Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electricity in lieu of nautral gas and oil for industrial thermal energy: a preliminary survey  

SciTech Connect

In 1974, industrial processors accounted for nearly 50% of the nation's natural gas consumption and nearly 20% of its consumption of petroleum. This report is a preliminary assessment of the potential capability of the process industries to substitute utility-generated electricity for these scarce fuels. It is tacitly assumed that virtually all public utilities will soon be relying on coal or nuclear fission for primary energy. It was concluded that the existing technology will permit substitution of electricity for approximately 75% of the natural gas and petroleum now being consumed by industrial processors, which is equivalent to an annual usage of 800 million barrels of oil and 9 trillion cubic feet of gas at 1974 levels. Process steam generation, used throughout industry and representing 40% of its energy usage, offers the best near-term potential for conversion to electricity. Electric boilers and energy costs for steam are briefly discussed. Electrically driven heat pumps are considered as a possible method to save additional low-grade energy. Electrical reheating at high temperatures in the primary metals sector will be an effective way to conserve gas and oil. A wholesale shift by industry to electricity to replace gas and oil will produce impacts on the public utilities and, perhaps, those of a more general socio-economic nature. The principal bar to large-scale electrical substitution is economics, not technology. 174 references.

Tallackson, J. R.

1979-02-01T23:59:59.000Z

2

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, “Annual Survey of Alternative Fueled Vehicles”; ...

3

A utility survey and market assessment on repowering in the electric power industry  

SciTech Connect

Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

Klara, J.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Weinstein, R.E. [Parsons Power Group Inc., Reading, PA (United States); Wherley, M.R. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

4

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

5

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute ï‚› Investor-Owned Electric Companies ï‚› Membership includes ï‚› 200 US companies, ï‚› More than 65 international affiliates and ï‚› 170 associates ï‚› US members ï‚› Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and ï‚› Nearly 70% of all electric utility ultimate customers, and ï‚› Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda ï‚›Significant Industry Trends ï‚›Utility Infrastructure Investments ï‚›Generation and Fuel Landscape

6

Electric Power Industry Restructuring:  

U.S. Energy Information Administration (EIA)

Good morning. I was asked to speak to you today about EIA’s data collection efforts in a more competitive electric power industry. I know that you want to hear ...

7

EIA Electric Industry Data Collection  

U.S. Energy Information Administration (EIA)

Steam Production EIA Electric Industry Data Collection Residential Industrial ... Monthly data on cost and quality of fuels delivered to cost-of-service plants

8

"Annual Electric Power Industry Report (EIA-861 data file)  

Annual Energy Outlook 2012 (EIA)

Data Released: September 20, 2012 Data for: 2011 Next Release: September 2013 Re-Release Date: November 27, 2012 (CORRECTION) Survey form EIA-861 -- Annual Electric Power Industry...

9

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

10

Industrial-hygiene survey report of General Electric Company, Albuquerque, New Mexico, April 18-24, 1989  

Science Conference Proceedings (OSTI)

A walk through survey was conducted at the General Electric Company (SIC-3079), located in Albuquerque, New Mexico, to obtain information on the extent of exposure to 4,4{prime}-methylenedianiline (101779) (MDA) during hand layup work with preimpregnated graphite fabric while making molded jet engine parts, to obtain information on the elimination of MDA in the urine of potentially exposed workers, and to identify deficiencies in the handling of MDA and to offer recommendations for improving worker protection. A total of 210 worker urine samples was taken. Other samples taken included air samples, samples of glove washings, surface wipe samples, shoe samples, and bulk samples. From the data obtained it was possible to estimate the primary sources of exposure and their relative importance. Comparing the mass of airborne MDA inhaled with the amounts measured in the urine the following day suggested that skin contact was a significant contributory route of exposure. The author states that further efforts should therefore be made to reduce this exposure. Such efforts would include the selection of better personal protective equipment and improved work practices. Possible engineering modifications would be limited due to the manual nature of the work involved.

Boeniger, M.F.

1990-12-01T23:59:59.000Z

11

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

12

Barron Electric Cooperative - Commercial, Industrial, and Agricultural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program...

13

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network (OSTI)

E I A ) . "Status of Electricity Industry Restructuring." Electricity Industry Restructuring, andEmissions Trading, Electricity Industry Restructuring, and

Fowlie, Meredith

2005-01-01T23:59:59.000Z

14

A Survey of the U.S. Energy ServiceA Survey of the U.S. Energy Service Company (ESCO) Industry: MarketCompany (ESCO) Industry: MarketCompany (ESCO) Industry: MarketCompany (ESCO) Industry: Market  

E-Print Network (OSTI)

A Survey of the U.S. Energy ServiceA Survey of the U.S. Energy Service Company (ESCO) Industry and savings 33 #12;Estimated Size of U.S. ESCO IndustryEstimated Size of U.S. ESCO Industry Energy AnalysisGrowth Projections for U.S. ESCO Industry Energy Analysis Department Electricity Markets and Policy Group 55 #12

15

U.S. Electricity Industry  

E-Print Network (OSTI)

Edison Electric Institute (EEI) is the association of U.S. shareholder-owned electric companies, international affiliates and industry associates worldwide. Our U.S. members serve over 90 percent of all customers served by the shareholder-owned segment of the industry. They generate approximately three-quarters of all the electricity generated by electric companies in the country and service about 70 percent of all ultimate customers in the nation. Organized in 1933 and incorporated in 1970, EEI works closely with its members, representing their interests and advocating equitable policies in legislative and regulatory arenas. In its leadership role, the Institute provides authoritative analysis and critical industry data to its members, Congress, government agencies, the financial community and other influential audiences. EEI provides forums for member company representatives to discuss issues and strategies to advance the industry and to ensure a competitive position in a changing marketplace. EEI’s mission is to ensure members ’ success in a new competitive environment by:

Eric Hirst; Brendan Kirby; Eric Hirst; Brendan Kirby

2001-01-01T23:59:59.000Z

16

Status of State Electric Industry Restructuring Activity  

Reports and Publications (EIA)

Presents an overview of the status of electric industry restructuring in each state.. Restructuring means that a monopoly system of electric utilities has been replaced with competing sellers.

Channele Wirman

2010-09-01T23:59:59.000Z

17

Rural electric cooperatives IRP survey  

Science Conference Proceedings (OSTI)

This report summarizes the integrated resource planning (IRP) practices of US rural electric cooperatives and the IRP policies which influence these practices. It was prepared by the National Renewable Energy Laboratory (NREL) and its subcontractor Garrick and Associates to assist the US Department of Energy (DOE) in satisfying the reporting requirements of Title 1, Subtitle B, Section 111(e)(3) of the Energy Policy Act of 1992 (EPAct), which states: (e) Report--Not later than 2 years after the date of the enactment of this Act, the Secretary (of the US Department of Energy) shall transmit a report to the President and to the Congress containing--(the findings from several surveys and evaluations, including:); (3) a survey of practices and policies under which electric cooperatives prepare IRPs, submit such plans to REA, and the extent to which such integrated resource planning is reflected in rates charged to customers.

Garrick, C. [Garrick and Associates, Morrison, CO (United States)

1995-11-01T23:59:59.000Z

18

Information Disclosure Policies: Evidence from the Electricity Industry  

E-Print Network (OSTI)

Evidence from the Electricity Industry Magali Delmas UCEvidence from the Electricity Industry May 2007 ABSTRACT A “programs in the electricity industry achieve stated policy

Delmas, Magali A; SHIMSHACK, JAY P; Montes, Maria J.

2007-01-01T23:59:59.000Z

19

Empire District Electric - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility...

20

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility...

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Barron Electric Cooperative - Commercial and Industry Energy...  

Open Energy Info (EERE)

icon Barron Electric Cooperative - Commercial and Industry Energy Efficiency Lighting Rebates (Wisconsin) This is the approved revision of this page, as well as being the...

22

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST...  

Office of Legacy Management (LM)

EAST PITTSBURGH, PENNSYLVANIA At the request of the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the Westinghouse Electric Corporation's East...

23

Update on Energy Saving Opportunities in Industrial Electrical Power Systems  

E-Print Network (OSTI)

High electrical power costs, rising at a rate consistently above that of general inflation, force the industrial power user to continuously update and evaluate available means of saving electrical energy. This paper provides a survey of one company's experience with several methods of energy conservation in electrical distribution systems, and its present practices in this area. Topics covered include the location of large and reducible losses, the determination of the worth of these losses, and a survey of ways to reduce them in an economical manner.

Frasure, J. W.; Fredericks, C. J.

1986-06-01T23:59:59.000Z

24

ConEd (Electric) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Electric) - Commercial and Industrial Energy Efficiency ConEd (Electric) - Commercial and Industrial Energy Efficiency Program ConEd (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Large Commercial Energy Study: $50,000 (electric); $67,000 (combined with gas) Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Lighting: Varies widely by type Small Business Energy Surveys: Free Small Business Equipment Upgrades: up to 70% of cost Large Commercial Energy Study: 50% of the cost

25

Electricity Transmission in a Restructured Industry: Data Needs ...  

U.S. Energy Information Administration (EIA)

Electricity Transmission in a Restructured Industry: ... as is now happening in the electricity industry, alters the basic data needed to describe that industry.

26

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

27

Electrical safety in industrial plants  

Science Conference Proceedings (OSTI)

Most electrical engineers and electricians are aware that the principal danger from electricity is that of electrocution, but few really understand just how minute a quantity of electric energy is required for electrocution. Actually, the current drawn ...

Ralph H. Lee

1971-06-01T23:59:59.000Z

28

Carnegie Mellon Electricity Industry Center  

E-Print Network (OSTI)

, Electric Power Research Institute Les Silverman, Director, McKinsey & Company Steve Specker, President

29

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

30

A Brief History of the Electricity Industry  

U.S. Energy Information Administration (EIA) Indexed Site

data and evaluating electricity data and evaluating electricity restructuring James Bushnell University of California Energy Inst. www.ucei.berkeley.edu Outline * Shameless flattery - Why EIA data are so important * Why are people so unhappy? - With electricity restructuring * What EIA data have helped us learn - Production efficiencies - Market efficiency - Market competition - Environmental compliance Why EIA is so important * Important industries undergoing historic changes - Restructuring/deregulation - Environmental regulation and markets * We know much more about these industries than others where data are not collected - And much more than the europeans know about their energy industries * Academics and economists flock to data - Much more "open source" knowledge about the functioning of these markets

31

Industry Survey of Radioactive Material Control Practices  

Science Conference Proceedings (OSTI)

Workers and materials entering and exiting the radiation control areas (RCAs) of nuclear power plants are carefully monitored for radioactivity. This report documents a survey developed to evaluate the range of instrumentation and practices used by the industry for performing such measurements.

2003-11-26T23:59:59.000Z

32

Geothermal industry employment: Survey results & analysis  

DOE Green Energy (OSTI)

The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

Not Available

2005-09-01T23:59:59.000Z

33

Global forces shape the electricity industry  

SciTech Connect

Whatever scenario for electricity comes to pass - one that emphasizes richness in energy supply or productivity in demand - expect to see increased complexity in the industry and its structures. Technology will be a key subversive element of this process of Schumpeterian creation and destruction. There are powerful global forces at work that are transforming whole economies and industries. Today`s electricity industry, with a century of tradition behind it, is also likely to be transformed in terms of its structure, competitive nature and the fuels that it uses. The electricity demand-Gross Domestic Product (GDP) relationship also stems from the increased share of electricity in energy markets. Overall, energy demand is declining relative to GDP, driven by increased efficiency and economic restructuring. Eventually (as indeed is already discernible in OECD countries) electricity demand will show the same characteristics.

Rainbow, R.

1996-05-01T23:59:59.000Z

34

"Annual Electric Power Industry Report (EIA-861 data file)  

U.S. Energy Information Administration (EIA)

ELECTRICITY DETAILED SURVEY DATA FILES: Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files ...

35

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

36

Sustainability Priorities in the Electric Power Industry  

Science Conference Proceedings (OSTI)

Improving sustainability performance has become an important indicator of corporate success, stewardship, and responsibility. Many companies publish annual sustainability and corporate responsibility reports to communicate their policies, goals, and ongoing performance on key sustainability issues. Notably, the sustainability priorities communicated through these reports vary considerably across the electric power industry. This study summarizes how the industry portrays its sustainability priorities thr...

2011-10-31T23:59:59.000Z

37

WESTERN ELECTRIC INDUSTRY LEADERS GROUP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WESTERN ELECTRIC INDUSTRY LEADERS GROUP WESTERN ELECTRIC INDUSTRY LEADERS GROUP Halting global warming and protecting the environment have properly moved high atop the...

38

Looking for Trouble: Competition Policy in the U.S. Electricity Industry  

E-Print Network (OSTI)

s Deregulated Electricity Industry. ” American Economicin a Deregulated Electricity Industry. ” Rand Journal ofanalysis in the electricity industry. ” FERC Docket No.

Bushnell, Jim

2003-01-01T23:59:59.000Z

39

An introduction to electric industry restructuring  

SciTech Connect

This paper briefly describes the electric industry, its residential markets, industry structure and current trends. Its purpose is to provide Weatherization grants managers with the background necessary to assess their leveraging opportunities in an industry that is experiencing sweeping changes, commonly known as electric industry restructuring. The study describes the terrain of a changing industry topography on a national and regional basis, with some state and local information also provided. Weatherization managers and subgrantees who read this paper should be better able to understand the leveraging opportunities that are emerging now in the electricity market place. The reader will be introduced to the basics of the electric industry as it presently operates, the nature of the changes that are in the process of occurring, and the driving forces that are behind those changes. The major industry players are described by type and their interests are explored in further depth. There will also be an overview of the regulatory process as it has operated historically, as well as the changes now underway at both the state and federal levels. Finally, the paper will conclude with a description of some of the assets and opportunities available to those who may be interested in participating in the restructuring process in order to expand or protect low-income programs in their own states.

Eisenberg, J.F.; Berry, L.G.

1997-09-01T23:59:59.000Z

40

Deregulation and Resource Reconfiguration In The Electric Utility Industry  

E-Print Network (OSTI)

and Scale Economies in Electric Power Production: Some Newand Delivery of Electric Power. Land Economics 62(4): 378-1998 Challenges of Electric Power Industry Restructuring for

Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Marketing Reordering of the Electric Utility Industry  

E-Print Network (OSTI)

ELCON is a group of large industrial consumers of electricity with facilities in most of the 50 states and many foreign countries. Our members produce a wide range of products including steel, aluminum, chemicals, industrial gases, glass, motor vehicles, textiles and food. ELCON members consume approximately ten percent of all electricity sold to industrial customers and nearly five percent of all electricity consumed in the United States. We require an adequate and reliable supply of electricity at reasonable prices, so as you can imagine, we have a continuing interest in all aspects of the production, pricing, and delivery of electricity. ELCON member companies believe strongly that the electric utility industry is undergoing a market reordering that is being shaped by technological, institutional and legal forces. We see technical developments that now make small-scale generation economically attractive, if not downright desirable. Key regulatory and consumer institutions are taking fresh, new looks at issues such as wheeling and access to the grid that used to be considered sacred and untouchable. Some states are passing laws and implementing regulations that will require new thinking and new operating procedures on the part of utilities and consumers. I see these developments as logical reactions to changes in market forces. Change will take place. The relevant questions are: How will regulators and policy makers be influenced by market forces in the future? And: Will utilities, consumers and regulators attempt to benefit from market pressures or, alternatively, try to oppose what I believe is inevitable evolution to a more market-oriented electric industry?

Anderson, J. A.

1986-06-01T23:59:59.000Z

42

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

E-Print Network (OSTI)

and Industrial Facilities to Dynamic Electricity Pricesand Industrial Facilities to Dynamic Electricity Prices

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

43

NYSEG (Electric) - Commercial and Industrial Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount Lighting, HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

44

Restructuring the Philippine electric power industry  

Science Conference Proceedings (OSTI)

The Philippine electricity industry has shown it can change, and change quickly. In contrast with the crises and changes imposed on it in the past, the industry now has as opportunity to forge a progressive, forward-looking strategy, This opportunity is enhanced by the force of law - the Department of Energy Act of 1992 mandates privatization of the National Power Corporation (NPC) - and by the easing of the power crisis which has significantly diminished political interference. In order to position the industry for growth and rising investment requirements and to support the growing role of the Philippine economy in international markets, that strategy must address the structural deficiencies that continue to plague the industry. By addressing structural changes that need to be made now, it can build on the impetus gained from its privatization mandate to improve accountability, increase efficiency and reduce government risk.

Bowden, S.; Ellis, M.

1995-06-01T23:59:59.000Z

45

THREE-DIMENSIONAL TERRAIN EFFECTS IN ELECTRICAL AND MAGNETOMETRIC RESISTIVITY SURVEYS  

E-Print Network (OSTI)

1 Introduction The Electrical Resistivity Method • Terrainin Electrical Resistivity Surveys • • • • . • • . • • • • •effects in electrical resistivity and magnetometric

Oppliger, G.L.

2012-01-01T23:59:59.000Z

46

The Spanish Electricity Industry: Plus ça change …  

E-Print Network (OSTI)

Crampes Université de Toulouse (GREMAQ and IDEI) ccrampes@cict.fr Natalia Fabra Universidad Carlos III de Madrid and CEPR nfabra@eco.uc3m.es November 18, 2004 Abstract In this paper we describe the Spanish electricity industry and its... decrease hides the lack of a real reform. 1 Protocolo para el Establecimiento de una Nueva Regulación del Sistema Eléctrico Nacional, December 1996; (text, in Spanish, available at http...

Crampes, Claude; Fabra, Natalia

2006-03-14T23:59:59.000Z

47

Water Disclosure in the Electric Power Industry  

Science Conference Proceedings (OSTI)

This topical brief provides an overview of two of the prominent water disclosure mechanisms affecting the electric power industry, the Global Reporting Initiative (GRI) and Carbon Disclosure Project Water Disclosure (CDP Water), and identifies connections to relevant EPRI research. The document was developed through EPRI's Program 55 Strategic Water Issues, and the Energy Sustainability Interest Group. This collaborative interest group was launched in 2008 and is made up of nearly 30 companies representi...

2011-06-17T23:59:59.000Z

48

Demand Response is Focus of New Effort by Electricity Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by Electricity Industry Leaders Demand Response is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together...

49

Summary of Industry Surveys on Future Capacity Commitments  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1996: Issues and Trends 141 Appendix C Summary of Industry Surveys on Future Capacity Commitments Table C1.

50

Transmission and Generation Investment In a Competitive Electric Power Industry  

E-Print Network (OSTI)

PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James;PWP-030 Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell. Transmission and Generation Investment In a Competitive Electric Power Industry James Bushnell and Steven Stoft

California at Berkeley. University of

51

Volumetric Hedging in Electricity Procurement Department of Industrial Engineering  

E-Print Network (OSTI)

Volumetric Hedging in Electricity Procurement Yumi Oum Department of Industrial Engineering electricity service at regulated prices in restructured electricity markets, face price and quantity risk. We in the electricity industry has put high price risk on market partici- pants, particularly on load serving entities

52

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

chanye (China‘s Electricity Industry at the Crossroad). ? InCapture in the Electricity Industry 2. Cross-Sectorals Telecoms and Electricity Industries. ? European Journal of

Tsai, Chung-min

2010-01-01T23:59:59.000Z

53

Form EIA-861, "Annual Electric Power Industry Report." | OpenEI  

Open Energy Info (EERE)

1, "Annual Electric Power Industry Report." 1, "Annual Electric Power Industry Report." Dataset Summary Description This is an electric utility data file that includes such information as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and distributed generation capacity. The data source is the survey Form EIA-861, "Annual Electric Power Industry Report." Data for all years are final. The file F861yr09.exe is a file of data collected on the Form EIA-861, Annual Electric Power Industry Report, for the reporting period, calendar year 2009. The zipped .exe file contains 11 .xls files and one Word file, and a .pdf of the Form EIA-861. The data file structure detailed here also applies to data files for prior

54

Electric Power Industry Needs for Grid-Scale Storage Applications |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Needs for Grid-Scale Storage Applications Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding upgrades to grid infrastructure Facilitating the integration of high penetrations of renewable energy Providing other ancillary services that can improve the stability and resiliency of the electric grid Electric Power Industry Needs for Grid-Scale Storage Applications More Documents & Publications

55

Challenges of electric power industry restructuring for fuel suppliers  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

NONE

1998-09-01T23:59:59.000Z

56

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

57

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network (OSTI)

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some load management has been implemented already. Additional load management is possible; however, optimizing it will require close industry and electric utility company cooperation to develop new incentives and rate structures to make it economically attractive. The limitations of existing rate structures and needed improvements are presented.

Jackson, C. E.

1984-01-01T23:59:59.000Z

58

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Appliances & Electronics Maximum Rebate Contact EEF Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Incentives Vary Widely Provider Connecticut Light and Power All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy

59

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

60

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

62

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

63

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

64

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

65

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

66

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

67

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

68

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

69

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

70

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

71

PPL Electric Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and...

72

Determining Levels of Productivity and Efficiency in the Electricity Industry  

Science Conference Proceedings (OSTI)

A few major themes run fairly consistently through the history of productivity and efficiency analysis of the electricity industry: environmental controls, economies of scale, and private versus government.

Abbott, Malcolm

2005-11-01T23:59:59.000Z

73

The electric power industry : deregulation and market structure  

E-Print Network (OSTI)

The US electricity industry currently consists of vertically integrated regional utilities welding monopolistic power over their own geographic markets under the supervision of state and federally appointed regulators. ...

Thomson, Robert George

1995-01-01T23:59:59.000Z

74

Industrial sector drives increase in North Dakota electricity ...  

U.S. Energy Information Administration (EIA)

Increased oil and natural gas production in North Dakota has driven the state's growth in industrial demand for electricity. Rising economic activity and population ...

75

Dakota Electric Association- Commercial and Industrial Energy Conservation Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Dakota Electric provides low-interest loans to help its commercial and industrial customers finance projects which will improve the energy efficiency of participating facilities. The minimum loan...

76

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and cooling equipment, motors, insulation,...

77

Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

78

Household Response To Dynamic Pricing Of Electricity: A Survey...  

Open Energy Info (EERE)

property. This report surveys evidence from 15 recent experiments with dynamic pricing of electricity in the United States and Canada. The report suggests conclusive evidence that...

79

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of...

80

Dakota Electric Association - Commercial and Industrial Custom Energy Grant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Electric Association - Commercial and Industrial Custom Dakota Electric Association - Commercial and Industrial Custom Energy Grant Program Dakota Electric Association - Commercial and Industrial Custom Energy Grant Program < Back Eligibility Commercial Industrial Savings Category Other Maximum Rebate 50% of total project costs and 100,000 annually in grants/rebates per member. Program Info State Minnesota Program Type Utility Grant Program Rebate Amount 50% of total project costs up to 100,000 Provider Dakota Electric Service Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in a reduction of electric use, when a specific rebate program is not currently available. Any energy

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

82

Industrial - Program Areas - Energy Efficiency & Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Animation The ORNL Industrial Technologies Program has made technological advances in industry that contribute to improved efficiency through decreased energy consumption, improved...

83

LASER Welding Survey for Power Generation Industry  

Science Conference Proceedings (OSTI)

EPRI has developed technology for laser weld repair of steam generator tubes in light water reactors. This technology has promise for other specialized welding and heat treatment applications in the power generation industry.

1998-04-23T23:59:59.000Z

84

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

Chinese electric power industry). ? Zhongguo Dianliwang (in Chinese State Industry: An Analysis of Evidence onchanye (China‘s Electricity Industry at the Crossroad). ? In

Tsai, Chung-min

2010-01-01T23:59:59.000Z

85

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

2006). Beijing: China Electric Power Press. Zhu, Chengzhang.reform in the Chinese electric power industry). ? Zhongguoand Challenges for China‘s Electric Power Industry. ? The

Tsai, Chung-min

2010-01-01T23:59:59.000Z

86

Development of mobile workforce management system for electricity supply industries  

Science Conference Proceedings (OSTI)

This research paper presents the features of a proposed Mobile Workforce Management System (MWMS) that will be used for the Electricity Supply Industries (ESI). The paper wraps up the types of related works that has been executed; the study on problems ... Keywords: electricity supply industry, mobile workforce management system

Faridah Hani Mohamed Salleh; Zaihisma Che Cob; Mohana Shanmugam; Siti Salbiah Mohamed Shariff

2009-12-01T23:59:59.000Z

87

Survey paper: A survey on industrial applications of fuzzy control  

Science Conference Proceedings (OSTI)

Fuzzy control has long been applied to industry with several important theoretical results and successful results. Originally introduced as model-free control design approach, model-based fuzzy control has gained widespread significance in the past decade. ... Keywords: Adaptive fuzzy control, Mamdani fuzzy controllers, Predictive control, Stable design, Takagi-Sugeno fuzzy controllers

Radu-Emil Precup; Hans Hellendoorn

2011-04-01T23:59:59.000Z

88

American Indian tribes and electric industry restructuring: Issues and opportunities  

Science Conference Proceedings (OSTI)

The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

Howarth, D. [Morse, Richard, and Weisenmiller, and Associates Inc., Oakland, CA (United States); Busch, J. [Lawrence Berkeley National Lab., CA (United States); Starrs, T. [Kelso, Starrs, and Associates LLC, Vashon, WA (United States)

1997-07-01T23:59:59.000Z

89

Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salem Electric - Residential, Commercial, and Industrial Efficiency Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program Salem Electric - Residential, Commercial, and Industrial Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit Residential State Government Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Ventilation Manufacturing Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate ENERGY Star Light Fixtures: Not to exceed 50% of the fixture cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Refrigerators: $60 Freezers: $60 Clothes Washers: $60

90

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

91

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

92

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

93

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

94

A Survey of Wireless Communications for the Electric Power System  

Science Conference Proceedings (OSTI)

A key mission of the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is to enhance the security and reliability of the nation’s energy infrastructure. Improving the security of control systems, which enable the automated control of our energy production and distribution, is critical for protecting the energy infrastructure and the integral function that it serves in our lives. The DOE-OE Control Systems Security Program provides research and development to help the energy industry actively pursue advanced security solutions for control systems. The focus of this report is analyzing how, where, and what type of wireless communications are suitable for deployment in the electric power system and to inform implementers of their options in wireless technologies. The discussions in this report are applicable to enhancing both the communications infrastructure of the current electric power system and new smart system deployments. The work described in this report includes a survey of the following wireless technologies: • IEEE 802.16 d and e (WiMAX) • IEEE 802.11 (Wi-Fi) family of a, b, g, n, and s • Wireless sensor protocols that use parts of the IEEE 802.15.4 specification: WirelessHART, International Society of Automation (ISA) 100.11a, and Zigbee • The 2, 3, and 4 generation (G )cellular technologies of GPRS/EDGE/1xRTT, HSPA/EVDO, and Long-Term Evolution (LTE)/HSPA+UMTS.

Akyol, Bora A.; Kirkham, Harold; Clements, Samuel L.; Hadley, Mark D.

2010-01-27T23:59:59.000Z

95

Electric/hybrid vehicle Delphi survey  

DOE Green Energy (OSTI)

This document presents the methodology and results of the Delphi survey. The viewgraphs depict the surveyed population in detail and the surveyed vehicles attributes such as range, recharging time, velocity, acceleration, etc. These opinions are given for forecast years 2000, 2010, and 2020.

Ng, H.K.; Anderson, J.L.; Santini, D.J.

1995-08-08T23:59:59.000Z

96

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

97

Public-policy responsibilities in a restructured electricity industry  

SciTech Connect

In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

Tonn, B.; Hirst, E.; Bauer, D.

1995-06-01T23:59:59.000Z

98

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

99

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

100

Industrial Powerhouse Optimization in the Deregulated Electricity Marketplace  

E-Print Network (OSTI)

The State of Delaware deregulated the retail sale of electricity in 2002, enabling buyers to procure power on a real-time price schedule and sell excess generated power to the grid. This initiative has prompted industrial sites, especially those with on-site generation capability, to evaluate the benefits and risks of the deregulated market. Deregulation can offer significant potential savings to industrial customers. However, with this opportunity comes exposure to turbulent fluctuations in electricity prices, which can sometimes reach $1,000/MW-hr. If a customer is unprepared for high electricity prices, an entire year of electricity cost savings can quickly be erased. This paper describes how one industrial site evaluated the risks and benefits of electricity deregulation and implemented real-time optimization of the electricity make-buy decision.

Hughes, P. D.; Bailey, W. F.

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

"Annual Electric Power Industry Report (EIA-861 data file)  

Gasoline and Diesel Fuel Update (EIA)

0 DETAILED DATA Corrections for Annual Electric Generator Form EIA-860 detailed data files December 4, 2013 The re-release of the Survey form EIA-860 data. Data were corrected for...

102

Supporting Statement for Survey Clearance: Electric Power ...  

U.S. Energy Information Administration (EIA)

Form EIA-63B, “Annual Photovoltaic Cell/Module Shipments Report” The Form EIA-63B is a mandatory annual census survey of companies engaged in photovol ...

103

The changing structure of the electric power industry: An update  

SciTech Connect

The U. S. electric power industry today is on the road to restructuring a road heretofore uncharted. While parallels can be drawn from similar journeys taken by the airline industry, the telecommunications industry, and, most recently, the natural gas industry, the electric power industry has its own unique set of critical issues that must be resolved along the way. The transition will be from a structure based on a vertically integrated and regulated monopoly to one equipped to function successfully in a competitive market. The long-standing traditional structure of the electric power industry is the result of a complex web of events that have been unfolding for over 100 years. Some of these events had far-reaching and widely publicized effects. Other major events took the form of legislation. Still other events had effects that are less obvious in comparison (e.g., the appearance of technologies such as transformers and steam and gas turbines, the invention of home appliances, the man-made fission of uranium), and it is likely that their significance in the history of the industry has been obscured by the passage of time. Nevertheless, they, too, hold a place in the underpinnings of today`s electric industry structure. The purpose of this report, which is intended for both lay and technical readers, is twofold. First, it is a basic reference document that provides a comprehensive delineation of the electric power industry and its traditional structure, which has been based upon its monopoly status. Second, it describes the industry`s transition to a competitive environment by providing a descriptive analysis of the factors that have contributed to the interest in a competitive market, proposed legislative and regulatory actions, and the steps being taken by the various components of the industry to meet the challenges of adapting to and prevailing in a competitive environment.

1996-12-01T23:59:59.000Z

104

Oncor Electric Delivery - Large Commercial and Industrial Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oncor Electric Delivery - Large Commercial and Industrial Rebate Oncor Electric Delivery - Large Commercial and Industrial Rebate Program Oncor Electric Delivery - Large Commercial and Industrial Rebate Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Windows, Doors, & Skylights Solar Buying & Making Electricity Water Heating Wind Maximum Rebate General: 20% of the incentive budget in a given budget year Contact Oncor for additional details Program Info State Texas Program Type Utility Rebate Program Rebate Amount DX Air Conditioning: $285.30/kW; $0.09/kWh

105

AN ECONOMETRIC ANALYSIS OF ZAMBIAN INDUSTRIAL ELECTRICITY DEMAND.  

E-Print Network (OSTI)

??The purpose of this thesis is twofold: to examine the electricity use in Zambia’s mining industry by focusing on own-price, cross price and index of… (more)

Chama, Yoram Chama

2012-01-01T23:59:59.000Z

106

Sustainable Communities--Business Opportunities for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

The purposes of this study are to: develop and articulate a vision of sustainable communities of the future and identify and delineate resulting technology challenges and business opportunities facing the electric utility industry.

2006-01-30T23:59:59.000Z

107

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

108

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

109

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

110

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

111

Changing Structure of the Electric Power Industry: Selected Issues, 1998  

Reports and Publications (EIA)

Provides an analytical assessment of the changes taking place in the electric power industry, including market structure, consumer choice, and ratesetting and transition costs. Also presents Federal and State initiatives in promoting competition.

Information Center

1998-07-01T23:59:59.000Z

112

Changing Structure of the Electric Power Industry: An Update, The  

Reports and Publications (EIA)

Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects.

Information Center

1996-12-01T23:59:59.000Z

113

Electricity Transmission in a Restructured Industry: Data Needs...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Transmission in a Restructured Industry: Data Needs for Public Policy Analysis Speaker(s): Douglas Hale Date: February 24, 2005 - 12:00pm Location: Bldg. 90 Seminar...

114

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Commercial Weatherization Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate 50% of cost in many cases Commercial and Industrial: $50,000/facility per year Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom Incentives: 50% T8/T5 Fluorescent Fixtures: $3-$20 T5/T8 Fluorescent High Bay Fixtures: $55-$175 CFL High Bay Fixtures: $75

115

Commercial & Industrial Demand Response Within Hawaiian Electric Company Service Territory  

Science Conference Proceedings (OSTI)

By reducing power usage during peak demand periods, demand response (DR) programs can help utilities manage power loads and complement energy efficiency activities while providing ratepayers an opportunity to substantially reduce their electric bills. This project assessed the costs and benefits of potential DR programs for Hawaiian Electric Company's (HECO's) commercial and industrial (CI) customers.

2007-06-04T23:59:59.000Z

116

Safety and Security Issues in Electric Power Industry  

Science Conference Proceedings (OSTI)

The paper presents, the main types of hazards for personnel, equipment and electric power systems which should be taken into consideration in the design of computer-based systems applied in electric power industry, as well as threats to the systems from ...

Zdzislaw Zurakowski

2000-10-01T23:59:59.000Z

117

Increasing Profits with Electric Industrial Vehicles: Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

Alabama Power Company's Electric Transportation Department has increased its bottom line through an innovative electric forklift incentive program. This presentation outlines the key points of an EPRI Case Study (EPRI report no. 1006013) that documents the utility's strategy, implementation, and results. The presentation demonstrates 1) the value of the industrial electric vehicle market to the utility, and 2) how the industrial market can benefit your bottom line.

2001-08-24T23:59:59.000Z

118

Empire District Electric - Commercial and Industrial Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Efficiency Empire District Electric - Commercial and Industrial Efficiency Rebates Empire District Electric - Commercial and Industrial Efficiency Rebates < Back Eligibility Commercial Industrial Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 20,000 per program year per customer Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Lighting: 2 - 50 per fixture Lighting Power Density: 1 per watt per square foot Lighting Sensors: 20 - 50 per sensor Central AC: 73 - 92 per ton Motors: 50 - 130 per motor Energy Audit: 50% of cost Custom: Lesser of 50% of incremental cost; 2-year payback equivalent; or

119

Empire District Electric - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 5,000; additional funds may be available for final 3 months of program year Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Custom: lesser of $.30 per kWh savings, 50% of incremental cost, or buydown to two year payback Fluorescent Lamps/Fixtures: $0.50 - $16 High Performance T8 Systems: $9 - $18 High-Bay Fluorescent Lamps/Ballasts: $40 - $125 CFL Fixtures: $8 - $25 Pendant/Wall Mount/Recessed Indirect Fixtures: $16 - $24

120

Dakota Electric Association - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dakota Electric Association - Commercial and Industrial Energy Dakota Electric Association - Commercial and Industrial Energy Efficiency Rebate Program Dakota Electric Association - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate $100,000 Building Measures: 50% of project cost up to $20,000 Central Air Conditioning: $1,500 Compressed Air Evaluation: $2,000 - $15,000 depending on HP Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount HVAC Chillers: $10 - $20/Ton, plus $2/ton, per 0.1 above base efficiency Cooling Towers: $3/nominal tower ton Air Handling Systems (VAV): $170/VAV Box

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Minnesota Valley Electric Cooperative - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Valley Electric Cooperative - Commercial and Industrial Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Minnesota Valley Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate For lighting, motors, and ASDs, there is a maximum of 50% of the project cost, or $5,000 Agriculture Ventilation: 50% of cost or $100,000 Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies according to fixture type Rooftop/Split System A/C: $18/ton, plus bonus of $5/ton for each 0.1 above

122

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

1991-09-01T23:59:59.000Z

123

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

1991-09-01T23:59:59.000Z

124

Global Climate Change Electric Power Industry  

E-Print Network (OSTI)

-binding national targets have been set for the consumption of electricity from renewable sources and for biofuels - The United States - Developing nations · Biofuels targets · Biofuels policy overview by region - The European renewable fuels targets (gallons bn), 2006-2012 · Biofuels energy targets · Biofuel policy overview

Ford, Andrew

125

The Electricity Industry In Spain Edward Kahn  

E-Print Network (OSTI)

import of natural gas from Algeria. The 1994 electricity reform legislation mandated the creation, and the peculiar situation of nuclear power. In the future, natural gas will increase its role in Spain Energia (MIE), Protocolo de Intenciones para el Uso del Gas Natural en la Generacion de Energia Electrica

California at Berkeley. University of

126

Electric Utility Industry Experience with Geomagnetic Disturbances  

Science Conference Proceedings (OSTI)

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

Barnes, P.R.

1991-01-01T23:59:59.000Z

127

ELECTRICAL ENGINEER High growth industry career opportunity  

E-Print Network (OSTI)

shall be submitted in writing to the DCM Project Manager, using the KU Standards Variance Request Form Designers shall verify that all applicable portions of these standards are incorporated into the project,470-Volt power to the Lawrence main campus at two distribution substations. Electrical metering for billing

128

IRP and the electricity industry of the future: Workshop results  

SciTech Connect

During the next several years, the U.S. electricity industry is likely to change dramatically. Instead of an industry dominated by vertically integrated companies that are regulated primarily by state public utility commissions, we may see an industry with many more participants and less regulation. These new participants may include independent power producers, entities that dispatch and control power plants on a real-time basis, entities that build and maintain transmission networks, entities that build and maintain distribution systems and also sell electricity and related to services to some retail customers, and a variety of other organizations that sell electricity and other services to retail customers. Because markets are intended to be the primary determinant of success, the role of state and federal regulators might be less than it has been in the past. During the past decade, utilities and state regulators have developed new ways to meet customer energy-service needs, called integrated resource planning (IRP). IRP provides substantial societal benefits through the consideration and acquisition of a broad array of resources, including renewables and demand-side management (DSM) programs as well as traditional power plants-, explicit consideration of the environmental effects of electricity production and transmission; public participation in utility planning; and attention to the uncertainties associated with different resources, future demands for electricity, and other factors. IRP might evolve in different ways as the electricity industry is restructured (Table S-I). To explore these issues, we ran a Workshop on IRP and the Electricity Industry of the Future in July 1994. This report presents the wisdom and experience of the 30 workshop participants. To focus discussions, we created three scenarios to represent a few of the many ways that the electricity industry might develop.

Tonn, B.; Hirst, E.; Bauer, D.

1994-09-01T23:59:59.000Z

129

Reconnaissance electrical surveys in the Coso Range, California | Open  

Open Energy Info (EERE)

electrical surveys in the Coso Range, California electrical surveys in the Coso Range, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance electrical surveys in the Coso Range, California Details Activities (3) Areas (1) Regions (0) Abstract: Telluric current, audiomagnetotelluric (AMT), and direct current (dc) methods were used to study the electrical structure of the Coso Range and Coso geothermal area. Telluric current mapping outlined major resistivity lows associated with conductive valley fill of the Rose Valley basin, the Coso Basin, and the northern extension of the Coso Basin east of Coso Hot Springs. A secondary resistivity low with a north-south trend runs through the Coso Hot Springs--Devil's Kitchen geothermal area. The secondary low in the geothermal area, best defined by the 7.5-Hz AMT map

130

Assistance to States on Electric Industry Issues  

SciTech Connect

This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors’ staffs. NCSL’s activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

Glen Andersen

2010-10-25T23:59:59.000Z

131

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

zhongguo dianli chanye (China‘s Electricity Industry at themulti_page.pdf. State Electricity Regulatory Commission.The Annual Report on Electricity Regulation (2006). Beijing:

Tsai, Chung-min

2010-01-01T23:59:59.000Z

132

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

industry and suggest electricity tariff rates to the Stateof the ?coal-electricity tariff automatic mechanism? (designed the coal-electricity tariff automatic mechanism in

Tsai, Chung-min

2010-01-01T23:59:59.000Z

133

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

134

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

135

Estimating Industrial Electricity Conservation Potential in the Pacific Northwest  

E-Print Network (OSTI)

The Pacific Northwest is undergoing a transition in electricity generation from a predominantly hydro system to a combined hydro-thermal system. The high marginal costs of thermal generation relative to the low-cost hydropower base have made the search for alternatives very important. The cost of many conservation measures is less than the cost of new generation. This paper describes the results of an evaluation of industrial electricity conservation measures. Using a detailed end-use data base on industrial electricity consumption in the Pacific North west (PNW), nine most electricity intensive industry groups at the 4-digit SIC level were selected. An engineering economic analysis of conservation measures was performed for representative plants in each industry group. The plant level conservation estimates were extrapolated to the 4-digit and 2-digit SIC levels. An analysis of the market penetration of each conservation measure was performed using a distribution of desired rates of return. Government programs to encourage electricity conservation were identified, and their costs and effectiveness were assessed. The paper describes the methodology and significant findings of the study.

Limaye, D. R.; Hinkle, B. K.; Lang, K.

1982-01-01T23:59:59.000Z

136

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

137

Efficient Electric Technologies for Industrial Heating: Emerging Activities  

Science Conference Proceedings (OSTI)

Industrial process heating is typically accomplished with fossil- and by-product fuels. However, new high-efficiency electric technologies for process heating applications are under development and commercially available, including three efficient electric process heating technologies covered in this Brief: Induction heating and melting Microwave (MW) heating, drying and curing Radio frequency (RF) heating, drying, and curing These technologies were selected for three reasons. First, in each case there a...

2007-12-18T23:59:59.000Z

138

EPRI Ergonomics Handbook for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Occupational Health and Safety (OHS) Program has provided ergonomic information to the electric energy industry workforce since 1999. This report specifically focuses on the design of substations and interventions for tasks performed by substation operators and maintenance workers as well as overhead and underground distribution workers. Substation and field distribution line work is physically strenuous and can expose workers to musculoskeletal disorders (MSD...

2010-10-20T23:59:59.000Z

139

Electric Energy Industry Workforce: Trends in Motor Vehicle Crashes  

Science Conference Proceedings (OSTI)

EPRI has established an ongoing injury/illness research programthe Occupational Health and Safety Database (OHSD) Programto provide information about the occurrence of workplace injury and illness among the electric energy industry workforce. Vehicles operated by electric utility workers typically include bucket trucks, digger/derrick trucks, washer trucks, pole and material trucks and trailers, and other vehicles used in line construction and maintenance. These vehicles are generally operated over low m...

2007-04-26T23:59:59.000Z

140

title Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Southern Company Electric Vehicle Survey: Consumer Expectations for Electric Vehicles  

Science Conference Proceedings (OSTI)

Plug-in Electric Vehicles (PEV) are becoming increasingly available in the U.S. Two manufacturers (GM and Nissan) offer vehicles that are being advertised and promoted, heavily in some areas. The PEV is advancing rapidly from a concept or hypothetical travel mode to a viable option for new car buyers. The result is that consumers will take over the driver’s seat when it comes to adoption of PEVs and how they are used. For that reason, EPRI has initiated research into how consumers perceive PEVs as an alt...

2011-10-10T23:59:59.000Z

142

TVA Electric Vehicle Survey: Consumer Expectations for Electric Vehicles  

Science Conference Proceedings (OSTI)

Plug-in Electric Vehicles (PEV) are becoming increasingly available in the U.S. Two manufacturers (GM and Nissan) offer vehicles that are being advertised and promoted, heavily in some areas. The PEV is advancing rapidly from a concept or hypothetical travel mode to a viable option for new car buyers. The result is that consumers will take over the driver’s seat when it comes to adoption of PEVs and how they are used. For that reason, EPRI has initiated research into how consumers perceive PEVs as an alt...

2011-10-10T23:59:59.000Z

143

Electrical energy monitoring in an industrial plant  

E-Print Network (OSTI)

This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor on energy consumption and demand is covered, including installation of correction and the effect of increasing the power factor on demand and energy consumption block sizes. The installation of capacitance correction has increased the low power factor of this facility from the low 60% range to the mid-to-high 70% range. A method has been developed to predict savings based on precorrection monitored data in the event the exact amount of capacitance installed is unknown. Savings for the month of February, 1994, are found to be $1327.56. This method can be used as a diagnostic tool to determine the amount of active capacitance. In this plant, that amount was found to be 315 KVAC, which correlates reasonably well with the amount active in the plant. The monitoring installation is described, and other uses (besides that dealing with power factor correction) are covered. Those uses include monitoring plant and equipment performance and productivity, and savings due to missed opportunities for equipment turn off.

Dorhofer, Frank Joseph

1994-01-01T23:59:59.000Z

144

Electric top drives gain wide industry acceptance  

Science Conference Proceedings (OSTI)

Since its introduction, the top drive drilling system has gained acceptance as a productive and safe method for drilling oil and gas wells. Originally, the system was used mostly for offshore and higher cost land drilling, and it had to be installed as a permanent installation because of its enormous weight and size. Essentially, a top drive replaces the kelly and rotary table as the means of rotating drillpipe on oil, gas and geothermal rigs and is considered to be 15% to 40% more efficient than a kelly drive. Top drive systems allow the operator to drill and maintain directional orientation for triple stands and provide tripping efficiency because of the ability to ream and circulate with triple stands, to reduce the risk of stuck pipe or lost wells, and to improve well control and pipe handling safety. The paper describes electric top drives with DC motors, top drives with AC motors, top drives with permanent magnet motors, and top drives with permanent magnet brushless synchronous motors.

Riahi, M.L.

1998-05-01T23:59:59.000Z

145

The Role of Electricity Pricing Policy in Industrial Siting Decisions  

E-Print Network (OSTI)

One of the many reasons why industries tend to co-locate in a general vicinity is the availability of factors of production. A manufacturer can achieve great savings if his production facility is located near his major raw material supplier. Since many intermediate industrial products are extremely energy intensive, the producer of these products must locate in areas where low cost energy resources are abundant. In many instances, therefore, the existence of these industries will serve as an anchor to other manufacturing industries. Furthermore, industry has great inertia in its locational preferences. It takes a long time to establish a patent of growth or decay. But once it is set in motion it is very difficult to change. Since the pricing policy of electricity plays a significant role in the siting decisions of energy intensive industries, it is therefore imperative for the policy makers to understand the long term impact of their policies. This paper will examine the current pricing policy of the electric utility industry in Texas.

Tam, C. S.

1981-01-01T23:59:59.000Z

146

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Comprehensive energy management assistance within the industrial section is currently being offered by a growing number of electric utilities as part of their efforts to - provide additonal demand side services to their industrial customers. One of the keys to these enhanced services is the availability of a unique Industrial Energy Conservation and Management (EC&M) computer model that can be used to evaluate the technical and economic benefits of installing proposed process related energy management systems within an industrial plant. Details of an EPRI sponsored pilot program are summarized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportunities in HL&P's and other utility service areas. This capability is currently being offered to HL&P's industrial customers and is primarily concerned with identifying and evaluating possible process heat recovery and other energy management opportunities to show how a plant's energy related operating costs can be reduced.

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

1985-05-01T23:59:59.000Z

147

Changing Structure of the Electric Power Industry: 1970-1991  

Reports and Publications (EIA)

The purpose of this report is to provide a comprehensive overview of the ownership of the U.S. electric power industry over the past two decades, with emphasis on the major changes that have occurred, their causes, and their effects.

Information Center

1993-03-01T23:59:59.000Z

148

Performance issues for a changing electric power industry  

SciTech Connect

Extremely cold weather created record demands for electricity in the eastern two-thirds of the United States during the week of January 16, 1994. Fuel-related problems, mostly the result of transportation constraints resulting from ice accumulation on roads and water-ways, and unexpected generating capacity outages at utilities and nonutilities resulted in demand not being met. Some utilities asked nonessential customers along with State governments and a portion of the Federal Government to shut down. Two electric control areas, the Pennsylvania-New Jersey-Maryland Interconnection (PJM) and Virginia Electric & Power Company (VEPCO), instituted rolling blackouts. This disturbance was reported widely in the press and, along with other disturbances, peaked renewed interest in the reliability of the electric power system. The renewed interest in reliability has coincided with substantial changes that are beginning to occur in the structure and competitiveness of the electric power industry. Juxtaposing the question of reliability and the issue of changing industry structure leads to the central concern of this report: What effect, if any, will the changing structure of the industry have on the reliability of the system?

Not Available

1995-01-01T23:59:59.000Z

149

Electric utility restructuring and the California biomass energy industry  

Science Conference Proceedings (OSTI)

A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

150

Impact of Electricity Deregulation on Industrial Assessment Strategies  

E-Print Network (OSTI)

This paper explores many of the changes in typical industrial assessment recommendations, which have resulted from deregulation of the electric and gas industries. While anticipating that energy efficiency would almost always be a good idea, changes in rate structures and indeed the very nature of how energy is purchased can put some energy efficiency technologies outside of normal economically acceptable ranges. A major focus will be changes in and the elimination of time-of-use rates for electricity. An entire generation of DSM'ers (people working in "Demand-Side Management") worked under the principle that there was economic benefit to load leveling. Time-of-use rates are changing throughout the country and in many cases disappearing. Bulk purchase of electricity has even resulted in cases where, with minimum consumption requirements, industrial plants need to find ways to increase their electrical use to avoid penalties. Energy storage devices including thermal energy storage must be re-examined in terms of this new paradigm. There are applications where they are advisable, but for different reasons then demand management. Another area of particular interest is fuel selection, multiply fuel capability, and contracting. An industrial assessment at two neighboring plants can result in entirely different recommendations based on how energy is purchased and billed. In many cases, an industrial plant may be better off spending resources on energy purchasing agents as opposed to anything like an energy efficiency project. Onsite generation of power and the changing rationales for its adoption has also experienced big changes. Energy security is becoming a strong motivation for industrial plants, options are increased, and third party funding is also starting to appear. Intermediate solutions like gas driven compressors bring these two areas together and leave industrial clients with more options but often more confusion than ever before. Finally, the paper discusses some of the new challenges facing an industrial assessment team in terms of information gathering. It is becoming necessary to examine many possible energy purchase options and each has ramifications on energy efficiency projects. Use of the Internet, computer tools and other information sources is presented.

Kasten, D. J.; Muller, M. R.; Pavlovic, F.

2002-04-01T23:59:59.000Z

151

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA  

Office of Legacy Management (LM)

WESTINGHOUSE ELECTRIC CORPORATION WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA At the request of the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the Westinghouse Electric Corporation's East Pittsburgh Plant in East Pittsburgh, Pennsylvania (see Fig. l), on October 22, 1976, to assess the radiological status of those facilities utilized under AEC/MED contract during an early phase of the Manhattan

152

RADIATION: A TOOL FOR INDUSTRY. A Survey of Current Technology  

SciTech Connect

This one-year survey of industrial applications of ionizing radiation is based on interviews with workers in the field and on analysis of selected literature. ionizing radiation at kilowatt power levels from electron accelerators and from radionuclides is finding a few special applications, notably sterilization and be in various stages of process development and tcsting. These are concentrated heavily in the plastics field, though examples are found in petrochemical synthesis, product sterilization, and portable energy sources such as batteries. Ionizing radiation is not yet a processing tool of major importance to industry generally, however, because it has not yet demonstrated sufficient advantages over established methods of achieving a similar result. Thus, though ionizing radiation produces free radicals under a wide variety of conditions, it has, with few exceptions, not proved superior to other agents, such as heat and chemicals, that also produce free radicals. Insufficient specificity of action, low yields, and costs higher than those of competitive processes are among the chief difficulties found. Possible unique features of radiation have not been fully explored. Optimization of enviromental variables has not been thoroughly studied. Indirect advantages associated with radiation, such as greater processing or packaging flexibility, have already proved significantly important but have not yet been thoroughly evaluated in most potential applications. Even radiation engineering is relatively undeveloped and radiation economics uncertain. Skillfully oriented research and development on such problems will improve the likelihood of radiation becoming a tool of major importance for U.S. industry. (auth)

1959-01-01T23:59:59.000Z

153

Survey of Western U.S. Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

154

Impact of Electric Industry Structure on High Wind Penetration Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

273 273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-46273 July 2009 Impact of Electric Industry Structure on High Wind Penetration Potential M. Milligan and B. Kirby National Renewable Energy Laboratory R. Gramlich and M. Goggin American Wind Energy Association

155

Electric Industry Restructuring in Five States: Final Report  

DOE Green Energy (OSTI)

The electric industry in the United States is undergoing fundamental changes; it is transitioning from regulated monopolies to competitive markets offering customer choice. In this process, the states have been in the forefront of considering the changes in the industry structure and regulation. The Energy Information Administration (EIA) spearheaded a project on electric restructuring in the United States. This is the final report prepared under the project. The purpose of the report is to describe and compare the overall restructuring processes that took place in five states through June 30, 1996. The five states are California, Massachusetts, Michigan, New York, and Wisconsin. These are the first major states to consider restructuring or retail wheeling.

Fang, J. M.

1996-10-31T23:59:59.000Z

156

The new electricity industry: What`s at stake?  

SciTech Connect

There is enough potential for value creation and growth in the emerging electric industry to overcome the very significant downside facing today`s utilities. In the transition to competition, electricity customers will gain lower prices, and new or retooled competitors will take market share. To emerge a winner, utilities will have to move quickly on three fronts-strategic, organizational, and regulatory. Market forces, now being accommodated by deregulation, are remaking the electric utility industry. As in banking and telecommunications before it, this industry is now in the early stages of a complete transformation. There will be mergers and massive consolidation. There will be new competitors who will redefine the economics and competitive dynamics of the business, as MCI did in telecom and Fidelity has done in banking. As in banking and telecom, there will be traditional players, like Citibank or ATT, who make and actually shape the transition, and others who dwindle, vanish or are subsumed. The winners will create significant value for their shareholders. The once vertically integrated electric industry will fragment into three distinct, but linked, businesses - generation, wires and power services - plus a dispatch function. Each will have its own competitors and particular competitive dynamics. Generation will be a highly competitive, cost-based commodity business. Wires businesses, comprised of transmission and distribution functions, will be regulated, open access networks. Power services, encompassing wholesale and retail commodity sales and including other energy and non-energy products, will be provided by a third set of services competitors. Scheduling and dispatch, grid control and price settlements will be provided by independent, regulated entities and are outside the scope of this article.

Heller, W. [McKinsey & Co., Los Angeles, CA (United States)] [McKinsey & Co., Los Angeles, CA (United States); Jansen, P. [McKinsey & Co., San Francisco, CA (United States)] [McKinsey & Co., San Francisco, CA (United States); Silverman, L. [McKinsey & Co., Washington, DC (United States)] [McKinsey & Co., Washington, DC (United States)

1996-08-01T23:59:59.000Z

157

Electric and Gas Industries Association | Open Energy Information  

Open Energy Info (EERE)

and Gas Industries Association and Gas Industries Association Jump to: navigation, search Name Electric and Gas Industries Association Place Sacramento, CA Zip 95821 Website http://www.egia.org/ Coordinates 38.6228166°, -121.3827505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6228166,"lon":-121.3827505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Power storage options for hybrid electric vehicles—A survey  

Science Conference Proceedings (OSTI)

Hybrid electric vehicles (HEVs) are the future transportation structure as they provide better fuel economy. Energy storage devices are therefore required for the HEVs. The problem for deciding the optimum combination of power storage is still unresolved. The power storage options in this regard must have a feasible weight/energy ratio for better performance. This survey is about the comparison of different power storage options for HEV including the batteries

Hadeed Ahmed Sher; Khaled E. Addoweesh

2012-01-01T23:59:59.000Z

159

Energy Storage In a Restructured Electric Industry: Report on EPRI Think Tank III  

Science Conference Proceedings (OSTI)

This report -- "Energy Storage in a Restructured Electric Industry" -- summarizes the third of a series of Think Tanks sponsored by EPRI on energy storage in a deregulated electric utility industry.

