Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 11.3 Electricity: Components of Onsite Generation, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2010; 3 Electricity: Components of Onsite Generation, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 5,666 5,414 81 171 3112 Grain and Oilseed Milling 3,494 3,491 Q 2 311221 Wet Corn Milling 3,213 3,211 0 2 31131 Sugar Manufacturing 1,382 1,319 64 0 3114 Fruit and Vegetable Preserving and Specialty Foods 336 325 Q * 3115 Dairy Products 38 36 1 1 3116 Animal Slaughtering and Processing 19 Q Q 14 312 Beverage and Tobacco Products 342 238 Q 7 3121 Beverages 308 204 Q 7 3122 Tobacco 34

2

Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2006; 3 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood NAICS Total Onsite and Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States 311 Food 4,563 4,249 * 313 3112 Grain and Oilseed Milling 2,845 2,819 0 27 311221 Wet Corn Milling 2,396 2,370 0 27 31131 Sugar Manufacturing 951 951 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 268 268 0 * 3115 Dairy Products 44 31 * Q 3116 Animal Slaughtering and Processing 17 0 0 17 312 Beverage and Tobacco Products 659 623 Q * 3121 Beverages 587 551 Q * 3122 Tobacco 72

3

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

4

" Generation by Census Region, Industry Group, Selected Industries, Presence of"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Inputs of Energy for Heat, Power, and Electricity" 4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.3

5

Novel NDE techniques in the power generation industry.  

E-Print Network [OSTI]

??The thesis presented here comprises the work undertaken for research into novel NDE techniques in the power generation industry. This has been undertaken as part (more)

Ward, Christopher M. S.

2010-01-01T23:59:59.000Z

6

Transformative CAD based industrial robot program generation  

Science Journals Connector (OSTI)

Industrial robots are widely used in various processes of surface manufacturing, such as spray painting, spray forming, rapid tooling, spray coating, and polishing. Robot programming for these applications is still time consuming and costly. Typical ... Keywords: CAD model, Industrial robot, Robot programming, Surface manufacturing

Heping Chen; Weihua Sheng

2011-10-01T23:59:59.000Z

7

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

8

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

9

Industrial Biomass Energy Consumption and Electricity Net Generation by  

Open Energy Info (EERE)

47 47 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281847 Varnish cache server Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB)

10

The Industrialization of Thermoelectric Power Generation Technology  

Broader source: Energy.gov [DOE]

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

11

Building the Next Generation of Automotive Industry Leaders | Department of  

Broader source: Energy.gov (indexed) [DOE]

Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders Building the Next Generation of Automotive Industry Leaders December 7, 2010 - 4:23pm Addthis Zach Heir , a recent hire in the electric vehicle field Zach Heir , a recent hire in the electric vehicle field Dennis A. Smith Director, National Clean Cities It's no secret that when it comes to advanced vehicle technologies, the Department of Energy is kicking into high gear. We're investing more than $12 billion in grants and loans for research, development and deployment of advanced technology vehicles. These investments are helping to create a clean energy workforce. If we want to continue a leadership role in the global automotive industry, it is crucial that we take the long view and invest heavily in the next generation of innovators and critical thinkers

12

The Homopolar Generator as a Pulsed Industrial Power Supply  

E-Print Network [OSTI]

high current, low voltage electrical pulses. The homopolar generator is allowing numerous industrial joining and forming processes to be extended to larger work pieces and higher power output capabilities than were previously possible. The basic...

Weldon, J. M.; Weldon, W. F.

1979-01-01T23:59:59.000Z

13

" Generation, by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity" Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity" " Generation, by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 2" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row" "Code(a)"," Industry Group and Industry","Program(b)","Sponsorship","Involvement","Involvement","Involvement","Involvement","Factors"

14

" Generation by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

A49. Total Inputs of Energy for Heat, Power, and Electricity" A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row"

15

Permit compliance monitoring for the power generation industry  

SciTech Connect (OSTI)

The Clean Air Act Amendments (CAAA) of 1990 authorized EPA to develop regulations requiring facilities to monitor the adequacy of emission control equipment and plant operations. Furthermore, under the CAAA, EPA is required to issue regulations to require owners and operators of large industrial facilities to enhance air pollution monitoring and certify compliance with air pollution regulations. The fossil-fueled power generation industry has been targeted with the promulgation of the Acid Rain Program regulations of 40 CFR 72, and the Continuous Emissions Monitoring requirements of 40 CFR 75. The Part 75 regulations, with a few exceptions, establish requirements for monitoring, recordkeeping, and reporting of sulfur dioxide, nitrogen oxides, and carbon dioxide emissions, volumetric flow, and opacity data from affected units under the Acid Rain Program. Depending upon the type of unit and location, other applicable emission limitations may apply for particulate emissions (both total and PM-10), carbon monoxide, volatile organic compounds and sulfuric acid mist.

Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Platt, T.B. [Commonwealth Edison Company, Waukegan, IL (United States); Miller, S.B. [Commonwealth Edison Company, Chicago, IL (United States)

1996-12-31T23:59:59.000Z

16

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

17

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

18

Utilization of renewably generated power in the chemical process industry  

Science Journals Connector (OSTI)

The chemical process industry, mainly the production of organic and inorganic ... On the contrary, the dependency of electricity supply in Germany on volatile wind and solar power increases. To use this power eff...

Julia Riese; Marcus Grnewald; Stefan Lier

2014-08-01T23:59:59.000Z

19

Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems  

E-Print Network [OSTI]

This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

Alexander, H. R.; Rogge, D. S.

20

A new-generation energy-saving industrial controlled electric drive  

Science Journals Connector (OSTI)

Results of the innovative development of an efficiently controlled, new-generation, energy-saving, industrial AC electric drive are presented. ... filter in the intermediate link. The improved energy and electrom...

R. T. Shreiner; V. K. Krivovyaz; A. I. Kalygin

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Department of Energy Partners with the Next Generation Lighting Industry Alliance  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and the Next Generation Lighting Industry Alliance (NGLIA) signed a Memorandum of Agreement (MOA) to support the development and commercialization of SSL...

22

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

23

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network [OSTI]

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

24

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

25

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

26

Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint  

SciTech Connect (OSTI)

The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

Wise, A. L.

2008-05-01T23:59:59.000Z

27

Advances in steam turbine technology for the power generation industry. PWR-Volume 26  

SciTech Connect (OSTI)

This is a collection of the papers on advances in steam turbine technology for the power generation industry presented at the 1994 International Joint Power Generation Conference. The topics include advances in steam turbine design, application of computational fluid dynamics to turbine aerodynamic design, life extension of fossil and nuclear powered steam turbine generators, solid particle erosion control technologies, and artificial intelligence, monitoring and diagnostics.

Moore, W.G. [ed.

1994-12-31T23:59:59.000Z

28

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

29

Industry  

E-Print Network [OSTI]

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

30

" and Electricity Generation by Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," 3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " "," ","Pulping Liquor",," ","Wood Harvested","and Byproducts","and","RSE" "SIC"," ","or","Biomass","Agricultural","Directly","from","Paper-Related","Row"

31

Using biomass for power generation: case study of a timber industry Aripuan-MT  

Science Journals Connector (OSTI)

Nowadays, the concern for environmental management is increasingly becoming part of everyday business. The timber industries, for example, in its production process, generate a lot of waste requiring proper management of these wastes to reduce their environmental impacts. The study aimed to identify the main advantages that the timber industry can get to the reuse of manufacturing waste to generate energy. The methodology used for data collection was simple observation on site, implementation of a structured interview with the owner, as well as literature. The research showed that after the implementation of the power plant at the company, to generate energy for their own consumption and sale of surplus costs decreased significantly, and also highlights the importance of revenue from the sale of electricity.

Gelciomar Simão Justen; Anderson Gheller Froehlich; Lierge Luppi; Suzana De Moraes

2014-01-01T23:59:59.000Z

32

Maintaining Generation Adequacy in a Restructuring U.S. Electricity Industry  

SciTech Connect (OSTI)

Historically, decisions on the amounts, locations, types, and timing of investments in new generation have been made by vertically integrated utilities with approval from state public utility commissions. As the U.S. electricity industry is restructured, these decisions are being fragmented and dispersed among a variety of organizations. As generation is deregulated and becomes increasingly competitive, decisions on whether to build new generators and to retire, maintain, or repower existing units will increasingly be made by unregulated for-profit corporations. These decisions will be based largely on investor assessments of future profitability and only secondarily on regional reliability requirements. In addition, some customers will choose to face real-time (spot) prices and will respond to the occasionally very high prices by reducing electricity use at those times. Market-determined generation levels will, relative to centrally mandated reserve margins, lead to: (1) more volatile energy prices; (2) lower electricity costs and prices; and (3) a generation mix with more baseload, and less peaking, capacity. During the transition from a vertically integrated, regulated industry to a deintegrated, competitive industry, government regulators and system operators may continue to impose minimum-installed-capacity requirements on load-serving entities. As the industry gains experience with customer responses to real-time pricing and with operation of competitive intrahour energy markets, these requirements will likely disappear. We quantitatively analyzed these issues with the Oak Ridge Competitive Electricity Dispatch model (ORCED). Model results show that the optimal reserve margin depends on various factors, including fuel prices, initial mix of generation capacity, and customer response to electricity prices (load shapes and system load factor). Because the correct reserve margin depends on these generally unpredictable factors, mandated reserve margins might be too high, leading to higher electricity costs and prices. Absent mandated reserve margins, electricity prices and costs decline with increasing customer response to prices during high-demand periods. The issues discussed here are primarily transitional rather than enduring. However, the transition from a highly regulated, vertically integrated industry to one dominated by competition is likely to take another five to ten years.

Hirst, E.; Hadley, S.

1999-10-01T23:59:59.000Z

33

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

34

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal19712004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

35

Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tebes is affiliated with the University of Illinois. Tebes is affiliated with the University of Illinois. ANL/EAD-2 Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry by K.P. Smith, D.L. Blunt, G.P. Williams, and C.L. Tebes * Environmental Assessment Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 September 1996 Work sponsored by the United States Department of Energy, Office of Policy iii CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

37

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

38

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

39

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

40

Assessing the Power Generation Solution by Thermal-chemical Conversion of Meat Processing Industry Waste  

Science Journals Connector (OSTI)

Abstract The paper presents a waste to energy conversion solution using a pyro-air-gasification process applied to biodegradable residues from meat processing industry integrated with small scale thermodynamic cycle for power generation. The solution of air- gasification at atmospheric pressure is based on experimental research and engineering computation developed during the study. The input data, such as: waste chemical composition, low/high heating value and proximate analysis, correspond to real waste products, sampled directly from the industrial processing line. Separate drying as first stage pre-treatment and integrated partial drying inside the reactor was used. The syngas low heating value of about 4.3MJ/Nm3 is insured by its combustible fraction (H2 12.2%, CO 19.2%, CH4 1.6%). According to syngas composition the thermodynamic cycle was chosen Otto gas engine. For a given waste feed-in flow considered in our computation of about 110kg/h the power output obtained is about 50 kWel. The global energy efficiency of the unit is about 15%. The results offer answers to energy recovery waste disposal for residues with characteristics that are not suitable for classic incineration or limit the energy efficiency of the process making it non-economical (the average humidity of the raw waste is about 42% in mass). The research focused on waste to energy conversion process energy efficiency, waste neutralization and power generation.

Cosmin Marculescu; Florin Alexe

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Metathesis of tobacco fatty acid methyl esters: Generation of industrially important platform chemicals  

Science Journals Connector (OSTI)

Abstract Self-methathesis of vegetable oil based unsaturated fatty acids provide a renewable and convenient route for the preparation of a number of platform chemicals useful for the production of polymers, biolubricants and other industrial products. The present study is focused on the use of the unsaturated non-edible oil methyl esters of tobacco (Nicotiana tabacum 82.2%) self- metathesis. Metathesis was carried out reacting equimolar quantities of fatty acid methyl esters (6.8mm) with Grubbs second generation catalyst (0.3mm) at 4045C for 36h. The metathesized products were characterized using GC and GCMS analysis. Self-metathesis of the tobacco methyl esters resulted in the formation of hydrocarbons, of which 9-octadecene (24%) and a cyclodecacyclododecene (19%) were found to be major. In addition 9-octadecenoic acid methyl ester (17%) and 9,12-octadecadienoic acid methyl esters (11%) were also observed. The study also discusses the molecules involved in the formation of the above intermediates which are useful for the preparation of a number of industrial products.

Yelchuri Vyshnavi; Rachapudi B.N. Prasad; Mallampalli S.L. Karuna

2013-01-01T23:59:59.000Z

42

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

43

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

44

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

45

Elevated Temperature Materials for Power Generation and Propulsion The energy industry is designing higher-efficiency land-based turbines for natural gas-fired  

E-Print Network [OSTI]

higher-efficiency land-based turbines for natural gas-fired power generation systems. The high inletElevated Temperature Materials for Power Generation and Propulsion The energy industry is designing of thermomechanical fatigue life of the next generation's Ni-base superalloys are being developed to enhance life

Li, Mo

46

Control Engineering Practice 10 (2002) 615624 Stabilizer design for industrial co-generation systems  

E-Print Network [OSTI]

, whose quantity (measured by its flow rate) and quality (measured by its pressure and temperature) play boilers, three CO-type boilers and two once-through steam generators (OTSG). The header system includes receives steam from the boiler system and then distributes the steam for three different usages: (i

Marquez, Horacio J.

47

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network [OSTI]

gasification-based combustion turbine systems. The paper dmws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy...-14, 1994 Coupled with gasification, combustion turbine power generation also may provide attractive opportunities for other fuels, such as low-value residual oils and petroleum coke. Residual oil firing of boilers in large steam turbine-based power...

Karp, A. D.; Simbeck, D. R.

48

Present situation and prospects for lignite in the Polish power-generation industry  

Science Journals Connector (OSTI)

In Poland, lignite is mined in open pits and four deep mines, producing totally about 6065 million tons a year. Extracted lignite constitutes a fuel for power plants with a total installed capacity of 8833 MW, which generate some 35% of electric energy nationally. This energy is cheaper compared with that from other sources. Poland, with its huge deposits of lignite, is placed in a privileged position, for apart from at present mined deposits, which constitute only about 15% of workable reserves, some abundant areas exist, where mining working can be started. At present, the mined deposits allow us to maintain a current yearly output for the forthcoming 15 years, whereas through the subsequent 30 years, it will decline. In order to maintain supplies of lignite, which is a significant fuel in Poland, it is necessary to fully utilize deposits in the existing areas, and develop new zones where lignite occurs.

Zbigniew Koz?owski

2003-01-01T23:59:59.000Z

49

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

50

Potentials for reductions of carbon dioxide emissions of the industrial sector in transitional economies -- A case study of implementation of absorption chiller and co-generation  

SciTech Connect (OSTI)

Central and East European (CEE) countries together with former USSR emitted about 25 percent of the world carbon dioxide emissions, predominantly because of high energy intensity of their industries and dependence on coal. The paper focuses on technologies which would reduce the need for fossil fuel burning by improving energy efficiency in industry. In the process industry, heat demand is usually met by combustion of fossil fuels, cold is produced with electricity. Technical potentials of absorption chillers (AC) and co-generation in the process industry as well as their market penetration potentials are analyses for Slovenia, one of the fastest transforming CEE economies. Technical potentials are not necessarily realized in production. New technology employment in firms depends on several factors. This paper first summarizes the existing models explaining adoption of technology by firms. Then, it focuses selectively on the impact of macro economic and institutional factors and points out which policy instruments could facilitate faster diffusion of the technologies and thereby reduction of energy related carbon dioxide emissions in the industrial sector.

