground rules for the restructured markets. Experience to date would seem to confirm this view: California`s restructuring legislation, FERC`s Order 888, and the restructuring proceedings in numerous states are all examples. And yet, there remains another player whose role could be equally important: The federal judiciary. While court decisions under the antitrust laws have had little influence to date on the industry`s direction, there is reason to believe that their role could increase dramatically. Certainly this is the history of other industries that have undergone similar transformations. The authors expect that forces at work in the electric utility industry could lead to antitrust actions playing a far greater role in the industry`s future than most observers currently expect. The electric utility industry has already experienced a close brush with the potential for antitrust rulings to unravel critical elements of regulatory policy on restructuring. The DC Circuit`s now famous (or infamous) dicta in the Cajun Electric Power case illustrated how a simple antitrust principle--the prohibition on so-called tying arrangements--could defeat the FERC`s policy with respect to utilities` recovery of billions of dollars of stranded costs. The FERC rebutted that dicta in its remand decisions and elsewhere, and it appears that the issue in now moot in the Cajun litigation itself. But the tying arrangement argument is far from dead.

  16. Texas A&M University Industrial Assessment Center Final Report

    SciTech Connect (OSTI)

    Heffington, Warren M.; Eggebrecht, James A.

    2007-02-24

    This project benefited the public by assisting manufacturing plants in the United States to save costly energy resources and become more profitable. Energy equivalent to over 75,000 barrels of oil was conserved. The Texas A&M University Industrial Assessment Center (IAC) visited 96 manufacturing plants and spent 101 days in those plants during the contract period from August 9, 2002, through November 30, 2006. Recommended annual energy savings for manufacturers were 37,400,000 kWh (127,600 MMBtusite basis) of electricity and 309,000 MCF (309,000 MMBtu) of natural gas. Each manufacturer subsequently was surveyed, and based on these surveys reportedly implemented 79% of the electricity savings and 36% of the natural gas savings for an overall energy savings of 48% of recommended. Almost 800 (798) projects were recommended to manufacturers, and they accomplished two-thirds of the projects. Cost savings recommended were $12.3 million and implemented savings were $5.7 million or 47%. During the contract period our average time between site visit and report submittal averaged 46 days; and decreased from 48 days in 2003 to 44 days in 2006. Serving clients well and promptly has been a priority. We visited five ESA overflow clients during FY 06. The Texas A&M University IAC pioneered the presentation of air pollution information in reports, and includes NOx and CO2 reductions due to energy savings in all reports. We also experimented with formal PowerPoint BestPractices presentations called Lunchtime/Showtime in each plant and with delivering electronic versions of the report. During the period of the contract, the director served on the Texas Industries of the Future (IOF) Refining and Chemicals Committee, which oversaw the showcases in 2003 and 2006. The assistant director was the Executive Director of the International Energy Technology Conference held annually. The director and assistant director became qualified specialists in the Process Heating Assessment Scoping Tool and the Steam System Scoping Tool, respectively. Research was performed relating to energy conservation and IAC needs, resulting in a paper presented at the ACEEE meeting in 2005, and an internet software tool through the Texas IOF office.

  17. Sustainability for the Global Biofuels Industry: Minimizing Risks and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Opportunities Webinar Transcript | Department of Energy Opportunities Webinar Transcript Sustainability for the Global Biofuels Industry: Minimizing Risks and Maximizing Opportunities Webinar Transcript Webinar transcript. Microsoft Office document icon sustainability_global_biofuels_webinar.doc More Documents & Publications Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities 2009 National Electric Transmission Congestion Study -

  18. Direct-Current Resistivity Survey At Lightning Dock Area (Cunniff...

    Open Energy Info (EERE)

    not indicated DOE-funding Unknown Notes Two electrical resistivity survey lines were run in the project area: a southern east-west line along Caliche Road, and a northern...

  19. Natural Gas Electric Power Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  20. EIA - 2008 New Electric Power EIA-860 Form Anticipated Questions

    U.S. Energy Information Administration (EIA) Indexed Site

    860 Answers to Anticipated Questions for New Form EIA-860, "Annual Electric Generator Report" I am currently registered for the survey Form EIA-860. Will I need to re-register prior to submitting my 2007 data? No, you will automatically have access to the Form EIA-860 once the form is open for data collection. How do I add a newly planned or missing existing electric plant to the Form EIA-860 survey? The respondent cannot add a new electric plant to the survey. EIA has to perform that

  1. DOE - Office of Legacy Management -- Seaway Industrial Park - NY 09

    Office of Legacy Management (LM)

    Seaway Industrial Park - NY 09 FUSRAP Considered Sites Seaway Industrial Park, NY Alternate Name(s): Seaway Industrial Landfill Seaway Landfill Charles St. Plant NY.09-2 NY.09-3 Location: River Road, Tonawanda, New York NY.09-4 Historical Operations: Received approximately 6,000 cubic yards of low-grade uranium mill tailings and processing residues from the Ashland (Tonawanda North Units 1 and 2) sites. NY.09-5 Eligibility Determination: Eligible NY.09-1 Radiological Survey(s): Assessment

  2. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics,...