2002-06-10T23:59:59.000Z

160

Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry  

SciTech Connect

This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

Akyol, Bora A.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

162

Survey and analyze the business conditions of the solar industry, June-July 1981. Task I  

DOE Green Energy (OSTI)

Progress is reported on the following tasks: surveying and analyzing the business conditions of the solar industry, administrative analysis of solar system product certification standards and codes, and solar industry advertising guidelines. (MHR)

Not Available

1981-01-01T23:59:59.000Z

163

Industrial Approaches to Reducing Energy Costs in a Restructuring Electric Industry  

E-Print Network (OSTI)

Electric restructuring, currently proposed in California and being reviewed elsewhere, can produce many opportunities for large companies to reduce their electricity costs. As the electricity market changes, electric utilities and other potential suppliers are likely to develop a portfolio of options and creative pricing to attract customers in a competitive market. In attempting to be "energy neutral," i.e., to be indifferent to energy costs in one state or utility service area versus another, many companies are looking at a corporate approach to energy procurement, similar to the procurement of other products. Industrial customers may be looking for regional or even national energy suppliers for their facilities. Electric utilities, in an attempt to be competitive and retain customers, will likely work to be this regional or national energy supplier. The expectation will be that these suppliers can offer competitive pricing and a portfolio of options from which to choose. These options may resemble those that have developed in the natural gas market as a result of restructuring in the fuels industry.

Lowe, E. T.

1995-04-01T23:59:59.000Z

164

Electricity distribution industry restructuring, electrification, and competition in South Africa  

SciTech Connect

This paper reviews the status of the South African electricity supply industry (ESI) and proposals for reorienting and restructuring it. South Africa has been intensely examining its ESI for more than 4 years in an effort to determine whether and how it should be restructured to best support the country`s new economic development and social upliftment goals. The debate has been spirited and inclusive of most ESI stakeholders. The demands on and expectations for the ESI are many and varied. The debate has reflected this diversity of interests and views. In essence, however, there is a consensus on what is expected of the industry, namely, to extend provision of adequate, reliable, and affordable electricity service to all citizens and segments of the economy. This means a large-scale electrification program to reach as many of the nearly 50% of households currently without electricity service as soon as possible, tariff reform to promote equity and efficiency, and the upgrading of service quality now being provided by some of the newly consolidated municipal authorities. The issues involved are how best to achieve these results within the context of the national Reconstruction and Development Program, while accounting for time and resource constraints and balancing the interests of the various parties.

Galen, P S

1997-07-01T23:59:59.000Z

165

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Opinions Towards the Electric Car Industry from a Survey ofan investmentin the electric car project mustexceedthisthat establish a market for electric cars in the state by

Scott, Allen J.

1993-01-01T23:59:59.000Z

166

Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

6: March 14, 6: March 14, 2011 Survey says Electric Vehicle Prices are Key to someone by E-mail Share Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key on Facebook Tweet about Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key on Twitter Bookmark Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key on Google Bookmark Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key on Delicious Rank Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key on Digg Find More places to share Vehicle Technologies Office: Fact #666: March 14, 2011 Survey says Electric Vehicle Prices are Key on

167

What Does Industry Expect From An Electrical Utility  

E-Print Network (OSTI)

The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier quality programs we are developing include: 1. Performance and Delivery, 2. Conformance, 3. Responsiveness, 4. Communications, 5. Supplier Quality Efforts. The electric utility supplying each of our locations is our partner at that location. We do not have the same degree of flexibility to change electricity suppliers that we might have with other suppliers of goods and services. In order for our partnerships to work we must get to know each other better. We need to understand the other guy’s problems and then find ways to do business that are mutually beneficial to both of us. At Union Carbide our total quality process has started at the top of the corporation and is working its way throughout the organization. Our supplier quality programs are now beginning to take shape and we are relying upon our electric utility suppliers to become active in the final design and implementation of these programs.

Jensen, C. V.

1989-09-01T23:59:59.000Z

168

Survey of Western U.S. electric utility resource plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

169

Electrical resistivity survey of the Pilgrim Springs geothermal area, Alaska  

Science Conference Proceedings (OSTI)

Pilgrim Springs is located on the Seward Peninsula about 50 miles north of Nome, Alaska. A case history of the use of electrical resistivity to delineate a geothermal reservoir and for drilling recommendations is presented. Pilgrim Springs water, being saline, has an electrical resistivity value of 1 ..cap omega..-m, providing an ideal contrast for resistivity definition of the reservoir. In 1979 several deep Schlumberger and co-linear dipole-dipole surveys were run in and near the 1.5 km/sup 2/ thaw window. The results suggest that there is a pancake-shaped reservoir near the surface, approximately 50 m thick, which has the shape of the thaw window but is thicker and deeper to the north under the Pilgrim river. The conduit is suspected to be a small feature which is difficult to find under the near-surface, low-resistivity reservoir.

Wescott, E.; Sydora, R.; Peace, J.; Lockhart, A.

1980-09-01T23:59:59.000Z

170

Strategies to address transition costs in the electricity industry  

SciTech Connect

Transition costs are the potential monetary losses that electric- utility shareholders, ratepayers, or other parties might experience because of structural changes in the electricity industry. Regulators, policy analysts, utilities, and consumer groups have proposed a number of strategies to address transition costs, such as immediately opening retail electricity markets or delaying retail competition. This report has 3 objectives: identify a wide range of strategies available to regulators and utilities; systematically examine effects of strategies; and identify potentially promising strategies that may provide benefits to more than one set of stakeholders. The many individual strategies are grouped into 6 major categories: market actions, depreciation options, rate-making actions, utility cost reductions, tax measures, and other options. Of the 34 individual strategies, retail ratepayers have primary or secondary responsibility for paying transition costs in 19 of the strategies, shareholders in 12, wheeling customers in 11, taxpayers in 8, and nonutility suppliers in 4. Most of the strategies shift costs among different segments of the economy, although utility cost reductions can be used to offset transition costs. Most of the strategies require cooperation of other parties, including regulators, to be implemented successfully; financial stakeholders must be engages in negotiations that hold the promise of shared benefits. Only by rejecting ``winner-take-all`` strategies will the transition-cost issue be expeditiously resolved.

Baxter, L.; Hadley, S.; Hirst, E.

1996-07-01T23:59:59.000Z

171

Electric  

U.S. Energy Information Administration (EIA)

Average Retail Price of Electricity to ... Period Residential Commercial Industrial ... or usage falling within specified limits by rate ...

172

Emissions Trading, Electricity Industry Restructuring, and Investment in Pollution Abatement  

E-Print Network (OSTI)

Economy of State-Level Electricity Restructuring. Resources109-129. [15] Bushnell, J. "Electricity Resource Adequacy:Version 1.0, 1999b. [33] Electricity for Identification

Fowlie, Meredith

2005-01-01T23:59:59.000Z

173

Transition-cost issues for a restructuring US electricity industry  

Science Conference Proceedings (OSTI)

Utilities regulators can use a variety of approaches to calculate transition costs. We categorized these approaches along three dimensions. The first dimension is the use of administrative vs. market procedures to value the assets in question. Administrative approaches use analytical techniques to estimate transition costs. Market valuation relies on the purchase price of particular assets to determine their market values. The second dimension concerns when the valuation is done, either before or after the restructuring of the electricity industry. The third dimension concerns the level of detail involved in the valuation, what is often called top-down vs. bottom-up valuation. This paper discusses estimation approaches, criteria to assess estimation methods, specific approaches to estimating transition costs, factors that affect transition-cost estimates, strategies to address transition costs, who should pay transition costs, and the integration of cost recovery with competitive markets.

NONE

1997-03-01T23:59:59.000Z

174

Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A  

Open Energy Info (EERE)

Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Abstract N/A Authors James Kauahikaua and Douglas Klein Published Journal Geothermal Resources Council, TRANSACTIONS, 1978 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Citation James Kauahikaua,Douglas Klein. 1978. Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A. Geothermal Resources Council, TRANSACTIONS. 2:363-366. Retrieved from "http://en.openei.org/w/index.php?title=Results_of_Electric_Survey_in_the_Area_of_Hawaii_Geothermal_Test_Well_HGP-A&oldid=682499

175

A Case Study of Supply Chain Sustainability in the Electric Power Industry  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute's (EPRI's) Energy Sustainability Interest Group, consisting of approximately 30 electric power companies, is working to identify best practices in order to improve sustainability performance in the electric power industry. One component of a comprehensive approach toward meeting this objective is to work with the industry’s non-fuel supply chain to improve the environmental performance of producing and delivering their products and services. Many corporations and par...

2012-05-14T23:59:59.000Z

176

U.S. natural gas consumption for electric power tops industrial ...  

U.S. Energy Information Administration (EIA)

tags: consumption demand electricity generation industrial natural gas. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

177

RESEARCH ARTICLE The proteome survey of an electricity-generating organ  

E-Print Network (OSTI)

RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

Vertes, Akos

178

Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis  

SciTech Connect

Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

Berry, D.M.

1992-01-01T23:59:59.000Z

179

Electric Utility Industrial DSM and M&V Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydro’s demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program that is based on a partnering approach with BC Hydro’s business customers. A customer that commits to being a Power Smart Partner gains access to financial support and assistance with the identification and implementation of electricity savings projects. A direct financial incentive is provided to lower customers’ funding requirements and to improve the payback and/or investment criteria for energy efficiency projects. Projects are evaluated against established criteria set forth by BC Hydro. Projects which prove to be the most cost-effective on a $/kWh basis receive funds. For transmission-voltage customers, BC Hydro has recently implemented a new tariff designed to encourage energy reduction. The new tariff is an inclining block tariff and is known as the Stepped Rate. The customer’s consumption is compared against their Customer Baseline Load (CBL). The first 90% of the customer’s consumption is billed at a Tier 1 rate. The remaining consumption is billed at a Tier 2 rate, approximately two times the Tier 1 rate. There are mechanisms in place to adjust the customer’s CBL to account for activities such as customer-funded demand-side-management projects and customer plant expansion projects. This paper will discuss BC Hydro’s M&V program in terms of the process, operations and M&V results to date for the PSP. In addition, the paper will discuss the new Stepped Rate tariff intricacies in terms of CBL setting, CBL adjustments and transmission customer Impact Study guideline requirements.

Lau, K. P. K.

2008-01-01T23:59:59.000Z

180

Survey and analysis of selected jointly owned large-scale electric utility storage projects  

DOE Green Energy (OSTI)

The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

Not Available

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electric Power Interruption Cost Estimates for Individual Industries, Sectors, and the U.S. Economy  

E-Print Network (OSTI)

Distributed energy resources (DER) have been promoted as the least-cost approach to meeting steadily increasing energy demand. However, it is unclear whether DER deployment can maintain or improve the electric power supply reliability and quality currently available to consumers. This report address two key factors relating to this question: 1) characteristics of existing power supply reliability, and 2) costs resulting from supply interruptions characteristic of the existing power grid. Interruption cost data collected by the University of Saskatchewan was used in conjunction with data generated by the Census Bureau’s Annual Survey of Manufacturers (Census Bureau, 1995), along with industry shares of gross domestic product (Bureau of Economic Analysis, 1995a) and gross output (Bureau of Economic Analysis, 1995b) to derive interruption cost estimates for U.S. industries at the 2-digit Standard Industrial Classification (SIC) level, as well as for broader sectors and the U.S. economy. Interruption cost estimates are presented as a function of outage duration (e.g., 20 minutes, 1-hour, 3-hour), and are normalized in terms of dollars per peak kW.

Balducci, P. J.; Roop, J. M.; Schienbein, L. A.; DeSteese, J. G.; Weimar, M. R.

2003-05-01T23:59:59.000Z

182

Member Survey of Industry Issues for Hardware and Conductors  

Science Conference Proceedings (OSTI)

This report presents the results of a survey to obtain information on atmospheric corrosion issues associated with overhead transmission line hardware and conductors exposed to the environment. Atmospheric corrosion is a natural and unavoidable phenomenon that can lead to the premature failure of conductors, shield wires, hardware or components and result in momentary or even sustained outages. Survey results will help support research and development activities to extend the capabilities of ...

2012-12-12T23:59:59.000Z

183

Status of State Electric Industry Restructuring Activity --as of February 2003 --  

E-Print Network (OSTI)

Status of State Electric Industry Restructuring Activity -- as of February 2003 -- (February 2003 Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming New Jersey #12;This site provides an overview of the status of electric industry restructuring in each state. Twenty-four states

Laughlin, Robert B.

184

Source category survey: mineral wool manufacturing industry. Final report  

SciTech Connect

This report contains background information which was used for determining the need for new source performance standards (NSPS) for the mineral wool manufacturing industry in accordance with Section 111 of the Clean Air Act. Air pollution emissions and growth trends of the mineral wool industry are examined. Manufacturing processes, control strategies, and state and local air pollution regulations are discussed. The impact of a potential NSPS on particulate and carbon monoxide emissions is calculated.

Not Available

1980-06-01T23:59:59.000Z

185

Member Survey on Steel Crossarms: Industry Issues Regarding Degradation, Inspection, Life Assessment and Mitigation  

Science Conference Proceedings (OSTI)

This report presents the results of a survey to obtain information on industry issues related to steel crossarm degradation and failures, and utility practices regarding inspection, life assessment, and mitigation. Survey results will help improve understanding of crossarm issues to be addressed, and provide guidance for further research on degradation modes, inspection technologies, and mitigation techniques.A web-based survey tool was used to construct a set of focused questions to ...

2012-12-12T23:59:59.000Z

186

Critical Issues Facing Federal Customers and the Electric Industry: A Call to Partnering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Facing Federal Issues Facing Federal Critical Issues Facing Federal Customers and the Electric Industry: Customers and the Electric Industry: A Call to Partnering A Call to Partnering Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG November 28, 2007 Overview  State of the industry  Review recent Energy Infrastructure Picture State of the Industry State of the Industry The Challenge of Balancing Core Drivers The Challenge of Balancing Core Drivers Rising Costs Rising Costs and Prices and Prices Climate Climate Change Change Energy Energy Efficiency Efficiency Enormous Enormous CapEx CapEx No longer a declining cost industry Fuel, infrastructure components, global industrialization and competition $ 750 Billion  $ 1.2 Trillion Exceeds current capitalization

187

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network (OSTI)

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive for the industrial customer to alter their present operation. Utilities recognize that industry offers the greatest potential for peak load reduction.

Williams, M. M.

1981-01-01T23:59:59.000Z

188

Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys  

Science Conference Proceedings (OSTI)

This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

Belzer, David B.

2004-09-04T23:59:59.000Z

189

Industrial Potential for Substitution of Electricity for Oil and Natural Gas  

E-Print Network (OSTI)

The prospect of natural gas decontrol as well as uncertainties of gas and other fuel supplies have aroused interest in electric processes among industrial officials. Where there is ample electric power supply at reasonable cost, an opportunity exists for selected industry groups to make cost-effective conversions to electric processes. Technological advances in high-efficiency electric process equipment increase the potential for energy substitution. This, in turn, is changing the market outlook for electric utilities. By and large, energy substitution decisions will be based on their economic and technical feasibility. In view of projections of the long-term price escalations of oil and natural gas, the economic of choosing electricity are looking good at present. This paper will describe certain industrial applications where the substitution of electricity for oil and natural gas appears economically advantageous.

Reynolds, S. D.; Gardner, J. R.

1983-01-01T23:59:59.000Z

190

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

191

An Empirical Analysis of the Potential for Market Power in California's Electricity Industry  

E-Print Network (OSTI)

PWP-044r An Empirical Analysis of the Potential for Market Power in California's Electricity's Electricity Industry Severin Borenstein and James Bushnell University of California Energy Institute 2539 the California electricity market after deregulation as a static Cournot market with a competitive fringe. Our

California at Berkeley. University of

192

Review: Industrial aspects and literature survey: Fleet composition and routing  

Science Conference Proceedings (OSTI)

The purpose of this paper is to describe industrial aspects of combined fleet composition and routing in maritime and road-based transportation, and to present the current status of research in the form of a comprehensive literature review. First, presents ... Keywords: Fleet composition, Fleet dimensioning, Fleet size and mix, Maritime transportation, Road-based transportation, Vehicle routing

Arild Hoff; Henrik Andersson; Marielle Christiansen; Geir Hasle; Arne Løkketangen

2010-12-01T23:59:59.000Z

193

A survey-based type-2 fuzzy logic system for energy management in hybrid electrical vehicles  

Science Conference Proceedings (OSTI)

Hybrid electrical vehicles combine two or more energy sources (at least one electrical) to benefit from their different characteristics regarding autonomy, reversibility and dynamic response. Energy management consists in discovering an energy distribution ... Keywords: Energy management, Group decision making, Hybrid electrical vehicles, Linguistic modelling, Survey-based fuzzy logic systems, Type-2 fuzzy sets

Javier Solano Martínez; Robert I. John; Daniel Hissel; Marie-Cécile Péra

2012-05-01T23:59:59.000Z

194

HOUSEHOLD RESPONSE TO DYNAMIC PRICING OF ELECTRICITY A SURVEY OF SEVENTEEN PRICING EXPERIMENTS  

E-Print Network (OSTI)

(DOE) defines demand response as "changes in electric usage by end-use customers from their normalHOUSEHOLD RESPONSE TO DYNAMIC PRICING OF ELECTRICITY A SURVEY OF SEVENTEEN PRICING EXPERIMENTS response in electricity markets. One of the best ways to let that happen is to let customers see

195

"Annual Electric Power Industry Report (EIA-861 data file)  

Gasoline and Diesel Fuel Update (EIA)

Electric Sales, Revenue, and Average Price CorrectionUpdate December 9, 2013 The re-release of the "Electric Sales, Revenue, and Average Price" data. Retail Sales was revised for...

196

Workforce Development: A Survey of Industry Needs and Training Approaches  

DOE Green Energy (OSTI)

This paper presents information and data collected during 2008 on PV workforce needs by the Interstate Renewable Energy Council for the U.S. Department of Energy. The data was collected from licensed contractors, PV practitioners, educators and expert instructors at training sessions, and at focus group and advisory committee meetings. Respondents were primarily from three states: Florida, New York and California. Other states were represented, but to a lesser extent. For data collection, a 12-item questionnaire was developed that addressed key workforce development issues from the perspectives of both the PV industry and training institutions. A total of 63 responses were collected, although not every respondent answered every question. Industry representatives slightly outnumbered the educators, although the difference in responses was not significant.

Ventre, Jerry; Weissman, Jane

2009-04-01T23:59:59.000Z

197

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

198

Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry  

SciTech Connect

The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

1995-12-31T23:59:59.000Z

199

A survey on communication networks for electric system automation  

Science Conference Proceedings (OSTI)

In today's competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial ... Keywords: Electric system automation, Internet based Virtual Private Network, Power line communication, Satellite communication, WiMAX, Wireless mesh networks, Wireless sensor networks

V. C. Gungor; F. C. Lambert

2006-05-01T23:59:59.000Z

200

The lithium-ion battery industry for electric vehicles.  

E-Print Network (OSTI)

??Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand.… (more)

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY  

Annual Energy Outlook 2012 (EIA)

fee to purchase electricity generated from renewable sources. In addition, Renewable Energy Certificates (RECs), also known as green certificates, green tags, or tradable...

202

Challenges of Electric Power Industry Restructuring for Fuel ...  

U.S. Energy Information Administration (EIA)

Restructuring for Fuel Suppliers ... Office of Coal, Nuclear, Electric and Alternate Fuels Office of Oil and Gas ... Risk management will become an ...

203

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

204

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network (OSTI)

from the global cement industry’, Ann. Rev. Energy Environ.were estimated. Cement industry BERs ranged from 205 kgCO 2carbon intensity, cement industry, Central America, electric

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

205

Form EIA-861S ANNUAL ELECTRIC POWER INDUSTRY REPORT (SHORT FORM)  

U.S. Energy Information Administration (EIA) Indexed Site

INDUSTRY REPORT (SHORT FORM) INSTRUCTIONS OMB No. 1905-0129 Approval Expires: 12/31/2016 Burden: 2.01 Hours Page 1 Draft for Discussion only PURPOSE Form EIA-861S collects information on the status of selected electric power industry participants involved in the sale, and distribution of electric energy in the United States. The data collected on this form are used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry. REQUIRED RESPONDENTS The Form EIA-861S is to be completed by all electric utilities with annual retail sales in the prior year of 100,000 megawatt-hours or less, with the following exceptions: 1. A respondent has retail sales of unbundled service; 2. A full set of data is required from the respondent to ensure that statistical estimates

206

Looking for Trouble: Competition Policy in the U.S. Electricity Industry  

E-Print Network (OSTI)

in the electricity industry. ” FERC Docket No. PL98-6-000.Market Design and Structure NOPR. FERC Docket RM01-12-000.Statement of Alfred E. Kahn. ” FERC Docket No. EL01-118-000.

Bushnell, Jim

2003-01-01T23:59:59.000Z

207

The risk of reform : privatisation and liberalisation in the Brazilian electric power industry  

E-Print Network (OSTI)

In 1996, when Brazil was well-underway to privatising and liberalising its electric power industry, few would have predicted that within five years the reforms would be a shambles. Like its neighbors Argentina and Chile, ...

Tankha, Sunil, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

208

Region-specific study of the electric utility industry. Phase I, final report  

SciTech Connect

This report describes the financial background of the electric utility industry in VACAR, reports on the present condition of the industry and then assesses the future of this industry. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of its cooperativeness and its representative mix of powerplants, for example coal, hydro, nuclear, oil. It was found that the supply of future economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the present condition of the electricity industry was to make the present system work. The present system is sound, and with modifications, problems could be solved within the existing framework. 8 figs., 4 tabs.

Wacaster, A.J. (ed.)

1985-07-01T23:59:59.000Z

209

Changing Structure of Electric Power Industry 1999: Mergers and Other Corporate Combinations, The  

Reports and Publications (EIA)

Presents data about corporate combinations involving investor-owned utilities in the United States, discusses corporate objectives for entering into such combinations, and assesses their cumulative effects on the structure of the electric power industry.

Information Center

1999-12-01T23:59:59.000Z

210

Changing Structure of the Electric Power Industry 2000: An Update, The  

Reports and Publications (EIA)

Provides a comprehensive overview of the structure of the U.S. electric power industry over the past 10 years, with emphasis on the major changes that have occurred, their causes, and their effects

Information Center

2000-10-01T23:59:59.000Z

211

"Annual Electric Power Industry Report (EIA-861 data file)  

Annual Energy Outlook 2012 (EIA)

Preliminary Data for: 2012 Release date: August 15, 2013 Next Release date: October 29, 2013 Data for: 2011 Re-Release Date: November 27, 2012 (CORRECTION) Survey form EIA-861 --...

212

Deregulation and environmental differentiation in the electric utility industry  

E-Print Network (OSTI)

of Energy. 1998-2000. FERC 1 Survey. Washington, DC: FederalCommission Form Number 1 (FERC Form 1; United StatesProtection Agency, 2002). The FERC Form 1, the Annual Report

Delmas, M; Russo, M V; Montes-Sancho, M J

2007-01-01T23:59:59.000Z

213

Deregulation and Resource Reconfiguration In The Electric Utility Industry  

E-Print Network (OSTI)

of Energy. 1998-2000. FERC 1 Survey. Washington, DC: Federal2002), from 1998 to 2000. The FERC Form 1, the Annual ReportRegulatory Commission (FERC). EGRID aggregates the data from

Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

2005-01-01T23:59:59.000Z

214

DEREGULATION AND RESOURCE RECONFIGURATION IN THE ELECTRIC UTILITY INDUSTRY  

E-Print Network (OSTI)

of Energy. 1998-2000. FERC 1 Survey. Washington, DC: Federal2002), from 1998 to 2000. The FERC Form 1, the Annual ReportRegulatory Commission (FERC). EGRID aggregates the data from

Delmas, Magali A; Russo, Michael V.

2005-01-01T23:59:59.000Z

215

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

1978 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A...

216

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

217

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

218

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network (OSTI)

Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a growing number of utilities, however, such peak-reduction programs don't go far enough in the face of new problems and challenges, and hence are proving ineffective or counterproductive. For example, many of a utility's largest customers--especially industrial customers who may be "locked into" seemingly inflexible process activities--have limited ability to respond to load-management programs that employ price signals as a central peak-reduction tool. Moreover, utilities in general are finding that vigorous efforts to reduce electric load can result in underutilization of base-load generating facilities. In these and other instances, "load-shaping," which emphasizes a shift of electric load or demand from peak to off-peak periods and provides for greater customer flexibility, may be a more effective strategy. This paper explains the need for and presents the components of a load-shaping program, and describes Pacific Gas and Electric Company's (PGandE) recent experience in designing and pursuing an industrial-load-shaping program. The paper also outlines important obstacles and opportunities likely to confront other utilities and industrial customers interested in working together to develop such programs.

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

1986-06-01T23:59:59.000Z

219

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

220

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",76231696,85050801,907922...

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",4493024,4286431,4167054,...

222

The lithium-ion battery industry for electric vehicles  

E-Print Network (OSTI)

Electric vehicles have reemerged as a viable alternative means of transportation, driven by energy security concerns, pressures to mitigate climate change, and soaring energy demand. The battery component will play a key ...

Kassatly, Sherif (Sherif Nabil)

2010-01-01T23:59:59.000Z

223

Diagnosing and mitigating market power in Chile's electricity industry  

E-Print Network (OSTI)

This paper examines the incentives to exercise market power that generators would face and the different strategies that they would follow if all electricity supplies in Chile were traded in an hourly-unregulated spot ...

Arellano, María Soledad

2003-01-01T23:59:59.000Z

224

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

03,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",1965,2162,2082,2269,2269,2239,2239,2277,2285,2285,985,184,58,58,58,194...

225

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

03,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",2638,2609,2507,2508,2500,2506,2512,2512,2292,2294,2290,1128,1105,1121,...

226

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

03,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,2010 "Electric Utilities",15511,15333,15300,15297,15507,15425,15686,15660,13995,14708,14781,1522...

227

Three essays on market power in Chile's electricity industry  

E-Print Network (OSTI)

This thesis examines the incentives to exercise market power that generators would face and the different strategies that they would follow if all electricity supplies in Chile were traded in an hourly-unregulated spot ...

Arellano, María Soledad, 1971-

2003-01-01T23:59:59.000Z

228

Heat Stress for Workers in the Electric Power Industry  

Science Conference Proceedings (OSTI)

Electric power workers can be exposed to the high temperatures and humidity of the coastal and Midwest regions of the United States during the summer or the hot, dry conditions typical for the Southwest of the United States. In addition, linesmen may be required to don personal protective equipment such as coveralls, a helmet, and rubber gloves as well as flame- and arc-resistant clothing that allow them to work electrical power transmission and distribution lines without service interruption. Personnel ...

2012-06-18T23:59:59.000Z

229

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

230

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

231

Non-road Electric Transportation Industry Advisory Council: July 28-29, 2009 Meeting Proceedings  

Science Conference Proceedings (OSTI)

EPRI's Non-road Electric Transportation Industry Advisory Council brings together industry's stakeholders to promote non-road electrification. The Council's July 28-29, 2009 meeting included stakeholders from utilities, public agencies and manufacturers. The presentations dealt with batteries, lift trucks, utility vehicles, agriculture vehicles, and ground support equipment.

2009-10-01T23:59:59.000Z

232

Wellbore thermal simulation for geothermal wells. Survey of existing capability and industry needs and interest  

DOE Green Energy (OSTI)

Four operating companies and five service companies in the petroleum and geothermal industry were contacted (1) to determine needs for wellbore temperature predictions during operations and (2) to evaluate interest in use of a wellbore thermal simulator (computer program) if developed by ERDA. As a basis for contacting industry, a literature survey was undertaken to assess the state-of-the-art and availability of wellbore thermal simulation capability. The literature review is summarized in the four tables of Appendix 1. Written abstracts of the individual articles is given in Appendix 2. The feedback from industry is presented in Appendix 3 in the form of completed questionaires.

Goodman, M.A.

1977-06-01T23:59:59.000Z

233

Utilizing cable winding and industrial robots to facilitate the manufacturing of electric machines  

Science Conference Proceedings (OSTI)

Cable wound electric machines are used mainly for high voltage and direct-drive applications. They can be found in areas such as wind power, hydropower, wave power and high-voltage motors. Compared to conventional winding techniques, cable winding includes ... Keywords: Automated production, Electric machine assembly, Industrial robot, Powerformer, Stator winding, Wave energy converter

Erik Hultman; Mats Leijon

2013-02-01T23:59:59.000Z

234

uring the 1990s, the elec-tricity supply industry in  

E-Print Network (OSTI)

D uring the 1990s, the elec- tricity supply industry in Latin America underwent profound, according to the Energy Information Administration, the average cost for electricity supply for a consumer by a government that wanted to introduce market-oriented reforms throughout society, electricity supply included

Rudnick, Hugh

235

Low-income energy policy in a restructuring electricity industry: an assessment of federal options  

SciTech Connect

This report identifies both the low-income energy services historically provided in the electricity industry and those services that may be affected by industry restructuring. It identifies policies that are being proposed or could be developed to address low- income electricity services in a restructured industry. It discusses potential federal policy options and identifies key policy and implementation issues that arise when considering these potential federal initiatives. To understand recent policy development at the state level, we reviewed restructuring proposals from eight states and the accompanying testimony and comments filed in restructuring proceedings in these states.

Baxter, L.W.

1997-07-01T23:59:59.000Z

236

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

237

Assessment of factors affecting industrial electricity demand. Final report (revision version)  

Science Conference Proceedings (OSTI)

In Chapter 2, we identify those factors affecting the industrial product mix - taste, relative output prices, and relative input prices - and isolate several determinants which have not been adequately accounted for to date in industrial electricity demand forecasts. We discuss how the lower energy prices of foreign producers affect domestic producers and how the growth in the number of substitutes for intermediate products such as steel and aluminum with plastics and composites affects the composition of production and, hence, the demand for electricity. We also investigate how the changing age structure of the population brought on by the baby boom could change the mix of outputs produced by the industrial sector. In Chapter 3, we review the history of the 1970s with regard to changes in output mix and the manufacturing demand for electricity, and with regard to changes in the use of electricity vis-a-vis the other inputs in the production process. In Chapter 4, we generate forecasts using two models which control for efficiency changes, but in different ways. In this chapter we present the sensitivity of these projections using three sets of assumptions about product mix. The last chapter summarizes our results and draw from those results implications regarding public policy and industrial electricity demand. Two appendices present ISTUM2 results from selected electricity intensive industries, describes the ISTUM and ORIM models.

None

1983-07-01T23:59:59.000Z

238

RG&E (Electric) - Commercial and Industrial Efficiency Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RG&E (Electric) - Commercial and Industrial Efficiency Program RG&E (Electric) - Commercial and Industrial Efficiency Program RG&E (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

239

Survey of Productive Uses of Electricity in Rural Areas | Open Energy  

Open Energy Info (EERE)

Survey of Productive Uses of Electricity in Rural Areas Survey of Productive Uses of Electricity in Rural Areas Jump to: navigation, search Tool Summary Name: Survey of Productive Uses of Electricity in Rural Areas Agency/Company /Organization: Robert E. Fishbein Sector: Energy Focus Area: Renewable Energy, Economic Development, Energy Efficiency Phase: Get Feedback, Evaluate Effectiveness and Revise as Needed Topics: - Energy Access, Finance Resource Type: Lessons learned/best practices User Interface: Website Website: www.martinot.info/Fishbein_WB.pdf Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English The objective of the assignment is to survey and summarize the published literature as well as informal knowledge about the experience with promoting productive uses of

240

Specification, estimation, and forecasts of industrial demand and price of electricity  

Science Conference Proceedings (OSTI)

This paper discusses the specification of electricity-demand and price equations for manufacturing industries and presents empirical results based on the data for 16 Standard Industrial Classification (SIC) three-digit industries from 1959 to 1976. Performances of estimated equations are evaluated by sample-period simulation tests. The estimated coefficients are then used to forecast electricity demand by industry. Results show that most of the estimated coefficients have expected signs and are statistically significant. The estimated equations perform well in terms of sample-period simulation tests, registering small mean absolute percentage errors and mean square percentage errors for most of the industries studied. Forecasted results indicate that total electricity demand by manufacturing industries would grow at an average annual rate of 3.53% according to the baseline forecast, 2.39% in the high-price scenario, and 4.76% in the low-price scenario. The forecasted growth rates vary substantially among industries. The results also indicate that the price of electricity would continue to grow at a faster rate than the general price level in the forecasted period 1977 to 1990. 19 references, 6 tables.

Chang, H.S. (Univ. of Tennessee, Knoxville); Chern, W.S.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural Gas and Electric Industry Coordination in New England  

Science Conference Proceedings (OSTI)

Introduction of gas-fired generation will place unfamiliar operating requirements on the pipeline system in some parts of the country. Facing rapid growth in natural gas-fired generation in New England, regional gas and electric companies formed a group to improve operational coordination and understanding. This report documents the group's progress and procedures.

1993-11-01T23:59:59.000Z

242

Performance Issues for a Changing Electric Power Industry  

Reports and Publications (EIA)

Provides an overview of some of the factors affecting reliability within the electric bulk power system. Historical and projected data related to reliability issues are discussed on a national and regional basis. Current research on economic considerations associated with reliability levels is also reviewed.

Information Center

1995-01-01T23:59:59.000Z

243

Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report  

Science Conference Proceedings (OSTI)

Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

Azimi, S.A.; Conrad, J.L.; Reed, J.E.

1985-03-01T23:59:59.000Z

244

The changing structure of the electric power industry: Selected issues, 1998  

Science Conference Proceedings (OSTI)

More than 3,000 electric utilities in the United States provide electricity to sustain the Nation`s economic growth and promote the well-being of its inhabitants. At the end of 1996, the net generating capability of the electric power industry stood at more than 776,000 megawatts. Sales to ultimate consumers in 1996 exceeded 3.1 trillion kilowatthours at a total cost of more than $210 billion. In addition, the industry added over 9 million new customers during the period from 1990 through 1996. The above statistics provide an indication of the size of the electric power industry. Propelled by events of the recent past, the industry is currently in the midst of changing from a vertically integrated and regulated monopoly to a functionally unbundled industry with a competitive market for power generation. Advances in power generation technology, perceived inefficiencies in the industry, large variations in regional electricity prices, and the trend to competitive markets in other regulated industries have all contributed to the transition. Industry changes brought on by this movement are ongoing, and the industry will remain in a transitional state for the next few years or more. During the transition, many issues are being examined, evaluated, and debated. This report focuses on three of them: how wholesale and retail prices have changed since 1990; the power and ability of independent system operators (ISOs) to provide transmission services on a nondiscriminatory basis; and how issues that affect consumer choice, including stranded costs and the determination of retail prices, may be handled either by the US Congress or by State legislatures.

NONE

1998-07-01T23:59:59.000Z

245

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

246

Water Resource Trends and Implications for the Electric Power Industry  

Science Conference Proceedings (OSTI)

Water resources, both surface and groundwater, are subject to significant variation and change with respect to volume, flow, and quality. This report evaluates observed water resource trends within the United States and their implications for electric power generation. The report also addresses how individual companies have responded to these changes. The report will be of value to environment, generation, and planning managers within power companies, government agencies, and water resource stakeholders ...

2010-12-23T23:59:59.000Z

247

"2012 Total Electric Industry- Customers"  

U.S. Energy Information Administration (EIA) Indexed Site

Customers" Customers" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",6203726,842773,34164,5,7080668 "Connecticut",1454651,150435,4647,2,1609735 "Maine",703770,89048,2780,0,795598 "Massachusetts",2699141,389272,21145,2,3109560 "New Hampshire",601697,104978,3444,0,710119 "Rhode Island",435448,57824,1927,1,495200 "Vermont",309019,51216,221,0,360456 "Middle Atlantic",15727423,2215961,45836,26,17989246 "New Jersey",3455302,489943,12729,6,3957980 "New York",7010740,1038268,8144,6,8057158

248

Hydrothermal industrialization electric-power systems development. Final report  

DOE Green Energy (OSTI)

The nature of hydrothermal resources, their associated temperatures, geographic locations, and developable capacity are described. The parties involved in development, required activities and phases of development, regulatory and permitting requirements, environmental considerations, and time required to complete development activities ae examined in detail. These activities are put in proper perspective by detailing development costs. A profile of the geothermal industry is presented by detailing the participants and their operating characteristics. The current development status of geothermal energy in the US is detailed. The work on market penetration is summarized briefly. Detailed development information is presented for 56 high temperature sites. (MHR)

Not Available

1982-03-01T23:59:59.000Z

249

Diagnosing and Mitigating Market Power in Chile's Electricity Industry  

E-Print Network (OSTI)

Universidad de Chile May 12, 2003 Abstract This paper examines the incentives to exercise market power that generators would face and the di®erent strategies that they would follow if all electricity supplies in Chile were traded in an hourly-unregulated spot... at the Instituto de Economia, Universidad Cat¶olica de Chile and Centro de Econom¶ia Aplicada, Universidad de Chile. Financial support from the MIT Center for Energy and Environmental Policy Research (CEEPR) is gratefully acknowledged. yCenter of Applied Economics...

Arellano, M Soledad

2004-06-16T23:59:59.000Z

250

Overview of the Chinese Electricity Industry and Its Current Issues  

E-Print Network (OSTI)

Unit: MW Data: (CED, 2004) Structure of generating capacity China’s electricity generation relies heav ily on fossil fuel. Within the installed generating capacity, fossil-fired (mainly co al-fired) facilities o ccupy about 74 percent and hydro... fossil fuel used for power generation in China. Statistics shows that China is now the largest coal consuming country in the world. In 2001, the ratio of coal consumption in China to world total was about 27% (CED, 2004). No other larg e country relies...

Yang, Hongliang

2006-03-14T23:59:59.000Z

251

Managing Electricity Sourcing in Europe's Energy Intensive Industry: A Methodology to Develop an Electricity Sourcing Strategy.  

E-Print Network (OSTI)

??Several regulatory changes in Europe's electricity sector have stimulated competition in the market. National power companies, with monopolistic structures, have evolved into competitive entities, creating… (more)

Treviño Villarreal, Luis

2011-01-01T23:59:59.000Z

252

Further Findings Concerning Electrical Energy Monitoring in an Industrial Plant  

E-Print Network (OSTI)

The Energy Systems Laboratory (ESL) at Texas A&M University has monitored the real-time electrical energy consumption, demand, and power factor of a large metal fabrication plant in Houston, Texas for twelve months. Monthly reports that present the data in a format that plant personnel find useful are discussed. These reports allow plant personnel to see how power factor correction in conjunction with production retrofits have reduced utility bills despite production capacity increases. The reports have also been useful in detecting maintenance problems and monitoring productivity. A method that allows the calculation of power factor correction savings after correction is discussed. This method requires some power factor versus demand history prior to correction, and is used to determine what the demand would have been if the correction equipment had not been installed, even if the real demand of the plant changes. Major plant electrical modifications and their impact on a monitoring system are also discussed. Such modifications increase the potential for technical problems with the monitoring equipment and result in hard-to-find problems. A future step to be examined is one that uses visual or audible warning devices in the plant to control demand. At least one plant has adopted this idea in the form of warning lights that inform employees to shut down unnecessary equipment. This concept appears to be potentially beneficial to all plants which have some type of demand monitoring device on-site.

Lewis, D. R.; Dorhofer, F. J.; Heffington, W. M.

1995-04-01T23:59:59.000Z

253

"2012 Total Electric Industry- Sales (Thousand Megawatthours)"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Thousand Megawatthours)" Sales (Thousand Megawatthours)" "(Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",47207.696,44864.227,27817.984,566.173,120456.08 "Connecticut",12757.633,12976.05,3565.944,192.711,29492.338 "Maine",4480.736,4053.188,3027.135,0,11561.059 "Massachusetts",20313.469,17722.811,16927.205,349.839,55313.324 "New Hampshire",4439.208,4478.42,1952.633,0,10870.261 "Rhode Island",3121.367,3639.866,923.478,23.623,7708.334 "Vermont",2095.283,1993.892,1421.589,0,5510.764 "Middle Atlantic",132230.522,157278.208,69506.519,3910.06,362925.309

254

"2012 Total Electric Industry- Revenue (Thousands Dollars)"  

U.S. Energy Information Administration (EIA) Indexed Site

Revenue (Thousands Dollars)" Revenue (Thousands Dollars)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",7418025.1,6137400,3292222.3,37797.4,16885444.6 "Connecticut",2212594.3,1901294.3,451909.7,18679.5,4584477.8 "Maine",656822,467228,241624.4,0,1365674.3 "Massachusetts",3029291.6,2453106,2127180,17162,7626739.5 "New Hampshire",713388.2,598371.1,231041,0,1542800.3 "Rhode Island",449603.6,431951.9,98597.2,1955.9,982108.6 "Vermont",356325.4,285448.7,141870,0,783644.1 "Middle Atlantic",20195109.9,20394744.7,5206283.9,488944,46285082.4

255

Survey of government assistance for the world's hard-coal industries  

Science Conference Proceedings (OSTI)

This report investigates the existence and use of subsidies and incentives that foreign nations give their coal industries. Of particular interest are those aids that promote and facilitate the export of coal. A survey of hard coal producing countries was conducted to compile, and quantify if possible, direct and indirect financial aids given by governments for the purposes of maintaining, expanding or creating an indigenous coal industry and facilitating exports. The survey found that government measures commonly used to maintain, expand or create coal production include deficit operating grants, capital grants, preferential loan credits, labor and tax benefits, and export marketing assistance. Typical measures used to guarantee and protect domestic coal markets are long-term supply agreements, price supports, government purchases, tariffs, import licenses, and quotas. Common types of financial assistance provided by governments that do not benefit current coal production or use are research and development funds, environmental grants for restoring past mined lands, and payments to unemployed miners.

Neme, L.A.; Yancik, J.J.

1989-05-01T23:59:59.000Z

256

Assessing strategies to address transition costs in a restructuring electricity industry  

SciTech Connect

Restructuring the US electricity industry has become the nation`s central energy issue for the 1990s. Restructuring proposals at the federal and state levels focus on more competitive market structures for generation and the integration of transmission within those structures. The proposed move to more competitive generation markets will expose utility costs that are above those experienced by alternative suppliers. Debate about these above-market, or transition, costs (e.g., their size,who will pay for them and how) has played a prominent role in restructuring proceedings. This paper presents results from a project to systematically assess strategies to address transition costs exposed by restructuring the electricity industry.

Baxter, L.; Hadley, S.; Hirst, E.

1996-08-01T23:59:59.000Z

257

Cost Analysis of Proposed National Regulation of Coal Combustion Residuals from the Electric Generating Industry  

Science Conference Proceedings (OSTI)

This analysis quantifies the potential cost to the coal-fired electric generation industry from EPA's proposed rule on the disposal of coal combustion residuals. It includes an assessment of the incremental compliance costs of the Subtitle C proposed regulatory option. Costs for this analysis were developed at the individual generating unit and plant level and aggregated to develop a national industry cost estimate. The analytical model used to estimate the costs utilizes a Monte Carlo framework to accou...

2010-11-17T23:59:59.000Z

258

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

259

" and Electricity Generation by Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," 3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " "," ","Pulping Liquor",," ","Wood Harvested","and Byproducts","and","RSE" "SIC"," ","or","Biomass","Agricultural","Directly","from","Paper-Related","Row"

260

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 16–17, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Storage in a Restructured Electric Utility Industry: Report on EPRI Think Tanks I and II  

Science Conference Proceedings (OSTI)

Energy storage will play an increasingly crucial role in the deregulated electric power industry, with future generation probably decreasing in size and becoming more distributed. EPRI sponsored two think tanks to explore the need for energy storage in a deregulated environment and to assess the state of development of energy storage technologies. The think tanks described the U.S. Federal Energy Regulatory Commission (FERC) view of deregulation and how electric utility deregulation compares to the dereg...

1997-09-30T23:59:59.000Z

262

TY JOUR T1 Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans JF Energy Policy A1 Jordan Wilkerson A1 Peter H Larsen A1 Galen L Barbose AB p We review long term electric utility plans representing nbsp of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy ef ciency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in peak demand by nbsp

263

A Survey of LTR Program Industry Partner Satisfaction at Oak Ridge National Lab  

SciTech Connect

As a US Department of Energy (DOE) Office of Science (SC) National Laboratory, the Oak Ridge National Lab (ORNL) participates in the Laboratory Technology Research (LTR) Program. The mission of the LTR Program is to advance science and technology, in support of DOE missions, toward innovative applications through cost-shared partnerships with the private sector. The benefits to industry participants include gaining access to world-class researchers and facilities, while the benefits to the ORNL researchers includes leveraging the declining government-provided funds. Thus, the importance placed upon industry partner satisfaction is large, especially if the LTR Program is to be sustained during episodes of government budget constraints. Realizing the critical nature of partner satisfaction, in 1998 the DOE-SC National Laboratories surveyed industrial partners to assess their satisfaction with the cooperative research projects in which they were involved. This paper will describe the survey methodology including development of the questionnaire and a summary of the responses (particularly those which are germane to the ORNL.) The results of the survey will be categorized as follows: (1) Desire to partner again with ORNL; (2) Benefits obtained by the company from the partnership; and (3) LTR Program ratings assigned in 11 key areas (i.e., quality of work, expertise, protection of intellectual property, value, facilities, understanding company needs, reliability of funding, schedule responsiveness, project management, contract negotiation, and contract administration.) More information about the LTR Program can be found at http://www.er.doe.gov/production/octr/aentr/aeptrnr.html.

Payne, T.L.; Kniel, C.

2000-02-01T23:59:59.000Z

264

Own-price and income elasticities for household electricity demand : a survey of literature using meta-regression analysis.  

E-Print Network (OSTI)

??Maria Wist Langmoen Own-price and income elasticities for household electricity demand -A Literature survey using meta-regression analysis Economists have been modelling the electricity demand for… (more)

Langmoen, Maria Wist

2004-01-01T23:59:59.000Z

265

Industry-Wide Error Rate Database in Power Switching: Switching Practices Survey  

Science Conference Proceedings (OSTI)

This report describes a survey that was conducted in 2013 to collect data on utility practices in operational power switching and on rates of switching errors. Over the years, the Electric Power Research Institute (EPRI) Switching Safety and Reliability (SS&R) project has developed two previous estimates of switching errors. These estimates were derived as part of research reported in the 1996 EPRI report Field Operation Power Switching Safety (TR-106465) and in the 2000 EPRI report ...

2013-11-19T23:59:59.000Z

266

Organisational occupational health and safety culture and behaviour in the electricity distribution / retail industry in New South Wales.  

E-Print Network (OSTI)

??While good progress has been made in the reduction of fatalities and serious incidents leading to injury in the electricity distribution industry in New South… (more)

Rutter, Arthur E.

2010-01-01T23:59:59.000Z

267

Analyze of the influence of a static var compensator in operation of a electrical energy industrial system with a cogeneration.  

E-Print Network (OSTI)

??In this work is analyzed the influence of a static var compensator (SVC) on the electromechanical stability of the electrical energy system of the industrial… (more)

GILSON SOARES DA SILVA JÚNIOR

2008-01-01T23:59:59.000Z

268

A Secure Web Service for Electricity Prepayment Vending in South Africa: A Case Study and Industry Specification  

Science Conference Proceedings (OSTI)

Current standardised offline vending systems play a critical role in supporting electricity prepayment-metering infrastructure by enabling convenient access to point of sales for customers to purchase prepaid electricity tokens. Electricity utilities ... Keywords: Electricity Vending, Interoperability, Industry specification, Client-server, Prepayment, Secure Socket layer, Web Service

K. P. Subramoney; G. P. Hancke

2007-05-01T23:59:59.000Z

269

Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit  

E-Print Network (OSTI)

This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement opportunities for their industrial customers. To be meaningful, strategies for increasing industrial competitiveness must consider not only energy use, but also all other production inputs. To this end, the program focusses on three major areas: productivity, environmental protection, and efficiency. The effectiveness of the program will be gauged by its ability to keep utility customers "alive and well."

Jeffress, R. D.

1993-03-01T23:59:59.000Z

270

Electric power industry restructuring in Australia: Lessons from down-under. Occasional paper No. 20  

SciTech Connect

Australia`s electric power industry (EPI) is undergoing major restructuring. This restructuring includes commercialization of state-owned electric organization through privatization and through corporatization into separate governmental business units; structural unbundling of generation, transmission, retailing, and distribution; and creation of a National Electricity Market (NEM) organized as a centralized, market-based trading pool for buying and selling electricity. The principal rationales for change in the EPI were the related needs of enhancing international competitiveness, improving productivity, and lowering electric rates. Reducing public debt through privatization also played an important role. Reforms in the EPI are part of the overall economic reform package that is being implemented in Australia. Enhancing efficiency in the economy through competition is a key objective of the reforms. As the need for reform was being discussed in the early 1990s, Australia`s previous prime minister, Paul Keating, observed that {open_quotes}the engine which drives efficiency is free and open competition.{close_quotes} The optimism about the economic benefits of the full package of reforms across the different sectors of the economy, including the electricity industry, is reflected in estimated benefits of a 5.5 percent annual increase in real gross domestic product and the creation of 30,000 more jobs. The largest source of the benefits (estimated at 25 percent of total benefits) was projected to come from reform of the electricity and gas sectors.

Ray, D. [Univ. of Wisconsin, Madison, WI (United States)

1997-01-01T23:59:59.000Z

271

Comments on the use of computer models for merger analysis in the electricity industry  

E-Print Network (OSTI)

, factors on which information in available in the electricity industry. 1 University of California Energy price. The ability to profitably pursue such a strategy is the primary concern of market power analysis designed to aid in analysis of market power must be able to incorporate strategic firm behavior

California at Berkeley. University of

272

HE ELECTRIC POWER INDUSTRY in the United States is facing a disquieting shortage  

E-Print Network (OSTI)

. "The power industry--both utilities and manufacturers--hires bright people [with college degrees] who & manufacturing technology 88 850 7 Signals & applications 87 000 8 Antennas & propagation 86 000 9 Signal of electric and hybrid vehicles. These activities are, in turn, leading to lecture top- ics and lab exercises

273

Implementation of relaxed ACID properties for distributed load management in the electrical power industry  

Science Conference Proceedings (OSTI)

The consistency of data in central databases is normally implemented by using the ACID (Atomicity, Consistency, Isolation and Durability) properties of a DBMS (Data Base Management System). Distributed databases with high performance and availability ... Keywords: ACID properties, automatic process control, distributed systems, electrical power industry, relaxed atomicity property, smart grid conceptual model

Lars Frank; Rasmus Ulslev Pedersen

2013-01-01T23:59:59.000Z

274

Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries  

Reports and Publications (EIA)

In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

Information Center

2002-10-01T23:59:59.000Z

275

Evaluation of conventional electric power generating industry quality assurance and reliability practices  

DOE Green Energy (OSTI)

The techniques and practices utilized in an allied industry (electric power generation) that might serve as a baseline for formulating Quality Assurance and Reliability (QA and R) procedures for photovoltaic solar energy systems were studied. The study results provide direct near-term input for establishing validation methods as part of the SERI performance criteria and test standards development task.

Anderson, R.T.; Lauffenburger, H.A.

1981-03-01T23:59:59.000Z

276

Field Operations Program Neighborhood Electric Vehicles - Fleet Survey  

Science Conference Proceedings (OSTI)

This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles(NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog- forming emissions annually.

Francfort, James Edward; Carroll, M.

2001-07-01T23:59:59.000Z

277

An Industrial Control System for the Supervision of the CERN Electrical Distribution Network  

E-Print Network (OSTI)

CERN operates a large distribution network for the supply of electricity to the particle accelerators, experiments and the associated infrastructure. The distribution network operates on voltage levels from 400 V to 400 kV with a total yearly consumption of near to 1000 GWh. In the past, the laboratory has developed an in-house control system for this network, using the technologies applied to the accelerator control system. However, CERN is now working on a project to purchase, configure and install an industrial Electrical Network Supervisor (ENS). This is a state-of-the-art industrial control system completely developed and supported by an external contractor. The system - based on a scalable and distributed architecture - will allow the installation to be performed gradually, and will be tested while the existing system is fully operational. Ultimately, the complete electrical distribution network will be supervised with this new system, the maintenance and further development of which will be the complet...

Poulsen, S

1999-01-01T23:59:59.000Z

278

The Use of Electricity in Industry and Energy Saving - The Gamma Co-Efficient  

E-Print Network (OSTI)

Use of electricity in manufacturing processes is not only limited to its specific utilizations as motion power, lighting, electrolysis. Worldwide energy troubles involve in France a great voluntee to substitute in industrial processes the nuclear electricity to the oil-burning one. The main part of these uses the replacement thermal ones. Of course, electrical processes which will develop are technically tested and economically justified. Energetic comparison of concurrent processes leads to the use of simple factors : the gamma factor. It is, when using energy, the number of thermies which are replaced by one kWh. Gamma is not a factor for measuring the oil saving but the using efficiency. For measuring the oil saving, the author uses 'the net gain of oil weight'. Examples of applications and main results are given in various industrial branches.

Wolf, R.; Froehlich, R.

1983-01-01T23:59:59.000Z

279

Deregulation and R&D in Network Industries: The Case of the Electricity Industry  

E-Print Network (OSTI)

, this does not weaken the need for debating the role of government spending and R&D policy in promoting energy technology innovation. There is less data on energy R&D spending in the private sector as, since liberalisation, such information has become... ; Defeuilley and Furtado, 2000; Margolis and Kammen, 1999; Bell and Schneider, 1999; Dooley, 1997). Figures 2 and 3 show that these has been a marked decline in R&D spending by private electric utilities in the US and Japan in the post- liberalisation years...

Jamasb, Tooraj; Pollitt, Michael G.

2006-03-14T23:59:59.000Z

280

A Survey of the U.S. ESCO Industry: Market Growth and Development from 2008 to 2011  

E-Print Network (OSTI)

Evolution of the U.S. Energy Service Company Industry: NewAn international survey of the energy service company (ESCO)Association of Energy Service Companies Environmental Energy

Satchwell, Andrew

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

282

Impacts of Electric Industry Restructuring on Electric Generation and Fuel Markets: Analytical and Business Challenges  

Science Conference Proceedings (OSTI)

Restructuring and increasing competition are likely to have a major impact on electric generating companies and the individuals and organizations that buy, transport, market, or supply fuels. Restructuring may also affect the patterns of coal and gas use. This report, the first in a series by EPRI and the Gas Research Institute (GRI), describes the scope of these potential impacts.

1997-03-27T23:59:59.000Z

283

Electricity matters: A new incentives approach for a changing electric industry  

SciTech Connect

The method of regulating a utility`s rates should be changed fundamentally to promote responses to competition. An approach that addresses price caps, profit sharing and affords flexibility in pricing can offer utilities and those they serve a {open_quotes}win-win{close_quotes} scenario. U.S. businesses face fiercely difficult challenges to compete in the global marketplace, requiring many firms to search for new and innovative competitive strategies. American business must make fundamental changes to cope with the forces of competition - or risk going out of business. Electricity suppliers can facilitate economic progress by providing cost-effective, high-quality and reliable service to their customers. But as many utility managers know too well, this goal is not easy to achieve. For regulators, it is important to frame and resolve the issues in a proactive way. At the outset, American electric utilities must have strong incentives to be efficient. The purpose of this paper is to explore some of the incentive regulation techniques, such as price-cap regulation, which U.S. and foreign electric utilities should use to facilitate change. These techniques can better accomodate the current mixed competitive and regulated environment while providing an appropriate transition to a dynamically competitive electric services market.

Olson, W.P.; Costello, K.W.

1995-01-01T23:59:59.000Z

284

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black, Marija Ilic, IEEE Fellow  

E-Print Network (OSTI)

Survey of Technologies and Cost Estimates for Residential Electricity Services Jason W. Black This survey contains a sample of the available technologies for implementing residential electricity services understanding of the potential for implementation of residential services. The estimation of the costs

Ilic, Marija D.

285

'Tilted' Industrial Electric Rates: A New Negative Variable for Energy Engineers  

E-Print Network (OSTI)

The cost of purchased electricity for industry is rising even faster than for other sectors. Conventional means of reducing power costs include internal techniques like load management, demand controls and energy conservation. External mechanisms such as contract negotiations with the serving utility can also help keep unit costs of purchased power down. But regulatory policy by agencies governing the serving utility can also have a major impact on electric rate design, by imposing rate structures that require the industrial user to pay above-cost power prices. New trends in electricity ratemaking depart so radically from traditional cost-of-service standards that power-intensive manufacturers could soon end up paying up to 25% more for their electricity than it actually costs to generate and deliver it. Political pressure to mitigate the impact of high energy prices on residential customers led to enactment of the Public Utility Regulatory Policies Act of 1978 (PURPA), requiring every state to consider implementing alternatives to traditional cost-of-service ratemaking techniques. Increasingly, state legislation is also being introduced to achieve similar goals. The stakes for a manufacturing company can be great. If a company is small or unstable, or otherwise unable to absorb or pass on above cost energy prices, it may go out of business. Alternately, it may increase the price of its product in order to recover the new cost of electricity, plus all the administrative costs of handling what is in effect a straight cost pass-through. Traditionally, energy engineers have managed costs by securing favorable power contracts, and by using electricity efficiently. Increasingly, however, they will have to become involved in the public policy debate on electricity rate making in order to help assure that industry has equitable rates in the future.

Greenwood, R. W.

1981-01-01T23:59:59.000Z

286

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

287

Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington, DC, July 1, 2004) A new group formed to work on the important new electricity area known as demand response was announced today in Washington, DC. The United States Demand Response Coordinating Committee (DRCC) will bring together a number of parties to focus on developing information and tools needed to allow demand response to be another option employed to address national, regional and state electricity issues and challenges. The DRCC's efforts are the U.S. part of a larger, global demand response effort announced recently by the International Energy Agency's

288

Region-specific study of the electric utility industry. Phases I and II. Executive summary  

Science Conference Proceedings (OSTI)

This report describes the problems either confronting or likely to confront the electric utility industry in the event of a return of high rates of inflation. It attempts to assess the future of this industry and makes recommendations to resolve fundamental problems. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of the willingness of a wide range of parties to participate and its representative mix of powerplants, for example coal, hydro, nuclear and oil. It was found that the future supply of reliable, economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the condition of the electricity industry was to make the present system work. The present system is sound and, with modifications, problems could be solved within the existing framework. A series of recommendations, developed through a consensus building effort involving state government officials, state regulators and investor-owned utility representatives, are presented. A discussion of the need for innovative solutions and one state's approach to the problem concludes the report.

Not Available

1986-03-01T23:59:59.000Z

289

2014 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for Electricity and Renewable (Photovoltaic) Survey Form Changes Proposed for 2014 The U.S. Energy Information Administration (EIA) is proposing changes to its electricity data collection in 2014. These changes involve the following surveys: Form EIA-63B, "Annual Photovoltaic Cell/Module Shipments Report," Form EIA-411, "Coordinated Bulk Power Supply Program Report," Form EIA-826, "Monthly Electric Utility Sales and Revenue Report with State Distributions," Form EIA-860, "Annual Electric Generator Report," Form EIA-860M, "Monthly Update to the Annual Electric Generator Report," Form EIA-861, "Annual Electric Power Industry Report," Form EIA-861S, "Annual Electric Power Industry Report (Short Form)," and

290

Household Response To Dynamic Pricing Of Electricity: A Survey Of The  

Open Energy Info (EERE)

Household Response To Dynamic Pricing Of Electricity: A Survey Of The Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Household Response To Dynamic Pricing Of Electricity: A Survey Of The Experimental Evidence Focus Area: Crosscutting Topics: Market Analysis Website: www.hks.harvard.edu/hepg/Papers/2009/The%20Power%20of%20Experimentatio Equivalent URI: cleanenergysolutions.org/content/household-response-dynamic-pricing-el Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Mandates/Targets,Cost Recovery/Allocation,Enabling Legislation" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

291

U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry  

SciTech Connect

Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

Hsieh, B.C.B. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Wang Yingshi [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics

1997-11-01T23:59:59.000Z

292

Maintaining Generation Adequacy in a Restructuring U.S. Electricity Industry  

SciTech Connect

Historically, decisions on the amounts, locations, types, and timing of investments in new generation have been made by vertically integrated utilities with approval from state public utility commissions. As the U.S. electricity industry is restructured, these decisions are being fragmented and dispersed among a variety of organizations. As generation is deregulated and becomes increasingly competitive, decisions on whether to build new generators and to retire, maintain, or repower existing units will increasingly be made by unregulated for-profit corporations. These decisions will be based largely on investor assessments of future profitability and only secondarily on regional reliability requirements. In addition, some customers will choose to face real-time (spot) prices and will respond to the occasionally very high prices by reducing electricity use at those times. Market-determined generation levels will, relative to centrally mandated reserve margins, lead to: (1) more volatile energy prices; (2) lower electricity costs and prices; and (3) a generation mix with more baseload, and less peaking, capacity. During the transition from a vertically integrated, regulated industry to a deintegrated, competitive industry, government regulators and system operators may continue to impose minimum-installed-capacity requirements on load-serving entities. As the industry gains experience with customer responses to real-time pricing and with operation of competitive intrahour energy markets, these requirements will likely disappear. We quantitatively analyzed these issues with the Oak Ridge Competitive Electricity Dispatch model (ORCED). Model results show that the optimal reserve margin depends on various factors, including fuel prices, initial mix of generation capacity, and customer response to electricity prices (load shapes and system load factor). Because the correct reserve margin depends on these generally unpredictable factors, mandated reserve margins might be too high, leading to higher electricity costs and prices. Absent mandated reserve margins, electricity prices and costs decline with increasing customer response to prices during high-demand periods. The issues discussed here are primarily transitional rather than enduring. However, the transition from a highly regulated, vertically integrated industry to one dominated by competition is likely to take another five to ten years.

Hirst, E.; Hadley, S.

1999-10-01T23:59:59.000Z

293

Commercial and Industrial Conservation and Load Management Programs at New England Electric  

E-Print Network (OSTI)

New England Electric has initiated, through its three retail subsidiaries, an ambitious load management and conservation program designed to reduce its projected 1991 summer peak by 230 megawatts and save 335,000 megawatthours per year. The effort is directed mainly toward the commercial and industrial classes, which make up 62% of sales. The overall program, called Partners In Energy Planning, includes a performance contracting or modified shared savings program, a lighting subsidy program, a storage cooling program, a standby generation program, residential programs and rate programs. This paper discusses the details of the commercial and industrial programs and why they are being implemented.

Gibson, P. H.

1987-09-01T23:59:59.000Z

294

Visioning the 21st Century Electricity Industry: Outcomes and Strategies for America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauren Azar Lauren Azar Senior Advisor to the Secretary U. S. Department of Energy 8 February 2012 Visioning the 21 st Century Electricity Industry: Strategies and Outcomes for America http://teeic.anl.gov/er/transmission/restech/dist/index.cfm We all have "visions," in one form or another: * Corporations call them strategic plans * RTOs ... transmission expansion plans or Order 1000 plans * State PUCs ... integrated resource plans * Employees ... career goals Artist: Paolo Frattesi Artist: Paolo Frattesi DOE asks your help... Our Future? 1. Enable a seamless, cost-effective electricity

295

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 3, MARCH 2010 943 Electric Vehicle Using a Combination of  

E-Print Network (OSTI)

. The results also show that this alternative is cheaper than Li-ion powered electric cars. Index TermsIEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 3, MARCH 2010 943 Electric Vehicle Using used for an experimental electric vehicle (EV). These batteries are cheaper than Li-ion cells and have

Rudnick, Hugh

296

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

297

Renewable Resource Electricity in the Changing Regulatory Environment  

Reports and Publications (EIA)

This article surveys in the development of renewable resource electricity recent actions and proposals and summarizes their implications for the renewables industry.

Information Center

1995-12-01T23:59:59.000Z

298

Priorities for Corrosion Research and Development for the Electric Power Industry  

Science Conference Proceedings (OSTI)

This report identifies the specific corrosion problems that result in the largest costs to the electric power industry. It describes the corrosion-related research and development (R&D) that is underway to address these problems and also discusses additional R&D that appears warranted. The report discusses several high-cost areas where new research is judged to be unnecessary as the problems are well understood, but where improved application of already available technology seems important.

2002-09-09T23:59:59.000Z

299

Program on Technology Innovation: Carbon Nanotube Technology for the Electric Power Industry  

Science Conference Proceedings (OSTI)

A couple decades ago, a new molecular form of carbon exhibiting extraordinary properties was discovered. This resulted in a frenzy of basic and applied research, and tremendous strides have been made. The technology that ensued is still relatively immature, but there is the prospect that the technology may be used in the future for a wide range of applications in the electric power industry. In fact, the three new materials discussed in this report (fullerenes, nanotubes, and graphene) have the potential...

2011-11-22T23:59:59.000Z

300

Program on Technology Innovation: Technology R&D Strategy for the Electric Power Industry: "Wild Cards"  

Science Conference Proceedings (OSTI)

To address the many challenges facing the electric power industry during the next 20 years, an effective process of technology R&D planning is needed. To augment recently completed scenario-based planning, this report identifies the technology and R&D needs that result from 21 additional institutional, political, financial, technical, or social changes ("wild cards") not addressed in the prior scenarios project (see EPRI Report 1014385). This report also identifies key R&D priorities that occur in multip...

2008-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

302

Different approaches to estimating transition costs in the electric- utility industry  

SciTech Connect

The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

Baxter, L.W.

1995-10-01T23:59:59.000Z

303

Tax and Fiscal Policies for Promotion of Industrial EnergyEfficiency: A Survey of International Experience  

SciTech Connect

The Energy Foundation's China Sustainable Energy Program (CSEP) has undertaken a major project investigating fiscal and tax policy options for stimulating energy efficiency and renewable energy development in China. This report, which is part of the sectoral sub-project studies on energy efficiency in industry, surveys international experience with tax and fiscal policies directed toward increasing investments in energy efficiency in the industrial sector. The report begins with an overview of tax and fiscal policies, including descriptions and evaluations of programs that use energy or energy-related carbon dioxide (CO2) taxes, pollution levies, public benefit charges, grants or subsidies, subsidized audits, loans, tax relief for specific technologies, and tax relief as part of an energy or greenhouse gas (GHG) emission tax or agreement scheme. Following the discussion of these individual policies, the report reviews experience with integrated programs found in two countries as well as with GHG emissions trading programs. The report concludes with a discussion of the best practices related to international experience with tax and fiscal policies to encourage investment in energy efficiency in industry.

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell,Ernst; Graus, Wina

2005-09-15T23:59:59.000Z

304

Control requirements for cogen and microgen plants in a deregulated electricity industry  

SciTech Connect

The deregulation of the electricity production and distribution industry provides opportunities and concerns to the end-users as well as to the electricity producing companies. The end-user objective is to get a reliable source of electrical energy at the lowest rate possible. On the other hand, the primary objective of the three providing companies--generation, transmission, and local distribution--is to profit while satisfying their customers' needs. These three companies may compete for the same customer, and new competitors may enter the arena. The existing technology of the cogeneration plant and the emergence of the microgenerating plant will be used by all the providers and by the end-users to achieve their objectives. The purpose of this paper is to introduce the concept of operation of the microgenerating plant, to identify the requirements of each interested player, and to introduce control strategies.

Shavit, G.

2000-07-01T23:59:59.000Z

305

Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint  

E-Print Network (OSTI)

A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit to your needs plus load increases under contract and anticipated residential and commercial load growth. If our studies show that we will have generating capacity available, then we should allow a minimum of two years for design and construction. Of course, you will need to plan to build and maintain your substation.' Today our response would be more like 'How soon can you be ready? Can we build and/or maintain your substation for you? Perhaps we can locate a transformer for you to use until permanent facilities are in place?' What has happened to utilities such as GSU to change our perspective so quickly? The turn around began around New Years of 82 with the realization by industry that the recession which had been developing for some 6 months in retail and construction areas was now affecting basic industry. Later we learned that this recession was the most severe and long lasting in this country since the great depression of the 1930's and that fundamental changes would be required by basic industry if it were to survive. Resulting plant reductions and closings severely impacted utilities heavily dependent on industrial business.

Richardson, J. A.

1984-01-01T23:59:59.000Z

306

Water reuse and recycle in the US steam-electric-generating industry - an assessment of current practice and potential for future applications  

Science Conference Proceedings (OSTI)

The study assesses the current and future potential for wastewater reuse and recycle by the steam-electric-generating industry in the United States. Fifty-three power plants employing one or more of the following reuse/recycle measures were identified by a literature search and interviews with reuse/recycle experts--cascading higher-quality wastewaters to lower-quality uses, recirculating ash sluice water, using cooling tower makeup or sidestream softening, treating and reclaiming wastewaters, using dry-cooling systems, and using municipal effluents as plant-intake water. Detailed case studies were performed on eight of the 53 plants surveyed.

Breitstein, L.; Tucker, R.C.

1986-01-01T23:59:59.000Z

307

RADIOACTIVE WASTE DISPOSAL PRACTICES IN THE ATOMIC ENERGY INDUSTRY. A Survey of the Costs  

SciTech Connect

A survey was made on methcds and related costs of disposing of radioactive wastes as practiced in 1955 by twelve atomic industry installations. Wherever possible, estimated unit costs of differentiated stages of waste handling are shown- these are integrated to show the over-all scope of waste dispesal practices at each site. Tabular data summarize costs and operation magnitades at the installations. A pattern is established for standardizing the reporting of fixed costs and equipment unsage costs. The economy of solid waste volume reduction is analyzed. Material costs are listed. An outline for recording monthly waste disposal costs is presented. Obvious conclusions drawn from the factual data are: that it is more expensive per cubic foot to handle high-level wastes than low-level wastes. and that land disposal is less expenaive than sea disposal. A reexamination of baling economics shows that high compression of solid wastes is more expensive than simpler forms of compaction. (auth)

Joseph, A.B.

1955-12-31T23:59:59.000Z

308

Introducing competition in the French electricity supply industry : the destabilisation of a public hierarchy in an open institutional environment  

E-Print Network (OSTI)

The introduction of market rules in a electricity supply industry characterized by a vertically integrated monopoly and public ownership is not inherently doomed to failure if characteristics of the reform or other elements ...

Finon, Dominique

2002-01-01T23:59:59.000Z

309

Electrical Energy Conservation Analyses of the Wood Products (SIC24) Industry in the BPA Service Sistrict : Mill Summary Report : Champion International Corporation, Roseburg, Oregon.  

Science Conference Proceedings (OSTI)

This report presents the partial results of a study conducted by Trans Energy Systems Industrial Division of URS Company for the Bonneville Power Administration (BPA) under contract AC79-84BP18946. The objective of this effort was an electrical energy conservation analysis of the Wood Products Industry (Standard Industrial Code (SIC) 24) in the BPA service district. The analysis was conducted by selecting five representative mills in the BPA service area and performing electrical energy conservation surveys and analyses of these mills. This report presents the results of data gathering and analysis at the Champion International Corporation plywood mill in Roseburg, Oregon, which produces exterior, interior, sanded and tongue and groove/shiplap softwood plywood. The plant produces 170 million square feet of 3/8-inch basis plywood annually. Species processed include Douglas fir and hemlock. This report summarizes the mill data collected, the technical and economic analyses performed, the strategy used in ranking the individual electrical energy conservation opportunities found in each mill, the recommended energy conservation measures (ECM), the projected cost benefits of each ECM and the estimated impacts of each ECM on plant production and operation.

TransEnergy Systems, Inc.

1985-01-01T23:59:59.000Z

310

Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20 years, an effective process of technology R&D planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report presents a comprehensive technology R&D strategy for the next two decades that spans the breadth and depth of challenges and opportunities facing the North American electric utility industry.

2006-12-14T23:59:59.000Z

311

The United States Industrial Electric Motor Systems Market Opportunities Assessment: Key Results  

E-Print Network (OSTI)

This paper summarizes the findings of the U. S. Industrial Electric Motor Systems Market Opportunities Assessment. The Market Assessment was sponsored by the U. S. Department of Energy. The project's principal objectives were to create a detailed portrait of the inventory of motor systems currently in use in US industrial facilities, estimate motor system energy use and potential for energy savings. The research and analysis to support these objectives consisted primarily of on-site motor system inventories of a probability sample of 254 manufacturing facilities nationwide. In addition to characterizing the motor systems in use, the research effort also gathered detailed information on motor system management and purchasing practices. This paper presents key findings from the Market Assessment in regard to patterns of motor energy use, saturation of energy efficiency measures such as efficient motors and adjustable speed drives, and motor system purchase and maintenance practices.

Rosenberg, M.

1999-05-01T23:59:59.000Z

312

Long-term Contracting in a Deregulated Electricity Industry: Simulation Results from a Hydro Management Model  

E-Print Network (OSTI)

The deregulation of electricity industry has introduced long-term contracting as a tool for hedging risk and strategy. A vital consideration for market participants is the relationship between behaviour in the spot market, and decisions taken in the contract market. We have developed a reservoir management model which integrates a Cournot spot market model into a Dual Dynamic Programming framework. Simulations using this model show that the market outcomes depend strongly upon the level of contracting undertaken by both competitors. We develop hypotheses for the dynamics involved, and present results from the simulation model reinforcing these. 1.

Stephen Batstone; Tristram Scott

1998-01-01T23:59:59.000Z

313

Photovoltaic industry proposed changes for the 1999 national electrical code for PV applications  

SciTech Connect

An industry supported task group has recently completed writing proposals for changes in bring Article 690 of the 1999 National Electrical Code (NEC{reg_sign}) up to the state-of-the-art in photovoltaic device and system technology. This paper summarizes proposed code changes, discusses background on both new and changed, and presents examples for the proposed changes. Topics such as the proposed new temperature compensation table for calculating maximum system voltage are analyzed. Procedures for calculating conductor sizes with the proposed changes are presented. Impacts on photovoltaic installations, building integrated systems, and AC module installations are also analyzed.

Bower, W. [Sandia National Labs., Albuquerque, NM (United States); Wiles, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Institute

1997-06-01T23:59:59.000Z

314

Incentive regulation in the electric utility industry. Volume II. Final report  

SciTech Connect

On October 15, 1982, Resource Consulting Group, Inc. (RCG), submitted a draft report to the Federal Energy Regulatory Commission (FERC) titled, Incentive Regulation in the Electric Utility Industry. The FERC distributed the draft report to more than 60 individuals and organizations who were requested to review and comment on the various proposals and recommendations outlined in the report. In response to the FERC's request, 18 organizations submitted formal review comments. This report contains reviewers comments on each of the three programs recommended. The three major incentive programs are: (1) Rate Control Incentive program (RCIP); (2) Construction Cost Control Incentive Program (CCIP); and (3) Automatic Rate Adjustment Mechanism (ARAM).

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

315

Process Parameters and Energy Use of Gas and Electric Ovens in Industrial Applications  

E-Print Network (OSTI)

The study was conducted to evaluate the energy use of natural gas and electric ovens in the production of polymer bearings and components. Tests were conducted to evaluate and compare the performance of natural gas and electric ovens in the process of sintering billets which are made from a broad range of materials such as PTFE and other fluoropolymers, elastomers, themosets, themoplastics and composites. The purpose of this study was to compare the process parameters under similar conditions for industrial applications where electric ovens have predominant use. Tests were performed to obtain the process efficiency and examine cost savings potential in converting electric ovens to natural gas. Preliminary results show that, for the plat studied, cost savings of about $10,000 per oven can be achieved, with a simple payback period of less than two years. The results also show that additional energy savings will be realized if the oven size and exhaust flow are carefully selected. The data obtained from these experiments were used to calculate process efficiency. Design features and environmental issues are discussed.

Kosanovic, D.; Ambs, L.

2000-04-01T23:59:59.000Z

316

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network (OSTI)

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component of that wide-ranging program focused on industrial compressed air systems as the target for such electric use reductions. What stands out about the compressed air effort is that customer acceptance of the program was very high (8 out of 10 customer sites implemented at least some of the efficiency projects recommended in the program's air system audits) and overall savings levels were more than 3X the original program goal (550 kW vs. 1730 kW). XENERGY, Inc. designed and carried out the program on behalf of PG&E. Key features of the program included working with compressed air system distributors to identify and qualify good customer leads and post-audit technical assistance to help customer implement recommended projects. This paper reviews the project and outlines some of the lessons learned in completing the project."

Skelton, J.

2003-04-01T23:59:59.000Z

317

2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5  

U.S. Energy Information Administration (EIA) Indexed Site

TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY TYPE_OF_PRODUCER","STATE_CODE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 2012,"Total Electric Power Industry","AK","Natural Gas",6,244.7,210.5 2012,"Total Electric Power Industry","AK","Petroleum",4,4.8,4.8 2012,"Total Electric Power Industry","AK","Wind",1,24.6,24 2012,"Total Electric Power Industry","AK","All Sources",11,274.1,239.3 2012,"Total Electric Power Industry","AR","Coal",1,755,600 2012,"Total Electric Power Industry","AR","Natural Gas",1,22,20 2012,"Total Electric Power Industry","AR","All Sources",2,777,620

318

The Energy Information Administration is proposing the following revisions to their electricity survey forms in 2011:  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information Administration proposed the following revisions to their electricity Energy Information Administration proposed the following revisions to their electricity survey forms in 2011: F or m E I A -411, " C oor dinated B ulk Power Supply Pr ogr am R epor t." * Change form name to "Coordinated Bulk Power Supply & Demand Program Report;" return to collecting projected reliability data on a 10-year basis as opposed to 5 years. Change "Council" to "Regional Entity" and add submission of Sub-regional level breakout of data. * Return to reporting on capacity and transmission planning for a 10-year horizon, rather than a 5-year horizon. * Adopt the current NERC 2009 Schedule 3 for summer and winter aggregated demand and supply information. Changes are as follows: Demand category additions include

319

EPRI Ergonomics Handbook for the Electric Power Industry: : Ergonomic Design and Specification of Turnkey and Upfitted Fleet Vehicles  

Science Conference Proceedings (OSTI)

The second of two Electric Power Research Institute (EPRI) ergonomics handbooks focusing on fleet vehicles used by electric power utilities, EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design and Specification of Turnkey and Upfitted Fleet Vehicles offers best practices and recommendations for specific design features of fleet vehicles. The first handbook presented information about the process for specifying and purchasing fleet vehicles. Both of these handbooks are ...

2012-11-07T23:59:59.000Z

320

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

322

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

323

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices  

E-Print Network (OSTI)

Combined heat and power (CHP) plants are widely used in industrial applications. In the aftermath of the recession, many of the associated production processes are under-utilized, which challenges the competitiveness of chemical companies. However, under-utilization can be a chance for tighter interaction with the power grid, which is in transition to the so-called smart grid, if the CHP plant can dynamically react to time-sensitive electricity prices. In this paper, we describe a generalized mode model on a component basis that addresses the operational optimization of industrial CHP plants. The mode formulation tracks the state of each plant component in a detailed manner and can account for different operating modes, e.g. fuel-switching for boilers and supplementary firing for gas turbines, and transitional behavior. Transitional behavior such as warm and cold start-ups, shutdowns and pre-computed start-up trajectories is modeled with modes as well. The feasible region of operation for each component is described based on input-output relationships that are thermodynamically sound, such as the Willans line for steam turbines. Furthermore, we emphasize the use of mathematically efficient logic constraints that allow solving the large-scale models fast. We provide an industrial case study and study the impact of different scenarios for under-utilization. 1

Sumit Mitra; Ignacioe. Grossmann

2012-01-01T23:59:59.000Z

324

Material Sustainability Issues for the North American Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report presents results of research regarding sustainability issues faced by the electric power industry. Specifically, the research effort was directed toward identifying which sustainability issues affecting the power companies in North America are considered to be the most relevant, or material, and gathering perspectives on those issues from the industry and its stakeholders.The research team collected information from three sources: direct interviews with utility managers and ...

2013-04-25T23:59:59.000Z

325

Strategic Activities to Address Material Sustainability Issues in the Electric Power Industry: Results of Research with Electric Power Companies and Stakeholders in the United States and Canada  

Science Conference Proceedings (OSTI)

This report discusses activities that electric utilities can take to address the 15 key “material” sustainability issues that were identified in Material Sustainability Issues for the North American Electric Power Industry (EPRI report 3002000920). This report adds insight to that previous analysis by considering activities and actions for addressing the 15 material sustainability issues. Overall, the research identified 145 possible activities across all 15 material issues, and ...

2013-12-03T23:59:59.000Z

326

Survey of industrial coal conversion equipment capabilities: high-temperature, high-pressure gas purification  

SciTech Connect

In order to ensure optimum operating efficiencies for combined-cycle electric generating systems, it is necessary to provide gas treatment equipment capable of operating at high temperatures (>1000/sup 0/F) and high pressure (>10 atmospheres absolute). This equipment, when assembled in a process train, will be required to condition the inlet stream to a gas turbine to suitable levels of gas purity (removal of particulate matter, sulfur, nitrogen, and alkali metal compounds) so that it will be compatible with both environmental and machine constraints. In this work, a survey of the available and developmental equipment for the removal of particulate matter and sulfur compounds has been conducted. In addition, an analysis has been performed to evaluate the performance of a number of alternative process configurations in light of overall system needs. Results from this study indicate that commercially available, reliable, and economically competitive hot-gas cleanup equipment capable of conditioning raw product gas to the levels required for high-temperatue turbine operation will not be available for some time.

Meyer, J. P.; Edwards, M. S.

1978-06-01T23:59:59.000Z

327

Results of electric vehicle safety issues survey: Conducted on behalf of ad hoc EV battery readiness working group in-vehicle safety sub-working group  

DOE Green Energy (OSTI)

This report documents the results of a survey conducted in the winter of 1994-1995 by the In-Vehicle Safety Sub-Working Group, a working subunit of the DOE-sponsored ad hoc EV Battery Readiness Working Group. The survey was intended to determine the opinions of a group of industry experts regarding the relative importance of a list of some 39 potential safety concerns, grouped into 8 broad areas related to electric vehicles and their battery systems. Participation in the survey was solicited from the members of the Battery Readiness Working Group, along with members of the SAE EV Battery Safety Issues Task Force and selected other knowledgeable individuals. Results of the survey questionnaire were compiled anonymously from the 38 individuals who submitted responses. For each of the issues, survey respondents ranked them as having high, medium or low importance in each of three areas: the severity of events involving this concern, the probability that such events will occur, and the likelihood that mitigating action for such events may be needed beyond normal practices. The accumulated responses from this ranking activity are tabulated, and the response totals are also provided by several subgroupings of respondents. Additionally, large numbers of written comments were provided by respondents, and these are summarized with numbers of responses indicated. A preliminary statistical analysis of the tabulated results was performed but did not provide a satisfactory ranking of the concerns and has not been included in this report. A list is provided of the 15 concerns which a majority of the respondents indicated could be of both medium-to-high severity and medium-to-high probability of occurrence. This list will be reviewed by the Safety Sub-Working Group to determine the status of actions being taken by industry or government to mitigate these concerns, and the likelihood that additional research, standards development or regulation may be warranted to address them.

Hunt, G.L.

1996-06-01T23:59:59.000Z

328

Multi-Project Baselines for Evaluation of Industrial Energy-Efficiency and Electric Power Projects  

E-Print Network (OSTI)

Energy-Efficiency and Electric Power Projects JayantEnergy-Efficiency and Electric Power Projects Table ofEnergy-Efficiency And Electric Power Projects The Impact Of

2001-01-01T23:59:59.000Z

329

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

330

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

1994) Demand for Electric Vehicles in Hybrid Households: A nand the Household Electric Vehicle Market: A Constraintsthe mar- ket for electric vehicles in California. Presented

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

331

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

the demand electric vehicles’, TransportationResearchA,1994) ~tive NewsCalifornia Electric Vehicle ConsumerStudy.1995) Forecasting Electric Vehicle Ownership Use in the

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

332

Increasing Profits with Electric Industrial Vehicles: A Case Study on the Alabama Power Company Electric Forklift Incentive Program  

Science Conference Proceedings (OSTI)

In 1998, Alabama Power Company's Electric Transportation Department implemented a unique program that offered a financial incentive to dealers and distributors of electric material handling equipment for every electric lift truck sold. The goal was to increase charging revenue and improve the Electric Transportation Department's profitability contribution. After three years, the program has delivered a 44-to-1 return on investment, resulting in increased gross revenues of more than 7 million dollars and ...

2001-06-26T23:59:59.000Z

333

Introducing Competition in the French Electricity Supply Industry: The Destabilisation of a Public Hierarchy in an Open Institutional Environment  

E-Print Network (OSTI)

.1 5.4 23. 8.1 22.2 * Railways (SHEM/SNCF) in hydro-production, small producers (minihydro, renewables) and self-producers (co-generation, etc). Source: Ministère de l'Industrie, Statistiques Gaz, Electricité,Charbon, Edition 2000... environment Dominique FINON Institut d’Economie et de Politique de l’Energie*, CNRS and Grenoble University, France ABSTRACT The introduction of market rules in a electricity supply industry characterized by a vertically integrated monopoly...

Finon, Dominique

2004-06-16T23:59:59.000Z

334

Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices  

Science Conference Proceedings (OSTI)

Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

2011-08-16T23:59:59.000Z

335

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

336

Efficient electric motor systems for industry. Report on roundtable discussions of market problems and ways to overcome them  

Science Conference Proceedings (OSTI)

Improving the efficiency of electric motor systems is one of the best energy-saving opportunities for the United States. The Department of Energy (DOE) Office of Industrial Technologies estimates that by the year 2010 in the industrial sector, the opportunities for savings from improved efficiency in electric motor systems could be roughly as follows: 240 billion kilowatthours per year. $13 billion per year from US industry`s energy bill. Up to 50,000 megawatts in new powerplant capacity avoided. Up to 44 million metric tons of carbon-equivalent emissions mitigated per year, corresponding to 3 percent of present US emissions. Recognizing the benefits of this significant opportunity for energy savings, DOE has targeted improvements in the efficiency of electric motor systems as a key initiative in the effort to promote flexibility and efficiency in the way electricity is produced and used. Efficient electric motor systems will help the United States reach its national goals for energy savings and greenhouse gas emission reductions.

Not Available

1993-11-01T23:59:59.000Z

337

Program on Technology Innovation: Decision-Centered Guidelines for the Design of Human System Interfaces for Electric Power Industry Applications  

Science Conference Proceedings (OSTI)

Decision-centered guidelines support improved user decision making across a broad range of electric power industry application areas. The guidelines will aid in the design of user-centered human-system interfaces (HSIs), while increasing the beneficial uses of new technologies for electric power generation, transmission, and distribution (GTD) systems. Decision-centered guidelines are applicable to system designs involving new technology that will transform current user tasks, responsibilities, ...

2012-09-24T23:59:59.000Z

338

Evaluation of the supply chain of key industrial sectors and its impact on the electricity demand for a regional distribution company.  

E-Print Network (OSTI)

??Considering the international scenario, in a recent past, the electrical industry was based on the concepts of monopolistic concessions and vertical utilities structures. In Brazil,… (more)

Mariotoni, Thiago Arruda

2008-01-01T23:59:59.000Z

339

1 HOUSEHOLD RESPONSE TO DYNAMIC PRICING OF ELECTRICITY—A SURVEY OF THE EXPERIMENTAL EVIDENCE  

E-Print Network (OSTI)

Since the energy crisis of 2000-2001 in the western United States, much attention has been given to boosting demand response in electricity markets. One of the best ways to let that happen is to pass through wholesale energy costs to retail customers. This can be accomplished by letting retail prices vary dynamically, either entirely or partly. For the overwhelming majority of customers, that requires a changeout of the metering infrastructure, which may cost as much as $40 billion for the US as a whole. While a good portion of this investment can be covered by savings in distribution system costs, about 40 percent may remain uncovered. This investment gap could be covered by reductions in power generation costs that could be brought about through demand response. Thus, state regulators in many states are investigating whether customers will respond to the higher prices by lowering demand and if so, by how much. To help inform this assessment, we survey the evidence from the 15 most recent experiments with dynamic pricing of electricity. We find conclusive evidence that households (residential customers) respond to higher prices by lowering usage. The magnitude of price response depends on several factors, such as the magnitude of the price increase, the presence of central air conditioning and the availability of enabling technologies such as two-way

Ahmad Faruqui; Sanem Sergici

2009-01-01T23:59:59.000Z

340

Tax and Fiscal Policies for Promotion of Industrial Energy Efficiency: A Survey of International Experience  

E-Print Network (OSTI)

in wages). The tax on motor fuel oil and electricity waswere imposed on motor fuel, light heating oil, natural gas,

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell, Ernst; Graus, Wina

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

California Electric Energy Crisis - Electricity Information  

U.S. Energy Information Administration (EIA)

Electricity Information Available Formats; Status of Electric Industry Restructuring Activity in California: html: California State Electricity Profil ...

342

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

343

Electricity displacement by wood used for space heating in PNWRES (Pacific Northwest Residential Energy Survey) (1983) households  

DOE Green Energy (OSTI)

This report evaluates the amount of electricity for residential space heating displaced by the use of wood in a sample of single-family households that completed the 1983 Pacific Northwest Residential Energy Survey. Using electricity bills and daily weather data from the period of July 1981 to July 1982, it was determined that the average household used 21,800 kWh per year, normalized with respect to weather. If no households had used any wood, electricity use would have increased 9%, to 23,700 kWh; space heating electricity use would also have increased, by 21%, to 47% of total electricity use. In the unlikely event that all households had used a great deal of wood for space heating, electricity use could have dropped by 23.5% from the average use, to 16,700 kWh; space heating electricity use would have dropped by 56%, to 24% of total electricity use. Indications concerning future trends regarding the displacement of electricity by wood use are mixed. On one hand, continuing to weatherize homes in the Pacific Northwest may result in less wood use as households find using electricity more economical. On the other hand, historical trends in replacement decisions regarding old space heating systems show a decided preference for wood. 11 refs., 6 figs., 8 tabs.

White, D.L.; Tonn, B.E.

1988-12-01T23:59:59.000Z

344

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

supply to attract investment in the energy-intensive industries.industry to secure a stable supply of raw materials. In 2006, Huaneng Energy andsupply enables the local government to attract energy-intensive, heavy industries

Tsai, Chung-min

2010-01-01T23:59:59.000Z

345

Industry  

E-Print Network (OSTI)

energy-conservation supply curve for the US iron and steel industryindustries include electricity savings. To prevent double counting with the energy supply

Bernstein, Lenny

2008-01-01T23:59:59.000Z

346

Ecosystem Services Decision Tree: A Decision-Support Tool for Consideration of Ecosystem Services in the Electric Power Industry  

Science Conference Proceedings (OSTI)

To support the electric power industry in more structured consideration of ecosystem services, EPRI has developed this “Decision Tree” to determine why, when, and how to consider ecosystem services. EPRI anticipates that this Decision Tree will facilitate more efficient decision-making and action relating to ecosystem services. 

2012-12-31T23:59:59.000Z

347

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

the rising barriers to electricity trade across provinces. AEconomic and Trade Commission State Electricity Regulatoryand trade commissions (PETCs) and provincial development and planning commissions (PDPCs) took on the responsibilities of managing the electricity

Tsai, Chung-min

2010-01-01T23:59:59.000Z

348

Table 7a. U.S. Electricity Industry Overview U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... and electrical sales or transfers to adjacent or colocated facilities ... Generation supplied by electricity-only and combined-heat-and-power ...

349

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

350

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

351

Environmental Policies for a Restructured Electricity Market: A Survey of State Initiatives  

E-Print Network (OSTI)

........................................................................6 B. History of Electricity Restructuring, Tennessee, Utah, Washington, West Virginia, Wisconsin, and Wyoming. #12;5 The history of the electric: Electricity Generation and CO2 Emissions by Main Fuel Source (1997)...........84 Table 7: Average

Delaware, University of

352

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

or 180 mile hybrid electric vehicle. Natural gas vehicles (1994) Demand for Electric Vehicles in Hybrid Households: A nof Electric, Hybrid and Other Alternative Vehicles. A r t h

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

353

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

comparison between electricity consumption and behavioralK. 2013. “Domestic energy consumption-What role do comfort,residential electricity consumption” Energy Policy, 42(2012)

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

354

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

In contrast to a hybrid vehicle whichcombines multiple1994) "Demand Electric Vehicles in Hybrid for Households:or 180 mile hybrid electric vehicle. Natural gas vehicles (

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

355

Survey of solar thermal energy storage subsystems for thermal/electric applications  

SciTech Connect

A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

Segaser, C. L.

1978-08-01T23:59:59.000Z

356

Solar Thermal Small Power Systems Study. Inventory of US industrial small electric power generating systems. [Less than 10 MW  

DOE Green Energy (OSTI)

This inventory of small industrial electric generating systems was assembled by The Aerospace Corporation to provide a data base for analyses being conducted to estimate the potential for displacement of these fossil-fueled systems by solar thermal electric systems no larger than 10 MW in rated capacity. The approximately 2100 megawatts generating capacity of systems in this category constitutes a potential market for small solar thermal and other solar electric power systems. The sources of data for this inventory were the (former) Federal Power Commission (FPC) Form 4 Industrial Ledger and Form 12-C Ledger for 1976. Table 1 alphabetically lists generating systems located at industrial plants and at Federal government installations in each of the 50 states. These systems are differentiated by type of power plant: steam turbine, diesel generator, or gas turbine. Each listing is designated as a power system rather than a power unit because the FPC Ledgers do not provide a means of determining whether more than one unit is associated with each industrial installation. Hence, the user should consider each listing to be a system capacity rating wherein the system may consist of one or more generating units with less than 10 MW/sub e/ combined rating. (WHK)

Not Available

1979-06-01T23:59:59.000Z

357

Tax and Fiscal Policies for Promotion of Industrial Energy Efficiency: A Survey of International Experience  

E-Print Network (OSTI)

IEA), 2004b. Renewable Energy Policy Review, Sweden. Paris:and Challenges,” Energy Policy, Vol. 26, No. 11: 813-829.in Chinese Industry," Energy Policy 22 pp.239 255. Sinton,

Price, Lynn; Galitsky, Christina; Sinton, Jonathan; Worrell, Ernst; Graus, Wina

2005-01-01T23:59:59.000Z

358

Survey of Instrumentation and Control Practices in the Process Industries for Application to the Power Utilities  

Science Conference Proceedings (OSTI)

With impending deregulation and ever-tightening environmental constraints, utilities are increasing their emphasis on maximizing operating efficiency and reducing maintenance and operational costs. It is likely that utilities can use the capabilities of modern control and information management systems more effectively than they currently do. This report documents lessons learned over many years by experts in the process industries that might benefit the utility industry as it transitions to a competitiv...

1999-04-08T23:59:59.000Z

359

Industry Survey and Assessment of Available Corrosion Mitigation Technologies: 20th Century State of the Art  

Science Conference Proceedings (OSTI)

This report summarizes the findings of searching various industry databases and soliciting information from suppliers regarding available corrosion detection of mitigation technologies. The focus of the search was for methods that can mitigate, detect, or monitor corrosion on pipe-type cable systems; methods appropriate for submarine cables were also considered. Special attention was given to new corrosion technologies or the application of different technologies from associated industries. Information w...

2000-03-31T23:59:59.000Z

360

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports ‹ See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

C. KIMBLE & V. B. PRABHU -CIM and Manufacturing Industry in the North East of England: a Survey of some Current Issues in Ergonomics of Advanced Manufacturing  

E-Print Network (OSTI)

C. KIMBLE & V. B. PRABHU - CIM and Manufacturing Industry in the North East of England: a Survey. Pub Elsevier publications, 1988, pp 133 - 140. ISBN 0 444 70486 8 CIM AND MANUFACTURING INDUSTRY and the computer technologies it uses. One label often applied to this approach is CIM (Computer Integrated

Kimble, Chris

362

Southern California: The Detroit of Electric Cars?  

E-Print Network (OSTI)

by building a new electric-vehicle industry in Southerntime being, the electric vehicle industry electric-vehicleindustry into the electric-vehicle industry. • Inclusion of

Scott, Allen J.

1993-01-01T23:59:59.000Z

363

Electricity Use and Management in the Municipal Water Supply and Wastewater Industries  

Science Conference Proceedings (OSTI)

The use of electricity for water and wastewater treatment is increasing due to demands for expanded service capacity and new regulations for upgraded treatment. Options available to control the electricity costs include technological changes, improved management, and participation in electric utility sponsored energy management programs. Appropriate options for a specific system will vary depending on the system characteristics, availability of electric utility programs to assist the water and ...

2013-11-26T23:59:59.000Z

364

The Electrinet: a Communications Architecture for a Competitive Electric Power Industry: Functional Specifications  

Science Conference Proceedings (OSTI)

The current electrical grid infrastructure is evolving into a highly interconnected, complex, and interactive network of power systems, telecommunications, Internet, and electronic commerce applications; but more competitive electricity markets will require a much more sophisticated infrastructure as an electricity value chain made up of independent members replaces the vertically integrated utility. This next-generation electrical infrastructure, the Electrinet, will provide the system with seamless int...

2004-03-18T23:59:59.000Z

365

Poultry Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. poultry industry and ways in which electric-powered processes and technologies can be used in poultry and egg production and processing. The poultry industry, which consists of poultry production for meat as well as egg production and processing, is one of the fastest growing segments of the U.S. food manufacturing industry. It is also an energy-intensive industry. In fact, a 2010 report by the USDA illustrates ...

2011-03-30T23:59:59.000Z

366

Ultra-Efficient and Power Dense Electric Motors for U. S. Industry  

SciTech Connect

The primary purpose of this project was to combine the ease-of-installation and ease-of-use attributes of industrial induction motors with the low-loss and small size and weight advantages of PM motors to create an ultra-efficient, high power density industrial motor that can be started across-the-line or operated from a standard, Volts/Hertz drive without the need for a rotor position feedback device. PM motor products that are currently available are largely variable speed motors that require a special adjustable speed drive with rotor position feedback. The reduced size and weight helps to offset the magnet cost in order make these motors commercially viable. The scope of this project covers horsepower ratings from 20 ? 500. Prototypes were built and tested at ratings ranging from 30 to 250 HP. Since fans, pumps and compressors make up a large portion of industrial motor applications, the motor characteristics are tailored to those applications. Also, since there is extensive use of adjustable frequency inverters in these applications, there is the opportunity to design for an optimal pole number and operate at other than 60 Hz frequency when inverters are utilized. Designs with four and eight pole configurations were prototyped as part of this work. Four pole motors are the most commonly used configuration in induction motors today. The results of the prototype design, fabrication, and testing were quite successful. The 50 HP rating met all of the design goals including efficiency and power density. Tested values of motor losses at 50 HP were 30% lower than energy efficient induction motors and the motor weight is 35% lower than the energy efficient induction motor of the same rating. Further, when tested at the 30 HP rating that is normally built in this 286T frame size, the efficiency far exceeds the project design goals with 30 HP efficiency levels indicating a 55% reduction in loss compared to energy efficient motors with a motor weight that is a few percentage points lower than the energy efficient motor. This 30 HP rating full load efficiency corresponds to a 46% reduction in loss compared to a 30 HP NEMA Premium? efficient motor. The cost goals were to provide a two year or shorter efficiency-based payback of a price premium associated with the magnet cost in these motors. That goal is based on 24/7 operation with a cost of electricity of 10 cents per kW-hr. Similarly, the 250 HP prototype efficiency testing was quite successful. In this case, the efficiency was maximized with a slightly less aggressive reduction in active material. The measured full load efficiency of 97.6% represents in excess of a 50% loss reduction compared to the equivalent NEMA Premium Efficiency induction motor. The active material weight reduction was a respectable 14.5% figure. This larger rating demonstrated both the scalability of this technology and also the ability to flexibly trade off power density and efficiency. In terms of starting performance, the 30 ? 50 HP prototypes were very extensively tested. The demonstrated capability included the ability to successfully start a load with an inertia of 25 times the motor?s own inertia while accelerating against a load torque following a fan profile at the motor?s full nameplate power rating. This capability will provide very wide applicability of this motor technology. The 250 HP prototype was also tested for starting characteristics, though without a coupled inertia and load torque. As a result it was not definitively proven that the same 25 times the motor?s own inertia could be started and synchronized successfully at 250 HP. Finite element modeling implies that this load could be successfully started, but it has not yet been confirmed by a test.

Melfi, Michael J.; Schiferl, Richard F.; Umans, Stephen D.

2013-03-12T23:59:59.000Z

367

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

368

Survey of Electric and Gas Rights-of-Way Practitioners: Current Practices and Views of Future Transmission Line Siting Issues  

Science Conference Proceedings (OSTI)

The adequacy of the nation's power grid is a topic of great concern, particularly the extent of new construction and upgrades required over the next decade to meet increasing energy demand. This report compiles the survey responses of energy company professionals associated with the task of developing rights-of-way. Respondents provided information on current industry practices, as well as the social and regulatory environment in which they operate to secure rights-of-way for new transmission lines and u...

2003-12-04T23:59:59.000Z

369

High-Impact, Low-Frequency (HILF) Events in the Electric Power Industry: Potential Impacts, Mitigation, and Risk Management  

Science Conference Proceedings (OSTI)

Although the North American electricity grid is one of the most reliable power systems in the world, a class of rare but potentially catastrophically damaging risks is of growing concern in the industry. These so-called "high-impact, low-frequency" (HILF) events potentially include electromagnetic pulse (EMP) weapons, geomagnetic disturbances (GMDs), coordinated cyber and/or physical attacks, and pandemics. Some HILF events have never occurred, and the probability of their occurrence is ...

2013-08-20T23:59:59.000Z

370

National survey of industrial markets for steam produced from burning municipal solid waste  

DOE Green Energy (OSTI)

This report presents the methodology and findings of an analysis to determine the maximum size of the industrial market for steam produced from municipal solid waste in the United States. The data used in the analysis were developed from the 1980 census report and the US Chamber of Commerce's 1979 Standard Industrial Classification (SIC) listing. The process used to match potential steam users with populations large enough to generate suitable quantities of waste is presented. No attempt was made to rank the markets or analyze the market economics.

Pearson, C.V.

1983-09-01T23:59:59.000Z

371

Daylighting practices of the architectural industry (baseline results of a national survey)  

DOE Green Energy (OSTI)

A national survey of over 300 commercial design architects was conducted to develop baseline information on their knowledge, perceptions, and use of daylighting in commercial building designs. Pacific Northwest Laboratory conducted the survey for the US Department of Energy's (DOE) Office of Building and Community Systems (BCS). In the survey daylighting was defined as the intentional use of natural light as a partial substitute for artificially generated light. The results suggested that architects need to be educated about the true benefits of daylighting and the impacts it can have on a building's energy performance. Educational programs that will increase the architects' understanding and awareness of modern daylighting technologies and practices should be developed by utilities, stage agencies, and the federal government. If more architects can be made aware of the true effectiveness and positive attributes of daylighting systems and technologies, daylighting may be used in more commercial buildings. The results of the survey show that the more familiar architects feel they are with daylighting, the more they use daylighting. 3 refs., 19 tabs.

Hattrup, M.P.

1990-05-01T23:59:59.000Z

372

Invited Review: Industrial aspects and literature survey: Combined inventory management and routing  

Science Conference Proceedings (OSTI)

This paper describes industrial aspects of combined inventory management and routing in maritime and road-based transportation, and gives a classification and comprehensive literature review of the current state of the research. The literature is contrasted ... Keywords: Inventory management, Inventory routing, Vehicle routing

Henrik Andersson; Arild Hoff; Marielle Christiansen; Geir Hasle; Arne Løkketangen

2010-09-01T23:59:59.000Z

373

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

374

Agent-based simulation of electricity markets: a survey of tools  

Science Conference Proceedings (OSTI)

Agent-based simulation has been a popular technique in modeling and analyzing electricity markets in recent years. The main objective of this paper is to study existing agent-based simulation packages for electricity markets. We first provide an overview ... Keywords: Adaptation, Agent-based simulation, Artificial life, Electricity market, Swarm intelligence

Zhi Zhou; Wai Kin Chan; Joe H. Chow

2007-12-01T23:59:59.000Z

375

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

376

The Paradox of Regulatory Development in China: The Case of the Electricity Industry  

E-Print Network (OSTI)

industry, such as rising coal prices and rigid electricityagainst soaring coal prices, the central government designedadjustment of power prices when coal prices increase more

Tsai, Chung-min

2010-01-01T23:59:59.000Z

377

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the… (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

378

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

379

Case Study of the California Cement Industry  

E-Print Network (OSTI)

2 compares cement industry electricity and natural gas useTable 2. Cement Industry Electricity and Natural GasFigure 2. Cement Industry End Use Electricity Consumption

Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

2005-01-01T23:59:59.000Z

380

Regulation, Governance and Adaptation: Governance transformations in the Dutch and French liberalizing electricity industries.  

E-Print Network (OSTI)

??For more than a decade, the European governments have focused their energy policies on creating one European competitive electricity market. Several regulations are introduced into… (more)

Niesten, E.M.M.I.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lost circulation in geothermal wells: survey and evaluation of industry experience  

DOE Green Energy (OSTI)

Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

Goodman, M.A.

1981-07-01T23:59:59.000Z

382

Benchmarking and Self-Assessment in the Wine Industry  

E-Print Network (OSTI)

industry. Besides electricity, the industry also consumeslargest electricity-consuming food industry in Californialargest electricity-consuming food industry in California

Galitsky, Christina; Radspieler, Anthony; Worrell, Ernst; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

383

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

384

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network (OSTI)

new features of compressed natural gas, battery poweredgasoline, compressed natural gas, hybrid electric, two typesNatural gas vehicles (NGVs) were available with one or two compressed

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

385

Household activities through various lenses: crossing surveys, diaries and electric consumption  

E-Print Network (OSTI)

changes differ from one appliance to another. Referencespeople activities, appliances use, and electric consumption.of use of the three appliances studied. However, variations

Durand-Daubin, Mathieu

2013-01-01T23:59:59.000Z

386

Mining Electrification: An Investigation of the Use of Electric Equipment in the Mining Industry  

Science Conference Proceedings (OSTI)

Mining is a diverse industry that touches multiple industries with products extracted from the earth. Because of this, it is common to have one type of mining experiencing difficulty meeting demand, while another type may be cutting back operations due to poor market conditions. For example, recent economic conditions have had the sand and gravel industry in a slump because of cut backs in construction projects. At the very same time, the coal mining business was booming because there was a very high dem...

2010-12-02T23:59:59.000Z

387

The Regional Gas Infrastructure -- Is It Ready for the Power Boom?: How Changes in Gas and Electric Industries Affect Reliability an d Competitiveness of Gas-Fired Generation  

Science Conference Proceedings (OSTI)

The boom in gas-fired capacity additions, coupled with today's overheated gas market, make questions of gas supply a top priority for gas and electric industry planners. The relationships between the gas and electric industries are changing -- with the latter becoming a premium customer of the former. While the commodity market is national in scope, many of the impacts and planning challenges are best understood on a regional basis. This report examines five regions where gas-fired capacity additions are...

2001-01-17T23:59:59.000Z

388

Annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. [Includes about 400 abstracts and glossary  

SciTech Connect

This report presents a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end use; and the various methods of acquisition, analysis and implementation of electricity usage data. There are over 400 abstracts; 156 from the Load Research Committee of Association of Edison Illuminating Companies (LRC/AEIC) reports and 264 from the open literature. The abstracts over references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

1978-07-01T23:59:59.000Z

389

An annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. Final report  

SciTech Connect

The report is a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end-use; and the various methods of acquisition, analysis, and implementation of electricity usage data. There are over 400 abstracts; 156 from LRC/AEIC reports, and 264 from the open literature. The abstracts cover references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

Reznek, B.

1978-07-01T23:59:59.000Z

390

Electric trade in the United States 1990  

Science Conference Proceedings (OSTI)

Electric Trade in the United States 1990 (ELECTRA) is the third in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data. The second report contained data for 1988. This report provides information on the industry during 1990.

Not Available

1992-12-23T23:59:59.000Z

391

THE COMPETITIVENESS OF COMMERCIAL ELECTRIC VEHICLES IN THE LTL DELIVERY INDUSTRY: ????????????  

E-Print Network (OSTI)

We have developed a detailed model of the logistics performance, energy use, and costs of electric vehicles and comparable diesel internal-combustion engine vehicles. This effort is a novel study of commercial electric vehicles because the implications of routing constraints, route parameters, and electric truck characteristics are analyzed integrating three models: (a) a vehicle ownership cost minimization model, (b) a model to calculate the power consumption and maximum potential range of an electric or conventional truck as a function of average velocity and weight, and (c) a continuous approximation model to estimate fleet size, distance traveled, and ensure that practical routing constraints are satisfied. The model is applied to the study the competitiveness of three vehicles of similar weight and size in the USA market: a widely available conventional diesel truck and two electric trucks. Scenarios and breakeven points are calculated and analyzed for a large number of parameter combinations. The results provide new insights regarding the truck characteristics and logistical constraints that determine whether a conventional or electrical truck is more cost effective.

Brian A. Davis; Miguel A. Figliozzi

2012-01-01T23:59:59.000Z

392

http://www.sussex.ac.uk/spru / Constructing Success in the Electric Power Industry: Flexibility and the Gas Turbine  

E-Print Network (OSTI)

This paper explains the success and failure of two technologies that generate electricity from fossil fuels. Both the Combined Cycle Gas Turbine (CCGT) and fluidised bed boiler burn fossil fuels more cleanly than more traditional technologies. Whereas the CCGT has been used for an increasing number of new power plants during the past fifteen years, the latter has struggled to attract attention outside a small-scale niche. The paper draws on economic and social constructivist approaches to technical change. It shows how a combination of economic, institutional and political factors can be used to explain success and failure. It also demonstrates the importance of technological flexibility for the long term development of the CCGT and its acceptance as the power industry’s current technology of choice.

Dr Jim Watson; Mantell Building

2001-01-01T23:59:59.000Z

393

The role of the US electric utility industry in the commercialization of renewable energy technologies for power generation  

SciTech Connect

A key element in the federal government's plan to commercialize R/As was to guarantee a market for the generated electric power at an attractive price. This was provided by the passage of the Public Utility Regulatory Policies Act of 1978, better known as PURPA. Under PURPA, utilities were required to buy all that was produced by Qualifying Facilities or QFs{sup 2} and were required to pay for QF power based on the utilities; avoided costs. Utilities were also required to interconnect with such producers and provide supplemental and backup power to them at fair and reasonable rates. This article reviews the reason behind the rapid rise, and the subsequent oversupply, of R. As over the past decade in the context of the way PURPA was implemented. The article focuses on the critical role of the electric power industry in the commercialization of R/A technologies and the implications.

Nola, S.J.; Sioshansi, F.P. (Southern California Edison Co., Rosemead, CA (US))

1990-01-01T23:59:59.000Z

394

Illinois Municipal Electric Agency - Electric Efficiency Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Agency - Electric Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Municipal Utility Nonprofit Schools Savings Category Home...

395

Methodology for ranking geothermal reservoirs in non-electric industrial applications  

DOE Green Energy (OSTI)

A large number of geothermal reservoirs exist and to perform a thorough study of each of these reservoirs to determine those most desirable for demonstration projects can be costly and time consuming. A methodology for assigning rankings to these reservoirs, given a limited amount of data, is presented. The top ranked reservoirs would then be studied more thoroughly. In addition, a methodology for ranking the large number of industries that could possibly utilize geothermal energy in nonelectric applications is given to determine those industries which will have the most impact on national energy demand if converted to geothermal use.

Farah, O.G.; Williams, F.

1976-05-01T23:59:59.000Z

396

Prospects for Boom/Bust in the U.S. Electric Power Industry  

Science Conference Proceedings (OSTI)

Deregulation, technology change, load growth, and time have all played a role in bringing the power industry to unprecedented expansion, nearly all gas-fired capacity. Right now, it seems the industry cannot add capacity fast enough to relieve tight reserve margins in much of the country. Yet between 2000 and 2004, over 150,000 MW of combined-cycle (CC) capacity additions are in prospect, and financial conditions that once looked compelling could rapidly turn sour. Boom-bust has implications for all face...

2000-12-07T23:59:59.000Z

397

A brief market study on electric power systems and energy conservation equipment in Thailand. Foreign market survey report (final)  

SciTech Connect

The market research was undertaken to study the present and potential US share of the market in Thailand for electric power systems and energy conservation equipment; to examine growth trends in Thai end-user industries over the next few years; to identify specific product categories that offer the most promising export potential for US companies; and to provide basic data which will assist US suppliers in determining current and potential sales and marketing opportunities. The trade promotional and marketing techniques which are likely to succeed in Thailand were also reviewed.

1982-03-01T23:59:59.000Z

398

Quality of Service, Efficiency and Scale in Network Industries: An analysis of European electricity distribution  

E-Print Network (OSTI)

supplied measured in Gigawatt-hours (GWh). The two out- put variables also reflect the structure of a two-part tariff, i.e. a fixed charge per cus- tomer as well as a variable part dependent on consumed energy. In addition, economies of scope between... and transformers), economies of scale in electricity supply, and economies of scope between the major services in electricity distribution, namely ‘customer connection’ and ‘energy delivery’.3 In economic theory, a natural monopoly is described as a market...

Growitsch, Christian; Jamasb, Tooraj; Pollitt, Michael G.

2006-03-14T23:59:59.000Z

399

Demand-side management programs change along with the electric utility industry  

Science Conference Proceedings (OSTI)

They heyday of demand-side management may be over as far as utilities are concerned. The future path of utility demand-side management programs is obscured in a haze of important questions, especially questions regarding potential legislation and retail wheeling. Until recently, utility after utility was announcing new DSM programs, seemingly almost daily. But, as pointed out in our November issue by Robert Smock, Electric Light & Power`s editorial director, {open_quotes}Survivors of ruthless competition will not be doing much to reduce electricity sales. They`ll be doing their best to sell more of their product.

Stein, H. [ed.

1995-01-01T23:59:59.000Z

400

Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology  

Science Conference Proceedings (OSTI)

First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric power annual 1992  

SciTech Connect

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

402

Introduction to the Minitrack on Restructuring the Electric Power Industry: Emerging Issues, Methods and Tools  

Science Conference Proceedings (OSTI)

The focus of papers accepted for this minitrack is on a cross-disciplinary look at a variety of issues associated with the worldwide movement to restructure electric power systems. The topic is timely and broad and will continue to be researched and ...

Robert J. Thomas

1999-01-01T23:59:59.000Z

403

Evaluation of Pen-Based and Hands-Free Computers for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

This report identifies the critical feature and design specifications of pen-based and hands-free computers for electric utility applications. The report concludes with results of a benchmark and field test designed to ensure vendor compliance with these product specifications.

1997-07-21T23:59:59.000Z

404

Assessment of reforms in the electricity supply industry: A review of some recent empirical studies  

SciTech Connect

An empirical review suggests that progress has been made in bringing competition into the inherently complex and challenging electricity market, generating substantial efficiency gains. But the large disconnect between the wholesale and retail markets indicates that much effort is needed to allow consumers to optimally reap those gains. (author)

Peerbocus, Nash

2007-03-15T23:59:59.000Z

405

Early, Cost-Effective Applications of Photovoltaics in the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Photovoltaic (PV)-powered systems can compete economically with conventional utility approaches such as distribution line extensions and step-down transformer installation for powering small electric loads. This study identified more than 60 cost-effective applications of PV-powered systems for utilities and their customers.

1994-01-01T23:59:59.000Z

406

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

to protect the electric vehicle industry and limit liabilityElectric Vehicle Workshop brought together leaders from industry,duty electric vehicles. To provide flexibility to industry

Lipman, Timothy

1994-01-01T23:59:59.000Z

407

Oligopoly Equilibria in Electricity Contract Markets  

E-Print Network (OSTI)

has focused on the electricity industry, in part because itresearch on the electricity industry also indicates theApplication to The Electricity Industry Experiences with

Bushnell, James

2005-01-01T23:59:59.000Z

408

Investment under Regulatory Uncertainty: U.S. Electricity Generation Investment Since 1996  

E-Print Network (OSTI)

Coordination in the Electricity Industry,” especially Faridof their respective electricity industries. A key policywould implement their electricity industry restructuring. It

Ishii, Jun; Yan, Jingming

2004-01-01T23:59:59.000Z

409

The Canadian Plug-in Electric Vehicle Survey (CPEVS 2013): Anticipating Purchase, Use, and Grid Interactions  

E-Print Network (OSTI)

Interactions in British Columbia Report Submitted to: BC Hydro BC Ministry of Energy and Mines PRELIMINARY Initiative (ecoEII) BC Hydro The Pacific Institute of Climate Solutions (PICS) The BC Ministry of Energy a sample of Canadian new car buyers in a mixed-mode survey process. Data were collected via the Canadian

410

Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report  

SciTech Connect

There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

Grainger, J.J.; Lee, S.S.H.

1993-11-26T23:59:59.000Z

411

"Annual Electric Power Industry Report (EIA-861 data file)  

U.S. Energy Information Administration (EIA) Indexed Site

FILES FILES Electric power sales, revenue, and energy efficiency Form EIA-861 detailed data files Release Date for 2012: October 29, 2013 Next Release date: October 29, 2014 Re-Release 2012 data: December 9, 2013 (CORRECTION) Data files include information such as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and distributed generation capacity. The EIA-861S (Short Form) was created in 2012. Approximately 1,100 utilities completed this form in lieu of the EIA-861. The short form has fewer questions and collects retail sales data as an aggregate and not by customer sector. EIA has estimated the customer sector breakdown for this data and has included under the file called "Retail Sales." Advanced metering data and time-of-use data are collected on both Form EIA-861 and Form EIA-861S.

412

Impact of Key Electric Power Industry Regulatory Issues on Opportunities in Water Quality Trading  

Science Conference Proceedings (OSTI)

Based on EPRI water quality trading (WQT) research on nutrients (i.e., nitrogen and phosphorus), this technical update explores potential application of WQT for other electric power generation waste streams and pollutants in addition to considering the potential impact of existing regulatory issues on the trading for nutrient credits.  For each of the opportunities identified, a discussion of potential issues associated with that application is discussed.  This document also identifies ...

2012-12-31T23:59:59.000Z

413

Financing arrangements and industrial organisation for new nuclear build in electricity markets  

E-Print Network (OSTI)

of the Finnish and French plants under construction –, but rising fossil fuel and CO2 prices are reviving interest in nuclear power. A potential nuclear power renaissance in liberalised electricity markets will face a number of hurdles associated... with the CO2 price in Europe. The attractiveness of carbon free technologies such as nuclear plant for a power producer is reinforced by the additional cost placed on fossil fuel generation technologies by climate policies and CO2 emissions pricing...

Finon, Dominique; Roques, Fabien A

414

A framework and review of customer outage costs: Integration and analysis of electric utility outage cost surveys  

Science Conference Proceedings (OSTI)

A clear understanding of the monetary value that customers place on reliability and the factors that give rise to higher and lower values is an essential tool in determining investment in the grid. The recent National Transmission Grid Study recognizes the need for this information as one of growing importance for both public and private decision makers. In response, the U.S. Department of Energy has undertaken this study, as a first step toward addressing the current absence of consistent data needed to support better estimates of the economic value of electricity reliability. Twenty-four studies, conducted by eight electric utilities between 1989 and 2002 representing residential and commercial/industrial (small, medium and large) customer groups, were chosen for analysis. The studies cover virtually all of the Southeast, most of the western United States, including California, rural Washington and Oregon, and the Midwest south and east of Chicago. All variables were standardized to a consistent metric and dollar amounts were adjusted to the 2002 CPI. The data were then incorporated into a meta-database in which each outage scenario (e.g., the lost of electric service for one hour on a weekday summer afternoon) is treated as an independent case or record both to permit comparisons between outage characteristics and to increase the statistical power of analysis results. Unadjusted average outage costs and Tobit models that estimate customer damage functions are presented. The customer damage functions express customer outage costs for a given outage scenario and customer class as a function of location, time of day, consumption, and business type. One can use the damage functions to calculate outage costs for specific customer types. For example, using the customer damage functions, the cost experienced by an ''average'' customer resulting from a 1 hour summer afternoon outage is estimated to be approximately $3 for a residential customer, $1,200 for small-medium commercial and industrial customer, and $82,000 for large commercial and industrial customer. Future work to improve the quality and coverage of information on the value of electricity reliability to customers is described.

Lawton, Leora; Sullivan, Michael; Van Liere, Kent; Katz, Aaron; Eto, Joseph

2003-11-01T23:59:59.000Z

415

A SURVEY OF COMMODITY MARKETS AND STRUCTURAL MODELS FOR ELECTRICITY PRICES  

E-Print Network (OSTI)

and the methods which have been proposed to handle them in spot and forward price models. We devote special sources, the main production process remains the conversion of fossil fuels like coal, gas and oil. Since and nuclear production as these plants are hardly ever setting the price. In other words, since electricity

Carmona, Rene

416

A Survey of Extremely Low Frequency Magnetic Fields Associated with Electric Vehicles  

Science Conference Proceedings (OSTI)

As electric vehicles progressively increase in number throughout car and truck fleets in the U.S. and abroad, there are likely to be questions raised concerning magnetic field exposure levels within the passenger compartment. The study reported here is an initial effort to establish a measurement methodology and report a set of findings.

2010-06-21T23:59:59.000Z

417

Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Electricity is an essential part of modern life. The Energy Department is working to create technology solutions that will reduce our energy use and save Americans money.

418

Electric Power Annual  

U.S. Energy Information Administration (EIA)

Electric Power Sector ; Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector; Annual Totals: ...

419

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",39378154,38667162,41852352,40154595,42337169,39683722,40851631,40765087,44699071,42951057,44585709,43764015,42532420,42261405,43059537,44031568,42905244,43144350,43909400,43182207,44738543,98,93 " Coal",38681220,37862584,41153537,39301199,41380267,38804539,39551555,39315335,43287140,41718548,43355361,42560578,41685278,41490825,42372775,43112061,41948761,42204359,42900080,41040274,42126910,95.3,87.5 " Petroleum",45561,60850,54839,56970,47029,67673,59443,58765,42871,46197,35159,33744,38686,41567,43450,40311,44240,46116,43765,49958,55973,0.1,0.1

420

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",8617977,8281502,6260025,9022654,7303193,10062854,12230805,13511823,11978079,12456120,10114257,6666589,8164140,7732812,7765655,8032438,10495090,8611890,8893983,9977502,8589208,84.9,71.4 " Petroleum",615,311,475,103,31,311,245,95,253,155,2792,3723,65,116,136,5,144,134,120,41,74,"*","*" " Natural Gas","-","-","-","-","-","-","-","-","-","-","-","-",76168,61229,27775,73353,94504,240504,230189,286865,170231,"-",1.4

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",45063182,44850089,45942891,48810720,45380625,47955288,47544649,48380102,51454036,50278792,51403249,50413729,51218320,49776514,48298390,54250814,51917155,54177692,60074823,57516914,57421195,92.5,79.5 " Coal",25188557,26027968,27666494,28990113,27453911,29714368,31876730,33036688,31026837,30588375,32852645,32164601,33444114,34200128,31240478,33604628,32324391,31610751,33625415,31645255,29102532,59.1,40.3 " Petroleum",49422,18533,15180,14027,11456,77528,124951,12568,7541,7622,46637,146375,10311,111555,21008,13181,24187,139391,12600,12433,12606,0.1,"*"

422

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",89058681,94567383,82679444,92250107,83720636,92478772,95155261,89564616,85146307,87874695,89572141,97067330,100451718,96634055,99608512,104830689,97373706,96785842,94503953,82787341,89666874,86,80.4 " Coal",65295742,65138291,61434530,61558991,67538611,65425002,66097259,65552021,69142807,69118017,66980252,66931691,65389899,66448916,67253690,69158736,66654737,69406550,68421489,65867455,64766712,64.3,58.1 " Petroleum",689461,553863,498159,619777,655860,687264,651860,602053,1005170,1282696,993932,724313,1090767,883847,714881,788563,272106,445915,281604,215189,195180,1,0.2

423

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31497406,38215120,39586558,43488284,43765565,44658945,44380543,44552905,48513503,49323828,31783195,88150,30734,51722,30023,44235,11941,23712,5856,2294,2996,62.1,"*" " Coal",23299412,22622989,23625314,24890670,25394481,27369905,27780141,27394342,29077013,29352347,20353004,"-","-","-","-","-","-","-","-","-","-",39.8,"-" " Petroleum",3328080,3935221,2611820,3953777,4133533,1407598,1401195,1478623,3311978,3897208,1507860,87790,30734,51722,30023,44235,11941,23712,5856,2294,2832,2.9,"*"

424

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",36478610,35802358,32838301,28163544,27466049,26971667,27758877,33898697,26036881,4359511,1704653,1566491,1156651,2055622,1524169,1622208,942917,493885,507254,447912,802906,4.4,1.9 " Coal",11273069,11861344,10949228,9815909,10209727,10586608,11500536,12488802,8168608,1073628,1094848,1096681,"-",1074514,903789,1025141,"-","-","-","-","-",2.8,"-" " Petroleum",14556403,15612257,13282101,11112574,9561302,5848663,6221378,11586081,10019730,300040,123931,131797,220435,517767,290865,189211,29031,58456,57639,32698,42546,0.3,0.1

425

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",49171999,46298021,41220343,40743085,37490089,44031261,47883913,49068279,46352310,51698318,46059938,38059649,39731986,38577937,39092958,37407039,43068822,43202516,44590530,42703218,41142684,88.9,74.6 " Coal",1297978,2814199,3682715,3502742,3814009,1527874,1727583,1500879,3348089,3697900,3785462,4423843,3768531,4285697,3535764,3463644,2370628,4351624,4044319,3196902,4126435,7.3,7.5 " Petroleum",26809,9648,9212,32365,5398,4346,6631,10942,33127,7699,52038,92767,5893,44035,20305,47427,4323,5044,9974,2825,3330,0.1,"*"

426

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7099663,7603723,6267492,8306462,8501043,8324101,8121853,6578599,6317738,6239372,4137127,1872053,170994,31107,23751,25989,16558,47830,19068,12768,30059,69.1,0.5 " Coal",4904473,4598301,3813594,5185396,4754309,4226615,4225125,3925643,3811669,2762460,3319195,1626254,"-","-","-","-","-","-","-","-","-",55.4,"-" " Petroleum",1436186,1899201,1829938,2094383,1619659,917065,1188294,832577,1234464,1234121,398100,209088,154118,9863,10083,6442,113,4132,512,457,843,6.6,"*"

427

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",33440,33337,33446,33423,33675,33699,33723,33825,33781,25251,13394,4978,4887,4921,4968,455,455,455,455,455,455,36.3,1 " Coal",17543,16894,17515,17480,17492,17503,17463,17386,17386,10108,3133,2407,2360,2360,2407,"-","-","-","-","-","-",8.5,"-" " Petroleum",5031,5031,4845,4875,4881,4860,4881,3208,3374,3022,1999,3,3,"-","-","-","-","-","-","-","-",5.4,"-"

428

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2407,2417,2405,2402,2433,2432,2387,1498,1457,88,21,17,16,19,19,19,19,19,19,19,19,0.5,0.4 " Petroleum",1126,1126,1115,1111,1109,1109,1069,1064,1025,54,18,17,16,19,19,19,19,19,19,19,19,0.4,0.4 " Nuclear",860,870,870,870,870,870,870,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Hydroelectric",420,420,420,421,422,421,416,404,402,34,3,"-","-","-","-","-","-","-","-","-","-",0.1,"-"

429

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",591756,171457,109308,53740,68641,653076,3301111,3562833,2061351,9436,10823,"-",11836,11771,12402,10805,11008,11075,10612,10612,10827,0.2,0.1 " Petroleum",158154,54218,74715,28582,33836,50334,61675,16609,8827,9436,10823,"-",11836,11771,12402,10805,11008,11075,10612,10612,10827,0.2,0.1 " Natural Gas",433602,117239,34593,25158,34805,602742,3239436,3546224,2052524,"-","-","-","-","-","-","-","-","-","-","-","-","-","-"

430

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",165682846,162366875,166034292,166200686,169029050,168941707,175022081,177166516,173903236,161595988,97075771,27633966,30537243,30099444,33900004,1058313,1311434,1077389,1224597,1159659,1086500,48.1,0.5 " Coal",101996271,100359157,102198817,100390066,93951561,96799645,100857561,105445514,106516740,85580341,36704124,13863092,15935860,15944113,18396944,"-","-","-","-","-","-",18.2,"-" " Petroleum",4013814,3713606,2220932,4559186,5182491,3072153,3212502,2307411,4097006,3063268,1656505,21609,39420,34944,32129,7717,2942,"-",873,710,525,0.8,"*"

431

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",19286260,20922439,20962974,19820333,20519076,19997354,21362057,22869773,26552567,26485602,29341675,27896065,25008568,24634871,24246391,24112225,19686302,22376989,22979409,26095005,23710917,82.7,67.5 " Coal",15053277,16365730,16443169,15627860,15324714,13971824,14656868,15250606,17161341,16907530,18931521,17736970,16413025,17085959,18257265,18384261,7253521,7090911,6884521,6376887,5584370,53.4,15.9 " Petroleum",284108,238321,327585,246506,166446,26549,93811,31156,50285,35418,64614,911611,25472,16793,95766,20500,17347,11447,9865,8472,7675,0.2,"*"

432

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",41549628,40427575,37783876,41254101,40917280,42502869,41791506,40302526,43976935,44153826,46615673,44798014,48568719,49576276,47232462,46791349,46710674,47793039,46758314,44442211,45428599,90.7,84.6 " Coal",27587603,26186299,24443013,27110850,26399834,26820765,27329077,27081067,29884402,28366977,31731081,31037544,32200713,33157032,31477117,30514512,30600302,31199099,30771207,28582304,27176478,61.7,50.6 " Petroleum",440740,575916,638979,630166,596987,484708,640427,763764,649866,674398,440264,599557,640129,845239,752362,752774,484235,362765,211633,49502,25870,0.9,"*"

433

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9758,10723,10862,10709,10837,10957,10957,11101,10970,10955,753,70,69,70,79,79,79,80,80,80,80,7.2,0.6 " Coal",3975,4617,4617,4628,4631,4636,4636,4647,4647,4647,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",2479,2427,3040,2717,2648,1394,2618,2631,2516,2673,241,70,69,70,79,79,79,80,80,80,80,2.3,0.6 " Natural Gas",1225,1601,1127,1275,1353,2722,1498,1618,1602,1448,"-","-","-","-","-","-","-","-","-","-","-","-","-"

434

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7141,7060,6988,6754,6733,6722,6321,6294,5616,2919,2204,185,34,210,174,25,37,111,111,111,160,34.2,1.9 " Coal",385,385,385,385,385,385,385,385,385,"-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",3335,3263,3191,2957,2738,2728,2831,2801,2744,756,176,176,25,201,165,16,28,30,30,30,76,2.7,0.9 " Natural Gas","-","-","-","-",214,214,338,341,341,"-","-","-","-","-","-","-","-",71,71,71,75,"-",0.9

435

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" "Independent Power Producers and Combined Heat and Power",3,3,3,3,3,3,"-","-","-","-",804,806,806,806,806,806,806,806,790,790,790,100,100

436

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32155574,23552082,25153644,28714867,27201416,26931900,15773738,13227766,15122925,20484367,16992594,2816826,21463,59812,45095,41709,47612,37217,52334,47137,65570,51.5,0.2 " Coal",2351049,2117781,2148078,1907826,2104045,2269352,2367889,2557934,1482608,"-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",8632571,7890483,5297424,4206354,3353897,3397400,5255050,8431425,8608001,5793975,7726,11032,928,13955,9253,695,1282,3325,2597,2465,2604,"*","*"

437

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31312872,31038231,31899303,32687317,33324413,32673972,33971688,34375573,35471294,36167349,40108260,41957723,41509933,41226252,40436218,41014609,42055989,42353281,41176711,37467527,39584166,90.8,78 " Coal",29602738,28922906,30001882,30456351,31401250,30276010,31952337,32002082,33079201,32605202,35101982,35654162,35135198,35807527,35570358,35285966,36003331,35722617,34639561,31454143,34386818,79.5,67.8 " Petroleum",25129,37883,39164,8898,8913,10136,15539,14623,36736,32430,91320,158742,22519,33927,11797,15464,17646,14748,18092,12583,17424,0.2,"*"

438

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" " Petroleum",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" "Independent Power Producers and Combined Heat and Power","-","-","-","-","-","-","-","-","-","-",46951,123239,261980,74144,36487,226042,81467,75251,72316,35499,199858,32.5,100

439

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",114528000,104967938,119309725,125782063,126749186,121881402,114706047,112183063,114926213,87874809,85856285,70132656,74588271,81728209,75177122,89348213,100338454,87348589,83346844,85123706,96939535,41.3,47.5 " Petroleum",4385235,598489,325424,2007674,1862719,488530,674899,141872,121385,51769,144590,316691,43933,50996,51482,57974,58991,65296,58187,50625,40819,0.1,"*" " Natural Gas",45221848,43940427,56609607,46499103,61530357,39089723,30768135,36300778,26385452,13917748,12411961,11918703,8808012,9873371,10759580,12982348,19805412,22896497,26129803,25237449,31251994,6,15.3

440

Demand-side carbon reduction strategies in an era of electric industry competition  

SciTech Connect

With the national debate on the need for intensified research and development, supply-side mandates, and carbon taxes likely to continue for some time, the authors propose a five-point, integrated demand-side plan that is compatible with marketplace forces and can be implemented now. This paper presents a five-point, integrated demand-side plan designed to be compatible with marketplace forces in the competitive electricity era, while the nation continues to debate the need for intensified research and development, supply-side mandates, and carbon taxes.

Meyers, E.M.; Hu, G.M. [District of Columbia Public Service Commission, Washington, DC (United States)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network (OSTI)

energy-ef?ciency and electric power projects’, Berkeley, CA,for evaluation of electric power projects’, Energy PolicyCentral America, electric power, mitigation projects,

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

442

Optimization of Surveys for Detection of Energized Structures to Eliminate Electrical hazards to the Public in New York City  

E-Print Network (OSTI)

There have been many reports of individuals and animals in New York City coming in contact with electrically energized structures caused by “stray voltage”. The electric utility, Consolidated Edison (Con Ed), has been working hard to drive down the exposure rate of the public to dangerous electrical conditions by completing manual and mobile scans, or surveys, of above ground structures and repairing those structures once found. Con Ed engineers and external experts are researching ways to reduce the number of shock incidents. This thesis presents an analysis of Con Ed’s past manual and mobile scans, or surveys, in order to determine the number of annual scans needed to drive down the exposure rate. Three methods of analyzing this data are discussed. First, there is an examination of the relationship between the scans and the number of energized structures and then the relationship between the detection of energized structures and the number of shock incidents. Next, a sensitivity analysis of the time of year of each scan is performed to determine whether climatic changes directly affect the number, frequency, or duration of stray voltage incidents. Two types of stray voltages are considered when examining the data: manifest and intermittent. The final analysis compares the actual data from surveys to three models of intermittent stray voltage to analyze the behavior of the stray voltage occurrences. Three major conclusions are drawn. First, it is determined that the efficiency of energized structure detection is proportional to the duration of scans. In terms of cost and efficiency, fewer scans with longer durations would be more beneficial. Second, the generation rate is fairly constant throughout the seasons, indicating that the weather does not affect the generation rate. Lastly, the analysis reveals that the efficiency of energized structure detection is proportional to an increase in the duty cycle of intermittency due to annual conditions. The number of energized structures increases in the early spring and decreases in the winter. It would be more efficient in terms of cost and time to bias scanning toward the spring months and limit scanning in the winter months.