Remec, J. [Univ. of Ljubljana (Slovenia). Faculty of Mechanical Engineering; Dolsak, N. [Univ. of Ljubljana (Slovenia). Faculty of Economics]|[Indiana Univ., Bloomington, IN (United States). School of Public and Environmental Affairs

1996-12-01T23:59:59.000Z

51

First-year's operation of a full-scale second-generation FBC in an industrial plant  

SciTech Connect (OSTI)

Data related to the operation of a two stage coal fired fluidized bed boiler installed for Iowa Beef Processors, Inc. Amarillo, Texas are presented. This steam generator, which has a rating of 70,000 lb/hr steam, 650 psig, is the large privately funded fluidized bed coal combustion installation in the United States. The facility includes a dual bed combustor, whereby the coal is burned in a lower bed containing steam tubes and sulfur dioxide is collected in an upper bed containing dolomite. Coal burns predominantly in the lower bed at relatively high temperatures while combustion is completed in the upper bed. The upper bed also improves sulfur capture by reacting with SO/sub 2/ generated in the freeboard, which would be difficult to capture in early designs for FBC packaged boilers. The two stage concept provides high combustion efficiency, low NO/sub X/ emissions, and high sulfur capture. The results of recent measurements of emissions of sulfur dioxide will be included in this presentation. 4 figures.

Baty, G.B.

1984-01-01T23:59:59.000Z

52

Industrial process surveillance system  

DOE Patents [OSTI]

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

53

The Use of Modern Third-Generation Air Quality Models (MM5-EMIMO-CMAQ) for Real-Time Operational Air Quality Impact Assessment of Industrial Plants  

Science Journals Connector (OSTI)

In many cases, a substantial proportion of large industrial emissions are located in the surrounding areas of cities and are the cause of an important part of air concentrations over the city and surrounding area...

R. San Jos; J. L. Prez; J. L. Morant

2009-04-01T23:59:59.000Z

54

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

55

1808 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 48, NO. 6, NOVEMBER/DECEMBER 2012 Design of a Flux-Switching Electrical Generator  

E-Print Network [OSTI]

turbine system has its operating range as shown in Fig. 1. Permanent-magnet generators and self small wind turbine generators are often based on inexpensive permanent-magnet generator machines [12 of gearbox requirements for coupling to the turbine. Although the devel- oped approach makes the machine

Simões, Marcelo Godoy

56

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

57

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

SciTech Connect (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

58

ITP Industrial Distributed Energy: Cooling, Heating, and Power...  

Broader source: Energy.gov (indexed) [DOE]

for 2-7 stationary power generation or compression applications in the oil and gas industries. Figure 2-7 illustrates the components of an industrial turbine. Multiple...

59

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

60

Electric Utility Industry Update  

Broader source: Energy.gov (indexed) [DOE]

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

62

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

63

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

64

Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc  

E-Print Network [OSTI]

PENNSTATE Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc Overview The main objectives were the following: -To reduce wasted space and optimize the Armstrong Marietta plant generate? How did you analyse them? Outcomes Armstrong will save on forklift fuel costs as a result

Demirel, Melik C.

65

Integrated Industrial Wood Chip Utilization  

E-Print Network [OSTI]

The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

Owens, E. T.

1984-01-01T23:59:59.000Z

66

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

67

ITP Industrial Distributed Energy: Integrated Energy Systems...  

Broader source: Energy.gov (indexed) [DOE]

specifically for stationary power generation or compression applications in the oil and gas industries. Multiple stages are typical and differentiate these turbines, along with...

68

Guardian Industries Corp | Open Energy Information  

Open Energy Info (EERE)

float glass and fabricated glass products. Applications of their products cover PV and Solar Thermal Electricity Generation (STEG). References: Guardian Industries Corp1 This...

69

International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs  

E-Print Network [OSTI]

Energy (DOE)s Industrial Assessment Centers, located at 26Generated by the Industrial Assessment Center Program:

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-01-01T23:59:59.000Z

70

"A High Speed Laser Profiling Device for Refractory Lininig Thickness Measurements In a Gasifier with Cross-Cut to the Metals, Forest Products, Chemical and Power Generation Industries"  

SciTech Connect (OSTI)

Process Metrix began this project with the intent of modifying an existing ranging system and combining the same with a specially designed optical scanner to yield three dimensional range images that could be used to determine the refractory lining thickness in a gasifier. The goal was to make these measurements during short outages while the gasifier was at or near operating temperature. Our initial estimates of the photon counts needed for the modulation-based range finder were optimistic, and we were forced to undertake a redesign of the range finder portion of the project. This ultimately created significant and unanticipated time delays that were exacerbated when Acuity Technologies, the subcontractor responsible for delivering the redesigned range finder, failed to deliver electrical components capable of meeting the specific range error requirements needed for accurate lining thickness measurement. An extensive search for an alternate, off-the-shelf solution was unsuccessful, and Process Metrix was forced to undertake the electronics development internally without project funds. The positive outcome of this effort is a documented set of range finder electronics that have exceptional accuracy, simplicity, temperature stability and detection limit; in sum a package perfectly suited to the measurement requirements and within our control. It is unfortunate yet understandable, given the time delays involved in reaching this milestone, that the Department of Energy decided not to continue the project to completion. The integration of this electronics set into the optomechanical hardware also developed within the scope of the project remains as follow-on project that Process Metrix will finish within the calendar year 2008. Testing in the gasifier is, at this point, not certain pending the award of additional funding needed for field trials. Eastman, our industrial partner in this project, remains interested in evaluating a finished system, and working together we will attempt to secure funding from alternate sources that have been referenced by our contract monitor. It remains our hope and goal to follow this project through to completion, thereby achieving the objectives outlined at the start of our effort.

Michel Bonin; Tom Harvill; Jared Hoog; Don Holve; Alan Alsing; Bob Clark; Steve Hrivnak

2007-11-01T23:59:59.000Z

71

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

72

DOE Seeks Industry Participation for Engineering Services to...  

Broader source: Energy.gov (indexed) [DOE]

Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

73

Industry Perspective  

Broader source: Energy.gov [DOE]

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

74

industrial sector | OpenEI  

Open Energy Info (EERE)

industrial sector industrial sector Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

75

Post-industrial-revolution HCI Colin Johnson  

E-Print Network [OSTI]

Post-industrial-revolution HCI Colin Johnson University of Kent Computing Laboratory Canterbury is akin to the state of manufacturing prior to the industrial revolution. It is suggested that eventually an industrial revolution will occur in programming through the use of automated program generation tools, which

Kent, University of

76

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Census Region",,,,,,,"Census Division",,,,,"RSE" "SIC"," ",,,,,,,"Middle","East North","West North","South","East South","West South",,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","New England","Atlantic","Central","Central","Atlantic","Central","Central","Mountain","Pacific","Factors"

77

Industrial Assessment Centers (IACs)  

Broader source: Energy.gov [DOE]

Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. Each manufacturer typically identifies about $55,000 in potential annual savings on average. Over 15,000 IAC assessments have been conducted. IACs also train the next-generation of energy savvy engineers.

78

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

79

Guidelines for Estimating Unmetered Industrial Water Use  

SciTech Connect (OSTI)

The document provides a methodology to estimate unmetered industrial water use for evaporative cooling systems, steam generating boiler systems, batch process applications, and wash systems. For each category standard mathematical relationships are summarized and provided in a single resource to assist Federal agencies in developing an initial estimate of their industrial water use. The approach incorporates industry norms, general rules of thumb, and industry survey information to provide methodologies for each section.

Boyd, Brian K.

2010-08-01T23:59:59.000Z

80

Gas turbine considerations in the pulp and paper industry  

SciTech Connect (OSTI)

The pulp and paper industry is one of the largest users of energy in the industrial arena, requiring large quantities of process steam and electrical energy per unit of production. Developing power generation as an integral part of its power plant systems is one way for the industry to meet these requirements. Gas turbine-based cogeneration systems can also be a desirable approach. In recent years, competitive pressures, environmental concerns, the cost and availability of various fuels, and new power generation opportunities have awakened interest in power generation in the pulp and paper industry and other industries. This paper provides a strategic review of these issues of the pulp and paper industry.

Anderson, J.S. (International Paper Co., Purchase, NY (US)); Kovacik, J.M. (GE Co., Schenectady, NY (US))

1991-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

82

Industry Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

83

Electrical Energy Conservation and Load Management - An Industrial User's Viewpoint  

E-Print Network [OSTI]

Conservation of electrical energy and load management can reduce industry's electric bills, conserves natural resources and reduces the need for new generating plants. In recent years, industry has implemented extensive conservation programs. Some...

Jackson, C. E.

1984-01-01T23:59:59.000Z

84

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

85

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

86

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

87

Chemistry and the Motor Car Industry  

Science Journals Connector (OSTI)

Chemistry and the Motor Car Industry ... It so happens that this chemical reaction, the production of water and carbon dioxide (which in proper combination gives you seltzer water), is accompanied by the generation of heat which is used to produce power, and after all, power is what primarily concerns the automotive industry. ...

CHARLES F. KETTERING

1943-06-10T23:59:59.000Z

88

table11.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002; 3 Electricity: Components of Onsite Generation, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood RSE NAICS Total Onsite and Row Code(a) Subsector and Industry Generation Cogeneration(b) Other Biomass)(c) Other(d) Factors Total United States RSE Column Factors: 0.9 0.8 1.1 1.3 311 Food 5,622 5,375 0 247 12.5 311221 Wet Corn Milling 2,755 2,717 0 38 2.6 31131 Sugar 1,126 1,077 0 48 1 311421 Fruit and Vegetable Canning 388 W 0 W 1 312 Beverage and Tobacco Products W W * 1 1.6 3121 Beverages W W * * 3.8 3122 Tobacco W W 0 1 1 313 Textile Mills W 138 W W 11.9 314 Textile Product Mills 55 49 Q * 2.1

89

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

90

Companhia Agro Industrial de Goiana | Open Energy Information  

Open Energy Info (EERE)

search Name: Companhia Agro Industrial de Goiana Place: Recife, Pernambuco, Brazil Sector: Biomass Product: Ethanol and biomass electricity generator in Pernambuco,...

91

Financing Co-generation Projects  

E-Print Network [OSTI]

profit generated by energy intensive industries will not be sufficient to provide the capital required for both normal business expansion and energy conservation projects. Debt financing for energy saving equipment will adversely impact balance sheet...

Young, R.

1982-01-01T23:59:59.000Z

92

and Industrial Engineering  

E-Print Network [OSTI]

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

93

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

94

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

95

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

96

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

97

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

98

Diophantine Generation,  

E-Print Network [OSTI]

Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

Shlapentokh, Alexandra

99

Cellulose Industries of the West  

Science Journals Connector (OSTI)

Bonneville Power Administration, Portland, Ore. ... THE western United States is a region of contrastswide open spaces thinly populated; areas of dense magnificent forest; mineral resources without stint; areas of concentrated industrial and agricultural activity; areas deficient in rainfall; and areas where rivers fed by bounteous rainfall and perpetual snows roll majestically to the sea, halting occasionally at man's command to irrigate arid but fertile soils or to generate electric power with which to process the varied resources of the region. ...

J. ELTON LODEWICK

1947-09-22T23:59:59.000Z

100

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

102

Career Map: Industrial Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

103

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE"

104

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE",," " "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

105

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

106

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

107

Steam Path Audits on Industrial Steam Turbines  

E-Print Network [OSTI]

steam Path Audits on Industrial steam Turbines DOUGLAS R. MITCHELL. ENGINEER. ENCOTECH, INC., SCHENECTADY, NEW YORK ABSTRACT The electric utility industry has benefitted from steam path audits on steam turbines for several years. Benefits... not extend the turbine outage. To assure that all of the turbine audit data are available, the audit engineer must be at the turbine site the day the steam path is first exposed. A report of the opening audit findings is generated to describe the as...

Mitchell, D. R.

108

Industrial Energy Efficiency Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

109

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

110

Industry 4.0  

Science Journals Connector (OSTI)

Industry is the part of an economy that produces material goods which are highly mechanized and automatized. Ever since the beginning of industrialization, technological leaps have led to paradigm shifts which to...

Dr. Heiner Lasi

2014-08-01T23:59:59.000Z

111

Chemistry Industry in Egypt  

Science Journals Connector (OSTI)

Chemistry Industry in Egypt ... FROM antiquity the Egyptian economy has been predominately agricultural. ... Nevertheless, it is most probable that the ancient Egyptians were the world's first practical or industrial chemists. ...

1953-08-10T23:59:59.000Z

112

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network [OSTI]

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

113

Industrial Green | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the...

114

The Industrial Electrification Program  

E-Print Network [OSTI]

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

115

Systems and Industry Analyses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems and industry analyses News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program...

116

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

117

1. Generation 1 1. Generation  

E-Print Network [OSTI]

1. Generation 1 _________________________________________________________________________ 1. Generation Sound and vibrations or, in more general terms, oscillations of matter (solids or fluids) are generated in many different dynamic processes. The basic mechanisms which underlie these oscillations

Berlin,Technische Universität

118

Photovoltaics industry profile  

SciTech Connect (OSTI)

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

119

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

120

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network [OSTI]

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Using Backup Generators: Choosing the Right Backup Generator - Business  

Broader source: Energy.gov (indexed) [DOE]

Choosing the Right Backup Generator Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify essential systems and equipment-What do you need to keep your business operating? These may include heating, ventilation, and air conditioning systems; industrial equipment and major appliances, such as refrigerators and freezers; lights (interior and exterior), computers, and other office equipment; pumps, including sump pumps, sprinkler system pumps, and well water pumps; and alarm systems. Some of these systems and equipment may have to operate continuously, while others may be needed only during normal business hours. Choose the generator's fuel source-Backup generators are

122

Opportunities for Micropower and Fuel Cell/Gas Turbine Hybrid Systems in Industrial Applications- Volume II (Appendices), January 2000  

Broader source: Energy.gov [DOE]

Appendices related to quantification of the total market for onsite power generation within the Industries of the Future

123

Uranium industry annual 1993  

SciTech Connect (OSTI)

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

124

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

125

Interacting With the Pharmaceutical Industry  

E-Print Network [OSTI]

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

126

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name: Benteler Industries Place: Grand Rapids, MI Website: http:www.bentelerindustries. References: Benteler Industries1 Information...

127

LANSCE | Lujan Center | Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact the Lujan...

128

Fact Sheet for Industrial Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Industrial Facilities May 2012 Overview Public utilities in the Pacific Northwest serve more than 2,200 megawatts of industrial load, making industrial sector users a vitally...

129

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

130

Uranium industry annual 1998  

SciTech Connect (OSTI)

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

131

Uranium industry annual 1994  

SciTech Connect (OSTI)

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

132

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

133

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

Rohs, Remo

134

"Table A17. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Components of Onsite Electricity Generation by Census Region," 7. Components of Onsite Electricity Generation by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," "," ","RSE" "SIC"," "," "," "," "," ","Row" "Code(a)","Industry Groups and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.4,1.2

135

Hazardous and Industrial Waste (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a facility. The statute also

136

Design of industrial ventilation systems  

SciTech Connect (OSTI)

This latest edition has a title change to reflect an expansion to cover the interrelated areas of general exhaust ventilation and makeup air supply. More coverage is also given the need for energy conservation and for the physical isolation of the workspace from major contaminant generation zones. Excellent and generous illustrative matter is included. Contents, abridged are as follows: flow of fluids; air flow through hoods; pipe resistance; piping design; centrifugal exhaust fans; axial-flow fans; monitoring industrial ventilization systems; isolation; and energy conservation.

Alden, J.L.; Kane, J.M.

1982-01-01T23:59:59.000Z

137

Distributed Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

138

Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels  

E-Print Network [OSTI]

"Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

Bettinger, J.; Koppel, P.; Margulies, A.

139

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

140

Electrotechnologies in Process Industries  

E-Print Network [OSTI]

Processes Motor drives are mainly used in prime movers (pumps, fans, compressors, etc.) and in materials processing and handling (grinders, conveyors, etc.). EPRI develops and promotes technologies such as industrial heat pumps, freeze concentra tion... the need to disseminate the results of its research and development so that they can be applied broadly across the industrial sector. Specific technology transfer activities in process industries include: o Conferences and workshops o Tech...

Amarnath, K. R.

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A novel linear generator for wave energy applications.  

E-Print Network [OSTI]

??With the increasing effort to identify alternative methods of energy generation, extraction of ocean energy has gathered a large interest. Research and industry have begun (more)

Ernst, Steven George

2009-01-01T23:59:59.000Z

142

Kraftwerk Union KWU Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Services Product: KWU is a provider of components and services to the commercial nuclear utility industry. References: Kraftwerk Union (KWU) - Siemens Power Generation.1...

143

Industrial Energy Efficiency Assessments  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

144

Industrial Security Specialst  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve in a developmental capacity assisting senior specialists in carrying out a variety of industrial security and oversight functions.

145

Window industry technology roadmap  

SciTech Connect (OSTI)

Technology roadmap describing technology vision, barriers, and RD and D goals and strategies compiled by window industry stakeholders and government agencies.

Brandegee

2000-04-27T23:59:59.000Z

146

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

147

An industrial policy  

Science Journals Connector (OSTI)

An industrial policy ... There are problems that are very much intertwined with national policy, but there are strengths, too, and they are worth noting. ...

1984-03-05T23:59:59.000Z

148

Industrial and Grid Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial and Grid Security Establishing resilient infrastructures that operate when sensors and physical assets are perturbed is an important national objective. Two related LDRD...

149

Generation Planning (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998 - 2011) Draft Dry...

150

Reshaping the electricity supply industry  

SciTech Connect (OSTI)

Cigre`s Electra magazine published this interview with Alfonso Limbruno, CEO of ENEL S.p.A. To put the interview in perspective, this article begins with a brief overview of ENEL and a biographical sketch of Alfonso Limbruno, and also carries comments from Y. Thomas, secretary general of CIGRE. ENEL is a vertically integrated nationwide electricity company engaged in the generation, transmission, distribution, and sale of electricity, predominantly in Italy. ENEL`s share accounts for approximately 80 percent of Italian electricity demand. Measured by amount of electricity sold, ENEL is the third largest electric utility in the OECD countries and the second largest electric utility in Europe. Measured by revenues, ENEL is one of the largest companies in Italy, with a turnover of Lit. 37,632 billion. In 1995, ENEL served approximately 28.5 million customers and sold 211,607 GWh of electricity. ENEL`s gross installed generating capacity at December 31, 1995 was 55,906 MW. Alfonso Limbruno made all his career in the Italian electricity supply industry (ESI) and has had quite a unique experience: he went through a complete cycle of change of the ESI in his country, the nationalization of the sector in 1962 with the merging in ENEL of over 1,200 undertakings, and now the privatization of the company, along with a far reaching restructuring of the industry. He was appointed CEO of ENEL in August 1992.

NONE

1997-03-01T23:59:59.000Z

151

Distributed generation - the fuel processing example  

SciTech Connect (OSTI)

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

152

Analysis of power generation processes using petcoke  

E-Print Network [OSTI]

Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has...

Jayakumar, Ramkumar

2009-05-15T23:59:59.000Z

153

The Rising Cost of Electricity Generation  

SciTech Connect (OSTI)

Through most of its history, the electric industry has experienced a stable or declining cost structure. Recently, the economic fundamentals have shifted and generating costs are now rising and driving up prices at a time when the industry faces new challenges to reduce CO{sub 2} emissions. New plant investment faces the most difficult economic environment in decades.

Tobey Winters

2008-06-15T23:59:59.000Z

154

Climate Change, the Clean Air Act, and Industrial Pollution  

E-Print Network [OSTI]

thirty- three percent of U.S. GHG emissions, largely fromgenerates twenty percent of U.S. GHG emissions, through bothon-site fuel combustion and GHG-generating industrial

Kaswan, Alice

2012-01-01T23:59:59.000Z

155

Impact of Electricity Deregulation on Industrial Assessment Strategies  

E-Print Network [OSTI]

efficiency project. Onsite generation of power and the changing rationales for its adoption has also experienced big changes. Energy security is becoming a strong motivation for industrial plants, options are increased, and third party funding is also...

Kasten, D. J.; Muller, M. R.; Pavlovic, F.

156

The Gas Industry  

Science Journals Connector (OSTI)

... the total output of towns' gas in Great Britain, distributes annually approximately as much energy as the whole of the electrical undertakings in the country. The industry has reason ... any actual thermal process, and the operations of the gas industry are not outside the ambit of the second law of thermodynamics, high though the efficiency of the carbonising process ...

J. S. G. THOMAS

1924-04-26T23:59:59.000Z

157

Growing Hawaii's agriculture industry,  

E-Print Network [OSTI]

Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

158

Conference on Industrial Physics  

Science Journals Connector (OSTI)

... THE first Conference on Industrial Physics to be held in Great Britain took place in Manchester under the ... auspices of the Institute of Physics on March 28-30. The subject chosen for the Conference was Vacuum Devices in Research and Industry, and its chief object was to ...

HERBERT R. LANG

1935-04-06T23:59:59.000Z

159

Industrial Optimization Compact Course  

E-Print Network [OSTI]

Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

Kirches, Christian

160

Industrial electrotechnology development  

Science Journals Connector (OSTI)

New and improved industrial technologies have a tremendous role in enhancing productivity, minimising waste, reducing overall energy consumption, and mitigating environmental impacts. The electric utility industry plays a major role in developing these new and improved technologies. This paper describes several major advances and their potential impacts.

Clark W. Gellings

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Japan's Rayon Industry  

Science Journals Connector (OSTI)

THE RAYON INDUSTRY of Japan has constantly expanded for the past eight years at a pace which has surpassed the development of all the other manufacturing industries of the Empire. At the end of 1926, the combined total output of rayon companies in this ...

KEHTI SISIDO

1934-08-10T23:59:59.000Z

162

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Components of Total Electricity Demand by Census Region, Industry" 6. Components of Total Electricity Demand by Census Region, Industry" " Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Groups and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

163

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

164

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

165

Uranium industry annual 1995  

SciTech Connect (OSTI)

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

166

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

167

Posted 3/2/13 Medline Industries Industrial Engineer  

E-Print Network [OSTI]

Posted 3/2/13 Medline Industries ­ Industrial Engineer Medline Industries, Inc. has an immediate opening for an Industrial Engineer for our SPT Division located in Waukegan, IL. We are seeking a hard-working, detail-oriented professional with experience in industrial engineering and lean manufacturing within

Heller, Barbara

168

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

169

INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited Industrial and Systems Engineering Bachelor of Science 128 units Industrial and Systems Engineering

Rohs, Remo

170

INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

Rohs, Remo

171

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network [OSTI]

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

172

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

report of cement industry waste heat power generation. ChinaWorrell et al. , 2001). Waste heat recovery (WHR) poweradoption and utilization of waste heat recovery (WHR) power

Ke, Jing

2013-01-01T23:59:59.000Z

173

NSLS Industrial User Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

174

Hermetic turbine generator  

DOE Patents [OSTI]

A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

Meacher, John S. (Ballston Lake, NY); Ruscitto, David E. (Ballston Spa, NY)

1982-01-01T23:59:59.000Z

175

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

176

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

177

Argonne CNM: Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Industrial Users For Industrial Users The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through peer review of user proposals. Before you submit your first user proposal, we encourage you to contact any of our staff researchers, group leaders, the User Office, or division management to discuss the feasibility of your intended research using the expertise and facilities at the CNM. We are here to serve you as part of our user community and will be happy to address any questions you might have.

178

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

179

Industry | OpenEI  

Open Energy Info (EERE)

Industry Industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by other industries and construction. Data is only available for Paraguay and the U.S., years 2000 to 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption Industry UN Data application/zip icon XML (zip, 514 bytes) application/zip icon XLS (zip, 425 bytes) Quality Metrics

180

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Safety in Offshore Industry  

Science Journals Connector (OSTI)

A large number of accidents in offshore industry have occurred over the years. Ten of the deadliest of these accidents occurred at or on the Piper Alpha ... , the Alexander L. Kielland (a Norwegian semi-submersible

2010-01-01T23:59:59.000Z

182

Energy Industry Analyst  

Broader source: Energy.gov [DOE]

A successful candidate in this position will function as an Energy Industry Analyst within FE's Office of Oil and Gas, with responsibility for supporting senior staff members in performing policy...

183

Mining Industry Profile  

Broader source: Energy.gov [DOE]

The U.S. mining industry consists of the search for, extraction, beneficiation, and processing of naturally occurring solid minerals from the earth. These mined minerals include coal, metals such...

184

Load Management for Industry  

E-Print Network [OSTI]

In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

Konsevick, W. J., Jr.

1982-01-01T23:59:59.000Z

185

Uranium Industry Annual, 1992  

SciTech Connect (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

186

Industrial power by research?  

Science Journals Connector (OSTI)

... The largest nation on the Earth is at last on the road to becoming an industrial power matching in prosperity and creativity the most successful nations elsewhere in the world. ... ask whether China has always been so certain of itself.

1985-11-21T23:59:59.000Z

187

Steel Industry Profile  

Broader source: Energy.gov [DOE]

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of manufacturing, construction, transportation, and various consumer products. Traditionally...

188

Utility and Industrial Partnerships  

E-Print Network [OSTI]

In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

Sashihara, T. F.

189

Presentations for Industry  

Broader source: Energy.gov [DOE]

Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

190

Industrial Decision Making  

E-Print Network [OSTI]

Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

Elliott, R. N.; McKinney, V.; Shipley, A.

2008-01-01T23:59:59.000Z

191

Macro Industrial Working Group  

U.S. Energy Information Administration (EIA) Indexed Site

your attention 22 Industrial Team Washington DC, September 29, 2014 Macro Team: Kay Smith (lead) (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 |...

192

Industrial Assessment Center  

SciTech Connect (OSTI)

The University of Dayton (UD) performed energy assessments, trained students and supported USDOE objectives. In particular, the UD Industrial Assessment Center (IAC) performed 96 industrial energy assessment days for mid-sized manufacturers. The average identified and implemented savings on each assessment were $261,080 per year and $54,790 per year. The assessments served as direct training in industrial energy efficiency for 16 UD IAC students. The assessments also served as a mechanism for the UD IAC to understand manufacturing energy use and improve upon the science of manufacturing energy efficiency. Specific research results were published in 16 conference proceedings and journals, disseminated in 22 additional invited lectures, and shared with the industrial energy community through the UD IAC website.

J. Kelly Kissock; Becky Blust

2007-04-17T23:59:59.000Z

193

Industrial energy use indices  

E-Print Network [OSTI]

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

194

Tuesday Webcasts for Industry  

Broader source: Energy.gov [DOE]

Learn about AMO's software tools, technologies, partnership opportunities, and other resources by watching the Tuesday Webcasts for Industry. They are held on the first Tuesday of every month from 2:00 to 3:00 p.m. Eastern time and are presented by manufacturers, AMO staff, and industry experts. Register to participate in upcoming Tuesday webcasts by visiting the AMO Events Calendar or Training Calendar. Each entry includes the webcast's date, topic, and registration link, and a detailed description.

195

Japan Confronts Industry Decline  

Science Journals Connector (OSTI)

Japan Confronts Industry Decline ... The moves are taking place at a time when demand in Japan is weak and companies face competition from lower-cost players in the Middle East and the U.S. ... Only a few months ago, Japans largest chemical company, Mitsubishi Chemical, cited deteriorating business conditions when it announced it would close one of its ethylene crackers in Kashima, Ibaraki prefecture, an industrial city a few hours drive northeast of Tokyo. ...

JEAN-FRANOIS TREMBLAY

2013-02-11T23:59:59.000Z

196

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network [OSTI]

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

197

Building a More Efficient Industrial Supply Chain | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

More Efficient Industrial Supply Chain More Efficient Industrial Supply Chain Building a More Efficient Industrial Supply Chain November 7, 2011 - 3:06pm Addthis This infographic highlights some of the ways businesses can save money at each step of the energy supply chain. Many companies can identify low-cost ways to reduce energy costs in electricity generation, electricity transmission, industrial processes, product delivery, and retail sales. This infographic highlights some of the ways businesses can save money at each step of the energy supply chain. Many companies can identify low-cost ways to reduce energy costs in electricity generation, electricity transmission, industrial processes, product delivery, and retail sales. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs

198

DOE Seeks Industry Participation for Engineering Services to Design Next  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation for Engineering Services to Design Industry Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant July 23, 2007 - 2:55pm Addthis Gen IV Reactor Capable of Producing Process Heat, Electricity and/or Hydrogen WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced that the Idaho National Laboratory (INL) is issuing a request for expressions of interest from prospective industry teams capable of providing engineering design services to the INL for the conceptual design phase of the Department's Next Generation Nuclear Plant (NGNP). The NGNP seeks to utilize cutting-edge technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels in the

199

Quasiseparable Generators  

Science Journals Connector (OSTI)

It is clear from the preceding chapter that any matrix has quasiseparable representations. By padding given quasiseparable generators with zero matrices of large sizes one ... large orders. However, one is lookin...

Yuli Eidelman; Israel Gohberg

2014-01-01T23:59:59.000Z

200

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industrial Energy Efficiency Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

202

net generation | OpenEI  

Open Energy Info (EERE)

net generation net generation Dataset Summary Description Provides annual net electricity generation (thousand kilowatt-hours) from renewable energy in the United States by energy use sector (commercial, industrial, electric power) and by energy source (e.g. biomas, solar thermal/pv). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords 2004 2008 Electricity net generation renewable energy Data application/vnd.ms-excel icon 2008_RE.net_.generation_EIA.Aug_.2010.xls (xls, 16.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2004 - 2008 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset

203

Industrial cofiring reaps big rewards  

SciTech Connect (OSTI)

US industry operates over 2,000 coal-fired stoker boilers. They are typically over 30 years old, difficult to maintain, and hard to keep in environmental compliance. Natural gas cofiring of industrial stoker boilers offers a wide range of operational benefits. Boiler efficiency is improved because combustion air requirements are reduced (low excess air of LEA) and carbon burnout is improved (loss on ignition or LOI). On the emissions side, opacity problems are reduced and NO{sub x} and SO{sub 2} emissions reduced as natural gas replaces a percentage of the coal. Further, operation is improved through easier, smoke-free start-up and warm-up, recovered steam generation, increased short-term peaking capacity, improved plant availability and improved low load operation. Fuel flexibility also increases and maintenance decreases. Cofire benefits and economics are, however, very site specific. Important factors include relative coal and gas pricing, coal and gas supply security, boiler capacity factor and seasonal use, and backup boiler capability. These factors are discussed using the example of the Dover Light and Power of Ohio.

NONE

1996-06-01T23:59:59.000Z

204

Shermco Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Shermco Industries Inc Shermco Industries Inc Jump to: navigation, search Name Shermco Industries, Inc. Place Irving, Texas Zip 75061 Sector Wind energy Product Irving-based electrical power maintenance and analysis company. Their specialized wind power division, provides on-site and up-tower generator maintenance and repair work. Coordinates 32.813516°, -96.955506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.813516,"lon":-96.955506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

GASIFICATION FOR DISTRIBUTED GENERATION  

SciTech Connect (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

206

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network [OSTI]

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

207

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take s e n G i n e e r i n G ( i s e ) ISE 105 Introduction to Industrial and Systems Engineering (2, Fa

Rohs, Remo

208

industrial & systems Industrial and Systems engineers use engineering  

E-Print Network [OSTI]

78 industrial & systems Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take to introduce the philosophy, subject matter, aims, goals, and techniques of industrial and systems engineering

Rohs, Remo

209

Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst  

E-Print Network [OSTI]

9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

Mountziaris, T. J.

210

Zero landfill, zero waste: the greening of industry in Singapore  

Science Journals Connector (OSTI)

This paper reviews how a land-scarce city-state is trying to achieve its goals of zero landfill and zero waste through the greening of industry. The main challenges Singapore confronts in its solid waste management are an increasing volume of industrial waste generated, a shortage of land for landfills, and escalating costs of incineration plants. To green its industries, there has been a coordinated effort to develop a recycling industry and to initiate public-private partnerships that will advance environmental technologies. Case studies on the steel, construction, waste incineration, and the food retail industry illustrate the environmental progress that has been made. These cases show also the crucial role played by the government in accelerating the greening of industry by facilitating the formation of strategic collaborations among organisations, and by reconciling the twin objectives of sustainability and profitability.