  3. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S....

  4. First high-temperature electronics products survey 2005.

    SciTech Connect (OSTI)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  5. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Energy Savers [EERE]

    Department of Energy Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant

  6. Electric power monthly, December 1998 with data for September 1998

    SciTech Connect (OSTI)

    1998-12-01

    The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The EIA collected the information in this report to fulfill its data collection and dissemination responsibilities. 57 tabs.

  7. Selected Bibliography on Electric Motor Repair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selected Bibliography on Electric Motor Repair Selected Bibliography on Electric Motor Repair The following series of repair documents related to electric motors were produced by the U.S. Department of Energy's Advanced Manufacturing Office (formerly the Office of Industrial Technologies) with input from trade associations, consulting companies, manufacturers, non-profit operations, and others. PDF icon Selected Bibliography on Electric Motor Repair (November 1999) More Documents &

  8. Now Available: Evaluating Electric Vehicle Charging Impacts and Customer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Behaviors - Experiences from Six SGIG Projects (December 2014) | Department of Energy Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors - Experiences from Six SGIG Projects (December 2014) Now Available: Evaluating Electric Vehicle Charging Impacts and Customer Charging Behaviors - Experiences from Six SGIG Projects (December 2014) December 18, 2014 - 10:28am Addthis The electric power industry expects a 400% growth in annual sales of plug-in electric

  9. Superconductivity for Electric Systems: 2008 Annual Peer Review Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report The Office of Electricity Delivery and Energy Reliability's High Temperature Superconductivity (HTS) for Electric Systems Program's specific mission is to work in partnership with industry to develop HTS wire and perform other research and development activities leading to the commercialization of HTS-based

  10. Selected Bibliography on Electric Motor Repair | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selected Bibliography on Electric Motor Repair Selected Bibliography on Electric Motor Repair The following series of repair documents related to electric motors were produced by the U.S. Department of Energy's Advanced Manufacturing Office (formerly the Office of Industrial Technologies) with input from trade associations, consulting companies, manufacturers, non-profit operations, and others. PDF icon Selected Bibliography on Electric Motor Repair (November 1999) More Documents &

  11. Chapter 3: Enabling Modernization of the Electric Power System

    Office of Environmental Management (EM)

    3: Enabling Modernization of the Electric Power System September 2015 Quadrennial Technology Review 3 Enabling Modernization of the Electric Power System Issues and RDD&D Opportunities  Fundamental changes in electricity generation and use are requiring the electricity system to perform in ways for which it was not designed-requiring new capabilities and system designs to maintain historical levels of reliability.  American industry and commerce demand affordable, high-quality power

  12. A National Grid Energy Storage Strategy - Electricity Advisory Committee -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2014 | Department of Energy A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The Electricity Advisory Committee (EAC) represents a wide cross section of electricity industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for

  13. Charging Up with the Electric Drive Transportation Association | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Charging Up with the Electric Drive Transportation Association Charging Up with the Electric Drive Transportation Association May 20, 2014 - 4:51pm Addthis Test Drive 1 of 5 Test Drive Deputy Assistant Secretary for Transportation Reuben Sarkar drives a Chevrolet Spark EV during the Electric Drive Transportation Association conference in Indianapolis, Indiana on May 20, 2014. The conference brings together industry leaders who are advancing electric vehicle technologies and

  14. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  15. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is

  16. Electrical Safety

    Office of Environmental Management (EM)

    NOT MEASUREMENT SENSITIVE DOE HANDBOOK ELECTRICAL SAFETY DOE-HDBK-1092-2013 July 2013 Superseding DOE-HDBK-1092-2004 December 2004 U.S. Department of Energy AREA SAFT Washington, D.C.20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1092-2013 Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/techstds/ ii DOE-HDBK-1092-2013 FOREWORD 1. This Department of Energy (DOE) Handbook is

  17. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  18. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  19. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  20. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *