Sample records for industry generation cogenerationb

  1. Motion-Based Generators for Industrial Applications

    E-Print Network [OSTI]

    Sterken, T; Puers, R

    2007-01-01T23:59:59.000Z

    Scaling down of electronic systems has generated a large interest in the research on miniature energy sources. In this paper a closer look is given to the use of vibration based scavengers in industrial environments, where waste energy is abundantly available as engine related vibrations or large amplitude motions. The modeling of mechanical generators resulted in the design and realization of two prototypes, based on electromagnetic and electrostatic conversion of energy. Although the prototypes are not yet optimized against size and efficiency, a power of 0.3 mW has been generated in a 5 Hz motion with a 0.5 meter amplitude.

  2. Novel NDE techniques in the power generation industry.

    E-Print Network [OSTI]

    Ward, Christopher M. S.

    2010-01-01T23:59:59.000Z

    ??The thesis presented here comprises the work undertaken for research into novel NDE techniques in the power generation industry. This has been undertaken as part… (more)

  3. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

  4. Used oil generation and management in the automotive industries

    E-Print Network [OSTI]

    Jhanani S; Kurian Joseph

    Used oil has been classified as hazardous wastes by the Ministry of Environment and Forests, Government of India which demands its proper management to avoid serious threat to the environment and for economic gains. Used oil could be recovered or reprocessed and reused as base oil thus saving the use of virgin oil. This paper presents an assessment of the used oil generation and management practices by the automotive industries located in Chennai and Kancheepuram in Tamilnadu. Used oil generation and management in eight automotive industries in this area were studied by means of questionnaires, direct observations and interviews. Studies were also undertaken for specific used oil generation from the most common process – reaming and rolling. The specific used oil generation rate varies from 93-336 L/cubic metre of metal cut depending on whether the industries use online centrifuging system for re-refining. Suggestions for the improvement of the used oil management practices are included in this paper.

  5. Permit compliance monitoring for the power generation industry

    SciTech Connect (OSTI)

    Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

    1996-12-31T23:59:59.000Z

    The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

  6. Renewable generation and storage project industry and laboratory recommendations

    SciTech Connect (OSTI)

    Clark, N.H.; Butler, P.C.; Cameron, C.P.

    1998-03-01T23:59:59.000Z

    The US Department of Energy Office of Utility Technologies is planning a series of related projects that will seek to improve the integration of renewable energy generation with energy storage in modular systems. The Energy Storage Systems Program and the Photovoltaics Program at Sandia National Laboratories conducted meetings to solicit industry guidance and to create a set of recommendations for the proposed projects. Five possible projects were identified and a three pronged approach was recommended. The recommended approach includes preparing a storage technology handbook, analyzing data from currently fielded systems, and defining future user needs and application requirements.

  7. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01T23:59:59.000Z

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  8. Strategic vision toward the next-generation telecom industry

    E-Print Network [OSTI]

    Yoshioka, Kenji, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Telecommunication industry is experiencing volatile change in technology and business model. Every telecom company needs strategy that gives direction through rapidly shifting environment. NTT, Japanese telecom giant is ...

  9. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01T23:59:59.000Z

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  10. Meeting the challenges of the new energy industry: The driving forces facing electric power generators and the natural gas industry

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    The proceedings of the IGT national conference on meeting the challenges of the New Energy Industry: The driving forces facing Electric Power Generators and the Natural Gas Industry are presented. The conference was held June 19-21, 1995 at the Ambassador West Hotel in Downtown Chicago, Illinois. A separate abstract and indexing for each of the 18 papers presented for inclusion in the Energy Science and Technology Database.

  11. Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems

    E-Print Network [OSTI]

    Alexander, H. R.; Rogge, D. S.

    This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

  12. The CAIR vacatur raises uncertainty in the power generation industry

    SciTech Connect (OSTI)

    Dan Weiss; John Kinsman [Duke Energy Indiana (United States)

    2008-12-15T23:59:59.000Z

    On 11 July 2008, the U.S. Court of Appeals for the District of Columbia issued a unanimous decision vacating the entire Clean Air Interstate Rule (CAIR) and the associated federal implementation plan. The upset of this program to reduce power plant sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx) emissions in the eastern United States was a great surprise, creating operational and planning turmoil in the industry. 4 refs.

  13. Power Generation and Power Use Decisions in an Industrial Process

    E-Print Network [OSTI]

    Gilbert, J. S.; Niess, R. C.

    of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

  14. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets

    E-Print Network [OSTI]

    Rastler, D. M.

    in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member...

  15. N-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION?

    E-Print Network [OSTI]

    are introducing a new solar cell design: the Passivated Emitter and Rear Cell (PERC), which features a full-PERT (Passivated Emitter, Rear Totally Diffused) solar cells with a processing sequence based on an industrialN-PERT BACK JUNCTION SOLAR CELLS: AN OPTION FOR THE NEXT INDUSTRIAL TECHNOLOGY GENERATION? Bianca

  16. "Greening" Industrial Steam Generation via On-demand Steam Systems

    E-Print Network [OSTI]

    Smith, J. P.

    2010-01-01T23:59:59.000Z

    boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

  17. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  18. Advances in steam turbine technology for the power generation industry. PWR-Volume 26

    SciTech Connect (OSTI)

    Moore, W.G. [ed.

    1994-12-31T23:59:59.000Z

    This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

  19. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  1. Maintaining Generation Adequacy in a Restructuring U.S. Electricity Industry

    SciTech Connect (OSTI)

    Hirst, E.; Hadley, S.

    1999-10-01T23:59:59.000Z

    Historically, decisions on the amounts, locations, types, and timing of investments in new generation have been made by vertically integrated utilities with approval from state public utility commissions. As the U.S. electricity industry is restructured, these decisions are being fragmented and dispersed among a variety of organizations. As generation is deregulated and becomes increasingly competitive, decisions on whether to build new generators and to retire, maintain, or repower existing units will increasingly be made by unregulated for-profit corporations. These decisions will be based largely on investor assessments of future profitability and only secondarily on regional reliability requirements. In addition, some customers will choose to face real-time (spot) prices and will respond to the occasionally very high prices by reducing electricity use at those times. Market-determined generation levels will, relative to centrally mandated reserve margins, lead to: (1) more volatile energy prices; (2) lower electricity costs and prices; and (3) a generation mix with more baseload, and less peaking, capacity. During the transition from a vertically integrated, regulated industry to a deintegrated, competitive industry, government regulators and system operators may continue to impose minimum-installed-capacity requirements on load-serving entities. As the industry gains experience with customer responses to real-time pricing and with operation of competitive intrahour energy markets, these requirements will likely disappear. We quantitatively analyzed these issues with the Oak Ridge Competitive Electricity Dispatch model (ORCED). Model results show that the optimal reserve margin depends on various factors, including fuel prices, initial mix of generation capacity, and customer response to electricity prices (load shapes and system load factor). Because the correct reserve margin depends on these generally unpredictable factors, mandated reserve margins might be too high, leading to higher electricity costs and prices. Absent mandated reserve margins, electricity prices and costs decline with increasing customer response to prices during high-demand periods. The issues discussed here are primarily transitional rather than enduring. However, the transition from a highly regulated, vertically integrated industry to one dominated by competition is likely to take another five to ten years.

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

  5. Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances for next-generation success

    E-Print Network [OSTI]

    Narasayya, Vivek

    Superior Processes at Industrial Equipment Manufacturers Benchmark best practices and performances invest time, effort and resources in establishing the best practices, technology systems and solutions at a pace faster than the competition. · Engaged people/human capital acquisition, development

  6. Control Engineering Practice 10 (2002) 615624 Stabilizer design for industrial co-generation systems

    E-Print Network [OSTI]

    Marquez, Horacio J.

    , whose quantity (measured by its flow rate) and quality (measured by its pressure and temperature) play boilers, three CO-type boilers and two once-through steam generators (OTSG). The header system includes receives steam from the boiler system and then distributes the steam for three different usages: (i

  7. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  8. Continuous fiber ceramic composites-- A new generation of materials for industrial and corrosive applications

    SciTech Connect (OSTI)

    Craig, P.A.

    1999-07-01T23:59:59.000Z

    The market for advanced ceramics is very large and growing rapidly, at a rate of 20% per year. These materials are characterized by their excellent high temperature properties. They are finding use where temperatures exceed the capability of other materials, especially metals. Even so, they are not selected for many applications because of the brittleness of monolithic ceramics. In the search for improvement, material scientists reinforce ceramics with continuous ceramic fibers, such as silicon carbide. Embedded continuous ceramic fibers reinforce the ceramic matrix by deflecting and bridging fractures. These continuous fiber ceramic composite (CFCC) materials offer the advantages of ceramics--resistance to heat, erosion, and corrosion--while adding toughness and thermal shock resistance. CFCC materials are evolving to the advanced product development stage with Department of Energy support in the CFCC program. Designers are evaluating them in corrosive applications in major industries. Various CFCC's are described and several case studies of CVI SiC/SiC application testing are reviewed.

  9. Development and analysis of a linearly segmented CPC collector for industrial steam generation

    SciTech Connect (OSTI)

    Figueroa, J.A.A.

    1980-06-01T23:59:59.000Z

    This study involves the design, analysis and construction of a modular, non-imaging, trough, concentrating solar collector for generation of process steam in a tropical climate. The most innovative feature of this concentrator is that the mirror surface consists of long and narrow planar segments placed inside sealed low-cost glass tubes. The absorber is a cylindrical fin inside an evacuated glass tube. As an extension of the same study, the optical efficiency of the segmented concentrator has been simulated by means of a Monte-Carlo Ray-Tracing program. Laser Ray-Tracing techniques were also used to evaluate the possibilities of this new concept. A preliminary evaluation of the experimental concentrator was done using a relatively simple method that combines results from two experimental measurements: overall heat loss coefficient and optical efficiency. A transient behaviour test was used to measure the overall heat loss coefficient throughout a wide range of temperatures.

  10. Industry Alliance Industry Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

  11. Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Putting renewables and energy efficiency to work: How many jobs can the clean energy industry employment Energy efficiency employment a b s t r a c t An analytical job creation model for the US power energy (RE), energy efficiency (EE), carbon capture and storage (CCS) and nuclear power. The paper

  12. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect (OSTI)

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01T23:59:59.000Z

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate (GHRR) equal to the original boiler design. Boiler efficiencies (cogeneration-steam plus air) is increased from the original design value of 70% to 78.9% due to a combination of improved burnout, operation with lower excess air, and drier fuel. For the fully implemented plant, the thermal efficiency of fuel to electricity conversion is 79.8% in the cogeneration mode, 5% above the design goal. Finally, self-generated electricity will be increased from the 10.8 MW currently attributable to No.2 Boiler to 46.7MW, an increase of 332%. Environmental benefits derived from the system include a reduction in NOx emissions from the boiler of about 30-50% (90-130 tons/year) through syngas reburning, improved carbon burnout and lower excess air. This does not count NOx reduction that may be associated with replacement of purchased electricity. The project would reduce CO{sub 2} emissions from the generation of electricity to meet the mill's power requirements, including 50,000 tons/yr from a net reduction in gas usage in the mill and an additional 410,000 tons/yr reduction in CO{sub 2} emissions due to a 34 MW reduction of purchased electricity. The total CO{sub 2} reduction amounts to about 33% of the CO{sub 2} currently generated to meet the mills electricity requirement. The overall conclusion of the study is that while significant engineering challenges are presented by the proposed system, they can be met with operationally acceptable and cost effective solutions. The benefits of the system can be realized in an economic manner, with a simple payback period on the order of 6 years. The results of the study are applicable to many paper mills in the U.S. firing woodwastes and other solid fuels for steam and power production.

  13. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  14. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  15. Energy Efficiency and Industrial Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Nuclear Plant Docs CONTACT US Center for Advanced Energy Studies Energy Efficiency and Industrial Technology The Department conducts research for DOE, other...

  16. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    losses in power production to generate heat and/or cold for industrial processes and district heating,

  17. 1808 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 6, NOVEMBER/DECEMBER 2012 Design of a Flux-Switching Electrical Generator

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    turbine system has its operating range as shown in Fig. 1. Permanent-magnet generators and self small wind turbine generators are often based on inexpensive permanent-magnet generator machines [12 of gearbox requirements for coupling to the turbine. Although the devel- oped approach makes the machine

  18. Talkin’ Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  19. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  20. Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired

    E-Print Network [OSTI]

    Li, Mo

    higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inlet is significant for modeling cyclic deformation in directionally solidified and single crystal turbine blades

  1. ITP Industrial Distributed Energy: Cooling, Heating, and Power...

    Broader source: Energy.gov (indexed) [DOE]

    for 2-7 stationary power generation or compression applications in the oil and gas industries. Figure 2-7 illustrates the components of an industrial turbine. Multiple...