Josephine Chinying Lang

2005-01-01T23:59:59.000Z

211

MIT and Energy Industries MIT Industry Brief  

E-Print Network [OSTI]

and demand, security and environmental impact. MITEI's interdisci- plinary research program focuses on: 1 of nanotechnology to solar and thermoelectric energy conversion. The mission of the MIT Photovoltaic Research synthesizes and characterizes commer- cial and next-generation photovoltaic materials and devices, engineering

Polz, Martin

212

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network [OSTI]

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

Paris-Sud XI, Université de

213

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry  

E-Print Network [OSTI]

How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

Boyer, Edmond

214

Compact microwave ion source for industrial applications  

SciTech Connect (OSTI)

A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

2012-02-15T23:59:59.000Z

215

Energy Conservation Through Industrial Cogeneration Systems  

E-Print Network [OSTI]

Typical Axial Turbine SATURN 800 kW CENTAUR 2700 kW MARS 7400 kW Figure 3. Solar Gas Turbine Generator Sets 23 ESL-IE-79-04-03 Proceedings from the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 Exhaust Heat Utilization... temperatures below the dew point) 612,500 = $383/kW 1600 ? Net fuel rate (from Figure 4) = 6524 Btu/kWh ? Maintenance cost = $0.0018/kWh ? Cost of Electricity Generated 6 = (6524) (2.85 -;"-10 ) + 0.0018 0.20/kWh ? Saving/Kilowatt Hour: 0...

Solt, J. C.

1979-01-01T23:59:59.000Z

216

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

31959,484998,384469,611361,884897,1656066,1028686,1016038,1798775,1831935,0.5,0,0 "Pumped Storage",-166176,-196778,-193772,-201714,-274845,-268934,-298601,-282707,-287239,-119882,-...

217

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,1234121,1234464,832577,1188294,917065,1619659,2094383,1829938,1899201,1436186,6.6,0,0 "Solar",2152,478,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "IPP and...

218

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",75183893,85006849,92198096,93939609,98396809,100536445,98159139,102750838,14230...

219

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",96763006,99451077,95099161,90418339,94637160,97259636,94637956,95187030,9205415...

220

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",106615302,103334454,88057219,90733028,93162079,90531201,94067080,83152928,83500...

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1992, 1991, 1990,"Percent Share 2000","Percent Share 2010","Percent Share 2012" "Electric Utilities",56188401,53328664,58902054,59225368,59780402,64316732,61176351,65456080,6510365...

222

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

8125332,120043024,117354244,123024655,120529191,116813173,115014081,84.7,62.6,52.8 "Hydroelectric",414161,383655,429024,527746,386435,410436,631936,515744,729876,510835,488329,5107...

223

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

2021,66097259,65425002,67538611,61558991,61434530,65138291,65295742,64.3,58.1,48.5 "Hydroelectric",1110719,1230678,1142977,1234066,1247863,1146768,1381242,1355963,1420178,1242987,1...

224

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

6688,31876730,29714368,27453911,28990113,27666494,26027968,25188557,59.1,40.3,34.8 "Hydroelectric",1145514,1506941,2808788,3552573,3811273,3065862,623579,2630361,2976676,1798412,19...

225

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9273,3549008,3222785,7800149,2668381,9015544,8075919,8334852,9518506,9063595,0,0,0 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,2781,516242,1820306,1779887,2115695,1658481,1681717,15755...

226

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

2082,31952337,30276010,31401250,30456351,30001882,28922906,29602738,79.5,67.8,65.4 "Hydroelectric",1429682,1915427,1430172,1726853,1877868,1625544,1676432,1283074,1076897,1156217,1...

227

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

4945,83257133,76690297,77063151,70491516,71708390,70648850,76635718,95.9,69.4,63.6 "Hydroelectric",483167,461787,482024,571541,445779,431101,546033,471916,326253,322664,235958,2109...

228

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

45514,100857561,96799645,93951561,100390066,102198817,100359157,101996271,18.2,0,0 "Hydroelectric",1034634,1754726,1071626,1153050,1199048,1077389,1294569,1016202,1666727,1745193,1...

229

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

01,156188,171053,237165,229129,309232,294615,322564,289529,325914,311960,3,2.8,3.1 "Hydroelectric",1575045,1344746,1433141,1323744,1171801,1291223,1223607,1463942,1498020,1582536,1...

230

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

676411,27930011,24442870,22448944,24722481,22676018,21939027,21000180,44,29.3,17.8 "Hydroelectric",969358,1131815,1424606,1396112,947412,1182353,1270707,1391152,1490114,1669793,840...

231

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3065,4077225,3309695,3367488,3181654,3263241,3187087,3168054,2959203,26.4,13.9,6.6 "Hydroelectric",324399,358905,327960,401855,396042,325226,342231,376576,322498,331491,263087,2248...

232

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

875331,84659818,82539467,79897442,81722246,73476309,71713851,70500461,84.5,92.7,92 "Hydroelectric",2353476,2959628,2571440,3308064,1912432,1666237,2591701,2961193,3780251,3948052,4...

233

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

2658,30307236,25801600,26993543,26532193,23013743,23165807,22874805,41.4,35.9,29.2 "Hydroelectric",1366895,1511339,2313465,2277232,1100451,1523502,1766438,2858778,2382225,3590944,1...

234

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9080,16040775,16079519,14002015,14739783,12402148,13562815,12658464,63.3,63.4,72.1 "Hydroelectric",1257054,1617228,1313856,433690,346456,347444,893386,871473,913021,980110,1097486,...

235

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9058,55504189,57971909,52132070,59559596,49995747,46671234,50186951,63.3,51.3,44.1 "Hydroelectric",7672522,9575639,8137795,10211962,5646073,4939601,7167342,8537997,9649206,11087048...

236

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,155530,160057,168518,191912,139742,194804,148148,186369,186241,151825,0.4,0.6,0.7 "Hydroelectric",739679,1217033,686235,826996,659033,533021,737659,770779,439919,412899,451521,500...

237

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

799,104413600,103774522,102043025,98776088,95745949,96526976,96012872,92,82.4,75.4 "Hydroelectric",433505,408779,453712,503470,436780,449936,489515,438282,443721,423953,411270,5706...

238

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

5335,39551555,38804539,41380267,39301199,41153537,37862584,38681220,95.3,87.5,85.3 "Hydroelectric",883286,1214158,1014175,966572,835275,729424,843316,808375,593147,593555,583615,87...

239

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

219281,30780575,31710476,38072165,37020817,34602347,32306088,31636037,45.7,38.8,36 "Hydroelectric",6716934,9174092,6622160,6427345,7285902,6597671,6792904,6410064,6973147,7074984,7...

240

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

348089,1500879,1727583,1527874,3814009,3502742,3682715,2814199,1297978,7.3,7.5,4.3 "Hydroelectric",39110869,42017194,30292810,32790841,33557956,33367317,37603801,30765882,32896035,...

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

4471,27529906,26336456,27099914,27048924,26864520,25750792,25092696,92.5,81.6,77.9 "Hydroelectric",2477230,2580042,2042118,1475251,1252790,1305393,1521034,1341824,1545864,1723904,1...

242

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

6318,73598580,68553249,62768480,66758044,60689987,57897011,53301276,61.8,41.1,29.7 "Hydroelectric",7435223,8883598,8704254,12535373,6136148,4136114,7251786,10144581,10626221,126648...

243

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

8660,26357179,26121447,26752349,25507029,25348413,22129312,25826928,85.4,70.7,68.2 "Hydroelectric",222819,194766,217010,270963,312288,267978,198211,164993,138947,170699,264591,2373...

244

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,0,0,1482608,2557934,2367889,2269352,2104045,1907826,2148078,2117781,2351049,0,0,0 "Hydroelectric",26512,53253,32238,42188,46319,27974,46330,41014,35842,45857,20535,29065,146980,36...

245

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

235875,29742722,25896959,26488755,26799665,22152736,23435008,23720258,72.5,67.8,63 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9102,11769,0,0,0 "Natural...

246

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9404,28282531,28426101,26497930,26642524,24843631,25869811,24879567,81.5,68.5,58.5 "Hydroelectric",760600,916901,939097,963426,815654,961876,900488,950094,936999,780322,936688,8302...

247

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

608,12488802,11500536,10586608,10209727,9815909,10949228,11861344,11273069,2.8,0,0 "Hydroelectric",229801,280709,237957,285205,270771,185169,587468,289822,230973,228399,207646,1195...

248

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,5016223,5300592,5042015,4605062,6745833,7422851,7917440,7900814,8429403,0,0.4,0.4 "Hydroelectric",25548491,40157205,31946754,26407034,22871073,26926661,47127134,38826653,33608686,...

249

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

5652,9290499,6965990,8042462,5877093,9800260,8803840,9625252,7903796,7351520,3,0,0 "Hydroelectric",89197478,91552096,68054577,72727385,77431888,78613750,81791115,71894440,71393131,...

250

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3,27394342,27780141,27369905,25394481,24890670,23625314,22622989,23299412,39.8,0,0 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,1713984,1422418,1739737,1588375,2457463,1442006,2009536,1...

251

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9551,63230856,65880095,64727519,63295811,58235454,59985395,67564750,63.8,52.7,32.9 "Hydroelectric",2211810,2679135,3288341,3248591,2120372,2215776,2544122,4004150,3663002,4107318,2...

252

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

67,21752103,20444407,19943312,20859090,21819763,24921250,24938199,24616655,2.9,0,0 "Hydroelectric",20727642,22801091,20888744,22590043,21703390,20907191,21791238,21752786,21774373,...

253

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

034628,65782399,61864438,60770030,61889050,61631012,61122819,59073203,35,24.5,19.3 "Hydroelectric",150511,182042,177474,208202,206158,154446,203422,266159,265258,262667,184114,1477...

254

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3537,5323432,5004219,4839820,5293892,4300537,4698045,5258829,4992578,84.2,10.9,9.5 "Hydroelectric",368890,455461,430411,474895,486207,399636,520077,415691,395734,367624,404227,3306...

255

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

9517,38144842,36863872,35282695,33558049,32740540,33489286,32144557,68.8,60.9,50.1 "Hydroelectric",1332251,1908535,1890101,1226149,1427741,1313600,1446192,1498881,1748442,1623369,2...

256

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

4409921,12242093,14655727,16487675,13774690,17126218,16131955,14902659,1.2,1.1,0.9 "Hydroelectric",7692976,8740211,5855389,5889817,6566946,6012303,6611293,6292487,5705581,5678997,6...

257

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

091528,71514607,62735936,61213625,59764568,49814805,53955009,53865768,17.1,5.9,5.5 "Hydroelectric",49848,47157,43487,45482,60233,67950,84682,61879,72165,71078,56870,56802,60354,520...

258

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

0970,24339185,21506397,19780738,18025615,20030355,19573925,19160989,54.9,43.3,36.9 "Hydroelectric",2155601,2918734,3606689,4140964,4658215,3236203,1550558,3085749,3647768,2653347,3...

259

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3073,57176084,53582211,48592766,40688696,46829678,47907503,48501751,81.8,81.1,79.1 "Hydroelectric",714269,1185144,1539347,1816693,2046773,1204326,199214,1159326,1479914,652477,1356...

260

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1457,591756,0.2,0.1,0.1 "Coal",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Hydroelectric",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Natural...

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

113,3314068,2029901,2721295,2833332,2641582,2626290,2727087,2472514,37.9,32.8,24.3 "Hydroelectric",5980965,6608164,5238801,4432451,2993107,2917283,3396833,3074566,3597509,4276303,4...

262

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

50606,14656868,13971824,15324714,15627860,16443169,16365730,15053277,53.4,15.9,8.4 "Hydroelectric",2398716,2144091,2117746,2425588,1742489,2003191,2057626,1702380,1605203,1747938,2...

263

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1392,64097781,55698342,53234497,59383147,54011457,46762330,46631040,58.7,53.8,41.9 "Hydroelectric",3311488,3858555,4709155,5125576,3007639,2682904,2695832,3826791,3933276,5059386,2...

264

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

1067,27329077,26820765,26399834,27110850,24443013,26186299,27587603,61.7,50.6,42.4 "Hydroelectric",339300,469100,534259,529995,554068,504387,426960,574680,549598,686227,736795,6194...

265

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

3255364,122149283,122667859,128266337,118673068,118085107,118354490,36.5,15.3,13.3 "Hydroelectric",548864,523147,1218623,983369,989185,1593542,611491,1288469,1266098,858933,1076338...

266

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,13511823,12230805,10062854,7303193,9022654,6260025,8281502,8617977,84.9,71.4,68.6 "Hydroelectric",10005187,12470416,8418903,9690596,8663674,8371252,10400442,7959080,7737744,767146...

267

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Geothermal",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Hydroelectric",28940,19999,16719,28608,17872,14729,23656,9169,9724,2078,8533,18132,15114,18844,1...

268

Applications for Microwave Generators in the Process Industries  

E-Print Network [OSTI]

nologies." DOE Report, prepared by Argonne National laboratory, Energy and Environmental Systems Division, DOE Contract No. 31-109-38 6189, September 1981. 3. Jeambey, C. G. "Apparatus for Recovery of Petroleum from Petroleum-Impregnated Media." US 4...

Humphrey, J. L.; Vasilakos, N. P.

1983-01-01T23:59:59.000Z

269

Solar Thermal Power Generation and Industrial Process Heat  

Science Journals Connector (OSTI)

A solar chimney power plant consists of a transparent tubular chimney over 200m tall rising from a...2 covered with a transparent material (Haaf et al. 1983). At the base of the chimney is located a turbine driv...

Brian Norton

2014-01-01T23:59:59.000Z

270

ET Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

271

Petrochemical industry drivers  

SciTech Connect (OSTI)

Extensive analyses of profit-ability and pricing over the years have shown that the trends seen in the petrochemical industry have two dominant drivers, namely, industry experience curves (reflecting continuous process improvement and cost savings) and profitability cycles. Any outlook for the future must examine both of these facets. The author`s algorithm for price projections has two primary terms: a cost-related one and a supply/demand-related one. Both are strong functions of experience curves; the latter is also a prime function of cyclicality. At SRI International. To arrive at medium-term quantitative projections, SRI typically creates a consistent base-case scenario that more or less mirrors the past but also incorporates observed directional changes. In this article the author examines in detail how these scenarios are used for projection. He describes experience curves, ethylene/gross domestic product (GDP) penetration levels, industry structure, and cyclicality as they apply to ethylene prices.

Sedriks, W.

1995-11-01T23:59:59.000Z

272

Microwave generator  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

273

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

274

China's Industrial Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

275

Natural Gas Industrial Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

276

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

277

Chapter 11 - Industrial Automation  

Science Journals Connector (OSTI)

The industrial systems of the future are complex systems composed of vast numbers of devices interacting with each other and with enterprise systems. Modern technologies such as web services, service-oriented architectures (SOAs), the cloud, etc. make it possible for sophisticated infrastructures to emerge in future factories. We take a closer look at key visionary aspects that are expected to be introduced in the industrial automation domain in the years to come, and the pivotal role of M2M and IoT. Additionally, we investigate the impact on the collaboration of machines among themselves and with enterprise systems and their services.

Jan Hller; Vlasios Tsiatsis; Catherine Mulligan; Stamatis Karnouskos; Stefan Avesand; David Boyle

2014-01-01T23:59:59.000Z

278

Industrial Partnerships | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

279

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

280

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect (OSTI)

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of Dr. A. B. P. Cassie, director of research of the Wool Industries Research Association, presented to the annual general meeting of the Association on April ... No. 212.) Headingley, Leeds: 1959). Modifications have been made to the pilot scouring plant, while methods for determining oil and grease in ...

1959-06-27T23:59:59.000Z

282

CONGRESS BLASTS OIL INDUSTRY  

Science Journals Connector (OSTI)

IN PACKED HEARINGS last week before angry members of Congress, the heads of BP, ExxonMobil, Chevron, ConocoPhillips, and Shell Oil defended their industry in light of the April 20 BP oil rig explosion in the Gulf of Mexico, which has led to the worst ...

JEFF JOHNSON

2010-06-21T23:59:59.000Z

283

Industry Partners Panel  

Broader source: Energy.gov [DOE]

Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

284

Dubuque generation station, Dubuque, Iowa  

SciTech Connect (OSTI)

Alliant Energy's Dubuque generation station is a fine example of why small does not mean insignificant in the power generation industry. This winner of the EUCG best performer award in the small plant category shows that its operating excellence towers over that of many larger and much newer coal-fired power plants. The plant has three operating units with boilers originally designed for Illinois basin coal but now Powder River Basin coal makes up 75% of the coal consumed. The boilers can also burn natural gas. 4 photos.