Wells, Elizabeth

2011-08-04T23:59:59.000Z

443

2013 Electricity Form Proposals  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Survey Form Changes in 2013 The U.S. Energy Information Administration (EIA) proposed changes to its electricity data collection in 2013. These changes involve three forms: Form EIA-861, "Annual Electric Power Industry Report" The addition of a new form, the Form EIA-861S, "Annual Electric Power Industry Report (Short Form)" Form EIA-923, "Power Plant Operations Report." The proposals were initially announced to the public via a Federal Register Notice published March 15, 2012. Comments regarding this proposed information collection were due by May 14, 2012. EIA reviewed all comments and made several revisions to the proposals as a result. A second Federal Register Notice was published on August 30, 2012. It outlined the proposals

444

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

445

To: Rebecca Peterson, ERS2014@eia.gov Re: Public Comments on Form EIA-861, ''Annual Electric Power Industry Report''  

Gasoline and Diesel Fuel Update (EIA)

To: Rebecca Peterson, ERS2014@eia.gov To: Rebecca Peterson, ERS2014@eia.gov Re: Public Comments on Form EIA-861, ''Annual Electric Power Industry Report'' From: Volunteer members of the Large Public Power Council Energy Efficiency Working Group (LPPC EEWG) Benchmarking Subcommittee, led by: ï‚· Subcommittee Chair Norman Muraya (Austin Energy) norman.muraya@austinenergy.com, ï‚· Member Tom Gross (Orlando Utilities Commission) tgross@ouc.com, and ï‚· Facilitated by Annika Brink (Alliance to Save Energy/Clean and Efficient Energy Program for Public Power) abrink@ase.org. Over the course of the past year, the LPPC EEWG's Benchmarking Subcommittee has leveraged data from Form EIA-861, Schedule 6 to benchmark the energy efficiency activities and performance of LPPC

446

"2012 Total Electric Industry- Average Retail Price (cents/kWh)"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Retail Price (cents/kWh)" Average Retail Price (cents/kWh)" "(Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U)" "State","Residential","Commercial","Industrial","Transportation","Total" "New England",15.713593,13.679941,11.83487,6.6759453,14.017926 "Connecticut",17.343298,14.652335,12.672933,9.6930118,15.54464 "Maine",14.658797,11.52742,7.9819499,".",11.812709 "Massachusetts",14.912724,13.841518,12.566635,4.9056852,13.78825 "New Hampshire",16.070168,13.36121,11.83228,".",14.192854 "Rhode Island",14.404061,11.867247,10.676724,8.2796427,12.740867 "Vermont",17.006075,14.316157,9.9796777,".",14.220244

447

Independent transmission system operators and their role in maintaining reliability in a restructured electric power industry  

Science Conference Proceedings (OSTI)

This report summarizes the current status of proposals to form Independent System Operators (ISOs) to operate high-voltage transmission systems in the United States and reviews their potential role in maintaining bulk power system reliability. As background information, the likely new industry structure, nature of deregulated markets, and institutional framework for bulk power system reliability are reviewed. The report identifies issues related to the formation of ISOs and their roles in markets and in reliability, and describes potential policy directions for encouraging the formation of effective ISOs and ensuring bulk system reliability. Two appendices are provided, which address: (1) system operation arrangements in other countries, and (2) summaries of regional U.S. ISO proposals.

NONE

1998-01-01T23:59:59.000Z

448

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4992578,5258829,4698045,4300537,5293892,4839820,5004219,5323432,4393537,4734555,5307016,4734002,2971224,626337,643426,673607,802680,701474,752800,711507,720853,84.2,10.9 " Petroleum",2543,5244,2581,4805,5764,13357,3428,9816,41265,22392,60660,31740,9406,22607,17800,10179,7371,7811,4266,2439,4509,1,0.1 " Natural Gas",65281,95341,63120,20558,5806,6593,97,93,827,18291,90790,11000,3275,2029,3224,2240,1875,1889,2655,4431,3783,1.4,0.1 " Nuclear",3616268,4108314,3734594,3372148,4315544,3858509,3798790,4266866,3357696,4059107,4548065,4171120,2367209,"-","-","-","-","-","-","-","-",72.2,"-"

449

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",73902614,73931670,75396209,71614268,74853548,82277534,88647111,93293232,94142638,89682569,92311813,92937315,92570929,88678127,94371964,93942273,90960035,92474664,88262641,77432806,79816049,96.3,96.9 " Coal",50186951,46671234,49995747,59559596,52132070,57971909,55504189,58899058,55120297,55220519,60675314,58166973,58080553,53376149,56583558,57560600,59146323,58849255,55752210,40426487,42259569,63.3,51.3 " Petroleum",134397,160072,127282,234545,295961,252611,257586,192880,699233,502286,539784,379703,250325,379007,166943,201121,137187,155646,207233,182291,211654,0.6,0.3

450

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",11236,11236,11237,10133,10166,10446,10526,10537,10449,10293,10337,10354,10348,10338,9555,9839,9971,10502,10491,10683,10846,91.7,76.1 " Coal",530,530,508,508,508,508,508,508,528,530,557,557,557,556,556,585,585,585,585,585,585,4.9,4.1 " Petroleum",109,109,109,109,106,103,103,103,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Natural Gas",493,493,493,493,493,767,849,849,849,706,706,729,753,725,725,967,962,1354,1364,1341,1337,6.3,9.4

451

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" Wisconsin" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",45550958,47148818,46463756,47762861,49437481,51012390,51651435,48560127,52529065,54704370,55665471,54959426,54773666,56068698,56142364,55169108,51914755,44284480,45536712,41375366,45579970,93.3,70.9 " Coal",32144557,33489286,32740540,33558049,35282695,36863872,38144842,40819517,39785759,39899142,41057919,40185649,38583501,40579973,40981609,40506086,38866178,38719363,40452933,36238643,39185565,68.8,60.9 " Petroleum",47444,62162,54332,105173,171563,147493,124088,169863,200225,220944,191091,170443,162990,185625,494535,470219,591486,725019,647602,458848,478866,0.3,0.7

452

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",26824491,27535034,28592323,28499824,29003713,28842021,30769712,29719764,30518976,31259830,31122917,30135733,31147221,31075012,29526814,31512768,30328375,30402807,30852784,31375152,31343796,99.4,90.2 " Coal",25092696,25750792,26864520,27048924,27099914,26336456,27529906,26314471,28176015,28610457,28952976,28769721,29518865,29298347,27938264,30133242,28761820,29041826,29551647,29486194,28349079,92.5,81.6 " Petroleum",20682,27636,28951,35795,47340,49107,88834,85698,47091,40300,47457,33850,35728,45648,36565,32480,39269,47332,40977,41475,35855,0.2,0.1

453

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",73807286,75505081,77351259,84997718,84097034,86161578,88438224,91558046,86151121,81658150,81349922,83677982,80161524,80696982,82921402,85679912,86816479,85259079,86012151,90029962,97472144,87.5,99.2 " Coal",70500461,71713851,73476309,81722246,79897442,82539467,84659818,87875331,82412216,78544604,78598836,79381504,75308162,76367048,78574428,81188722,83068626,81877334,83197690,84037596,91053858,84.5,92.7 " Petroleum",118646,111558,83886,96727,154819,130598,135437,125625,127062,103755,118876,120418,135412,130280,93651,96557,79520,96733,106853,2016282,2284852,0.1,2.3

454

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",24173,24243,24221,24259,24255,24277,24276,25273,25235,25189,23840,24055,24141,24216,23878,24065,24303,24511,26243,26322,26498,91.5,86.9 " Coal",1310,1360,1360,1390,1390,1340,1390,1390,1390,1340,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",173,173,173,173,88,88,87,62,62,4,4,133,40,39,39,39,39,3,3,3,3,"*","*" " Natural Gas",590,590,590,590,590,590,590,838,838,955,955,987,1146,1153,1184,1141,1138,1111,2768,2782,2849,3.7,9.3

455

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",13730,13725,13824,13850,13500,13817,13645,13684,13390,12085,1244,1244,1244,1244,1005,1005,1005,558,477,466,460,7.5,2.5 " Coal",1652,1652,1629,1644,1634,1629,1629,1635,1658,1643,387,387,387,387,307,307,307,23,23,23,"-",2.3,"-" " Petroleum",3784,3480,3548,3212,2967,2890,2842,3915,3573,2373,286,286,286,286,232,232,232,69,54,43,49,1.7,0.3 " Natural Gas",4101,4410,4434,4761,4657,5056,4912,3872,3897,3807,171,171,171,171,66,66,66,66,"-","-","-",1,"-"

456

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",123623905,130743964,133976775,140066943,141790885,147156684,145140217,147983676,169447167,166914264,169888638,170966177,182346629,188034719,193383664,196096285,200015227,200533885,196524348,195063261,206062185,88.6,89.9 " Coal",59073203,61122819,61631012,61889050,60770030,61864438,65782399,66034628,65470151,62680522,67143257,63090794,60997142,62094661,60013823,57559411,60413597,62633944,59731231,49942611,56074369,35,24.5 " Petroleum",25092296,30115618,28176184,34277523,33330039,21583186,22890565,25742149,40952580,36697343,34337080,39075398,32449236,35545897,35824155,36122039,22508349,19841026,11830552,9028865,8867397,17.9,3.9

457

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",14908,16162,16314,16131,16691,16701,17173,17431,17627,17681,17716,18246,19101,19402,20406,20787,21019,21730,22152,22190,22172,94.8,92.5 " Coal",4818,4812,4812,4812,5352,5352,5471,5794,6007,6055,6054,6077,5925,5925,5968,5968,5984,6460,7060,7028,7048,32.4,29.4 " Petroleum",897,894,894,816,828,1192,1488,1192,1163,1163,957,955,955,970,684,689,682,682,699,663,664,5.1,2.8 " Natural Gas",301,396,396,328,336,345,345,585,576,576,779,1279,2150,2437,3712,3708,3923,3956,3919,3964,3966,4.2,16.5

458

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",263,261,156,153,148,442,441,441,7,7,6,7,9,9,9,6,8,8,7,7,7,0.5,0.4 " Petroleum",262,161,155,152,146,20,20,20,5,5,5,6,7,7,7,5,7,7,7,7,7,0.4,0.4 " Natural Gas","-",99,"-","-","-",420,420,420,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Hydroelectric",1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,"-","-","-",0.1,"-"

459

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",16996,16269,16294,16224,16482,16144,17253,17361,17546,17253,17893,18600,19137,19235,19239,19120,19768,19977,20456,20418,20968,92,97.9 " Coal",9289,8702,8683,8691,8615,8615,8615,8604,8604,8618,8618,8618,8602,8609,8623,8618,8585,8599,8624,8589,8589,44.3,40.1 " Petroleum",1152,1100,1080,1080,1982,1096,1096,1135,1252,784,800,836,56,56,56,58,58,58,58,58,58,4.1,0.3 " Natural Gas",516,480,488,488,"-",472,472,514,571,732,1344,1960,3116,3128,3137,3032,3659,3632,4082,4099,4639,6.9,21.7

460

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20731,20752,21399,21504,22039,22290,22782,23147,23390,23329,24860,24099,25821,24804,25404,26538,26542,26432,26462,26558,26639,89.6,72.7 " Coal",12952,12972,13104,13115,13164,12551,13234,13222,13540,13095,13470,13503,13498,13331,13215,13192,13192,13192,13129,13084,13103,48.5,35.8 " Petroleum",1488,1493,1635,1351,1341,1231,1228,1228,1172,1145,1145,1145,1145,1055,991,991,991,973,991,991,991,4.1,2.7 " Natural Gas",96,103,103,362,841,1274,1276,1281,1273,1564,2647,1974,3386,2827,3470,4618,4609,4577,4577,4652,4646,9.5,12.7

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

York" York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31224,31349,31108,32731,32824,32147,30060,29985,29585,17679,15806,11572,11675,11902,11386,11927,12046,12056,11784,11871,11032,44.4,28 " Coal",3887,3897,3897,3879,3879,3870,3891,3880,3891,668,668,302,302,302,297,297,297,297,45,45,"-",1.9,"-" " Petroleum",12349,9869,8992,8885,7684,7637,11500,12759,12530,4991,5035,3638,3638,3688,2642,2450,2468,2465,2467,2465,1607,14.1,4.1 " Natural Gas",5065,7634,8304,7895,9194,8469,4718,3249,3131,2600,2227,2682,2783,2908,3894,4628,4628,4644,4623,4629,4619,6.3,11.7

462

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9910,9771,9494,9461,9287,9288,9365,9442,3385,2214,996,993,1090,981,981,983,837,827,829,930,937,8.1,6.8 " Coal",1723,1692,1684,1679,1675,1707,1730,1737,328,146,145,145,145,145,145,144,"-","-","-","-","-",1.2,"-" " Petroleum",5216,5070,4913,5041,4132,4058,4030,4094,787,547,475,474,771,663,661,661,659,648,624,624,528,3.8,3.9 " Natural Gas",289,330,378,219,953,993,1082,1086,333,302,330,329,130,130,131,131,131,131,157,257,353,2.7,2.6

463

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20023,19902,19930,19972,19878,20463,20692,20840,21292,21462,22366,22532,23429,23007,23186,23252,23218,23182,23144,23285,23642,95,72.9 " Coal",11777,11589,11599,11579,11494,11669,11515,11286,11349,11349,11301,11362,11246,11217,11238,11500,11465,11452,11414,11401,11356,48,35 " Petroleum",65,18,18,18,388,18,20,16,16,30,34,34,34,34,34,34,34,34,34,34,34,0.1,0.1 " Natural Gas",400,530,544,586,202,987,1437,1706,1971,2076,3041,3157,4182,3550,3627,3471,3440,3440,3440,3593,3937,12.9,12.1

464

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",26996,27540,27130,27186,27192,27365,27278,26630,26768,27083,26302,27081,27885,27694,27684,19312,20147,20012,20340,20356,20179,92.3,61 " Coal",23086,23317,23060,23043,23058,23123,23033,22415,22456,22626,21675,21675,21599,21258,21366,16272,16296,16204,15909,15932,15733,76.1,47.6 " Petroleum",1151,1148,907,907,907,853,856,805,824,891,1031,1381,1000,1017,1008,588,588,596,575,575,577,3.6,1.7 " Natural Gas",501,817,902,980,976,1140,1140,1154,1232,1271,1300,1661,2921,3056,3074,2346,3156,3105,3749,3741,3760,4.6,11.4

465

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",16751,16795,16699,16885,16873,17019,17150,17079,17014,16339,14317,14165,14233,14090,14176,15137,15176,14756,15755,15615,16471,67.8,61.6 " Coal",3343,3343,3343,3343,3343,2843,3453,3453,3448,3453,1723,1723,1723,1723,1723,1723,1723,1739,1739,1739,1674,8.2,6.3 " Petroleum",17,17,228,212,231,35,35,16,16,11,16,20,16,16,26,239,239,240,240,240,775,0.1,2.9 " Natural Gas",11380,11424,11122,11324,11293,12130,11651,11599,11539,10864,10566,10350,10423,10284,10372,11051,11095,10650,11622,11494,11880,50,44.4

466

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32714,32708,33411,34814,35487,35857,36898,36727,36472,36536,37264,38240,40313,41996,42619,45196,45184,47224,47222,50781,50853,89.7,86 " Coal",9971,10001,10034,10030,10037,10069,10763,10823,10676,10770,10783,10783,11301,10223,9653,9634,9564,9528,9499,9495,9210,26,15.6 " Petroleum",11107,11117,11590,11598,14724,13478,13653,13493,12222,12153,12431,12552,10650,10063,10715,10611,10593,10586,12043,11549,10980,29.9,18.6 " Natural Gas",7775,7712,7909,9313,6857,8447,8560,8485,9655,9665,10102,10955,14401,17751,18290,20990,21065,23148,21698,25731,26424,24.3,44.7

467

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",62288980,66767347,70108979,68025039,71203728,68966538,70877043,78060498,81299241,83095924,88149792,85807868,81710063,80348246,81351521,82914964,84355976,88825573,94452931,89640192,91232664,99.1,81.6 " Coal",31636037,32306088,34602347,37020817,38072165,31710476,30780575,34219281,36225373,37994159,40662627,39731623,37957468,37739559,39419177,39750729,40056468,40911234,43505012,39464060,43347748,45.7,38.8 " Petroleum",116407,88935,72838,59875,128437,63610,65097,60927,61227,46287,189396,311787,51061,46706,39414,41127,71761,46137,48324,61381,63439,0.2,0.1

468

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7996096,7333192,6861255,6083815,6055087,6190584,6420195,6212643,6301169,6452068,6534692,6383088,7513051,6493205,6982469,6915159,7040473,6928397,6700636,6509550,6416068,61.7,59.2 " Petroleum",7967354,7312791,6851432,6070063,6036282,6174627,6402329,6193852,6287107,6429429,6516929,6362846,7502913,6489565,6971259,6904293,7015977,6913231,6682593,6262182,6178666,61.5,57 " Hydroelectric",22743,20401,9823,13752,18805,15957,17866,18791,13750,18844,15114,18132,8533,2078,9724,9169,23656,14729,17872,28608,16719,0.1,0.2

469

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",690465,693016,695059,699971,702229,706111,709942,711889,686692,639324,604319,549920,561074,547249,550550,556235,567523,571200,584908,596769,602076,74.4,57.9 " Coal",299781,299444,300385,300634,300941,300569,302420,302866,299739,277780,260990,244451,244056,236473,235976,229705,230644,231289,231857,234397,235707,32.2,22.7 " Petroleum",76390,72393,71266,69046,69549,64451,70421,69557,62704,49020,41032,38456,33876,32570,31415,30867,30419,29115,30657,30174,28972,5.1,2.8 " Natural Gas",121300,126837,128149,132427,133620,142295,139936,141713,130404,123192,123665,112841,127692,125612,131734,147752,157742,162756,173106,180571,184231,15.2,17.7

470

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1487,1521,1560,1602,1602,1602,1610,1595,1616,1608,1626,1622,1622,1624,1691,1705,1730,1730,1730,1859,1828,68.1,72.1 " Petroleum",1483,1518,1556,1598,1598,1598,1607,1592,1612,1605,1621,1616,1618,1620,1687,1699,1724,1724,1724,1740,1711,67.9,67.5 " Hydroelectric",3,3,3,3,3,3,3,3,4,4,4,3,2,2,2,4,4,4,4,4,4,0.1,0.2 " Other Renewables1","-","-","-","-","-","-","-","-","-","-",2,2,2,2,2,2,2,2,2,115,113,0.1,4.5

471

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",14906,14910,14973,15034,15098,15222,15147,15164,15084,15091,15140,15284,15699,16193,16141,18860,19566,19551,19717,20127,20115,98.9,76.2 " Coal",5116,5070,5070,5108,5119,5159,5201,5256,5286,5311,5336,5336,5336,5336,5336,5362,5762,5750,5750,6159,6165,34.9,23.4 " Petroleum",78,78,78,100,100,95,184,248,248,240,244,243,263,191,108,108,86,89,89,89,89,1.6,0.3 " Natural Gas",3306,3236,3236,3236,3236,3273,3126,2989,2924,2919,2939,3080,3444,3908,3955,6566,6897,6891,6987,6987,6969,19.2,26.4

472

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",21630677,22971934,22387247,22724286,21945525,25279277,27322697,28388030,28720209,29980967,29045739,30411669,31550226,30367879,31944127,31391643,31599046,32403289,32355676,33776062,36242921,99.8,98.9 " Coal",12658464,13562815,12402148,14739783,14002015,16079519,16040775,17209080,18335965,17794136,18424799,20193542,19899803,20907970,20414960,20772590,20632855,19611849,21479723,23307746,23214616,63.3,63.4 " Petroleum",12981,13459,9482,19035,18201,26679,19973,31059,41892,28807,53715,25154,18410,47971,21004,30026,18914,35552,34655,22869,30849,0.2,0.1

473

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7952,8090,8092,8074,8217,8237,8161,8238,8368,8435,8508,8352,8407,9093,9895,10090,9562,10669,11274,11479,11282,93.5,77.3 " Coal",5860,5912,5909,5818,5975,5995,5807,5573,5717,5702,5920,5668,5620,5666,5741,5705,5666,6535,6528,6529,6389,65.1,43.8 " Petroleum",659,723,714,746,755,755,861,872,877,932,1001,1012,980,912,908,936,935,930,924,921,915,11,6.3 " Natural Gas",779,816,829,870,847,825,835,913,906,938,932,916,1007,1710,2381,2376,2370,2401,2394,2345,2296,10.2,15.7 " Nuclear",530,515,515,515,515,528,520,535,520,520,520,520,566,562,563,581,"-","-","-","-","-",5.7,"-"

474

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina" South Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",69259815,69837984,71478648,75588386,74193685,78439814,76325556,78374450,84396897,87347364,90421081,86734778,93689257,91544429,94406828,99104373,95872763,99997011,97921204,97336653,100610887,96.9,96.6 " Coal",22874805,23165807,23013743,26532193,26993543,25801600,30307236,31042658,32377814,35246389,38664405,36302690,36490769,37065509,38516633,39352428,39140908,41270230,41184319,34146526,37340392,41.4,35.9 " Petroleum",71997,83385,68375,95193,108250,129854,125657,188326,331357,300739,265931,225008,205664,289474,690071,484181,135522,174663,160102,490911,178378,0.3,0.2

475

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5042,5045,5062,5062,5078,5078,5077,5183,5294,5299,5250,5250,5463,5398,5393,5692,6223,6324,6324,6344,6345,93.8,78 " Coal",3899,3901,3901,3901,3901,3901,3901,3901,3913,3942,3942,3942,3942,3942,3937,3957,3957,3957,3957,3977,3990,70.4,49.1 " Petroleum",24,24,24,24,24,44,24,23,15,"-","-","-",15,35,35,35,26,26,26,26,20,"-",0.2 " Natural Gas",1063,1063,1079,1079,1096,1076,1094,1200,1285,1275,1226,1226,1425,1339,1339,1619,2158,2259,2259,2259,2253,21.9,27.7

476

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",97565058,90809416,91779352,95737505,98752712,102015724,98729242,101780433,108716930,110536794,116176834,110564676,111855967,115755114,117918895,126444777,127367613,132831987,126031263,115074702,120425913,93.8,87.5 " Coal",67564750,59985395,58235454,63295811,64727519,65880095,63230856,66179551,69871150,74067633,79007166,73443695,77288328,77858022,79185166,86358096,85700960,89532913,84652246,68863420,72550375,63.8,52.7 " Petroleum",164987,107662,128485,237473,161235,218515,292018,200873,670924,662699,641415,275630,233940,278618,156672,189819,86798,82380,67971,64833,70781,0.5,0.1

477

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",28491171,25064613,27707513,28364368,30018011,29431903,29364389,30568142,31428332,31654480,32855587,32210683,29926241,31770151,32242728,33561875,35411074,34033374,33844547,34245148,30848406,96.6,85.1 " Coal",25826928,22129312,25348413,25507029,26752349,26121447,26357179,27078660,27537426,28067704,29065954,28402187,26902880,28812844,29263899,29947248,29859008,27603647,27014233,29117308,25617789,85.4,70.7 " Petroleum",34081,32240,35614,35337,22929,23073,22452,21075,23020,40133,29529,30210,30710,47860,30321,32528,40634,42969,52012,44599,49394,0.1,0.1

478

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2808151009,2825022865,2797219151,2882524766,2910712079,2994528592,3077442152,3122523144,3212170791,3173673550,3015383376,2629945673,2549457170,2462280615,2505231152,2474845558,2483655548,2504130899,2475366697,2372775997,2471632103,79.3,59.9 " Coal",1559605707,1551166838,1575895394,1639151186,1635492971,1652914466,1737453477,1787806344,1807479829,1767679446,1696619307,1560145542,1514669950,1500281112,1513640806,1484855188,1471421060,1490984698,1466395192,1322092036,1378028414,44.6,33.4 " Petroleum",117016961,111462979,88916308,99538857,91038583,60844256,67346095,77752652,110157895,86929098,72179917,78907846,59124871,69930457,73693695,69722196,40902849,40719414,28123785,25216814,26064909,1.9,0.6

479

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",12769,12848,12881,12859,12898,12928,13091,12931,12622,12861,13438,13436,13387,13463,13550,13992,14648,14495,15913,16187,16015,94.6,76.2 " Coal",4850,4865,4874,4874,4868,4831,4848,4848,4837,4808,4856,4856,4896,4941,4949,4964,4981,4975,4912,4940,4940,34.2,23.5 " Petroleum",58,58,58,58,58,58,64,62,61,61,61,60,60,62,68,68,72,68,69,69,67,0.4,0.3 " Natural Gas",6858,6870,6888,6866,6885,6952,7007,6934,6634,6887,7411,7410,7314,7340,7427,7899,8364,8221,9701,9842,9669,52.2,46 " Other Gases1","-",52,52,52,52,52,52,52,55,63,57,57,61,61,58,"-","-","-","-","-","-",0.4,"-"

480

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",22315,22275,22374,22412,22413,21981,21985,21909,21943,22374,22752,22831,23279,23345,23314,23029,22734,21894,21885,21759,21639,88.3,72.5 " Coal",11931,11960,11976,11929,11928,11794,11793,11796,11840,11573,11636,11638,11627,11636,11623,11633,11534,11533,11543,11431,11218,45.1,37.6 " Petroleum",3460,3171,3184,3235,3235,2618,2620,2617,2632,2634,1831,1860,1654,1685,1649,1647,1397,616,610,612,568,7.1,1.9 " Natural Gas",702,727,798,800,800,1434,1436,1435,1439,2131,3244,3302,3958,3964,3982,3669,3695,4461,4447,4446,4618,12.6,15.5

Note: This page contains sample records for the topic "industry surveys electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1065,1091,1094,1094,1093,1090,1092,1094,774,782,777,262,261,260,251,258,259,258,259,257,260,79,23 " Petroleum",117,117,120,120,120,118,119,119,117,117,112,111,107,107,101,100,101,101,101,100,100,11.4,8.9 " Nuclear",496,496,496,496,496,496,496,496,500,506,506,"-","-","-","-","-","-","-","-","-","-",51.4,"-" " Hydroelectric",404,430,430,430,430,426,427,423,103,107,106,99,102,96,93,100,101,99,100,100,103,10.8,9.1

482

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5809,5826,5847,5869,5874,5970,5966,6044,6018,6011,6048,6052,6122,6088,6086,6241,6137,6142,6450,6713,6931,97.1,86.8 " Coal",5525,5545,5545,5567,5567,5662,5662,5737,5710,5709,5710,5710,5692,5692,5692,5817,5747,5747,5832,5829,5935,91.6,74.3 " Petroleum",15,15,15,15,15,15,10,10,10,"-","-",5,5,5,5,"-","-",5,5,5,5,"-",0.1 " Natural Gas","-","-","-","-","-","-","-","-","-","-",34,34,119,85,80,113,79,79,79,79,79,0.5,1

483

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",59010858,60120689,56627107,53202268,61519090,65400254,67827241,71073239,74894188,73504882,76283550,78990878,79796801,86102107,86419717,90159045,91118304,89925724,89178555,86704766,90176805,99.6,97.7 " Coal",48501751,47907503,46829678,40688696,48592766,53582211,57176084,59903073,62488551,61249846,62624807,65445161,67147996,73904272,74711159,77123580,77113165,74745712,73246599,71401581,74829029,81.8,81.1 " Petroleum",89342,118645,80522,634432,730820,682321,95980,125449,309734,280945,247622,637504,528353,155968,195098,168258,59958,59611,56620,87081,124866,0.3,0.1

484

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",43681,43599,43763,44313,43297,43302,43934,43709,30663,24323,24319,24405,24609,23223,23867,25248,26346,26334,26467,28021,28689,46.5,42.6 " Petroleum",2800,2473,1759,1553,1553,1692,1692,1072,737,526,526,524,296,297,297,297,245,226,222,204,174,1,0.3 " Natural Gas",21815,22074,22810,23285,22208,22040,22365,23193,10581,5671,5670,5733,5954,5042,5567,6850,7917,8188,8134,9629,10333,10.8,15.3 " Nuclear",4746,4746,4310,4310,4310,4310,4746,4310,4310,4310,4310,4324,4324,4324,4324,4324,4390,4390,4390,4390,4390,8.2,6.5

485

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina" North Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",79845217,83520063,83007307,88753614,91454784,96109819,102786590,107371092,113112235,109882388,114433191,109807278,115597653,118433112,118328694,121674733,117797331,123215621,118778090,112961309,121251138,93.6,94.2 " Coal",46631040,46762330,54011457,59383147,53234497,55698342,64097781,70181392,69000633,68569499,71719489,68775284,71223313,70630278,71956852,74915235,72311023,76611703,72625233,62765545,69274374,58.7,53.8 " Petroleum",186899,174136,147134,165175,199418,234263,259252,211974,285902,284400,468482,412765,376170,459947,250402,231141,219114,236042,232446,232119,245987,0.4,0.2

486

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",22923971,23305127,20487946,23234028,26222313,26395165,28838302,31227619,31991676,32212133,33896003,47550273,35099283,31358938,32838145,30619168