  2. Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc Overview The main objectives were the following: -To reduce wasted space and optimize the Armstrong Marietta plant generate? How did you analyse them? Outcomes Armstrong will save on forklift fuel costs as a result

  3. Industrial Hygienist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

  4. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  5. Integrated Industrial Wood Chip Utilization

    E-Print Network [OSTI]

    Owens, E. T.

    1984-01-01T23:59:59.000Z

    The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

  6. ITP Industrial Distributed Energy: Integrated Energy Systems...

    Broader source: Energy.gov (indexed) [DOE]

    specifically for stationary power generation or compression applications in the oil and gas industries. Multiple stages are typical and differentiate these turbines, along with...

  7. Next-Generation Wind Technology

    Broader source: Energy.gov [DOE]

    The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

  8. DOE Seeks Industry Participation for Engineering Services to...

    Broader source: Energy.gov (indexed) [DOE]

    Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

  9. Next-Generation Wind Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind...

  10. Transition-fault test generation

    E-Print Network [OSTI]

    Cobb, Bradley Douglas

    2013-02-22T23:59:59.000Z

    . One way to detect these timing defects is to apply test patterns to the integrated circuit that are generated using the transition-fault model. Unfortunately, industry's current transition-fault test generation schemes produce test sets that are too...

  11. Post-industrial-revolution HCI Colin Johnson

    E-Print Network [OSTI]

    Kent, University of

    Post-industrial-revolution HCI Colin Johnson University of Kent Computing Laboratory Canterbury is akin to the state of manufacturing prior to the industrial revolution. It is suggested that eventually an industrial revolution will occur in programming through the use of automated program generation tools, which

  12. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  13. Guidelines for Estimating Unmetered Industrial Water Use

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2010-08-01T23:59:59.000Z

    The document provides a methodology to estimate unmetered industrial water use for evaporative cooling systems, steam generating boiler systems, batch process applications, and wash systems. For each category standard mathematical relationships are summarized and provided in a single resource to assist Federal agencies in developing an initial estimate of their industrial water use. The approach incorporates industry norms, general rules of thumb, and industry survey information to provide methodologies for each section.

  14. The Industrialization of Thermoelectric Power Generation Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds11, 2008 ThePerformancePMof

  15. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex andIndustrial

  16. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the ComplexIndustry

  17. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

  18. Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint

    E-Print Network [OSTI]

    Jackson, C. E.

    1984-01-01T23:59:59.000Z

    Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

  19. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  20. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

  1. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  2. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  3. Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Tomberlin, G.; Mosey, G.

    2013-03-01T23:59:59.000Z

    Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

  4. Financing Co-generation Projects

    E-Print Network [OSTI]

    Young, R.

    1982-01-01T23:59:59.000Z

    profit generated by energy intensive industries will not be sufficient to provide the capital required for both normal business expansion and energy conservation projects. Debt financing for energy saving equipment will adversely impact balance sheet...

  5. Diophantine Generation,

    E-Print Network [OSTI]

    Shlapentokh, Alexandra

    Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

  6. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01T23:59:59.000Z

    Losses CHP, Commercial Power CHP, Electric Power CHP, Industrial Power Electric Generators, Utilities

  7. Industrial and Systems engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

  8. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  9. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  10. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  11. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

  12. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

  13. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  14. 1. Generation 1 1. Generation

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

  15. Steam Path Audits on Industrial Steam Turbines

    E-Print Network [OSTI]

    Mitchell, D. R.

    steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

  16. Gas production response to price signals: Implications for electric power generators

    SciTech Connect (OSTI)

    Ferrell, M.L.

    1995-12-31T23:59:59.000Z

    Natural gas production response to price signals is outlined. The following topics are discussed: Structural changes in the U.S. gas exploration and production industry, industry outlook, industry response to price signals, and implications for electric power generators.

  17. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  18. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  19. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  20. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  1. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  2. Opening New Frontiers in Power Generation

    E-Print Network [OSTI]

    Haile, Sossina M.

    FUEL CELLS Opening New Frontiers in Power Generation U . S . D e p a r t m e n t o f E n e r g y in the power generation industry. Fuel cells have the potential to truly revolutionize power generation. Fuel by subjecting it to steam and high temperatures. In order to use coal, biomass, or a range of hydrocarbon wastes

  3. Photovoltaics industry profile

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  4. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  5. INDUSTRIAL AND BIOMEDICAL APPLICATIONS

    E-Print Network [OSTI]

    Purvis, Richard

    INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

  6. Uranium industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  7. System for monitoring an industrial or biological process

    DOE Patents [OSTI]

    Gross, Kenneth C. (Argonne, IL); Wegerich, Stephan W. (Argonne, IL); Vilim, Rick B. (Argonne, IL); White, Andrew M. (Skokie, IL)

    1998-01-01T23:59:59.000Z

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  8. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  9. Interacting With the Pharmaceutical Industry

    E-Print Network [OSTI]

    Hayden, Stephen R

    2003-01-01T23:59:59.000Z

    INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

  10. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  11. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  12. Corporate Property Tax Reduction for New/Expanded Generating Facilities

    Broader source: Energy.gov [DOE]

    Montana generating plants producing one megawatt (MW) or more with an alternative renewable energy source are eligible for the new or expanded industry property tax reduction. This incentive...

  13. Paving the path for next-generation nuclear energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat that could be used for industrial processes such as seawater desalination or plastics production. Today, China has begun construction of a prototype Generation-IV reactor,...

  14. A novel linear generator for wave energy applications.

    E-Print Network [OSTI]

    Ernst, Steven George

    2009-01-01T23:59:59.000Z

    ??With the increasing effort to identify alternative methods of energy generation, extraction of ocean energy has gathered a large interest. Research and industry have begun… (more)

  15. Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels

    E-Print Network [OSTI]

    Bettinger, J.; Koppel, P.; Margulies, A.

    "Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

  16. Climate Change Concerns and the Likely Impacts on Industrial Energy R&D

    E-Print Network [OSTI]

    Foust, T. D.; Kaarsberg, T. M.

    emissions, efforts to achieve this goal must involve industry. The most cost effective, politically acceptable and sustainable way to reduce GHGs is to invest in low or zero carbon generation technology and energy efficiency. Therefore, industry needs...

  17. Distributed generation - the fuel processing example

    SciTech Connect (OSTI)

    Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  18. Electrical Generation Tax Reform Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the Montana electric utility industry that allows...

  19. NEXT GENERATION NUCLEAR PLANT PROJECT IMPLEMENTATION STRATEGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEXT GENERATION NUCLEAR PLANT PROJECT IMPLEMENTATION STRATEGY Presented by NGNP Industry Alliance November 30, 2009 I In nd du us st tr ry y A Al ll li ia an nc ce e Clean,...

  20. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  1. Generation IV Nuclear Energy Systems ...

    E-Print Network [OSTI]

    Kemner, Ken

    Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

  2. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain...

  3. Industrial Security Specialst

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve in a developmental capacity assisting senior specialists in carrying out a variety of industrial security and oversight functions.

  4. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  5. Diagnosing and Mitigating Market Power in Chile's Electricity Industry

    E-Print Network [OSTI]

    Arellano, M Soledad

    2004-06-16T23:59:59.000Z

    This paper examines generators' incentives to exercise market power and the strategies they would follow if all electricity supplies were traded in an hourly-unregulated spot market. The industry is modelled as a Cournot duopoly with a competitive...

  6. Energy Conservation and Waste Reduction in the Metal Fabrication Industry

    E-Print Network [OSTI]

    Kirk, M. C. Jr.; Looby, G. P.

    Reductions of energy use and waste generation can help manufacturers to be more profitable and more environmentally acceptable. Industrial Assessment Centers located at universities throughout the United States, funded by the U.S. Department...

  7. Impact of Electricity Deregulation on Industrial Assessment Strategies

    E-Print Network [OSTI]

    Kasten, D. J.; Muller, M. R.; Pavlovic, F.

    efficiency project. Onsite generation of power and the changing rationales for its adoption has also experienced big changes. Energy security is becoming a strong motivation for industrial plants, options are increased, and third party funding is also...

  8. Industrial Powerhouse Optimization in the Deregulated Electricity Marketplace

    E-Print Network [OSTI]

    Hughes, P. D.; Bailey, W. F.

    The State of Delaware deregulated the retail sale of electricity in 2002, enabling buyers to procure power on a real-time price schedule and sell excess generated power to the grid. This initiative has prompted industrial sites, especially those...

  9. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  10. Preliminary Results from the Industrial Steam System Market Assessment

    E-Print Network [OSTI]

    McGrath, G. P.; Wright, A. L.

    This paper discusses fuel use and potential energy savings in the steam systems of three steam intensive industries: pulp and paper, chemical manufacturing, and petroleum refining. To determine the energy consumption to generate steam...

  11. Reshaping the electricity supply industry

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    Cigre`s Electra magazine published this interview with Alfonso Limbruno, CEO of ENEL S.p.A. To put the interview in perspective, this article begins with a brief overview of ENEL and a biographical sketch of Alfonso Limbruno, and also carries comments from Y. Thomas, secretary general of CIGRE. ENEL is a vertically integrated nationwide electricity company engaged in the generation, transmission, distribution, and sale of electricity, predominantly in Italy. ENEL`s share accounts for approximately 80 percent of Italian electricity demand. Measured by amount of electricity sold, ENEL is the third largest electric utility in the OECD countries and the second largest electric utility in Europe. Measured by revenues, ENEL is one of the largest companies in Italy, with a turnover of Lit. 37,632 billion. In 1995, ENEL served approximately 28.5 million customers and sold 211,607 GWh of electricity. ENEL`s gross installed generating capacity at December 31, 1995 was 55,906 MW. Alfonso Limbruno made all his career in the Italian electricity supply industry (ESI) and has had quite a unique experience: he went through a complete cycle of change of the ESI in his country, the nationalization of the sector in 1962 with the merging in ENEL of over 1,200 undertakings, and now the privatization of the company, along with a far reaching restructuring of the industry. He was appointed CEO of ENEL in August 1992.

  12. Combined Heat & Power (CHP) -A Clean Energy Solution for Industry

    E-Print Network [OSTI]

    Parks, H.; Hoffman, P.; Kurtovich, M.

    From the late 1970's to the early 1990's cogeneration or CHP saw enormous growth, especially in the process industries. By 1994, CHP provided 42 GW of electricity generation capacity -about 6 percent of the U.S. total. Three manufacturing industries...

  13. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

    1982-01-01T23:59:59.000Z

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  14. Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future

    E-Print Network [OSTI]

    Brock, David

    Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

  15. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  16. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  17. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle, Undergraduate Program Director Office: 207C Engineering Lab Building Phone: (413) 545-2505 Head of Department

  18. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

  19. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    report of cement industry waste heat power generation. ChinaWorrell et al. , 2001). Waste heat recovery (WHR) poweradoption and utilization of waste heat recovery (WHR) power

  20. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  1. Posted 3/2/13 Medline Industries Industrial Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

  2. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  3. INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

  4. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  5. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    . Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

  6. Making Industry Part of the Climate Solution

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

    2011-06-01T23:59:59.000Z

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  7. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01T23:59:59.000Z

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  8. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  9. Load Management for Industry

    E-Print Network [OSTI]

    Konsevick, W. J., Jr.

    1982-01-01T23:59:59.000Z

    In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

  10. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  11. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  12. Industrial Assessment Center

    SciTech Connect (OSTI)

    J. Kelly Kissock; Becky Blust

    2007-04-17T23:59:59.000Z

    The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

  13. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31T23:59:59.000Z

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  14. Guideline for implementing Co-generation based on Biomass waste from

    E-Print Network [OSTI]

    Guideline for implementing Co-generation based on Biomass waste from Thai Industries - through-generation based on Biomass waste from Thai Industries - through implementation and organisation of Industrial biomasse ressourcer fra det omkringliggende nærområde kan erhverves, og hvilke der er interessante

  15. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  16. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  17. Waste Heat Recovery Power Generation with WOWGen

    E-Print Network [OSTI]

    Romero, M.

    Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

  18. Industrial cofiring reaps big rewards

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    US industry operates over 2,000 coal-fired stoker boilers. They are typically over 30 years old, difficult to maintain, and hard to keep in environmental compliance. Natural gas cofiring of industrial stoker boilers offers a wide range of operational benefits. Boiler efficiency is improved because combustion air requirements are reduced (low excess air of LEA) and carbon burnout is improved (loss on ignition or LOI). On the emissions side, opacity problems are reduced and NO{sub x} and SO{sub 2} emissions reduced as natural gas replaces a percentage of the coal. Further, operation is improved through easier, smoke-free start-up and warm-up, recovered steam generation, increased short-term peaking capacity, improved plant availability and improved low load operation. Fuel flexibility also increases and maintenance decreases. Cofire benefits and economics are, however, very site specific. Important factors include relative coal and gas pricing, coal and gas supply security, boiler capacity factor and seasonal use, and backup boiler capability. These factors are discussed using the example of the Dover Light and Power of Ohio.

  19. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

  20. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

  1. Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

  2. Long-Term Nuclear Industry Outlook - 2004

    SciTech Connect (OSTI)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30T23:59:59.000Z

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  3. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

    2012-02-15T23:59:59.000Z

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  4. industrial & systems Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

  5. industrial & systems Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

  6. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

  7. MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS

    E-Print Network [OSTI]

    MECH 386 ­ INDUSTRIAL FLUID MECHANICS 1 INDUSTRIAL FLUID MECHANICS MECH 386 Contact information Dr This course is an introduction to industrial fluid mechanics. According to J. C. R. Hunt (a famous fluid mechanics specialist): "industrial fluid mechanics broadly covers those aspects of the design, manufacture

  8. Table 5. Electric Power Industry Generation by Primary Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    19,26551,6536,8975,17488,20731,12287,7472,8427,8149,0.5,0.1,0 "Wind",666983,508612,5028,5182,5453,5221,5784,5777,5081,5167,6043,871,0,0,0,0,0,0,0,0,0,0,0,0,0.1,5.5 "IPP and...

  9. The Homopolar Generator as a Pulsed Industrial Power Supply

    E-Print Network [OSTI]

    Weldon, J. M.; Weldon, W. F.

    1979-01-01T23:59:59.000Z

    applied magnetic field. 4>w v Where V = Homopolar open terminal voltage(volts)= 2rr rr = Magnetic flux(webers) but 4> = BA w = Angular velocity(rad/sec) so B Magnetic flux density(tesla) BAw A Area of swept magnetic flux(m 2 ) V = "27T...

  10. Applications for Microwave Generators in the Process Industries

    E-Print Network [OSTI]

    Humphrey, J. L.; Vasilakos, N. P.

    1983-01-01T23:59:59.000Z

    . 14. Fix, S. R. "Microwave Devulcanization of Rub ber." (Goodyear Tire and Rubber Co., lincoln, NE, USA). US 4,104,205, Elastomerics, Vol. 112, No.6, pp. 1980, 38-40 (Eng). 15. Yamashita, I., Yamamoto, N., and Mima, S., "Decomposition of Waste... August 1978. 18. Novotny, D. S., et al. "Devulcanization of Sulfer-Vulcanized Elastomers." (Goodyear Tire and Rubber Co.) Ger. Offen. 2,700,306, 18 August 1977, US Appl. 646,821, 6 January 1976. 19. "Microwave Hardenable Molding Sand." (Ko matsu...

  11. Building the Next Generation of Automotive Industry Leaders ...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle...

  12. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F. Edgar, Ph.D.,

  13. " Generation by Program Sponsorship, Industry Group, Selected"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs of Energy for

  14. " Generation, by Program Sponsorship, Industry Group, Selected"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs of Energy

  15. MIT and Energy Industries MIT Industry Brief

    E-Print Network [OSTI]

    Polz, Martin

    and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

  16. Industrial Plant Objectives and Cogeneration System Development

    E-Print Network [OSTI]

    Kovacik, J. M.

    1983-01-01T23:59:59.000Z

    HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles... more power than that avail able due to plant he t demands may provide an economically viable option. Gas Turbine and Combined Cycles Gas turbine cycles provide the opportunity to generate a larger power output per unit of heat 39~ required...

  17. Industrial Decision Making

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    -05-30 Proceedings from the Thirtieth Industrial Energy Technology Conference, New Orleans, LA, May 6-9, 2008. Figure 1. Average Monthly Industrial Energy Prices (2) - 5 10 15 20 25 J an- 0 0 Ju l -0 0 Ja n- 0 1 Ju l -0 1 Ja n - 02 Ju l -0 2 Ja n - 0 3 Ju l - 0 3... Ja n - 0 4 J u l-04 Ja n - 0 5 Jul - 0 5 J an- 0 6 Jul - 0 6 Ja n- 07 Jul - 0 7 Ener gy Pr ic e ($ /MB t u) Electricity Fuel Oil Natural Gas Coal External market forces also drive industrial investment cycles. In the organic chemical...

  18. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  19. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  20. Industrial Assessment Center

    SciTech Connect (OSTI)

    Dr. Diane Schaub

    2007-03-05T23:59:59.000Z

    Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

  1. 1989 Industry Directory

    SciTech Connect (OSTI)

    Not Available

    1998-12-01T23:59:59.000Z

    Solid Waste Power's 1989 Industry Directory is divided into three main sections: the Company Directory, the Service Directory, and the Product Directory. The Company Directory lists all companies involved in the waste-to-energy industry that responded to a survey Solid Waste Power conducted in the fall of 1988. Companies are listed alphabetically. Each of the companies in the Company Directory is further referenced in the Service and Product directories follow. The Service and Product directories are broken down into various categories. Within each category is a list of the names of companies identified themselves as providing the service or product. Preceding the Service and Product directories is the Category Index.

  2. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  3. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  4. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  5. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28T23:59:59.000Z

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  6. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity...

  7. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01T23:59:59.000Z

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  8. Generation Technologies

    E-Print Network [OSTI]

    Green Power

    2005-01-01T23:59:59.000Z

    Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

  9. " Generation by Census Region, Industry Group, Selected Industries, Presence of"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.24

  10. 26 CURA REPORTER Hydrogen Generation Using Magnetite to Store

    E-Print Network [OSTI]

    Levinson, David M.

    26 CURA REPORTER Hydrogen Generation Using Magnetite to Store Energy from Alternative Sources by J of hydrogen generation and storage in the growing wind energy industry could be especially useful in a future sustainable energy economy in the state. The generated hydrogen also might be used onsite in the mining

  11. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  12. Optimizing Process Loads in Industrial Cogeneration Energy Systems

    E-Print Network [OSTI]

    Ahner, D. J.; Babson, P. E.

    applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

  13. Essays on the industrial organization of the airline industry

    E-Print Network [OSTI]

    Januszewski, Silke I. (Silke Irene), 1974-

    2003-01-01T23:59:59.000Z

    This thesis analyzes several aspects of the Industrial Organization of the airline industry in three separate chapters. Chapter 1 investigates the effect of air traffic delays on airline prices. The degree to which prices ...

  14. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  15. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  16. SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program

    E-Print Network [OSTI]

    Van Stryland, Eric

    SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

  17. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    NONE

    1992-07-01T23:59:59.000Z

    This article is the `Industry Briefs` portion of Nuexco`s July 1992 `Recent Developments` section. Specific items mentioned include: (1) the merger of Entergy and Gulf States Utilities, (2) restart of the Sequoyah Fuels facility in Oklahoma, (3) development of the 7th and 8th nuclear units in Taiwan, (4) purchase of interest in Rio Algom, Ltd, and (5) acquisition of the Italian firm AGIP by a Canadian company.

  18. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30T23:59:59.000Z

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  19. Available Alarms in CDE for Next-Day Generation Estimates - March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    submit Generation Estimates through the Customer Data Entry (CDE) in web Trans or the WECC Electronic Industrial Data Exchange (EIDE) as described in BPAT's Business Practices....

  20. Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.

    E-Print Network [OSTI]

    Li, Molan

    2011-01-01T23:59:59.000Z

    ?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous… (more)

  1. The impact of government policies on industrial evolution : the case of China's automotive industry

    E-Print Network [OSTI]

    Luo, Jianxi

    2006-01-01T23:59:59.000Z

    Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

  2. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  3. A National Resource for Industry

    E-Print Network [OSTI]

    alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

  4. Electrotechnologies and Industrial Pollution Control

    E-Print Network [OSTI]

    Schmidt, P. S.

    The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

  5. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  6. Texas Industries of the Future

    E-Print Network [OSTI]

    Ferland, K.

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  7. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  8. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

  9. PETROLEUM INDUSTRY INFORMATION REPORTING ACT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT: RULEMAKING;1 EXECUTIVE SUMMARY In the six months since the new Petroleum Industry Information Reporting Act (PIIRA which is used by the petroleum industry and market trading groups to assess the trends in California

  10. Thermoelectric generator

    SciTech Connect (OSTI)

    Shakun, W.; Bearden, J.H.; Henderson, D.R.

    1988-03-29T23:59:59.000Z

    A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

  11. Modeling Generator Power Plant Portfolios and Pollution Taxes in

    E-Print Network [OSTI]

    Nagurney, Anna

    Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

  12. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  13. Colorado Industrial Challenge and Recognition Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

  14. Industrial energy use indices

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    gas consumption. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. varies from 1....1 to 1.7 depending on the energy sources considered. The large data scatter indicates that predictions of energy use obtained by multiplying standard EUI data by plant area may be inaccurate and are less accurate in warmer than colder climates (warmer...

  15. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  16. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (MillionFood Industry

  17. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspect andCoaches Aim Industry Perspective

  18. CASL - Industry Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink to Resources Industry

  19. CASL - Industry Council Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink to Resources IndustryCASL

  20. Industrial Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College ProvidesSteam Technical BriefINDUSTRIAL

  1. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  2. Introduction Minimal generation

    E-Print Network [OSTI]

    St Andrews, University of

    Introduction Minimal generation Random generation Minimal and probabilistic generation of finite generation of finite groups #12;Introduction Minimal generation Random generation Some motivation Let x1 random elements of G = x1, . . . , xk . (G is the group generated by x1, . . . , xk : all possible

  3. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the...

  4. Competitive developments in the electric supply industry

    SciTech Connect (OSTI)

    Bruder, G.F.; Lively, M.

    1996-12-31T23:59:59.000Z

    Competition in the electric supply industry is outlined. The following topics are discussed: six impending major developments in the electric industry; recent and projected developments in the industry; where is the industry headed?; and what the future holds.

  5. Whitacre College of Engineering Industrial Engineering Department

    E-Print Network [OSTI]

    Gelfond, Michael

    Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

  6. Faculty of Engineering & Design Industrial Placements

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

  7. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  8. industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles

    E-Print Network [OSTI]

    Rohs, Remo

    70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

  9. industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles

    E-Print Network [OSTI]

    Rohs, Remo

    74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

  10. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    Assistant Vice President, Corporate & Foundation Relations Inside this issue... Greetings to Industry. The founding members are American Axle and Manufacturing, Eaton Corpora- tion and John Deere. This applied

  11. Rebuttal: Interacting With the Pharmaceutical Industry

    E-Print Network [OSTI]

    Stone, Susan; Herbert, Mel

    2003-01-01T23:59:59.000Z

    9. 6. Angell M. The pharmaceutical industry: To whom is ithas shown that the pharmaceutical industry has profited some

  12. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  13. Academic-Industry Collaboration (AIC) - Synchrophasor Engineering...

    Broader source: Energy.gov (indexed) [DOE]

    Academic-Industry Collaboration (AIC) - Synchrophasor Engineering Education Program: Information Exchange Webinar (March 6, 2014) Academic-Industry Collaboration (AIC) -...

  14. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31T23:59:59.000Z

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  15. NREL Innovations Help Drive Wind Industry Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    For nearly 30 years, NREL has helped the wind turbine industry through design and research innovations. The comprehensive capabilities of the National Wind Technology Center (NWTC), ranging from specialized computer simulation tools to unique test facilities, has been used to design, develop, and deploy several generations of advanced wind energy technology.

  16. Recovering Industrial Waste Heat by the Means of Thermoelectricity

    E-Print Network [OSTI]

    Kjelstrup, Signe

    Recovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit dependent. A calorimeter has been used to measure the heat supplied by a thermoelectric module #12;(operated

  17. Cool Storage Economic Feasibility Analysis for a Large Industrial Facility

    E-Print Network [OSTI]

    Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

    1988-01-01T23:59:59.000Z

    The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis...

  18. Sustainable Development and the Concrete Industry Christian Meyer

    E-Print Network [OSTI]

    Meyer, Christian

    is known to be a greenhouse gas that contributes to global warming, and the cement industry alone generates that the production of one ton of Portland cement causes the release of one ton of CO2 into the atmosphere. CO2

  19. EPRI's Industrial Energy Management Program

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    the Electric Power Research Institute has been establishing industry specific Centers and Offices nationwide to assist electric utilities and their customers in managing for a better use of energy. Hundreds of joint industry/utility projects... services thus supporting national objectives for a clean environment and a strong economic future. The Electric Power Research Institute (EPRI) recognizes that the management of energy use and the environmental impacts of industrial activity...

  20. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29T23:59:59.000Z

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  1. Enabling the Future of Industry in the United States The US manufacturing industry is a cornerstone of the American

    E-Print Network [OSTI]

    . ORNL researchers are developing a new generation of carbon fiber composite materials and lightweight of energy and industrial applications. New carbon materials are enabling cleanup of contaminated water competitiveness. Manufacturing and materials research at Oak Ridge National Laboratory is focused on reducing

  2. Industry Supply Chain Development (Ohio)

    Broader source: Energy.gov [DOE]

    Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

  3. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  4. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  5. Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term

    E-Print Network [OSTI]

    Greening, L.

    2006-01-01T23:59:59.000Z

    Distributed Energy: Modeling Penetration in Industrial Sector over the Long-Term Lorna Greening, Private Consultant, Los Alamos, NM Distributed energy (DE) sources provide a number of benefits when utilized. For industrial facilities... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

  6. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14T23:59:59.000Z

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  7. Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial

    E-Print Network [OSTI]

    Boyer, Edmond

    Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

  8. A microeconomic analysis of the competition in the home console videogame industry

    E-Print Network [OSTI]

    Moreira Nascimento, Alexandre

    2013-01-01T23:59:59.000Z

    The $70 billion and 40 year old [83] traditional videogame industry is a fascinating example of intense and dynamic competition, where over eight generations new players could enter the market and reach the leadership while ...

  9. THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES

    E-Print Network [OSTI]

    Kissock, Kelly

    THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES Kelly Traditional approaches for reducing energy and waste in industrial processes typically focus on improving and more apparent to us. In our experience, this approach for reducing energy use and waste generation

  10. Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using

    E-Print Network [OSTI]

    Ponce, V. Miguel

    Combustion System Development for Medium-Sized Industrial Gas Turbines: Meeting Tight Emission Regulations while Using a Broad Range of Alternative Fuels Luke Cowell. Solar Turbines Abstract: Solar Turbines Incorporated is a leading manufacturer of industrial gas turbine packages for the power generation

  11. Department of Bioengineering Spring 2013 Next Generation Hygiene System

    E-Print Network [OSTI]

    Demirel, Melik C.

    -evaluation of design after consumer feedback Creation of consumer concepts for consumer testing that highlight. The new design resulted in overall positive feedback compared to negative feedback on industrial models. Objectives The next generation hygiene system aims to design and create a system which generates a sanitizer

  12. Supporting Creative Concept Generation by Engineering Students with Biomimetic Design

    E-Print Network [OSTI]

    Shu, Lily H.

    Supporting Creative Concept Generation by Engineering Students with Biomimetic Design Hyunmin the analogical transfer tools we developed affected engineering students in generating creative concepts. We of Mechanical and Industrial Engineering, University of Toronto 5 King's College Road, Toronto, ON, M5S 3G8

  13. Evaluation of Advanced PSA and Oxygen Combustion System for Industrial Furnace Applications

    E-Print Network [OSTI]

    Delano, M. A.; Lagree, D.; Kwan, Y.

    M. A. Delano Union Carbide Corp. Tarrytown, NY ABSTRACT EVALUATION OF ADVANCED PSA AND OXYGEN COMBUSTION SYSTEM FOR INDUSTRIAL FURNACE APPLICATIONS D. Lagree Union Carbide Corp. Tonawanda, NY The performance of a pilot scale advanced PSA... oxygen generation system and a low NO x oxygen burner was evaluated for industrial furnace applications. The PSA system employs a two-bed vacuum cycle design with a capacity of 1.3 TPD at 90% O 2 purity. The oxygen generated from the PSA system...

  14. Industrial Cogeneration Application

    E-Print Network [OSTI]

    Mozzo, M. A.

    recepts tax which is currently at 13.8%. These two bills will save thousands of dollars in this project alone. Additionally, other legislative activity is being proposed, such as exemption of cogeneration facilities from property tax. Such encouraging... was selected quickly for this pilot plant. The selected facility required steam year round for process as well as heat, averaging from about 8,000 lbs/hr to over 35,000 lbs/hr. This steam is generated in a boiler rated at 250 PSIG, but operated at 120 PSIG...

  15. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  16. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

  17. College of Engineering Industrial Engineering

    E-Print Network [OSTI]

    Dyer, Bill

    College of Engineering Industrial Engineering Core 2.0 Completion Checklist Industrial Engineering) 6 Research and Creative Experience R EIND 499R (I&ME 444 R and I&ME 445 R) Note: Courses completed Social Sciences; * EGEN 310 (ENGR 310), Multidisciplinary Engineering Design, may be substituted

  18. Creating Value Wood Products Industry

    E-Print Network [OSTI]

    Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all for quality information, research and education in forest products in Louisiana, recognized regionally

  19. Forschungsschwerpunkt S92 Industrial Geometry

    E-Print Network [OSTI]

    JĂĽttler, Bert

    Forschungsschwerpunkt S92 Industrial Geometry http://www.ig.jku.at Computational Geometry Robot Kinematics Computer Aided Geometric Design Image Processing INDUSTRIAL GEOMETRY Classical Geometry Computer unwanted branches of the implicitly defined curves. Moreover, it is required for many applications, e

  20. Energy Savings in Industrial Buildings

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems...

  1. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  2. Energy conservation guide for industrial processes

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

  3. UNDERGRADUATE DEGREES Industrial and Systems Engineering

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

  4. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01T23:59:59.000Z

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  5. CONSULTANT REPORT DISTRIBUTED GENERATION

    E-Print Network [OSTI]

    CONSULTANT REPORT DISTRIBUTED GENERATION INTEGRATION COST STUDY Analytical Framework energy development, or distributed generation, in California. In May 2012, Southern California Edison Southern California Edison's approach to evaluating distributed generation impacts, and to conduct

  6. The industrial ecology of the iron casting industry

    E-Print Network [OSTI]

    Jones, Alissa J. (Alissa Jean)

    2007-01-01T23:59:59.000Z

    Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

  7. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  8. Next Generation Reactors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Advances We are coordinating the Generation IV Nuclear Systems Initiative - an international effort to develop the next generation of nuclear power reactors. Skip...

  9. Concentrated Solar Power Generation.

    E-Print Network [OSTI]

    Jin, Zhilei

    2013-01-01T23:59:59.000Z

    ??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a… (more)

  10. Why do Particle Clouds Generate Electric Charges?

    E-Print Network [OSTI]

    T. Pähtz; H. J. Herrmann; T. Shinbrot

    2010-03-26T23:59:59.000Z

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug, and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, for it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. In this paper, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains, and we confirm the model's predictions using discrete element simulations and a tabletop granular experiment.

  11. Why do Particle Clouds Generate Electric Charges?

    E-Print Network [OSTI]

    T. Pähtz; H. J. Herrmann; T. Shinbrot

    2015-03-16T23:59:59.000Z

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

  12. The steam engine and industrialization

    E-Print Network [OSTI]

    Dugan, David

    2004-08-17T23:59:59.000Z

    Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

  13. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  14. Uncertainty, investment, and industry evolution

    E-Print Network [OSTI]

    Caballero, Ricardo J.

    1992-01-01T23:59:59.000Z

    We study the effects of aggregate and idiosyncratic uncertainty on the entry of firms, total investment, and prices in a competitive industry with irreversible investment. We first use standard dynamic programming methods ...

  15. Big Picture 19912012 other industry

    E-Print Network [OSTI]

    % Academic 49% Research 8% Consulting 11% Finance 12% other industry 20% Where are the ORC Ph.D. graduates Semiconductors Lincoln Vale NonAcademic Jobs Small Firms Big Firms ORC Alumni Startups Academic 49% Research 8

  16. Electrified Separation Processes in Industry

    E-Print Network [OSTI]

    Appleby, A. J.

    1983-01-01T23:59:59.000Z

    For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

  17. Industrial Mathematics and Inverse Problems

    E-Print Network [OSTI]

    Fulmek, Markus

    #12;The Industrial Mathematics Structure in Linz 5 #12;The Blast Furnace Process 6 #12;Aims": Looking for causes of an observed or desired effect! A.Tikhonov ( 1936), geophysical problems. F

  18. Outlook for Industrial Energy Benchmarking

    E-Print Network [OSTI]

    Hartley, Z.

    The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

  19. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    Brief 2013-9 January 2013 China’s Nuclear Industry Aftera significant impact on the future of China’s nuclear power.the importance of safety as China builds more nuclear power

  20. Industrial Plans for AEO2014

    U.S. Energy Information Administration (EIA) Indexed Site

    you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

  1. Industrial Use of Infrared Inspections

    E-Print Network [OSTI]

    Duch, A. A.

    1979-01-01T23:59:59.000Z

    Infrared is and has been an established technology in the military and aerospace fields. However, only relatively recently has this technology found a "use" in the industrial sector. Many reasons exist why the technology has not been used...

  2. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  3. CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

  4. Three Essays on Industrial Organization

    E-Print Network [OSTI]

    Lee, Yang Seung

    2008-12-18T23:59:59.000Z

    The dissertation discusses issues in the field of industrial organization. When the government provides better infrastructure to competing firms for innovation, private firms' R&D expenditures are affected. When the ...

  5. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2010/2011 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH)...................................................................................................1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  6. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2009/2010 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING (30 CREDITS)...............1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  7. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2013/2014 September..............................3 C. COURSE REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS............................4 E. DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

  8. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2011/2012 September).................1 REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (30).....................................................................................................2 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  9. FINLAND SOURCES 2007 -Forest industry production Authorities

    E-Print Network [OSTI]

    FINLAND SOURCES 2007 - Forest industry production Print Home Finland Government Authorities Local administration Federations, organizations Company outlooks Industry » Overview » Forest industry production » Turnover » Profit » Energy Year 2006 » Shipping Business services Infrastructure Economy Education

  10. Canada's Voluntary Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Wolf, C. A., Jr.

    1980-01-01T23:59:59.000Z

    Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

  11. Waste Management Trends in Texas Industrial Plants

    E-Print Network [OSTI]

    Smith, C. S.; Heffington, W. M.

    The Industrial Assessment Center at Texas A&M University has performed several waste and energy minimization surveys in small- and medium- sized industrial manufacturing plants in Texas. During these surveys, Industrial Assessment Center personnel...

  12. Energy Conservation Projects to Benefit the Railroad Industry

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2009-12-31T23:59:59.000Z

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

  13. Green Industrial Policy: Trade and Theory

    E-Print Network [OSTI]

    Karp, Larry; Stevenson, Megan

    2012-01-01T23:59:59.000Z

    Papers Year 2012 Paper 1126 Green Industrial Policy: Trade© 2012 by author(s). Green Industrial Policy: Trade andreality and the potential for green indus- trial policy. We

  14. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport,...

  15. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

  16. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf More Documents...

  17. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

  18. Rotation With Industry | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc...

  19. Grand Challenge Portfolio: Driving Innovations in Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

  20. Tax-Exempt Industrial Revenue Bonds (Kansas)

    Broader source: Energy.gov [DOE]

    Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial,...

  1. Borla Performance Industries, Inc. | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance...

  2. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Environmental Management (EM)

    State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

  3. Geothermal: Sponsored by OSTI -- Industrial Sector Technology...

    Office of Scientific and Technical Information (OSTI)

    Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

  4. Geothermal Energy Association Annual Industry Briefing: 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

  5. Energy Matters: Industrial Energy Efficiency | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy...

  6. Colorado State University Industrial Assessment Center Saves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    audit. | Photo courtesy of University of Missouri IAC. Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Help Students, Communities...

  7. Joint Capability Technology Demonstration (JCTD) Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

  8. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  9. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01T23:59:59.000Z

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  10. Emergence of the nuclear industry and associated crime. Master's thesis

    SciTech Connect (OSTI)

    Vaught, J.W.

    1991-08-01T23:59:59.000Z

    Nuclear energy, in weapons production and electrical power generation, is a technology that has endured public scrutiny since the late 1940s. Societal acceptance of this industry has been affected by controversy in the following areas: health effects of exposure to radiation, possible consequences resulting from accidents, and nuclear nonproliferation. The literature review begins in Chapter 2 by examining the changing public perceptions of nuclear energy over the last forty years. Support for the ideals and practices of the industry has often wavered, due to media representation of incidents, accidents, and potential catastrophic events. The second part of the chapter highlights the crimes associated with nuclear energy in a chronological order of concern by nuclear industry security specialists. Research has found certain types of crime to be more prevalent during particular eras than others. Crimes instigated by spies, peace activists, terrorists, and the insider (employee) are reviewed, with an emphasis on insider crime.

  11. Final Technical Report for University of Michigan Industrial Assessment Center

    SciTech Connect (OSTI)

    Atreya, Arvind

    2007-04-17T23:59:59.000Z

    The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.

  12. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL)

    1998-01-01T23:59:59.000Z

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  13. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  14. ENERGY GENERATION RESEARCH PIER Energy Generation Research

    E-Print Network [OSTI]

    ENERGY GENERATION RESEARCH PIER Energy Generation Research www.energy.ca.gov/research/ renewable/ November 2010 Sonoma County RESCO A Local Level Approach to Renewable Energy Portfolios. The Issue To address energy usage that contributes to climate change, California has enacted legislation to guide

  15. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  16. Generation to Generation: The Heart of Family Medicine

    E-Print Network [OSTI]

    Winter, Robin O

    2012-01-01T23:59:59.000Z

    Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

  17. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1997-01-01T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  18. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Hoyer, Kristin K. (Chicago, IL); Humenik, Keith E. (Columbia, MD)

    1995-01-01T23:59:59.000Z

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  19. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect (OSTI)

    Smith, S.A.; Moore, N.L.

    1987-02-01T23:59:59.000Z

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  20. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  1. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  2. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29T23:59:59.000Z

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  3. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  4. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

  5. Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via

    E-Print Network [OSTI]

    Li, Xiaodong

    results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

  6. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

    2013-11-01T23:59:59.000Z

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  7. Pollution Prevention and New Industrial Estates

    E-Print Network [OSTI]

    Heal, Kate

    1 Pollution Prevention and New Industrial Estates Chris Pittner Associate Director WSP 21 May 2012 POLLUTION PREVENTION AND NEW INDUSTRIAL ESTATES Pollution within Industrial Estates Legal Framework and Guidance Surface Water Management Project Examples #12;2 POLLUTION WITHIN INDUSTRIAL ESTATES Sources Poor

  8. Mechanical and Industrial Engineering John Stuart

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical and Industrial Engineering John Stuart Paul Washburn Co-Chairs MIE IAB Meeting #12;2Mechanical and Industrial Engineering Dean Tim Anderson #12;3Mechanical and Industrial Engineering Strategic vision for growing College Goal Method Current resources #12;4Mechanical and Industrial Engineering

  9. Faculty of Engineering Industrial and Manufacturing

    E-Print Network [OSTI]

    Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

  10. Industrial & Systems Engineering Areas of Engineering Interests

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

  11. What does an Industrial Engineer really do???

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    What does an Industrial Engineer really do??? #12;What you will learn · What Industrial Engineering is · Examples of Industrial Engineering (IE) activities · The advantages of an IE college degree #12;Engineering does that engineer do? Where? #12;Industrial Engineers Find a Better Way... · A better way to make

  12. Agricultural productivity and industrialization: A reformulation

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Agricultural productivity and industrialization: A reformulation Debasis Mondal Sept 20, 2014 Abstract In this paper we examine the role of agricultural productivity on the process of industrialization industrialization by releasing labor from agriculture to industry. In fact, when agriculture is highly productive

  13. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01T23:59:59.000Z

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  14. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  15. MIT and Life Sciences & Health Care Industries MIT Industry Brief

    E-Print Network [OSTI]

    Polz, Martin

    ,Lasers,Spectroscopy · Informatics,Computation,Analysis,Modeling · LifestyleIssues · Medical-forward care; multiple blast and ballistic threats--materials damage, human #12;MIT and Life Sciences & Health Care Industries injury mechanisms, lightweight protective systems; hazardous substances sensing

  16. MIT and the Building/Construction Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    devoted to improving the ability of companies to efficiently customize products and services in various in these areas. Please note that this is not a comprehensive summary of research being conducted at MIT in the topic areas listed above. MIT's Industrial Liaison Program (ILP) can bring the intellectual power of MIT

  17. Industry turns its attention south

    SciTech Connect (OSTI)

    Marhefka, D. [Russian Petroleum Investor, Moscow (Russian Federation)

    1997-08-01T23:59:59.000Z

    The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

  18. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    As part of its ACHEMA coverage, Hydrocarbon Processing contacted executives of petrochemical/chemical industry trade associations in 11 countries, seeking views of on the state of the industry. These reports thus provide an added dimension to feature articles in this issue that focus on petrochemical/chemical-product supply/demand trends, economic forecasts, etc. The nations represented here were chosen for commentary because collectively they contain most of the world's petrochemical capacity. Space limitations prohibit the publishing of commentaries from all countries that have petrochemical/chemical capacity. The countries are: Belgium, China, France, Germany, India, Italy, Japan, Korea, The Netherlands, United Kingdom, and the United States.

  19. NICE3: Industrial Refrigeration System

    SciTech Connect (OSTI)

    Simon, P.

    1999-09-29T23:59:59.000Z

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  20. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  1. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    SciTech Connect (OSTI)

    Not Available

    2002-10-01T23:59:59.000Z

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  2. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  3. Mesaba next-generation IGCC plant

    SciTech Connect (OSTI)

    NONE

    2006-01-01T23:59:59.000Z

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  4. industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin-

    E-Print Network [OSTI]

    Rohs, Remo

    70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin to help companies compete in today's global marketplace. The Industrial and Systems Engineer's task Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial and Systems

  5. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering

    E-Print Network [OSTI]

    Glowinski, Roland

    | Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hire a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics to the US Bureau of Labor Statistics, the 2012 average annual wage for industrial engineers is $82

  6. Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken, and Matthias Phl

    E-Print Network [OSTI]

    Guo, Zaoyang

    industrial revolution" and their component companies. From David Landes's classic study, The Unbound of the industries of the second industrial revolution has been virtually ignored in this scholarship to date1 Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken

  7. Environmental Effects of Industrial Farming

    E-Print Network [OSTI]

    Budker, Dmitry

    ·Water contamination ·Soil contamination ·Solutions #12;US Meat Industry Animals (2009) kg produced (2009 contamination #12;Water contamination ·~9x108 kg of dry waste produced in the US per day day in 2001 #12;Water!" #12;Air contamination ·220kg of CH4 produced in the lifetime of a cow "Smells like money!" #12;Air

  8. working with industry Engineering and

    E-Print Network [OSTI]

    Painter, Kevin

    of interests including: · laser physics · semiconductor optoelectronics · photonics in manufacturing · solar · micromechanics and condition monitoring · renewable energy modelling · carbon capture and storage Our institute to applied systems. We have a wide ranging programme of current work with many industrial companies in key

  9. Certificate Industrial and Systems Engineering

    E-Print Network [OSTI]

    Su, Xiao

    Six Sigma Certificate Industrial and Systems Engineering San José State University September, 2008 #12;1 Lean Enterprise and Six Sigma Lean Enterprise about transforming the old mass production-to-cradle design, incorporating design for manufacturability, reproducibility, product lifecycle, etc. Six Sigma

  10. Policies on Japan's Space Industry

    E-Print Network [OSTI]

    as a strategic industry Practical space use in National Security Diplomacy ...etc Policy Administrative Structure on the Basic Space Law legislated in 2008. 1. The government sets space policy as a national strategy utilization environment Develop new markets with small size satellites and rockets Promote the serialization

  11. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Estes, C. B.

    1982-01-01T23:59:59.000Z

    In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often...

  12. Optimization of Industrial Refrigeration Systems

    E-Print Network [OSTI]

    Flack, P. J.; Sharp, M. K.; Case, M. E.; Gregory, R. W.; Case, P. L.

    A computer program designed to optimize the size of an evaporative condenser in a two-stage industrial refrigeration plant was created. The program sizes both the high-stage and low-stage compressors and an evaporative condenser. Once the initial...

  13. Environment Canada Industrial Programs Section

    E-Print Network [OSTI]

    #12;Environment Canada Industrial Programs Section Environmental Protection Guide for Best Management Practices for Process Water Management at Fish Processing Plants in British Columbia h~ NovaTec Consultants Inc. Environmental Engineers and Scientists September 1994 Project No: 1043.16 #12;DISCLAIMER

  14. Shale Play Industry Transportation Challenges,

    E-Print Network [OSTI]

    Minnesota, University of

    ­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

  15. NPDES Individual Permit for Industrial Facilities - Mail Merge...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WATER DISCHARGES ASSOCIATED WITH INDUSTRIAL ACTIVITY FROM FABRICATED METAL PRODUCTS INDUSTRY......44 I. CONTENTS OF PLAN. ......

  16. Photovoltaic industry progress through 1984

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.

    1985-04-01T23:59:59.000Z

    The growth of the US photovoltaics (PV) industry over the past decade has been impressive. First designed to provide power for satellites using high-cost production techniques, PV is now the economical choice in many remote terrestrial applications. The remarkable growth of PV in terms of quality of cells and modules, production techniques, and system design, was initiated by a cooperative effort of the US Government and the domestic PV manufacturers. European and Japanese firms entered the PV industry later, but are also growing rapidy. The Europeans continue to supply PV systems for village electrification and water pumping to many Third World countries. The Japanese have been developing the amorphous silicon (A-Si) technology by expanding its use in consumer goods. The world PV industry saw dramatic changes in industry ownership and in the emphasis on developing new and improved technology during 1984. The objective of this report is to present information on the developments of the world PV industry and focuses on developments occurring in 1984. Information is presented on a regional basis (US, Europe, Japan, other) to avoid disclosing company-confidential data. All information was gleaned from several sources, including a review of the technical literature and direct contacts with PV manufacturers. Prior to publishing the regional totals, all numbers were compared with those of other sources. The information contained in this report is prepared for use by the Department of Energy for their use in long-term R and D planning. However, this information should also be of interest by PV manufacturers and to those who may be contemplating entering the PV market. PV shipments for 1984, government supports for PV, and various PV market sectors are discussed.

  17. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28T23:59:59.000Z

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  18. Potential industrial applications for composite phase-change materials as thermal energy storage media

    SciTech Connect (OSTI)

    Spanner, G.E.; Wilfert, G.L.

    1989-07-01T23:59:59.000Z

    Considerable effort has been spent by the US Department of Energy and its contractors over the last few years to develop composite phase-change materials (CPCMs) for thermal energy storage (TES). This patented TES medium consists of a phase-change material (typically a salt or metal alloy) that is retained within the porous structure of a supporting material (typically a ceramic). The objectives of this study were to (1) introduce CPCMs to industries that may not otherwise be aware of them, (2) identify potentially attractive applications for CPCM in industry, (3) determine technical requirements that will affect the design of CPCM's for specific applications, and (4) generate interest among industrial firms for employing CPCM TES in their processes. The approach in this study was to examine a wide variety of industries using a series of screens to select those industries that would be most likely to adopt CPCM TES in their processes. The screens used in this study were process temperature, presence of time-varying energy flows, energy intensity of the industry, and economic growth prospects over the next 5 years. After identifying industries that passed all of the screens, representatives of each industry were interviewed by telephone to introduce them to CPCM TES, assess technical requirements for CPCM TES in their industry, and determine their interest in pursuing applications for CPCM TES. 11 refs., 4 tabs.

  19. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  20. BIOCHEMICALS FOR THE PRINTING INDUSTRY THE CARBOHYDRATE ECONOMY INDUSTRIAL PRODUCTS FROM THE SOILINTRODUCTION

    E-Print Network [OSTI]

    unknown authors

    The printing industry is one of the largest and most geographically diverse manufacturing industries in the U.S. In 1996, the industry consisted of more than 50,000 establishments

  1. Computational mass transfer moduling of flow through a photocatalytic oxygen generator

    E-Print Network [OSTI]

    Köksal, Erin (Erin Sevim)

    2008-01-01T23:59:59.000Z

    A self-contained, portable oxygen generator would be extraordinarily useful across a broad spectrum of industries. Both safety and energy-efficiency could be enhanced tremendously in fields such as coal mining, commercial ...

  2. On-Site Diesel Generation- How You Can Reduce Your Energy Costs

    E-Print Network [OSTI]

    Charles, D.

    Interruptible power rates, Utility special rate negotiations, and the emergence of a spot electrical power market all can lead to lower industrial energy costs. The installation of low cost on-site diesel powered generation, or the proposed...

  3. The changing structure of the electric power industry: Selected issues, 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    More than 3,000 electric utilities in the United States provide electricity to sustain the Nation`s economic growth and promote the well-being of its inhabitants. At the end of 1996, the net generating capability of the electric power industry stood at more than 776,000 megawatts. Sales to ultimate consumers in 1996 exceeded 3.1 trillion kilowatthours at a total cost of more than $210 billion. In addition, the industry added over 9 million new customers during the period from 1990 through 1996. The above statistics provide an indication of the size of the electric power industry. Propelled by events of the recent past, the industry is currently in the midst of changing from a vertically integrated and regulated monopoly to a functionally unbundled industry with a competitive market for power generation. Advances in power generation technology, perceived inefficiencies in the industry, large variations in regional electricity prices, and the trend to competitive markets in other regulated industries have all contributed to the transition. Industry changes brought on by this movement are ongoing, and the industry will remain in a transitional state for the next few years or more. During the transition, many issues are being examined, evaluated, and debated. This report focuses on three of them: how wholesale and retail prices have changed since 1990; the power and ability of independent system operators (ISOs) to provide transmission services on a nondiscriminatory basis; and how issues that affect consumer choice, including stranded costs and the determination of retail prices, may be handled either by the US Congress or by State legislatures.

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Schleich, J. , 2004: Do energy audits help reduce barriersof organizational barriers. Energy audit and managementa; US EPA, n.d. ). Energy Audits and Management Systems.

  5. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    sized, high efficiency electric motors and insulation,by improving the efficiency of the electric motor throughelectric motors and motor-driven systems; high efficiency

  6. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Emission reduction at Engen refinery in South Durban. Paperenergy consumed in refineries and other energy conversionCement Membrane separation Refinery gas Natural gas Bio-

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    2002: Profiles in SMEs and SME Issues, 1990-2000. Asia-Energy management practices in SME- Case study of bakery incountries. Integrating SME development strategy into the

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of world production and typically uses 60–70% less energy (world steel production, finding potential CO 2 emission reductions due to energy

  9. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    energy efficiency, fuel mix, carbon intensity of the fuelmix, and electricity carbon intensity. Energy Efficiency.mix, energy and carbon intensities of fuel and electricity,

  10. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    14 pp. IEA, 2006c: World Energy Outlook 2006. Internationalan extrapolation of its World Energy Outlook 2005 ReferenceCO 2 gases The IEA’s World Energy Outlook 2006 (IEA, 2006c)

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    about 1.2% of world energy consumption and is responsible7.2: Design energy consumption trends in world ammonia

  12. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    July, 2005. Price, L. , J. Sinton, E. Worrell, D. Phylipsen,L. , S. de la Rue du Can, J. Sinton, E. Worrell, N. Zhou, J.April, 2002), pp. 105-109. Sinton, J.E. and D.G. Fridley,

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of environmentally sound technology, SMEs may not have theSMEs. Energy efficiency and other GHG mitiga- tion technologies

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Air bottoming cycle Black liquor gasification combined cycleCEPI, 2001), and that use continues to grow. Black liquorgasification: Black liquor is the residue from chemical

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    communication to the UN Framework Convention on Climate Change.Communications - Report by the Secretariat. UN Framework Convention on Climate Change.

  16. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    competitiveness in the EU emissions trading scheme: Optionson NO x and CO 2 emissions trading. Emissions Trader -Economy. DTI, 2005: EU Emissions trading scheme: Benchmark

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    and fuel used in the primary smelter. PFC emission includedto current state-of-the art smelter electricity use and 50%commonly been connected to smelter retrofit, conversion, or

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    sector’s share of global primary energy use declined fromused 91 EJ of primary energy, 40% of the global total of 227Global and sectoral data on final energy use, primary energy

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Energy efficiency and energy awareness in Botswana; ESI,attitudes towards and awareness of energy efficiency; •limited awareness of the availability of energy-saving and

  20. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    both emis- sions from incineration and the demand for fossilyr (Okazaki et al. , 2004). Incineration of wastes (e.g. ,by reducing emissions from incineration and the demand for

  1. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    2003: The history of waste energy recovery in Germany sinceincreasing recovery of waste energy and process gases, andgeneration or non-energy uses, waste-derived fuels,

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    driven systems; high efficiency boilers and process heaters;aims to develop boilers with an efficiency of 94%. However,much lower. Efficiency measures exist for both boilers and

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    2003: Jupiter oxygen combustion technology of coal and otherOxygen Furnace Gas ME = Main Exhaust WH = Waste Heat Figure 7.1: CO 2 reduction potential of eight energy saving technologies

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    A.T, 2001: Prospects for biogas harvesting at Sungunn WongseRenewables Biomass, Biogas, PV, Wind turbines, Hydropowermill, fluidized bed kiln Biogas, Biomass Cullet preheating

  5. Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependentProcedures29,503default

  6. Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name

  7. Industrial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Nameindustrial Sign In About |

  8. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Eidt, B. , 2004: Cogeneration opportunities - Global EnergyP.R.K. , 2003: Sugar cogeneration for power challenges andnewsletter in sugar and cogeneration. STAPPA/ALAPCO, 1999:

  9. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06T23:59:59.000Z

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  10. Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry-Director, WI Electric Machines and Power Electronics Consortium, University of Wisconsin-Madison Challenge: Lee

  11. Energy efficiency programs and policies in the industrial sector in industrialized countries

    E-Print Network [OSTI]

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-01-01T23:59:59.000Z

    energy efficiency. Among industries included are cement, pulp and paper and plasticenergy efficiency in industry. Achievements: Production standards have been set for the engineering, plastics,

  12. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  13. Creating a Cognitive Agent in a Virtual World: Planning, Navigation, and Natural Language Generation

    E-Print Network [OSTI]

    Hewlett, William

    2013-01-01T23:59:59.000Z

    Generation . . . . . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . .Language Generation . . . . . . . . . . . . . . . . . . . .

  14. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  15. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01T23:59:59.000Z

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  16. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  17. Benteler Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (Redirected from ECOWASBennington,Vermont:Benteler Industries

  18. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Floating Offshore Wind Technology Jeff King Generating Resources Advisory Committee May 28, 2014 1 resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why technology transfer from offshore oil & gas industry On-shore fabrication & assembly (assembled unit towed

  19. Generating Tests from UML Specifications Jeff Offutt and Aynur Abdurazik ?

    E-Print Network [OSTI]

    Offutt, Jeff

    Generating Tests from UML Specifications Jeff Offutt and Aynur Abdurazik ? George Mason University, Fairfax VA 22030, USA Abstract. Although most industry testing of complex software is con­ ducted at the system level, most formal research has focused on the unit level. As a result, most system level testing

  20. Power Generation Subprogram status report, 1988-1989

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The status of individual contracts are described for projects within GRI's Power Generation Subprogram. The funding rationale, goals and objectives, accomplishments, and strategy are described for projects in cogeneration and power systems, prime mover and component development, and natural gas vehicles research. These project areas cut across the residential, commercial, industrial, transportation, and electric utility sectors.

  1. Representation and Mimesis in Generative Art: Creating Fifty Sisters

    E-Print Network [OSTI]

    McCormack, Jon

    for the Ars Electronica Museum in Linz. The work consists of fifty 1m 1m images of computer-synthesized plant-forms, algorithmically `grown' from computer code using artificial evolution and generative grammars. Each plant petrochemical industry and Middle East oil production from the mid­1940s until the oil crisis of the 1970s

  2. Biomonitoring for the photovoltaics industry

    SciTech Connect (OSTI)

    Bernholc, N.M.; Moskowitz, P.D.

    1995-07-01T23:59:59.000Z

    Biomonitoring often is used as a method for estimating the dose to an individual. Therefore, a parameter of measurement, or biomarkers must be identified. The purpose of this paper is to give an overview of biomonitoring protocols for metals used in the photovoltaics industry. Special attention is given to areas that often are skimmed over, to gain insights into some of the problems that may arise when these tasks are carried out. Biological monitoring can be used to determine current human exposures to chemicals, as well as to detect past exposures, and the effects that these exposures may have on human health. It is used in conjunction with environmental monitoring to describe more completely worker`s exposures to, and absorption of, chemicals in the workplace. Biological specimens (e.g., blood, hair or urine) are analyzed for chemical agents, metabolites, or for some specific effect on the person (Lowry 1994). Biomonitoring can assess a workers exposure to industrial chemicals by all routes including skin absorption and ingestion. Although the methodology still is in its infancy, in cases where the procedures have been developed, it can be an invaluable component of an ongoing program of industrial hygiene monitoring. Like any technology, there are limitations to its effectiveness because of a lack of knowledge, contamination of specimens, and the introduction of errors.

  3. Accrediting industrial safety training programs

    SciTech Connect (OSTI)

    Beitel, L.

    1992-12-31T23:59:59.000Z

    There are job-specific training requirements established by regulations that Impose stringent training requirements on a contractor, for example, the Occupational Safety & Health Act (OSHA). Failure to comply with OSHA training requirements can result in severe penalties being levied against a company. Although an accredited training program is expensive, it is a possible solution for minimizing risks associated with job-specific training requirements for employees. Operating DOE contractors direct approximately 10 percent of the operating funds toward training activities. Training needs for contractors span a broad range, from requirements awareness training for managers, to general training required on a one-time basis for all employees, to highly specialized training programs for employees involved In clean-up operations at hazardous waste sites. With this kind of an investment in training, it is logical to maximize the most return on an investment of training funds and to limit exposure to liability suits whenever possible. This presentation will provide an overview of accredited industrial safety programs. The criteria for accredited industrial safety programs will be defined. The question of whether accredited training programs are necessary will be examined. Finally, advantages and disadvantages will be identified for accrediting industrial safety training programs.

  4. Removal of Heavy Metals from Industrial Effluent Using Bacteria

    E-Print Network [OSTI]

    Manisha N; Dinesh Sharma; Arun Kumar

    Industrial development results in the generation of industrial effluents, and if untreated results in water, sediment and soil pollution. (Fakayode and Onianwa, 2002 ? Fakayode, 2005). Industrial wastes and emission contain toxic and hazardous substances, most of which are detrimental to human health (Jimena et al.,2008 ? Ogunfowokan et al.,2005 ? Rajaram et al.,2008). The key pollutants include heavy metals, chemical wastes and oil spills etc. Heavy metal resistant bacteria have significant role in bioremediation of heavy metals in wastewater. The objective of this work is to study the role of bacteria in removing the heavy metals present in the industrial effluent.Five effluent samples out of nine were selected for this study due to high content of heavy metals. The heavy metals Hg and Cu were removed by Bacillus sp. The average Hg reduction was 45 % and Cu reduction was recorded as 62%. The heavy metals Cd, As and Co were removed by Pseudomonas sp. The average Cd reduction was 56%, average As reduction was 34 % and average Co reduction was recorded as 53%. The heavy metals Cd and Cu were removed by Staphylococcus sp. The average Cd reduction was 44 % and average Cu reduction was recorded as 34 %.

  5. Solar synthesis of advanced materials: A solar industrial program initiative

    SciTech Connect (OSTI)

    Lewandowski, A.

    1992-06-01T23:59:59.000Z

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  6. Perspectives on the future of the electric utility industry

    SciTech Connect (OSTI)

    Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

    1994-04-01T23:59:59.000Z

    This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

  7. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software  http://eln.lbl.gov/sne_traffic_gen.html 

  8. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01T23:59:59.000Z

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  9. Cyclical dynamics of airline industry earnings

    E-Print Network [OSTI]

    Pierson, Kawika

    Aggregate airline industry earnings have exhibited large-amplitude cyclical behavior since deregulation in 1978. To explore the causes of these cycles we develop a behavioral dynamic model of the airline industry with ...

  10. Partnering with Industry to Develop Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Breakout Session IA—Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Partnering with Industry to Develop Advanced Biofuels David C. Carroll, President and Chief Executive Officer, Gas Technology Institute

  11. Energy Programs of the Texas Industrial Commission

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01T23:59:59.000Z

    The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

  12. Setting the Standard for Industrial Energy Efficiency

    E-Print Network [OSTI]

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2008-01-01T23:59:59.000Z

    Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

  13. New or Expanding Industries Tax Credit (Montana)

    Broader source: Energy.gov [DOE]

    Under the New or Expanding Industries Tax Credit, property used by certain new or expanding industries is eligible for reduced taxable valuation (up to 50% of their taxable value for the first 5...

  14. The State of the Industrial Compressor Market

    E-Print Network [OSTI]

    Perry, W.

    The industrial compressor industry in the United States has been operating in a textbook example of a mature market. No truly new compressor technology has been introduced in the past thirty years and there is none on the horizon. Competitive...

  15. A New Approach to Industrial Air Conditioning

    E-Print Network [OSTI]

    Gravenstreter, T.

    1982-01-01T23:59:59.000Z

    -dryer Systems Division, has marketed industrial drying machinery. These heat reactivated dryers can handle latent loads in industrial air conditioning systems. Through waste heat conservation, air conditioning costs can be reduced 25 to 50%, with applications...

  16. Qualified Target Industry Tax Refund (Florida)

    Broader source: Energy.gov [DOE]

    The Qualified Target Industry Tax Refund incentive is available for companies that create high wage jobs in targeted high value-added industries. The incentive refunds up to $3,000 per new full...

  17. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    industry’s share of global primary energy use declined toused 91 EJ of primary energy, 40% of the global total of 227eq/yr. Global and sectoral data on final energy use, primary

  18. Practical Procedures for Auditing Industrial Boiler Plants

    E-Print Network [OSTI]

    O'Neil, J. P.

    1980-01-01T23:59:59.000Z

    Industrial boiler plants are an area of opportunity in virtually every industry to save energy and reduce costs by using relatively simple, inexpensive auditing procedures. An energy audit consists of inspection, measurement, analysis...

  19. General overview of the Nigerian construction industry

    E-Print Network [OSTI]

    Dantata, Sanusi (Sanusi A.)

    2008-01-01T23:59:59.000Z

    The purpose of this study is to investigate and provide a general overview of the Nigerian construction industry, its role in the national economy, the main participants in the industry, the problems that they face, and ...

  20. Next-generation transcriptome assembly

    E-Print Network [OSTI]

    Martin, Jeffrey A.

    2012-01-01T23:59:59.000Z

    technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

  1. Industrial Gases as a Vehicle for Competitiveness

    E-Print Network [OSTI]

    Dale, J. R.

    the diversity and options available to enable cost savings and environmentally driven process improvements. Industrial gases have come of age during the last fifteen years. Engineers and scientists have looked beyond the paradigms of their operations...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

  2. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  3. Green Industrial Policy: Trade and Theory

    E-Print Network [OSTI]

    Karp, Larry; Stevenson, Megan

    2012-01-01T23:59:59.000Z

    and solar panels, and the renewables industry employs well over a million workers (NYT Bradsher, The opportunity cost

  4. Industrial Energy Management: Doing More with Less

    E-Print Network [OSTI]

    Sheppard, J.; Tisot, A.

    2006-01-01T23:59:59.000Z

    during the course of business — with energy-intensive operations such as aluminum and chemical processing plants experiencing energy costs between five and 10 times higher than industry averages (Source: Department of Energy, Office of Industrial... INDUSTRIAL ENERGY MANAGEMENT: DOING MORE WITH LESS Jason Sheppard, Industrial Market Segment Manager Anthony Tisot, Communications Manager Power Monitoring and Control SCHNEIDER ELECTRIC Victoria, BC, Canada ABSTRACT The cost of doing...

  5. Designing Industrial DSM Programs that Work

    E-Print Network [OSTI]

    Nadel, S. M.; Jordan, J. A.

    . Industrial DSM programs are generally among the least expensive types of DSM programs. A 1990 review (Nadel) of over 200 commercial and industrial DSM programs found that motor rebate and other industrial programs had the lowest cost to the utility... Electric Smart Money for Business Program. Wisconsin Electric's (WEPCO) C&I Smart Money for Business program is a combination custom and prescriptive program offering commercial and industrial customers zero to-low interest loans or cash rebates...

  6. UW Computer Science & Engineering Industry Affiliates Program

    E-Print Network [OSTI]

    Borenstein, Elhanan

    UW Computer Science & Engineering Industry Affiliates Program 2013-14 Contributions for the CSE Industry Affiliates Program are to be used to further the Computer Science & Engineering program-Benton Industrial Affiliates Program University of Washington Computer Science & Engineering Box 352350 Seattle, WA

  7. Montana State University 1 Industrial Engineering

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Industrial Engineering The mission of the undergraduate program in Industrial Engineering (IE) is to produce graduates well grounded in both classical and current industrial engineering knowledge and skills consistent with the land-grant mission of MSU. Graduates

  8. UW Computer Science & Engineering Industrial Affiliates Program

    E-Print Network [OSTI]

    Anderson, Richard

    UW Computer Science & Engineering Industrial Affiliates Program 2011-12 Contributions for the CSE Industrial Affiliates Program are to be used to further the Computer Science & Engineering program with this completed form to: Kay Beck-Benton Industrial Affiliates Program University of Washington Computer Science

  9. Industrial & Systems Engineering University of Washington

    E-Print Network [OSTI]

    Anderson, Richard

    Industrial & Systems Engineering University of Washington Linda Ng Boyle, Ph.D. Associate Professor linda@u.washington.edu #12;Agenda · What is Industrial & Systems Engineering? · Where do Industrial Engineers get jobs? · What classes would you take in ISE? · Where do UW graduates with ISE degrees

  10. FSRG Monographs The Cranberry Industry and

    E-Print Network [OSTI]

    Radeloff, Volker C.

    FSRG Monographs The Cranberry Industry and Ocean Spray Cooperative: Lessons in Cooperative Research Group #12;F S R G M o n o g r a p h s The Cranberry Industry and Ocean Spray Cooperative: Lessons OF THE U.S. CRANBERRY INDUSTRY 2 Early History 2 The Beginning of Cranberry Processing 3 The 1959 Cancer

  11. The Electricity Industry In Spain Edward Kahn

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-032 The Electricity Industry In Spain Edward Kahn August 1995 This paper is part of the working-5180 www.ucei.berkeley.edu/ucei #12;1 The Electricity Industry In Spain Edward Kahn Lawrence Berkeley the current structure of the electricity industry in Spain and recent changes to its legal and regulatory

  12. Sustainability the forest and paper industry

    E-Print Network [OSTI]

    In Tune with the Environment The Forest and Paper Industry's Energy Profile 2 3 5 7 9 12 #12Sustainability the forest and paper industry ­ on its way to sustainability #12;Contents Introduction The Forest and Paper Industry's Economic Profile A Key Social Actor Sustainable Forestry Practices

  13. Sustainability the forest and paper industry

    E-Print Network [OSTI]

    Sustainable Forestry Practices In Tune with the Environment The Forest and Paper Industry's Energy Profile 2 3Sustainability the forest and paper industry ­ on its way to sustainability http://www.icfpa.org/_documents/ICFPAStatement1.pdf #12;Contents Introduction The Forest and Paper Industry's Economic Profile A Key Social Actor

  14. Missouri Industrial Assessment Center College of Engineering

    E-Print Network [OSTI]

    Noble, James S.

    , education, outreach and industrial energy audit. The audit is completely free, with summary recommendationMissouri Industrial Assessment Center College of Engineering University of Missouri-Columbia #12;Mo Department of Energy's requirement, the ultimate goal of Missouri Industrial Assessment Center is to be "the

  15. EASE for Industrial Excellence in Software

    E-Print Network [OSTI]

    and fail in another, the research project focuses on viewing agile software develop- ment from different. Furthermore, it will provide a basis for defining and measuring agility in software industry, says SamirehEASE for Industrial Excellence in Software Activity Report 2010 for Industry Excellence Center

  16. Industrial Robotics Prof. Alessandro De Luca

    E-Print Network [OSTI]

    De Luca, Alessandro

    Robotics 1 Industrial Robotics Prof. Alessandro De Luca Robotics 1 1 #12;What is a robot? ! industrial definition (RIA = Robotic Institute of America) re-programmable multi-functional manipulator;Evolution toward industrial robots ! with respect to the ancestors ! flexibility of use ! adaptability

  17. Pulp & Paper Industry- A Strategic Energy Review

    E-Print Network [OSTI]

    Stapley, C. E.

    The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

  18. Building a State Industrial Energy Efficiency Network

    E-Print Network [OSTI]

    Ferland, K.

    2005-01-01T23:59:59.000Z

    Industries of the Future brings the tools and resources of the Industrial Technology Program of the Department of Energy to the state level. In addition, with the guidance of an industry-led advisory board, the program has developed conferences and forums...

  19. Second generation PFB for advanced power generation

    SciTech Connect (OSTI)

    Robertson, A.; Van Hook, J.

    1995-11-01T23:59:59.000Z

    Research is being conducted under a United States Department of Energy (USDOE) contract to develop a new type of coal-fueled plant for electric power generation. This new type of plant-called an advanced or second-generation pressurized fluidized bed combustion (APFBC) plant-offers the promise of 45-percent efficiency (HHV), with emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. This paper summarizes the pilot plant R&D work being conducted to develop this new type of plant. Although pilot plant testing is still underway, preliminary estimates indicate the commercial plant Will perform better than originally envisioned. Efficiencies greater than 46 percent are now being predicted.

  20. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31T23:59:59.000Z

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  1. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  2. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15T23:59:59.000Z

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  3. features Utility Generator

    E-Print Network [OSTI]

    Chang, Shih-Fu

    #12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

  4. Event generator overview

    SciTech Connect (OSTI)

    Pang, Y.

    1997-12-01T23:59:59.000Z

    Due to their ability to provide detailed and quantitative predictions, the event generators have become an important part of studying relativistic heavy ion physics and of designing future experiments. In this talk, the author will briefly summarize recent progress in developing event generators for the relativistic heavy ion collisions.

  5. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19T23:59:59.000Z

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  6. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03T23:59:59.000Z

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  7. Dynamic behavior analysis for a six axis industrial machining robot

    E-Print Network [OSTI]

    Bisu, Claudiu-Florinel; Gérard, Alain; K'Nevez, Jean-Yves

    2012-01-01T23:59:59.000Z

    The six axis robots are widely used in automotive industry for their good repeatability (as defined in the ISO92983) (painting, welding, mastic deposition, handling etc.). In the aerospace industry, robot starts to be used for complex applications such as drilling, riveting, fiber placement, NDT, etc. Given the positioning performance of serial robots, precision applications require usually external measurement device with complexes calibration procedure in order to reach the precision needed. New applications in the machining field of composite material (aerospace, naval, or wind turbine for example) intend to use off line programming of serial robot without the use of calibration or external measurement device. For those applications, the position, orientation and path trajectory precision of the tool center point of the robot are needed to generate the machining operation. This article presents the different conditions that currently limit the development of robots in robotic machining applications. We ana...

  8. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  9. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01T23:59:59.000Z

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  10. MECHANICAL AND INDUSTRIAL ENGINEERING INDUSTRIAL ADVISORY BOARD WEDNESDAY, APRIL 23, 2014

    E-Print Network [OSTI]

    Mountziaris, T. J.

    MECHANICAL AND INDUSTRIAL ENGINEERING INDUSTRIAL ADVISORY BOARD WEDNESDAY, APRIL 23, 2014 MEETING AGENDA MECHANICAL AND INDUSTRIAL ENGINEERING MIE CONFERENCE ROOM (ELAB) UNIVERSITY OF MASSACHUSETTS AMHERST, MA 9:00 a.m. State of the MIE Industrial Advisory Board Dave Anderson & · Minutes from October

  11. IT Revolutions in the Industry: From the Command Economy to the eNetworked Industrial Ecosystem

    E-Print Network [OSTI]

    Ulieru, Mihaela

    IT ­ Revolutions in the Industry: From the Command Economy to the eNetworked Industrial Ecosystem of the traditional hierarchy ­ as backbone of last Century's Industrial Revolution - towards the eNetworked Industrial Ecosystem ­ as backbone for this Century's on-going IT-Revolution. Socio-cultural and economic

  12. Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization

    E-Print Network [OSTI]

    Boyer, Edmond

    Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization and establish a plausible link between consumption structure evolutions and industrial revolutions. In particular, we show that an industrial revolution starts with a "smithian growth process", which is demand

  13. 7-114 Commercial/Industrial Societies Chapter 7. COMMERCIAL/INDUSTRIAL SOCIETIES

    E-Print Network [OSTI]

    Richerson, Peter J.

    in production technol- ogy associated with the Industrial Revolution, beginning around 1800. Others, typically from 1500 onwards and that the Industrial Revolution, as impressive at it is in some ways, is a natural7-114 Commercial/Industrial Societies Chapter 7. COMMERCIAL/INDUSTRIAL SOCIETIES I. Introduction A

  14. Local Option- Industrial Facilities and Development Bonds (Utah)

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  15. Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce...

    Office of Environmental Management (EM)

    Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce Carlsbad Industrial Safety and Health PIA, Carlsbad...

  16. Pharmaceutical Industry Sponsorship and Research Outcome and Quality: Systematic Review

    E-Print Network [OSTI]

    Lexchin, Joel; Bero, Lisa A. Ph.D.; Djulbegovic, Benjamin; Clark, Otavio

    2003-01-01T23:59:59.000Z

    D. Impact of pharmaceutical industry funding of clinicalPapers Pharmaceutical industry sponsorship and researchstudies by the pharmaceutical industry is associated with

  17. Vertical Integration and Market Entry in the Generic Pharmaceutical Industry

    E-Print Network [OSTI]

    Kubo, Kensuke

    2011-01-01T23:59:59.000Z

    in the Generic Pharmaceutical Industry . 2.2.1 Marketingin the Generic Pharmaceutical Industry 3.4 EconometricIntegration in the Generic Pharmaceutical Industry 2.1

  18. Spirits of Capitalism: Explaining Industrial Variation in South Asia

    E-Print Network [OSTI]

    Naseemullah, Adnan

    2010-01-01T23:59:59.000Z

    The Indian Pharmaceutical Industry Since Independence.and India’s Pharmaceutical Industry,” Economic & PoliticalWTO and India’s Pharmaceuticals Industry (New Delhi: Oxford

  19. Cooling, Heating, and Power for Industry: A Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP...

  20. Environmental Protection- Industrial Compliance (Newfoundland and Labrador, Canada)

    Broader source: Energy.gov [DOE]

    The Industrial Compliance Section develops and administers Certificates of Approval for the Construction and/or Operation of various industrial facilities. Industries with air emissions and/or...

  1. Department of Energy Wind Vision: An Industry Preview | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Wind Vision: An Industry Preview Department of Energy Wind Vision: An Industry Preview The "Department of Energy Wind Vision: An Industry Preview,"...

  2. Save Energy Now for Maryland Industry Project Fact Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland Industry Project Fact Sheet More Documents & Publications Reducing Industrial Energy Intensity in the Southeast Project Fact Sheet Idaho Save Energy Now - Industries of...

  3. ITP Petroleum Refining: Profile of the Petroleum Refining Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Profile of the Petroleum Refining Industry in California: California Industries of the Future Program ITP Petroleum Refining: Profile of the Petroleum Refining Industry in...

  4. Climate Change, the Clean Air Act, and Industrial Pollution

    E-Print Network [OSTI]

    Kaswan, Alice

    2012-01-01T23:59:59.000Z

    typical NSPS). 2012] CLIMATE CHANGE & INDUSTRIAL POLLUTION169, at 1256-57. 2012] CLIMATE CHANGE & INDUSTRIAL POLLUTION10482 tbl. 11. 2012] CLIMATE CHANGE & INDUSTRIAL POLLUTION

  5. Technology transfer in the petrochemical industry

    SciTech Connect (OSTI)

    Tanaka, M.

    1994-01-01T23:59:59.000Z

    The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

  6. INDUST: An Industrial Data Base

    E-Print Network [OSTI]

    Wilfert, G. L.; Moore, N. L.

    .5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

  7. The Venezuelan natural gas industry

    SciTech Connect (OSTI)

    Silva, P.V.; Hernandez, N.

    1988-01-01T23:59:59.000Z

    Venezuela's consumption energy of comes from three primary sources: hydroelectricity, liquid hydrocarbons and natural gas. In 1986, the energy consumption in the internal market was 95.5 thousand cubic meters per day of oil equivalent, of which 32% was natural gas, 46% liquid hydrocarbons and 22% hydroelectricity. The Venezuelan energy policy established natural gas usage after hydroelectricity, as a substitute of liquid hydrocarbons, in order to increase exports of these. This policy permits a solid development of the natural gas industry, which is covered in this paper.

  8. Location logistics of industrial facilities

    E-Print Network [OSTI]

    Hammack, William Eugene

    1981-01-01T23:59:59.000Z

    of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

  9. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    % of the engineering costs up to a maximum depending on the size of the annual energy bill. Once the work has been completed and the consultant's invoice paid, a copy of the invoice and a co~y of the report is sent to the Ministry. After internal review, a cheque... represent approximately $600 million annually. Recently, the Ontario Ministry of Energy released a policy paper outlining the government's commitment to energy conservation and efficiency. One of the key areas was Industry, and the Ministry's programs...

  10. Industrial Process Heating - Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs |Industrial

  11. Electricity Prices for Industry - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industry for Selected

  12. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01T23:59:59.000Z

    ?, a law of physics, shows why electricity savings can be high (Figure 5). 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 Air volume [CFM %] Power [H.P. %] P o w e r [ H .P . % ] A i r v o l u m e [ C FM %] C F M = 50 % of b l ast... and dust could settle. An on-demand dust collecting system solves this problem by using a PLC (industrial computer) which calculates necessary air volume based on information from the sensors. The PLC is adjusting the RPM of the fan accordingly...

  13. Melink Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarland isDiscoveries IncMelink Industries

  14. Industrial Facility Best Practice Scorecard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About UsIndustrial Energy EfficiencyBP Scorecard

  15. Industrial Partnerships | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Nameindustrial SignHygieneIndustrial

  16. 2013 Average Monthly Bill- Industrial

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, ReferenceG (2005) -U.Industrial

  17. Industry Sponsored Research | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

  18. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFSGreenline Industries

  19. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to:EnergyEnergy°Guadeloupe:Industries

  20. Sandia National Laboratories: Industry Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle TechnologiesImproved Power SystemIndustry

  1. Context at the start The idea about a Centre for the study of Regulated Industries started in 1989 with the

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    which are required in the RPI-x system. The Central Electricity Generating Board (CEGB) was split up monopoly' parts (ie, competitive electricity generation, natural monopoly transmission and distribution, followed by the privatisation of the restructured electricity industry, which started in 1990

  2. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  3. Shaft generator transmissions

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    Economical on-board power can be generated from two-stroke, low-speed engines by installing a multistage hollow-shaft gearbox on the propeller intermediate shaft to drive the generator. Gearbox manufacturer Asug, based in Dessau, Germany, has designed units specifically for this purpose. The Asug shaft generator drive concept for generator drives at the front end of the engine is designed to reduce installation costs and uses an integrated engine-gearbox foundation. The complete propulsion system, consisting of the diesel engine, gear with coupling and generator, can be completely or partially preassembled outside the ship`s engine room to reduce onboard assembly time. A separate foundation for this arrangement is not necessary. The company offers a full range of gearboxes to generate power from 500 kW up to 5000 kW. Gearboxes driven from the forward engine end often incorporate an additional gear stage to gain energy from an exhaust turbine. This arrangement feeds part of the exhaust energy back into the system to increase efficiency. Latest installations of Asug shaft generator gears are in container ships and cargo/container ships built in Turkey and China.

  4. Wind power generating system

    SciTech Connect (OSTI)

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12T23:59:59.000Z

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  5. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22T23:59:59.000Z

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  6. Use of Slip Ring Induction Generator for Wind Power Generation

    E-Print Network [OSTI]

    K Y Patil; D S Chavan

    Wind energy is now firmly established as a mature technology for electricity generation. There are different types of generators that can be used for wind energy generation, among which Slip ring Induction generator proves to be more advantageous. To analyse application of Slip ring Induction generator for wind power generation, an experimental model is developed and results are studied. As power generation from natural sources is the need today and variable speed wind energy is ample in amount in India, it is necessary to study more beneficial options for wind energy generating techniques. From this need a model is developed by using Slip ring Induction generator which is a type of Asynchronous generator.

  7. Captive power plants and industrial sector in the developing countries

    SciTech Connect (OSTI)

    Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

    1996-12-31T23:59:59.000Z

    The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

  8. 27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS

    E-Print Network [OSTI]

    -generation industrial solar cells as stated in the International Technology Roadmap [3]. An industrial PERC process flow27th European Photovoltaic Solar Energy Conference, Frankfurt, Germany, 24-28 September 2012, 2AO.1.5 IMPACT OF THE REAR SURFACE ROUGHNESS ON INDUSTRIAL-TYPE PERC SOLAR CELLS C.Kranz1 , S. Wyczanowski1 , S

  9. China's industrial sector in an international context

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

    2000-05-01T23:59:59.000Z

    The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

  10. Graph Generator Survey

    SciTech Connect (OSTI)

    Lothian, Josh [ORNL; Powers, Sarah S [ORNL; Sullivan, Blair D [ORNL; Baker, Matthew B [ORNL; Schrock, Jonathan [ORNL; Poole, Stephen W [ORNL

    2013-12-01T23:59:59.000Z

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  11. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA) [Castro Valley, CA; Page, Ralph H. (Castro Valley, CA) [Castro Valley, CA; Ebbers, Christopher A. (Livermore, CA) [Livermore, CA; Beach, Raymond J. (Livermore, CA) [Livermore, CA

    2008-06-10T23:59:59.000Z

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  12. Overview of industry interest in new thermoelectric materials

    SciTech Connect (OSTI)

    Lyon, H.B. Jr.

    1997-07-01T23:59:59.000Z

    The technology base for air conditioning, refrigeration, component cooling below ambient temperatures and power generation will be required to meet several new challenges. The main lines of these challenges will be presented in a way which relates them to the several new thermoelectric materials and materials engineering options being pursued by the research community. The potential benefits of thermoelectric devices are only partially met by enhancing the figure of merit ZT, the nature of the design challenge and the resulting systems approach are presented. The research and the industry are entering into a new era.

  13. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  14. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  15. Energy and Mass Generation

    E-Print Network [OSTI]

    Burra G. Sidharth

    2010-03-11T23:59:59.000Z

    Modifications in the energy momentum dispersion laws due to a noncommutative geometry, have been considered in recent years. We examine the oscillations of extended objects in this perspective and find that there is now a "generation" of energy.

  16. Contextualizing generative design

    E-Print Network [OSTI]

    Arida, Saeed, 1977-

    2004-01-01T23:59:59.000Z

    Generative systems have been widely used to produce two- and three-dimensional constructs, in an attempt to escape from our preconceptions and pre-existing spatial language. The challenge is to use this mechanism in ...

  17. Monte Carlo event generators

    SciTech Connect (OSTI)

    Frixione, Stefano [INFN, Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2005-10-06T23:59:59.000Z

    I review recent progress in the physics of parton shower Monte Carlos, emphasizing the ideas which allow the inclusion of higher-order matrix elements into the framework of event generators.

  18. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23T23:59:59.000Z

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  19. Oscillating fluid power generator

    SciTech Connect (OSTI)

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  20. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  1. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  2. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01T23:59:59.000Z

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  3. THE DEPARTMENT OF Mechanical & Industrial Engineering's graduate programs ed-

    E-Print Network [OSTI]

    Kusiak, Andrew

    THE DEPARTMENT OF Mechanical & Industrial Engineering's graduate programs ed- ucate students Mechanical and Industrial Engineering faculty members conduct research in affiliation with vari- ous College I N Industrial Engineering Department of Mechanical & Industrial Engineering 3131 Seamans Center

  4. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  5. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  6. Generation, Use, Disposal, and Management Options for CCA-Treated Wood

    E-Print Network [OSTI]

    Florida, University of

    Generation, Use, Disposal, and Management Options for CCA-Treated Wood May 1998 Helena Solo, INVENTORY OF CCA-TREATED WOOD IN FLORIDA II.1 Characteristics of the Florida Wood Treatment Industry in 1996 10 II.2 Generation and Disposal of Cca-treated Wood 14 II.3 Disposal Reservoirs for Cca-treated Wood

  7. Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks

    E-Print Network [OSTI]

    Nagurney, Anna

    , natural gas, uranium, and oil), or approximately 40 quadrillion BTU (see Edison Electric Institute (2000Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain at the electric power industry with taxes applied according to the type of fuel used by the power generators

  8. PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR

    E-Print Network [OSTI]

    End-Use Energy Efficiency · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable EnergyPROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR FOR USE IN A SPACE-COOLING SYSTEM REPORT (FAR) PROOF-OF-CONCEPT OF A DUAL-FIRED (SOLAR & NATURAL GAS) GENERATOR FOR USE IN A SPACE COOLING

  9. Interactive Control of Mesh Topology in Quadrilateral Mesh Generation Based on 2D Tensor Fields

    E-Print Network [OSTI]

    Takahashi, Shigeo

    Interactive Control of Mesh Topology in Quadrilateral Mesh Generation Based on 2D Tensor Fields for Computational Science, Japan 2 Graduate School of Frontier Sciences, The University of Tokyo, Japan Abstract. Generating quadrilateral meshes is very important in many industrial applications such as finite element

  10. DOE Issues Funding Opportunity for Academic-Industry Collaboration...

    Broader source: Energy.gov (indexed) [DOE]

    Academic-Industry Collaboration - Synchrophasor Engineering Education Program DOE Issues Funding Opportunity for Academic-Industry Collaboration - Synchrophasor Engineering...

  11. Sustainability for the Global Biofuels Industry Minimizing Risks...

    Broader source: Energy.gov (indexed) [DOE]

    Industry Minimizing Risks and Maximizing Opportunities Sustainability for the Global Biofuels Industry Minimizing Risks and Maximizing Opportunities Conservation International...

  12. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

  13. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  14. Introduction The bioenergy industry is pursuing low-input crops to be

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    1 Introduction The bioenergy industry is pursuing low-input crops to be grown on marginal lands the unintentional introduction and spread of potentially invasive species. Background Information The bioenergy- generation bioenergy crops are grown specifically for biomass pro- duction. Therefore, bioenergy crops

  15. Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint

    E-Print Network [OSTI]

    Richardson, J. A.

    1984-01-01T23:59:59.000Z

    A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit...

  16. CENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System Industrial

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    the specification of products, Minimize energy consumption, Minimizes the process variability which increases safety in the propane refrigeration system Limitations due to low thermal exchange area were generating saturationCENPES/EB-AB-G&E/AEDC Corporativo Advanced Control System ­ Industrial Results and New Challenges

  17. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Electrical Engineering

    E-Print Network [OSTI]

    Azevedo, Ricardo

    of Houston is well-positioned in the energy capital, near the world's largest medical center, NASA, the Port industrial demands for electrical engineering include devices focused on power generation, wireless communications and energy storage. Students pursuing the Bachelor of Science in Electrical Engineering must

  18. Romanian refining industry assesses restructuring

    SciTech Connect (OSTI)

    Tanasescu, D.G. (General Consulting and Procurement, Poolgec Ltd., Bucharest (RO))

    1991-12-30T23:59:59.000Z

    The Romanian crude oil refining industry, as all the other economic sectors, faces the problems accompanying the transition from a centrally planned economy to a market economy. At present, all refineries have registered as joint-stock companies and all are coordinated and assisted by Rafirom S.A., from both a legal and a production point of view. Rafirom S.A. is a joint-stock company that holds shares in refineries and other stock companies with activities related to oil refining. Such activities include technological research, development, design, transportation, storage, and domestic and foreign marketing. This article outlines the market forces that are expected to: drive rationalization and restructuring of refining operations and define the targets toward which the reconfigured refineries should strive.

  19. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01T23:59:59.000Z

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  20. Waste minimization in the oil and gas industries

    SciTech Connect (OSTI)

    Smith, K.P.

    1992-01-01T23:59:59.000Z

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.