Peltier, R.

2008-10-15T23:59:59.000Z

285

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

286

Magnetocumulative generator  

DOE Patents [OSTI]

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, J.S.; Wheeler, P.C.

1981-06-08T23:59:59.000Z

287

Monthly Generation System Peak (pbl/generation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

288

Photon generator  

DOE Patents [OSTI]

A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

Srinivasan-Rao, Triveni (Shoreham, NY)

2002-01-01T23:59:59.000Z

289

Industrial Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

290

Essays on the industrial organization of the airline industry  

E-Print Network [OSTI]

This thesis analyzes several aspects of the Industrial Organization of the airline industry in three separate chapters. Chapter 1 investigates the effect of air traffic delays on airline prices. The degree to which prices ...

Januszewski, Silke I. (Silke Irene), 1974-

2003-01-01T23:59:59.000Z

291

Chapter 1 - Industrial Wastewater Treatment, Recycling, and Reuse: An Overview  

Science Journals Connector (OSTI)

Abstract Water availability; usage, treatment, and discharge of used water; and possible ways of recycling and reusing this used water are briefly discussed here. Issues pertaining to industrial wastewaters, sources of generation, characterization of wastewaters, and various methodologies of wastewater treatment have been reviewed along with economic perspectives of water management. Recent developments in the area of industrial wastewater treatment, recycling, and reuse are also briefly outlined here.

Vivek V. Ranade; Vinay M. Bhandari

2014-01-01T23:59:59.000Z

292

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network [OSTI]

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

293

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

294

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

295

"Table A27. Components of Onsite Electricity Generation by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Onsite Electricity Generation by Census Region," Components of Onsite Electricity Generation by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" ," "," "," "," " " "," "," "," ",," ","RSE" "SIC"," "," "," ",," ","Row" "Code(a)","Industry Group and Industry","Total","Cogeneration","Renewables","Other(b)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,0.8,1.6,1 , 20,"Food and Kindred Products",6962,6754,90,118,11.2

296

Recent developments: Industry briefs  

SciTech Connect (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s July 1992 `Recent Developments` section. Specific items mentioned include: (1) the merger of Entergy and Gulf States Utilities, (2) restart of the Sequoyah Fuels facility in Oklahoma, (3) development of the 7th and 8th nuclear units in Taiwan, (4) purchase of interest in Rio Algom, Ltd, and (5) acquisition of the Italian firm AGIP by a Canadian company.

NONE

1992-07-01T23:59:59.000Z

297

Industrial Analytics Corporation  

SciTech Connect (OSTI)

The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

Industrial Analytics Corporation

2004-01-30T23:59:59.000Z

298

SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program  

E-Print Network [OSTI]

SymposiumandIndustrialAffiliatesProgramLightinAction #12;Industrial Affiliates Program Friday, 8 Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial revolution" by Economist magazine [April -2012]. Precision of the product manufactured by AM largely depends

Van Stryland, Eric

299

Large Industrial Renewable Energy Purchase Program (New Brunswick) |  

Broader source: Energy.gov (indexed) [DOE]

Large Industrial Renewable Energy Purchase Program (New Brunswick) Large Industrial Renewable Energy Purchase Program (New Brunswick) Large Industrial Renewable Energy Purchase Program (New Brunswick) < Back Eligibility Agricultural Commercial Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Performance-Based Incentive Provider New Brunswick Energy and Mines Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This renewable energy will count towards meeting the Province's renewable energy targets at a purchase

300

Waste Heat Recovery from Industrial Process Heating Equipment -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Electricity Industry's Dilemma  

Science Journals Connector (OSTI)

...for new generation and transmission capaci-ty in many...McGraw-Hill's Data Resources, Inc...for example, a major transmission line carrying bulk power...approach to managing transmission loads is that you can...

MARK CRAWFORD

1985-07-19T23:59:59.000Z

302

Generation Technologies  

E-Print Network [OSTI]

Many local governments are using green power in their facilities and providing assistance to local businesses and residents to do the same. Green power is a subset of renewable energy that is produced with no GHG emissions, typically from solar, wind, geothermal, biogas, biomass, or low-impact small hydroelectric sources, includes three types of products: utility products (i.e., green power purchased from the utility through the electricity grid), renewable energy certificates (RECs), and on-site generation. Opportunities to purchase these products are increasing significantly, with annual green power market growth rates

Green Power

2005-01-01T23:59:59.000Z

303

Industrial Development Fund (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fund (North Carolina) Fund (North Carolina) Industrial Development Fund (North Carolina) < Back Eligibility Commercial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Grant Program Loan Program Provider Department of Commerce The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The local government reserves the funds and proposed projects are eligible for grants, but the local government must match the state funding 3:1. Project owners must demonstrate a commitment to generating jobs and present a business plan.

304

Great River Energy (28 Member Cooperatives) - Commercial and Industrial  

Broader source: Energy.gov (indexed) [DOE]

Great River Energy (28 Member Cooperatives) - Commercial and Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates Great River Energy (28 Member Cooperatives) - Commercial and Industrial Efficiency Rebates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Water Heating Program Info Funding Source Great River Energy State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by measure and member cooperative offering. Provider Great River Energy Great River Energy, a generation and transmission cooperative which serves

305

NETL: Industrial Capture & Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

306

LCA experiences in Danish industry  

Science Journals Connector (OSTI)

A study has been performed on Danish industrys experiences with LCA. Twenty-six enterprises from different sectors conpleted ... learning phase, and experiences with full-blown LCAs are sparse. Expectations of ...

Ole Broberg; Per Christensen

1999-09-01T23:59:59.000Z

307

Energy Efficient Industrial Building Design  

E-Print Network [OSTI]

The design of industrial buildings today is still largely unaffected by energy legislation and building technologies. The present corporate tax structures for industry do little to encourage investment of capital for future operating cost savings...

Holness, G. V. R.

1983-01-01T23:59:59.000Z

308

Solar Industrial Process Heat Production  

Science Journals Connector (OSTI)

An overview of state of the art in producing industrial process heat via solar energy is presented. End-use matching methodology for assessing solar industrial process heat application potential is described f...

E. zil

1987-01-01T23:59:59.000Z

309

Industrial Heat Pump Design Options  

E-Print Network [OSTI]

There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

Gilbert, J. S.

310

Texas Industries of the Future  

E-Print Network [OSTI]

The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

Ferland, K.

311

Empirical essays in industrial organization  

E-Print Network [OSTI]

In this dissertation, I present three empirical essays that encompass topics in industrial organization. The first essay examines the degree of competition and spatial differentiation in the retail industry by exploiting ...

Chiou, Lesley C

2005-01-01T23:59:59.000Z

312

High Technology and Industrial Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

313

Innovative Utility Pricing for Industry  

E-Print Network [OSTI]

INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

Ross, J. A.

314

EPRI's Industrial Energy Management Program  

E-Print Network [OSTI]

EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... and other industrial activity effects on our environment. Energy efficiency programs and new electrical processes can playa major role in restoring the environment and in creating a stronger industrial sector in the national economy. Since 1984...

Mergens, E.; Niday, L.

315

Magnetocumulative generator  

DOE Patents [OSTI]

An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

1983-01-01T23:59:59.000Z

316

PETROLEUM INDUSTRY INFORMATION REPORTING ACT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT: RULEMAKING;1 EXECUTIVE SUMMARY In the six months since the new Petroleum Industry Information Reporting Act (PIIRA which is used by the petroleum industry and market trading groups to assess the trends in California

317

Creating Value Wood Products Industry  

E-Print Network [OSTI]

and an information dissemination plan. The program areas are Industrial Process Improvement, Environmental Assessment1 Creating Value for the Wood Products Industry Creating Value for the Wood Products Industry Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland

318

Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector  

Broader source: Energy.gov [DOE]

This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial energy efficiency (IEE) programs delivered by a variety of entities including utilities and program administrators. The report also assesses some of the key features of programs that have helped lead to success in generating increased energy savings and identifies new emerging directions in programs that might benefit from additional research and cross-discussion to promote adoption.

319

Biogass Generator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Another internet tool by: Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle, produce large amounts of biogas. The biogas is produced not by the cow or elephant, but by billions of microor- ganisms living in its digestive system. Biogas also develops in bogs and at the bottom of lakes, where decaying organic matter builds up under wet and

320

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

322

Colorado Industrial Challenge and Recognition Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

Colorado Industrial Challenge and Recognition Program Colorado Industrial Challenge and Recognition Program This fact sheet offers details of the Colorado Industrial program state...

323

Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.  

E-Print Network [OSTI]

?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous (more)

Li, Molan

2011-01-01T23:59:59.000Z

324

Brushless Doubly Fed Induction Generator Based Wind Turbine Drivetrain Under Grid Fault Conditions:.  

E-Print Network [OSTI]

??With growing interest in sustainable forms of energy, the wind industry is growing rapidly. The Doubly Fed Induction Generator is the most popular choice for (more)

Shipurkar, U.

2014-01-01T23:59:59.000Z

325

NETL: Industrial Capture & Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

326

MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT  

U.S. Energy Information Administration (EIA) Indexed Site

REPORT REPORT INSTRUCTIONS|Year: 2013 No. 1905-0129 Approval Expires: 12/31/2015 Burden: 0.3 Hours| |PURPOSE|Form EIA-860M collects data on the status of: Proposed new generators scheduled to begin commercial operation within the subsequent 12 months; Existing generators scheduled to retire from service within the subsequent 12 months; and Existing generators that have proposed modifications that are scheduled for completion within one month. The data collected on this form appear in the EIA publication Electric Power Monthly. They are also used to monitor the current status and trends of the electric power industry and to evaluate the future of the industry.| |REQUIRED RESPONDENTS|Respondents to the Form EIA-860M who are required to complete this form are all Form EIA-860, ANNUAL ELECTRIC GENERATOR REPORT,

327

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

328

Continuing consolidation in the coal industry  

SciTech Connect (OSTI)

Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

Gaalaas, T. [Pace Global Energy Services LLC (United States)

2006-08-15T23:59:59.000Z

329

Second Generation Renewable Fuels Blue-Green Seminar  

E-Print Network [OSTI]

Abstract Second Generation Renewable Fuels Blue-Green Seminar at University of Michigan by Michael Ladisch Laboratory of Renewable Resources Engineering Purdue University Potter Engineering Center 500 footprint will require commercialization of industrial processes that transform renewable lignocellulosic

Eustice, Ryan

330

Regulatory risks paralyzing power industry while demand grows  

SciTech Connect (OSTI)

2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

Maize, K.; Peltier, R.

2008-01-15T23:59:59.000Z

331

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

332

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

333

Whitacre College of Engineering Industrial Engineering Department  

E-Print Network [OSTI]

Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

Gelfond, Michael

334

Faculty of Engineering & Design Industrial Placements  

E-Print Network [OSTI]

Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

Burton, Geoffrey R.

335

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles  

E-Print Network [OSTI]

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business systems to help companies compete in today's global marketplace. The Industrial and Systems Engineer. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

Rohs, Remo

336

industrial & systems (ISE) Industrial and Systems engineers use engineering and business principles  

E-Print Network [OSTI]

74 industrial & systems (ISE) Industrial and Systems engineers use engineering and business to help companies compete in today's global marketplace. The Industrial and Systems engineer's task. Programs Available · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial

Rohs, Remo

337

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

338

ESCO Industry in China  

Broader source: Energy.gov (indexed) [DOE]

ESCO Development in ESCO Development in China China-America EE Forum 2011.5.6, S.F Contents Fast development 1 Great potential 2 Opportunities & Challenges 3 Function of EMCA 4 China Energy Conservation project  Officially started in 1998;  It is a key international cooperation project in the field of energy conservation by Chinese government and World Bank/GEF;  The main purpose of the project is to promote Energy Performance Contracting (EPC) mechanism and develop ESCO industry in China Project progress-1 st phase 3 pilot ESCOs: Beijing Liaoning Shandong Phase I EC information Dissemination Center(ECIDC) Project progress-2 nd phase EMCA Phase II I& G New and Potential ESCOs Technical support Financial support Project Progress- 2 nd Phase EMCA---provide practical technical

339

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

340

End User Perspective - Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid State Research Center Solid State Research Center DOE Fuel Cell Portable Power Workshop End User Perspective - Industrial Consumer Electronics Power (< 20-50W) Department of Energy Fuel Cell Portable Power Workshop Jerry Hallmark Manager Energy Technologies Lab Motorola Labs Solid State Research Center DOE Fuel Cell Portable Power Workshop Outline * Energy & Power of Portable Devices * Fuel Cell Applications & Cost * Key Requirements & Challenges * Fuels for Portable Fuel Cells * Fuel Transportation Regulations and Standards * Methanol Fuel Cells - Direct Methanol Fuel Cells - Reformed Methanol Fuel Cells * Technical Challenges 2 Solid State Research Center DOE Fuel Cell Portable Power Workshop Portable Electronics Yearly Energy Usage  :KU 1990 1980  :KU

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rebuttal: Interacting With the Pharmaceutical Industry  

E-Print Network [OSTI]

9. 6. Angell M. The pharmaceutical industry: To whom is ithas shown that the pharmaceutical industry has profited some

Stone, Susan; Herbert, Mel

2003-01-01T23:59:59.000Z

342

ITP Industrial Materials: Development and Commercialization of...  

Broader source: Energy.gov (indexed) [DOE]

Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

343

User Facilities for Industry 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

344

Industry Profile | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

345

Generating Test Data From Statebased Specifications 1  

E-Print Network [OSTI]

Generating Test Data From State­based Specifications 1 A. Jefferson Offutt 1 , Shaoying Liu 2 testing in industry is conducted at the system level, most formal research has focused on the unit level. As a result, most system level testing techniques are only described informally. This paper presents formal

Offutt, Jeff

346

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Electricity: Components of Onsite Generation, 2002;" 3 Electricity: Components of Onsite Generation, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Onsite-Generation Components;" " Unit: Million Kilowatthours." " "," ",,,"Renewable Energy",," " " "," ",,,"(excluding Wood",,"RSE" "NAICS"," ","Total Onsite",,"and",,"Row" "Code(a)","Subsector and Industry","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.9,0.8,1.1,1.3

347

Opportunities for Minority Students in the Solar Industry | Department of  

Broader source: Energy.gov (indexed) [DOE]

Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry November 20, 2012 - 9:00am Addthis The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. Dot Harris Dot Harris

348

Introduction Minimal generation  

E-Print Network [OSTI]

Introduction Minimal generation Random generation Minimal and probabilistic generation of finite generation of finite groups #12;Introduction Minimal generation Random generation Some motivation Let x1 random elements of G = x1, . . . , xk . (G is the group generated by x1, . . . , xk : all possible

St Andrews, University of

349

Challenges and Opportunities for the Illinois Coal Industry  

E-Print Network [OSTI]

Challenges and Opportunities for the Illinois Coal Industry Joseph DiJohn Director Metropolitan.1.3. American Clean Energy and Security Act 7 3.2. Competition from Wind Energy 9 3.3. Expanding Export Markets 11 3.4. Mine Mouth Power Generation 11 3.5. Carbon Management Technologies 11 3.5.1. Carbon Capture

Illinois at Chicago, University of

350

A SYSTEMS APPROACH TO MATHEMATICAL MODELING OF INDUSTRIAL PROCESSES  

E-Print Network [OSTI]

/or partial automation of the creative modeling process. Model Generation is a new modeling paradigm designed specifically for rapid modeling of large multi-scale systems in the industrial practice. It proposes model. Keywords: Dynamic and continuous/discrete simulation, computer-aided modeling, symbolic

Linninger, Andreas A.

351

Cool Storage Economic Feasibility Analysis for a Large Industrial Facility  

E-Print Network [OSTI]

The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis...

Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

1988-01-01T23:59:59.000Z

352

Innovative Project Helps Refloat a Local Industry | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Helps Refloat a Local Industry Project Helps Refloat a Local Industry Innovative Project Helps Refloat a Local Industry April 4, 2012 - 1:55pm Addthis Check out the first Houseboat to Energy Efficient Residences (HBEER) prototype home located in Monticello, Kentucky. | Courtesy of University of Kentucky. Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy In 1952, the U.S. Army Corps of Engineers dammed up the Cumberland River in Eastern Kentucky for the dual purposes of flood control and to generate electricity at a hydroelectric plant. The creation of the 101 mile-long reservoir accomplished both goals, and in the process spawned a new industry -- the construction and maintenance of houseboats. By the mid-1990s, Lake Cumberland had an average of 4.5 million visitors a

353

Property:IndustrialAvgRate | Open Energy Information  

Open Energy Info (EERE)

IndustrialAvgRate IndustrialAvgRate Jump to: navigation, search Property Name IndustrialAvgRate Property Type Number Description Industrial Average Rate Subproperties This property has the following 279 subproperties: A AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP APN Starfirst, L.P. Accent Energy Holdings, LLC Alabama Municipal Elec Authority Alaska Electric & Energy Coop Alaska Energy Authority Alaska Power and Telephone Co Allegheny Electric Coop Inc Alliant Energy Ameren Energy Marketing Ameren Illinois Company American Electric Power Co., Inc. American Mun Power-Ohio, Inc American Samoa Power Authority American Transmission Systems Inc Anoka Electric Coop Appalachian Power Co Aquila Inc Aquila Inc (Missouri) Arizona Electric Pwr Coop Inc

354

Innovative Project Helps Refloat a Local Industry | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Innovative Project Helps Refloat a Local Industry Innovative Project Helps Refloat a Local Industry Innovative Project Helps Refloat a Local Industry April 4, 2012 - 1:55pm Addthis Check out the first Houseboat to Energy Efficient Residences (HBEER) prototype home located in Monticello, Kentucky. | Courtesy of University of Kentucky. Chris Galm Marketing & Communications Specialist, Office of Energy Efficiency & Renewable Energy In 1952, the U.S. Army Corps of Engineers dammed up the Cumberland River in Eastern Kentucky for the dual purposes of flood control and to generate electricity at a hydroelectric plant. The creation of the 101 mile-long reservoir accomplished both goals, and in the process spawned a new industry -- the construction and maintenance of houseboats. By the mid-1990s, Lake Cumberland had an average of 4.5 million visitors a

355

Industry Interactive Procurement System (IIPS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

356

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel towers and...

357

Industrial Carbon Capture Project Selections  

Broader source: Energy.gov [DOE]

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

358

Deaerators in Industrial Steam Systems  

Broader source: Energy.gov [DOE]

This tip sheet on deaerators provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

359

Energy Savings in Industrial Buildings  

E-Print Network [OSTI]

for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings....

Zhou, A.; Tutterow, V.; Harris, J.

360

FAQS Reference Guide Industrial Hygiene  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Industry Interactive Procurement System (IIPS)  

Broader source: Energy.gov [DOE]

Presentation on DOEs Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

362

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place: Monroe, Michigan Zip: 48161 Sector: Wind energy Product: Michigan-based wind turbine tower manufacturer. References: Ventower Industries1 This article is a stub. You...

363

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

Maharashtra, India Zip: 416 109 Sector: Wind energy Product: Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries....

364

AEO2014: Preliminary Industrial Output  

Gasoline and Diesel Fuel Update (EIA)

Elizabeth Sendich, Analyst, and Kay Smith, Team Leader Macroeconomic Analysis Team September 26, 2013 Preliminary AEO2014 Macroeconomic Industrial Results DO NOT CITE OR...

365

Industrial Facility Best Practice Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BP Scorecard 20120620 ( 2012Georgia Tech Research Corporation) Superior Energy Performance CM Industrial Facility Best Practice Scorecard Rev. 9 5 December 2012 Replaces rev. 8...

366

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2008 Motech Industries is a company located in Bethlehem, Taiwan....

367

GIS Based Multi-criteria Analysis for Industrial Site Selection  

Science Journals Connector (OSTI)

Abstract Site selection is one of the basic vital decisions in the start-up process, expansion or relocation of businesses of all kinds. Construction of a new industrial system is a major long-term investment, and in this sense determining the location is critical point on the road to success or failure of industrial system. One of the main objectives in industrial site selection is finding the most appropriate site with desired conditions defined by the selection criteria. Most of the data used by managers and decision makers in industrial site selection are geographical which means that industrial site selection process is spatial decision problem. Such studies are becoming more and more common, due to the availability of the Geographic Information Systems (GIS) with user-friendly interfaces. Geographic information systems (GIS) are powerful tool for spatial analysis which provides functionality to capture, store, query, analyze, display and output geographic information. Geographic Information Systems are used in conjunction with other systems and methods such as systems for decision making (DSS) and the method for multi-criteria decision making (MCDM). Synergistic effect is generated by combining these tools contribute to the efficiency and quality of spatial analysis for industrial site selection. This paper presents a successful solution for spatial decision support in the case of spatial analysis of Vojvodina as a region of interest for industrial site selection.

Aleksandar Rikalovic; Ilija Cosic; Djordje Lazarevic

2014-01-01T23:59:59.000Z

368

Designing Effective State Programs for the Industrial Sector- New SEE Action Publication  

Broader source: Energy.gov [DOE]

The SEE Action report "Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector" provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs delivered by a variety of entities. The report assesses some of the key features of programs that have helped lead to success in generating increased energy savings and identifies new emerging directions in programs that might benefit from additional research and cross-discussion to promote adoption.

369

Small Generator Aggregation (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Generator Aggregation (Maine) Generator Aggregation (Maine) Small Generator Aggregation (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maine Program Type Green Power Purchasing Provider Public Utilities Commission This section establishes requirements for electricity providers to purchase

370

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Broader source: Energy.gov (indexed) [DOE]

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

371

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial  

E-Print Network [OSTI]

Transformation of Sorbitol to Biofuels by Heterogeneous Catalysis: Chemical and Industrial ainsi que des exemples d'applications industrielles. Abstract -- Transformation of Sorbitol to Biofuels and biodiesel production led to first generation biofuels. Nowadays, research is focused on lignocellulosic

Boyer, Edmond

372

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Broader source: Energy.gov [DOE]

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

373

Characterization of the U.S. Industrial/Commercial Boiler Population- Final Report, May 2005  

Broader source: Energy.gov [DOE]

The U.S. industrial and commercial sectors consume large quantities of energy. Much of this energy is used in boilers to generate steam and hot water. This 2005 report characterizes the boilers in...

374

Residential Commercial Industrial Year  

Gasoline and Diesel Fuel Update (EIA)

4 4 Residential Commercial Industrial Year and State Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers Volume (million cubic feet) Consumers 2000 Total ................... 4,996,179 59,252,728 3,182,469 5,010,817 8,142,240 220,251 2001 Total ................... 4,771,340 60,286,364 3,022,712 4,996,446 7,344,219 217,026 2002 Total ................... 4,888,816 61,107,254 3,144,169 5,064,384 7,507,180 205,915 2003 Total ................... R 5,079,351 R 61,871,450 R 3,179,493 R 5,152,177 R 7,150,396 R 205,514 2004 Total ................... 4,884,521 62,469,142 3,141,653 5,135,985 7,250,634 212,191 Alabama ...................... 43,842 806,175 26,418 65,040 169,135 2,800 Alaska.......................... 18,200 104,360 18,373 13,999 46,580 10 Arizona ........................

375

THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES  

E-Print Network [OSTI]

THE INSIDE-OUT APPROACH FOR IDENTIFYING INDUSTRIAL ENERGY AND WASTE REDUCTION OPPORTUNITIES Kelly Traditional approaches for reducing energy and waste in industrial processes typically focus on improving and more apparent to us. In our experience, this approach for reducing energy use and waste generation

Kissock, Kelly

376

Building A New Biofuels Industry  

Science Journals Connector (OSTI)

Building A New Biofuels Industry ... It may be another five years or more before the fledgling industry catches up to the lofty goals called for in the Renewable Fuel Standard (RFS)a federal-government-mandated schedule of yearly biofuel production targets. ...

MELODY M. BOMGARDNER

2013-01-28T23:59:59.000Z

377

The Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of the Director of Research of Wool Industries Research Association briefly summarizes some of the research during the year in ... Industries Research Association briefly summarizes some of the research during the year in scouring and combing, woollen carding and spinning, worsted drawing and spinning and weaving (Publication ...

1963-06-15T23:59:59.000Z

378

Oklahoma Industrial Energy Management Program  

E-Print Network [OSTI]

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

379

College of Engineering Industrial Engineering  

E-Print Network [OSTI]

College of Engineering Industrial Engineering Core 2.0 Completion Checklist Industrial Engineering) 6 Research and Creative Experience R EIND 499R (I&ME 444 R and I&ME 445 R) Note: Courses completed Social Sciences; * EGEN 310 (ENGR 310), Multidisciplinary Engineering Design, may be substituted

Dyer, Bill

380

Industrial Use of Infrared Inspections  

E-Print Network [OSTI]

, but in the final analysis it comes down to the fact that the industrial management responsible for the operations and production budgets did not, and in many cases, still does not understand the economic benefits to the company that infrared industrial inspections...

Duch, A. A.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

New Generation Cooperative Incentive Tax Credit Program (Missouri) |  

Broader source: Energy.gov (indexed) [DOE]

New Generation Cooperative Incentive Tax Credit Program (Missouri) New Generation Cooperative Incentive Tax Credit Program (Missouri) New Generation Cooperative Incentive Tax Credit Program (Missouri) < Back Eligibility Agricultural Commercial Construction Developer Industrial Installer/Contractor Multi-Family Residential Transportation Utility Program Info State Missouri Program Type Personal Tax Incentives Provider Missouri Department of Agriculture The Missouri Agricultural and Small Business Development Authority provides New Generation Cooperative Incentive Tax Credits to induce producer member investment into new generation processing entities that will process Missouri agricultural commodities and agricultural products into value-added goods, provide substantial benefits to Missouri's agricultural producers, and create jobs for Missourians. New generation

382

Electronics Industry: Markets & Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronics Industry: Markets & Issues Electronics Industry: Markets & Issues Speaker(s): William M. Smith Date: March 17, 1998 - 12:00pm Location: 90-3148 Seminar Host/Point of Contact: Richard Sextro Electronics represents a unique opportunity to get in on the beginning of an incredible growth spurt, for an already huge industry; $400 billion/year in the U.S. now, moving up by 10%-20% per year in several sectors. This is quite unlike many other U.S. industrial sectors, which often involve mature businesses requiring assistance to stay afloat. The potential for forming business partnerships with electronics firms to deal with issues in energy efficiency, water availability/quality, air quality, productivity/yield, HVAC, power quality, wastewater, air emissions, etc., is staggering. The industrys oligopic nature provides serious opportunities

383

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network [OSTI]

and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

384

Property:Distributed Generation/Site Description | Open Energy Information  

Open Energy Info (EERE)

Generation/Site Description Generation/Site Description Jump to: navigation, search This is a property of type String. The allowed values for this property are: Agricultural Commercial-Hotel Commercial-Ice Arena Commercial-High Rise Office Commercial-Low Rise Office Commercial-Refrigerated Warehouse Commercial-Restaurant Commercial-Retail Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-Hospital/Health Care Institutional-Nursing Home Institutional-School/University Institutional-Other Residential-Multifamily-Single Building Residential-Multifamily-Multibuilding Residential-Single Family Industrial-Food Processing Industrial-Plastics Processing Industrial-Wood Products Industrial-Other Testing Laboratory Water Utility Other Utility Other Pages using the property "Distributed Generation/Site Description"

385

Understanding and Managing Generation Y  

E-Print Network [OSTI]

There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

Wallace, Kevin

2007-12-14T23:59:59.000Z

386

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

387

NREL: Transmission Grid Integration - Generator Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generator Modeling Generator Modeling NREL works with the solar and wind industries to provide utilities and grid operators with generator models to help them analyze the impact of variable generation on power system performance and reliability. As the amount of variable generation increases, the need for such models increases. Ensuring the models are as generic as possible allows for ease of use, model validation, data exchange, and analysis. To address this need, NREL researchers are developing generic dynamic models of wind and solar power plants. NREL's dynamic modeling efforts include: Collecting wind plant output data with corresponding wind resource data (speed, direction, and air density) from meteorological towers and performing multivariate analysis of the data to develop an equivalent wind

388

ccsd00001971, Generation of quasi static magnetic eld in the  

E-Print Network [OSTI]

ccsd­00001971, version 1 ­ 23 Oct 2004 Generation of quasi static magnetic #12;eld, Hideo Nagatomoz, and Yoshiro Owadanoy y National Institute of Advanced Industrial Science and Technology. The magnetic #12;eld generation by a relativistic laser light irradiated on a thin target at the oblique

389

The Economic Value of Temperature Forecasts in Electricity Generation  

Science Journals Connector (OSTI)

Every day, the U.S. electricity-generating industry decides how to meet the electricity demand anticipated over the next 24 h. Various generating units are available to meet the demand, and each unit may have its own production lead time, start-...

Thomas J. Teisberg; Rodney F. Weiher; Alireza Khotanzad

2005-12-01T23:59:59.000Z

390

Supporting Creative Concept Generation by Engineering Students with Biomimetic Design  

E-Print Network [OSTI]

Supporting Creative Concept Generation by Engineering Students with Biomimetic Design Hyunmin the analogical transfer tools we developed affected engineering students in generating creative concepts. We of Mechanical and Industrial Engineering, University of Toronto 5 King's College Road, Toronto, ON, M5S 3G8

Shu, Lily H.

391

The industrial ecology of the iron casting industry  

E-Print Network [OSTI]

Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

Jones, Alissa J. (Alissa Jean)

2007-01-01T23:59:59.000Z

392

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network [OSTI]

vehicles. They have a strong research base and are sup- ported by the U. S. Department of Energy. They have. Cheng, Industrial Engineering. 6 Centers/Laboratories Center Targets Reducing Fuel Consumption

Ginzel, Matthew

393

UNDERGRADUATE DEGREES Industrial and Systems Engineering  

E-Print Network [OSTI]

UNDERGRADUATE DEGREES Industrial and Systems Engineering The Bachelor's Degree in Industrial, consulting at amusement parks, analyzing systems, and beyond. SYSTEMS ScIENcE AND INDUSTRIAl ENGINEERING of Engineering in Industrial Engineering (MEng IE) equips graduates to be effective in industry and provides

Suzuki, Masatsugu

394

ENERGY STAR Challenge for Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

395

Industrial Carbon Management Initiative (ICMI)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

396

INDUSTRIAL SAFETY & HEALTH (ISH)  

Broader source: Energy.gov (indexed) [DOE]

HEALTH (ISH) HEALTH (ISH) OBJECTIVE ISH.1 A comprehensive industrial safety & health program has been implemented to address applicable safety requirements at the TA 55 SST Facility. (Core Requirements 1, 3, and 4) Criteria * Procedures are implemented to address applicable industrial & health safety issues. * An adequate number of trained personnel are available to support SST facility regarding industrial safety & health concerns. * Portable fire extinguishers are appropriate for the class of fire they are expected to fight and are located within the proper distance. * Cranes, hooks, slings, and other rigging are plainly marked as to their capacity and inspected prior to use. * Forklifts and other powered lifting devices are adequately inspected.

397

Industry Sponsored Research | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnering Mechanism Sample Sponsored Research Agreement SBIR-STTR Support Economic Development Industrial Partnerships University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Sponsored Research SHARE Sponsored Research Fiber Optic Research The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC. The laboratory's 1500+ research scientists and engineers conduct a vigorous program of scientific discovery and technology development, and ORNL is eager to engage industry in partnerships to help translate its research output into market impact and support for U.S. competitiveness. Companies wishing to learn about the research being

398

The Role of Electricity Pricing Policy in Industrial Siting Decisions  

E-Print Network [OSTI]

maintenance business of our subsidiary Catalytic, Inc. The locational decision pattern of Air Pro ducts is a typical example of the herding in stinct of industrial plants. Very often our first investment in a new area is prompted by the need of other...~ric service in the U.S. and Europe. The methodology most utilities employ in forecasting peak demand for the purpose of planning new generation capacity excludes the demands of interruptible industrial customers. This exclusion alIto matically avoids...

Tam, C. S.

1981-01-01T23:59:59.000Z

399

Chapter 10 - The Transformation of the German Gas Supply Industry  

Science Journals Connector (OSTI)

Publisher Summary Natural gas is the second largest energy source in Germany, and its market share will continue to increase. This chapter describes the historical development of the German gas industry, discusses current issues of importance in German gas policy, and outlines the industrial organization and profiles of the major gas utilities. Today, the German gas industry can be divided into two groups: the gas supply industry and the rest of the gas industry. The gas market in Germany has developed on three levels: natural gas production and import, pipeline business and distribution, and end user supply. Germany's energy policy, as a part of economic policy, is oriented to free market principles. The future of the German gas market is very promising. The share of natural gas is growing as a part of primary energy supply, as well as in power generation, substituting coal and oil, and electricity in the heat market. With regard to the effects of liberalization, it can be said that a one-to-one transposition of international experience to the German gas industry will not be possible, due to the different historical, economical, and political factors at work.

Lutz Mez

2003-01-01T23:59:59.000Z

400

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network [OSTI]

-btu gasification of coal or petroleum coke in a petroleum refinery can reduce imports to the refinery of scarce natural gas and can provide additional energy supplies through sale of high-btu refinery fuel gas. The potential gain in national energy supplies... through industry-wide application of this technology is on the order of 0.5-1 quad per year. 2. Depending on the sales price which can be ob tained for refinery fuel gas displaced by coke generated MBG, the economics of coke gasification can appear...

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

402

Export.gov - By Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By Industry By Industry Print | E-mail Page Export Information By Industry Export.gov offers a wide range of current industry and trade information to help exporters of U.S goods and services find the information they need to compete successfully in overseas markets. Four Essential Resources 1. Export Assistance. The U.S. & Foreign Commercial Service is the trade promotion arm of the U.S. Department of Commerce's International Trade Administration. Commercial Service trade professionals in more than100 U.S. cities and in nearly 80 countries help U.S. companies to start exporting or increase sales to new global markets. Commercial Service services include: Market Intelligence , Trade Counseling , Business Matchmaking, and more. 2. Trade Data & Analysis. Trade data can help companies identify the best

403

CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminal

404

Changing Trends in Telecommunications Industry  

E-Print Network [OSTI]

The mobile telecommunication industry is one of the fastest growing and continually changing markets in the world today. The greatest achievement of wireless technology is that it has made communications possible in the most remote of places at a...

Sathyanarayanan, Ramachandran

2010-12-17T23:59:59.000Z

405

Big Picture 19912012 other industry  

E-Print Network [OSTI]

% Academic 49% Research 8% Consulting 11% Finance 12% other industry 20% Where are the ORC Ph.D. graduates Semiconductors Lincoln Vale NonAcademic Jobs Small Firms Big Firms ORC Alumni Startups Academic 49% Research 8

406

Electrified Separation Processes in Industry  

E-Print Network [OSTI]

For any separation procedure in the chemical industry, a certain amount of reversible work in the form of free energy is required, as dictated by the second law of thermodynamics. Classical techniques for effecting liquid-phase separations...

Appleby, A. J.

1983-01-01T23:59:59.000Z

407

Electric Utility Industrial Conservation Programs  

E-Print Network [OSTI]

Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings... Electrical Machinery and Equip. 7.0 3.3 3 7.6 3.0 10 7 0 10.8 100.0 90 11.9 100.0 353,5 4 * Total of 12 Industry Maximum Demand s is 832 MW. *..', Total of 12 Industry Annual Electricity Consumption is 2,981,090 Mlm. 723 ESL-IE-83-04-114 Proceedings...

Norland, D. L.

1983-01-01T23:59:59.000Z

408

The steam engine and industrialization  

E-Print Network [OSTI]

Simon Schaffer in York Rail Museum talks to the camera about the relationship between the steam engine and industrialization and whatsteam meant; a regular supply of moving power for workshops and factories....

Dugan, David

2004-08-17T23:59:59.000Z

409

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

410

Industrial Plans for AEO2014  

U.S. Energy Information Administration (EIA) Indexed Site

you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

411

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network [OSTI]

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2010/2011 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH)...................................................................................................1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

Mountziaris, T. J.

412

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network [OSTI]

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2009/2010 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING (30 CREDITS)...............1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

Mountziaris, T. J.

413

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network [OSTI]

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2013/2014 September..............................3 C. COURSE REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS............................4 E. DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

Massachusetts at Amherst, University of

414

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING  

E-Print Network [OSTI]

GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2011/2012 September).................1 REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (30).....................................................................................................2 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

Mountziaris, T. J.

415

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network [OSTI]

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

416

Energy Conservation Projects to Benefit the Railroad Industry  

SciTech Connect (OSTI)

The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

Clifford Mirman; Promod Vohra

2009-12-31T23:59:59.000Z

417

Combining Energy Efficiency Building Retrofits and Onsite Generation: An  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Energy Efficiency Building Retrofits and Onsite Generation: An Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Title Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Publication Type Conference Paper Year of Publication 2011 Authors Satchwell, Andrew, Peter H. Larsen, and Charles A. Goldman Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 2011 Publisher ACEEE Conference Location Niagara Falls, New York Abstract The U.S. energy service company (ESCO) industry is an example of a private-sector business model where energy efficiency savings are delivered to customers primarily through the use of performance-based contracts. Despite the onset of a severe economic recession, we estimate that the U.S. ESCO industry grew about 7% per year from 2006 to 2008 with annual revenues of about $4.1 billion in 2008. About 75% of industry revenues are directly related to the installation of energy efficiency measures at existing buildings in the institutional, commercial, and industrial sectors.

418

Next Generation Radioisotope Generators | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

» Next Generation Radioisotope Generators » Next Generation Radioisotope Generators Next Generation Radioisotope Generators Advanced Stirling Radioisotope Generator (ASRG) - The ASRG is currently being developed as a high-efficiency RPS technology to support future space missions on the Martian surface or in the vacuum of space. This system uses Stirling convertors, which have moving parts to mechanically convert heat to electricity. This power conversion system, if successfully deployed, will reduce the weight of each RPS and the amount of Pu-238 needed per mission. A HISTORY OF MISSION SUCCESSES For over fifty years, the Department of Energy has enabled space exploration on 27 missions by providing safe reliable radioistope power systems and radioisotope heater units for NASA, Navy and Air Force.

419

Generation IV (Gen IV) - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation IV (Gen Generation IV (Gen IV) Generation IV Overview Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Major Programs Generation IV (Gen IV) Development of next generation nuclear systems featuring significant advances in sustainability, economics, safety, reliability, proliferation resistance and physical protection. Bookmark and Share Generation IV Fact Sheet (73 KB) Overview Generation IV nuclear energy systems target significant advances over current-generation and evolutionary systems in the areas of sustainability, safety and reliability, and economics. These systems are to be deployable by 2030 in both industrialized and developing countries. Development of Generation IV systems is an international initiative. A

420

Aftertreatment Research Prioritization: A CLEERS Industrial Survey...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research Prioritization: A CLEERS Industrial Survey Aftertreatment Research Prioritization: A CLEERS Industrial Survey Presentation given at the 2007 Diesel Engine-Efficiency &...

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Broader source: Energy.gov (indexed) [DOE]

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

422

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer References: CRV industrial Ltda1 This article is a...

423

Rotation With Industry | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry Rotation With Industry 7ROTATIONWITHINDUSTRY.pdf More Documents & Publications Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS TutorialROTATIONWITHINDUSTRY.doc...

424

Grand Challenge Portfolio: Driving Innovations in Industrial...  

Broader source: Energy.gov (indexed) [DOE]

Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011 Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January...

425

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

426

Colorado State University Industrial Assessment Center Saves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

audit. | Photo courtesy of University of Missouri IAC. Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Help Students, Communities...

427

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

428

Plastic Magen Industry | Open Energy Information  

Open Energy Info (EERE)

Plastic Magen Industry Jump to: navigation, search Name: Plastic Magen Industry Place: Kibbutz Magen, Israel Zip: 85465 Sector: Solar Product: Manufactures plastic products with a...

429

Industrial Assessment Centers Quarterly Update, Spring 2014 ...  

Broader source: Energy.gov (indexed) [DOE]

Assessment Centers Quarterly Update, Spring 2014 Read the Industrial Assessment Centers (IAC) Quarterly Update -- Spring 2014 Industrial Assessment Centers (IAC) Quarterly Update...

430

Green Industrial Policy: Trade and Theory  

E-Print Network [OSTI]

Papers Year 2012 Paper 1126 Green Industrial Policy: Trade 2012 by author(s). Green Industrial Policy: Trade andreality and the potential for green indus- trial policy. We

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

431

PIA - Industrial Hygiene Analytical System (IHAS) | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) More Documents & Publications PIA - INL...

432

Industrial Energy Efficiency: Designing Effective State Programs...  

Office of Environmental Management (EM)

State Programs for the Industrial Sector This report provides state regulators, utilities, and other program administrators an overview of the spectrum of U.S. industrial...

433

TG Agro Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a stub. You can help...

434

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

435

Cardinal Glass Industries | Open Energy Information  

Open Energy Info (EERE)

Cardinal Glass Industries Jump to: navigation, search Name: Cardinal Glass Industries Place: Eden Prairie, Minnesota Zip: 55344 Product: Minnesota-based glass products maker. The...

436

Industrial development in Qatar: a geographical assessment.  

E-Print Network [OSTI]

??Before oil discovery and exploitation, industry in Qatar took the form of artisanal activities and traditional crafts. Since the 1960's industry has become modernised, complex (more)

Al-Kubaisi, Mohammed Ali M.

1984-01-01T23:59:59.000Z

437

Energy Efficiency and Management in Industries.  

E-Print Network [OSTI]

?? The judicious use of energy by industries is a key lever for ensuring a sustainable industrial development. The cost effective application of energy management (more)

Apeaning, Raphael Wentemi

2012-01-01T23:59:59.000Z

438

Toray Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

439

Generation gaps in engineering?  

E-Print Network [OSTI]

There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

Kim, David J. (David Jinwoo)

2008-01-01T23:59:59.000Z

440

Industrial Energy Conservation: Dual Incentives  

Science Journals Connector (OSTI)

...assuming an average wind of 20 knots) would...more than 15,000 wind generat-ing units...counting the cost of the offshore platforms, would...billion. If these wind generators were placed...position of the family farm is improving vis-i-vis...300 Soviet vessels fish-ing off the United...

G. Thomas

1974-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Industrial Energy Conservation: Dual Incentives  

Science Journals Connector (OSTI)

...diameter of the turbine is about 60 meters. The Putnam wind generator installed...than 15,000 wind generat-ing...the cost of the offshore platforms, would...billion. If these wind generators were...15,000 wind turbines, and their cost...

G. Thomas

1974-08-09T23:59:59.000Z

442

Registration of Electric Generators (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) Registration of Electric Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Water Wind Program Info State Connecticut Program Type Generation Disclosure Provider Department of Energy and Environmental Protection All electric generating facilities operating in the state, with the

443

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

444

Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) Incentive Cost Recovery Rule for Nuclear Power Generation (Louisiana) < Back Eligibility Commercial Construction Industrial Utility Program Info State Louisiana Program Type Fees Generating Facility Rate-Making Provider Louisiana Public Service Commission The Incentive Cost Recovery Rule for Nuclear Power Generation establishes guidelines for any utility seeking to develop a nuclear power plant in Louisiana. The rule clarifies, as well as supplements the Louisiana Public Service Commission's 1983 General Order for the acquisition of nuclear generation resources. The goal of the rule is to provide a transparent process that identifies the responsibilities parties in the regulatory

445

Embedded Generation (New Brunswick, Canada) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Embedded Generation (New Brunswick, Canada) Embedded Generation (New Brunswick, Canada) Embedded Generation (New Brunswick, Canada) < Back Eligibility Agricultural Commercial Developer Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Performance-Based Incentive Provider NB Power NB Power has seen an increase in the amount of companies and individuals who are interested in generating electricity using an environmentally sustainable energy source. As a result, NB Power has implemented an Embedded Generation program which complements their existing net metering

446

Application of barrier in industrial noise control  

Science Journals Connector (OSTI)

Noise barriers have been widely used in environmental noisecontrol such as traffic and railway noise. Actually they are also cost?effective mitigation measures in industrial noise control. In this paper the applications of noise barrier in power plant are introduced. Types of barrier and barrier materials are briefly summarized and compared. A case study of noise barrier implement in a 50 MW power plant is presented. The plant is a natural gas?fired simple?cycle peaking facility and consists of two opposed gas combustion turbine directly connected through a coupling to a single generator. Some residences are located around the facility. A noise barrier wall was designed and installed surrounding the facility to control the noiseimpact of the plant on the residences. The acoustic modeling software Cadna/A was used to predict the noise insertion loss of the barrier. The prediction results were also compared with the site measurements.

2005-01-01T23:59:59.000Z

447

Implementation of Industrial Robot for Painting Applications  

Science Journals Connector (OSTI)

Robot for painting is one of the earliest applications for industrial robot, however, the precision and finishing for the painting is an important issue for any painting job. Accordingly, the aim of this project is utilize an industrial robot (ABB robot model IRB1410) for painting applications. The robot was programmed to paint alphabets using its Flexpendant. The FlexPendant was used to manually teach the robot how to follow the paths for specific targets of letters. The robot End Effector (painting tool) was chosen and mounted on the robot to perform an effective painting task. It was programmed based on its functionality. Finally suitable painting environment was designing. Two software packages were used in this project. The Computer Aided Design (CAD) of the system work-objects and end effector was programmed based on Solidworks software. Robotstudio Software used to program the paths and target of the alphabets to be painted by the IRB1400 Robot which generate a RAPID GUI code used for robot interfacing. The final results demonstrate that implementation such system helps to boost the quality of painting, reduce paint consumption and improve safety.

Ijeoma W. Muzan; Tarig Faisal; H.M.A.A. Al-Assadi; Mahmud Iwan

2012-01-01T23:59:59.000Z

448

Alternative fuels for industrial gas turbines (AFTUR)  

Science Journals Connector (OSTI)

Environmentally friendly, gas turbine driven co-generation plants can be located close to energy consumption sites, which can produce their own fuel such as waste process gas or biomass derived fuels. Since gas turbines are available in a large power range, they are well suited for this application. Current gas turbine systems that are capable of burning such fuels are normally developed for a single specific fuel (such as natural gas or domestic fuel oil) and use conventional diffusion flame technology with relatively high levels of \\{NOx\\} and partially unburned species emissions. Recently, great progress has been made in the clean combustion of natural gas and other fossil fuels through the use of dry low emission technologies based on lean premixed combustion, particularly with respect of \\{NOx\\} emissions. The objective of the AFTUR project is to extend this capability to a wider range of potentially commercial fuel types, including those of lower calorific value produced by gasification of biomass (LHVgas in line with the European Union targets) and hydrogen enriched fuels. The paper reports preliminary progress in the selection and characterisation of potential, liquid and gas, alternative fuels for industrial gas turbines. The combustion and emission characteristics of the selected fuels will be assessed, in the later phases of the project, both in laboratory and industrial combustion chambers.

Iskender Gkalp; Etienne Lebas

2004-01-01T23:59:59.000Z

449

NETL: Gasification Systems and Industry Analyses Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analyses Studies Analyses Studies Gasification Systems Reference Shelf – Systems and Industry Analyses Studies Table of Contents Cost and Performance Baseline for Fossil Energy Power Plants Studies Gasification Systems Program's Systems and Industry Analyses Studies DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Gasification Systems Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. Cost and Performance Baseline for Fossil Energy Power Plants Studies The Cost and Performance Baseline for Fossil Energy Power Plants studies establish up-to-date estimates for the cost and performance of combustion and gasification based power plants as well as options for co-generating synthetic natural gas and fuels, all with and without carbon dioxide capture and storage. Several ranks of coal are being assessed in process configurations that are based on technology that could be constructed today such that the plant could be operational in the 2010 - 2015 timeframe. The analyses were performed on a consistent technical and economic basis that accurately reflects current market conditions.

450

DOE Issues Funding Opportunity for Academic-Industry Collaboration -  

Broader source: Energy.gov (indexed) [DOE]

Issues Funding Opportunity for Academic-Industry Collaboration Issues Funding Opportunity for Academic-Industry Collaboration - Synchrophasor Engineering Education Program DOE Issues Funding Opportunity for Academic-Industry Collaboration - Synchrophasor Engineering Education Program November 30, 2012 - 9:09am Addthis Use of synchrophasor data from Phasor Measurement Units (PMUs) is considered to be a promising tool to monitor modern electric power systems. However, only a limited number of professionals, researchers, and students have the knowledge and expertise to understand and analyze the high-speed, time-synchronized data that will be generated by the deployment of synchrophasors. The objectives of this Funding Opportunity Announcement (FOA) are to: enable university researchers and students to gain access to and

451

Department of Energy Lauds Highly Efficient Industrial Technology |  

Broader source: Energy.gov (indexed) [DOE]

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

452

Department of Energy Lauds Highly Efficient Industrial Technology |  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

453

Hydrogen Generation by Electrolysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Engineered Solutions. Better Engineered Solutions. What Listening Generates. Better Engineered Solutions. What Listening Generates. Hydrogen Generation by Electrolysis September 2004 Steve Cohen Hydrogen Generation by Electrolysis September 2004 Steve Cohen NREL H 2 Electrolysis - Utility Integration Workshop NREL H 2 Electrolysis - Utility Integration Workshop 2 Hydrogen Generation by Electrolysis Hydrogen Generation by Electrolysis  Intro to Teledyne Energy Systems  H 2 Generator Basics & Major Subsystems  H 2 Generating & Storage System Overview  Electrolysis System Efficiency & Economics  Focus for Attaining DOE H 2 Production Cost Goals 3 Teledyne Energy Systems Locations - ISO 9001 Teledyne Energy Systems Locations - ISO 9001 Hunt Valley, Maryland  State-of-the-art thermoelectric,

454

Industrial Waste Reduction Program annual report, FY 1993  

SciTech Connect (OSTI)

The Department of Energy`s Industrial Waste Reduction Program (IWRP) sponsors the development, demonstration, and deployment of technologies that offer a significant opportunity to reduce waste generation, improve productivity, and enhance environmental performance in US industry. The program emphasizes technology-driven solutions that are economically beneficial and environmentally sound. Its goal is to improve the energy efficiency and competitiveness of private industry by cost-effectively reducing waste. Industry, universities, national laboratories and other government agencies are working cooperatively to meet this goal. The IWRP emphasizes the timely commercialization of new technologies that can produce measurable energy, environmental, and economic benefits. All projects are substantially cost-shared with private companies to foster the commercialization process. The program is proud to claim four successfully commercialized technologies that have begun generating benefits. The current IWRP portfolio boasts 32 projects in progress. Funding for the IWRP has grown from $1.7 million in 1990 to $13 million in 1994. New companies join the program each year, reaping the benefits of working cooperatively with government. New technologies are expected to reach commercial success in fiscal year (FY) 1994, further increasing the benefits already accrued. Future Annual Reports will also include projects from the Waste Utilization and Conversion Program. Descriptions of the program`s 32 active projects are organized in this report according these elements. Each project description provides a brief background and the major accomplishments during FY 1993.

Not Available

1994-01-01T23:59:59.000Z

455

Next Generation Attics and Roof Systems  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Attics Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose & Objectives

456

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

457

Industrial Buildings Tools and Resources  

Broader source: Energy.gov (indexed) [DOE]

Rolf Butters Rolf Butters Industrial Technologies Program Industrial Buildings Tools and Resources Webinar - June 11, 2009 Michael MacDonald Agenda  Introduction to Industrial Buildings Opportunity and Tools  EERE Funding, Opportunities, and Resources  Next Steps 6/11/2009 2 Facilities Energy  ITP has been working for a couple years now to develop tools to address facilities energy use, present in most plants, and about 8% of total sector energy use  First tool is a Score Card, implemented both as a stand- alone Excel file and for QuickPEP - Score Card has to be simple, so is approximate - But it can be a very important tool for scoping facilities energy use at a plant  Second tool is an adaptation of the BCHP Screening Tool, originally developed by the Distributed Energy program but

458

ENERGY STAR Challenge for Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013 Revised ii Introduction The U.S. Environmental Protection Agency's (U.S. EPA) ENERGY STAR program provides guidance, tools, and recognition to help companies improve their energy performance. ENERGY STAR is a voluntary partnership program that companies choose to join. Through ENERGY STAR, U.S. EPA offers a number of forms of recognition for achievements in energy efficiency. The ENERGY STAR Challenge for Industry recognizes individual industrial sites for achieving a 10 percent reduction in energy intensity within 5 years from the conclusion of an established baseline. To be

459

Tom Rogers Director, Industrial Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development at the Oak Ridge National Laboratory in June, 2008. His responsibilities include directing engagements with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic initiatives such as the Carbon Fiber Composites Cluster and development of the Oak Ridge Science and Technology Park. Prior to joining ORNL, Tom was the founding President and CEO of Technology 2020, a national award-winning public-private partnership focused on a building a robust regional entrepreneurial support system. Tom has also served as the Executive Director of the Tennessee Technology

460

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Reid Industries | Open Energy Information  

Open Energy Info (EERE)

Reid Industries Reid Industries Jump to: navigation, search Name Reid Industries Address PO Box 503 Place San Francisco, CA Zip 94104 Phone number 415-947-1050 Coordinates 37.7923058°, -122.4021273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7923058,"lon":-122.4021273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Jax Industries | Open Energy Information  

Open Energy Info (EERE)

Jax Industries Jax Industries Jump to: navigation, search Name Jax Industries Place Hillsboro, Oregon Product Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates 43.651735°, -90.341144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.651735,"lon":-90.341144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Mechanical and Industrial Engineering John Stuart  

E-Print Network [OSTI]

Mechanical and Industrial Engineering John Stuart Paul Washburn Co-Chairs MIE IAB Meeting #12;2Mechanical and Industrial Engineering Dean Tim Anderson #12;3Mechanical and Industrial Engineering Strategic vision for growing College Goal Method Current resources #12;4Mechanical and Industrial Engineering

Mountziaris, T. J.

464

Faculty of Engineering Industrial and Manufacturing  

E-Print Network [OSTI]

Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

465

Industrial & Systems Engineering Areas of Engineering Interests  

E-Print Network [OSTI]

Industrial & Systems Engineering Areas of Engineering Interests The Department of Industrial and Systems Engineering understands our students may work as Industrial Engineers in other engineering industries, and to help prepare them for these careers, the ISE Areas of Interest was formulated. The courses

Berdichevsky, Victor

466

What does an Industrial Engineer really do???  

E-Print Network [OSTI]

What does an Industrial Engineer really do??? #12;What you will learn · What Industrial Engineering is · Examples of Industrial Engineering (IE) activities · The advantages of an IE college degree #12;Engineering does that engineer do? Where? #12;Industrial Engineers Find a Better Way... · A better way to make

Massachusetts at Amherst, University of

467

Opportunities for University-Industry Collaboration  

E-Print Network [OSTI]

Opportunities for University-Industry Collaboration: The Center for Analog and Mixed Signal-Industry Collaboration ...," November, 2009! 2! Presentation Overview" ·Background" ·Industry-University Partnership for University-Industry Collaboration ...," November, 2009! 3! Background: Personal" 1979-1983 "A.B. Engineering

McNeill, John A.

468

Industry continues to cut energy demand  

Science Journals Connector (OSTI)

The U.S.'s 10 most energy-intensive industries are continuing to reduce their energy demand, with the chemical industry emerging as a leader in industrial energy conservation, says the Department of Energy in a report to Congress.The chemical industry is ...

1981-01-12T23:59:59.000Z

469

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

470

World tanker industry maintains momentum from Persian Gulf war  

SciTech Connect (OSTI)

The world tanker industry has managed to maintain the momentum generated during the Persian Gulf War. Freight rates for large vessels have regained the high levels seen during the first 2 months of this year, while the expected postwar decline in use of tankers has not materialized. The health of the tanker industry is linked closely with the volume of long haul crude oil from the Middle East, a spot charter from the gulf to Europe, an owner would only break even on the cost of building and operating a new tanker to the highest environmental standards. Owners currently can expect spot rates of about $40,000/day, excellent by the standards of the late 1980s and early 1990s but still below the level needed to justify new buildings. And there are many in the industry who think $40,000/day will be just a happy memory later in the year. Owners are facing pressure for major changes in the industry. Governments and the public want better operating standards and new environmentally sound tankers to reduce the risk of oil spills. At the same time, the industry has to learn to live with repercussion in the 1990 Oil Pollution Act in the U.S., which has opened the way for unlimited liability against tanker owners involved in spills off the U.S. The search also is on for improved profits to make investments required by the changing world of seaborne oil transportation.

Not Available

1991-06-10T23:59:59.000Z

471

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

472

transportation industry | OpenEI  

Open Energy Info (EERE)

25 25 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279625 Varnish cache server transportation industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by the transportation industry. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption

473

Industry turns its attention south  

SciTech Connect (OSTI)

The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

Marhefka, D. [Russian Petroleum Investor, Moscow (Russian Federation)

1997-08-01T23:59:59.000Z

474

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

475

ENERGY GENERATION RESEARCH PIER Energy Generation Research  

E-Print Network [OSTI]

ENERGY GENERATION RESEARCH PIER Energy Generation Research www.energy.ca.gov/research/ renewable/ November 2010 Sonoma County RESCO A Local Level Approach to Renewable Energy Portfolios. The Issue To address energy usage that contributes to climate change, California has enacted legislation to guide

476

Energy Replacement Generation Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Replacement Generation Tax Exemption Replacement Generation Tax Exemption Energy Replacement Generation Tax Exemption < Back Eligibility Commercial Industrial Local Government Residential Savings Category Water Buying & Making Electricity Bioenergy Wind Maximum Rebate None Program Info Start Date 01/01/2008 (retroactively effective) State Iowa Program Type Corporate Exemption Rebate Amount 100% exemption for self-generators, landfill gas and wind Reduced rate for large hydro Provider Iowa Department of Revenue Iowa imposes a replacement generation tax of 0.06 cents ($0.0006) per kilowatt-hour (kWh) on various forms of electricity generated within the state. This tax is imposed in lieu of a property tax on generation facilities. Under the Energy Replacement Generation Tax Exemption, the following

477

Gamma ray generator  

DOE Patents [OSTI]

An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

Firestone, Richard B; Reijonen, Jani

2014-05-27T23:59:59.000Z

478

Generation to Generation: The Heart of Family Medicine  

E-Print Network [OSTI]

Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

Winter, Robin O

2012-01-01T23:59:59.000Z

479

The Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of the Director of Research for the Wool Industries Research Association for 1947-48 summarizes a five-year building plan to provide permanent ... detailed statistical analysis have covered the occurrence of slubs and faults in yarns and the scouring and milling of woollen and worsted pieces. Progress is also reported in the measurement ...

1948-06-05T23:59:59.000Z

480

Central Appalachia: Coal industry profile  

SciTech Connect (OSTI)

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "industry generation cogenerationb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Scientific Management in Nationalized Industries  

Science Journals Connector (OSTI)

... Boards of Nationalized Industries"*, arises out of his experience as governing director of two private engineering firms and as chairman of the British Broadcasting Corporation. It is a noteworthy ... of experience, independence and security of tenure as is common in the best concerns of private enterprise; but it is of wider importance as endorsing the stress laid on the ...

1958-02-22T23:59:59.000Z

482

Applied Research: Harwell for Industry  

Science Journals Connector (OSTI)

... of industrial research regulated by Ministry of Technology requirements, including not merely air pollution and desalination but high temperature fuel cells-a more recent recruit to what Dr Marshall calls the ... to what Dr Marshall calls the establishment's portfolio. He is plainly cheerful about the desalination programme which, he said, has made possible an improvement in the performance of multi ...

1969-05-17T23:59:59.000Z

483

Environmental Effects of Industrial Farming  

E-Print Network [OSTI]

·Water contamination ·Soil contamination ·Solutions #12;US Meat Industry Animals (2009) kg produced (2009 contamination #12;Water contamination ·~9x108 kg of dry waste produced in the US per day day in 2001 #12;Water!" #12;Air contamination ·220kg of CH4 produced in the lifetime of a cow "Smells like money!" #12;Air

Budker, Dmitry

484

Wind Power: Options for Industry  

SciTech Connect (OSTI)

This six-page brochure outlines ways for industry to integrate wind power, including assessing wind power, building wind farms, using a developer, capitalizing on technology, enhancing the corporate image, and preparing RFPs. Company examples and information resources are also provided.

Not Available

2003-03-01T23:59:59.000Z

485

The US coal industry 1996  

SciTech Connect (OSTI)

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z

486

Poor show for aviation industry  

Science Journals Connector (OSTI)

... Soviet Union and China, there are only three practical suppliers of large civil aircraft (Boeing, McDonnell-Douglas and Airbus Industrie, the European consortium) and three manufacturers of large ... of its engines seems to have settled down at 1,000 million or thereabouts. (Boeing's past successes may owe something to its economical ways of working.) Even allowing ...

1984-09-06T23:59:59.000Z

487

working with industry Engineering and  

E-Print Network [OSTI]

of interests including: · laser physics · semiconductor optoelectronics · photonics in manufacturing · solar · micromechanics and condition monitoring · renewable energy modelling · carbon capture and storage Our institute to applied systems. We have a wide ranging programme of current work with many industrial companies in key

Painter, Kevin

488

Policies on Japan's Space Industry  

E-Print Network [OSTI]

as a strategic industry Practical space use in National Security Diplomacy ...etc Policy Administrative Structure on the Basic Space Law legislated in 2008. 1. The government sets space policy as a national strategy utilization environment Develop new markets with small size satellites and rockets Promote the serialization

489

industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin-  

E-Print Network [OSTI]

70 industrial & systems (ISE) Industrial and Systems Engineers use engineering and business prin to help companies compete in today's global marketplace. The Industrial and Systems Engineer's task Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial and Systems

Rohs, Remo

490

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering  

E-Print Network [OSTI]

| Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hire a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics to the US Bureau of Labor Statistics, the 2012 average annual wage for industrial engineers is $82

Glowinski, Roland

491

Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken, and Matthias Phl  

E-Print Network [OSTI]

industrial revolution" and their component companies. From David Landes's classic study, The Unbound of the industries of the second industrial revolution has been virtually ignored in this scholarship to date1 Towards a history of the international industrial gases industry Ray Stokes, Ralf Banken

Guo, Zaoyang

492

Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions  

Gasoline and Diesel Fuel Update (EIA)

Impact of U.S. Nuclear Generation Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Ronald E. Hagen, John R. Moens, and Zdenek D. Nikodem Energy Information Administration U.S. Department of Energy International Atomic Energy Agency Vienna, Austria November 6-9, 2001 iii Energy Information Administration/ Impact of U.S. Nuclear Generation on Greenhouse Gas Emissions Contents Page I. The Electric Power Industry and the Greenhouse Gas Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. The Current Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 III. The Future Role of the U.S. Nuclear Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 IV. Factors That Affect Nuclear Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V. Conclusion

493

Power Generation Loading Optimization using a Multi-Objective Constraint-Handling Method via  

E-Print Network [OSTI]

results of the power generation loading optimization based on a coal-fired power plant demonstrates algorithm in solving significant industrial problems. I. INTRODUCTION Most power generation plants have.e., heat rate/NOx vs. load, for a given plant condition. There are two objectives for the power generation

Li, Xiaodong

494

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

495

Implementation and Rejection of Industrial Steam System Energy Efficiency Measures  

E-Print Network [OSTI]

Office: Industrial Assessment Centers. U.S. their Industrial Assessment Centers (IAC) and the

Therkelesen, Peter

2014-01-01T23:59:59.000Z

496

Chapter 10 - Novel Power Generating Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, some novel power generating systems are discussed. It is believed that sustainable thermal energy sources such as industrial waste heat recovery, concentrated solar radiation, ocean thermal energy, nuclear heat, and biomass combustion will gradually become more important. The first part of the chapter presents a novel system for power conversion from low-grade heat. This is an advanced ammoniawater-based power cycle able to operate with minimal exergy destruction due to an excellent match of temperature profiles at the heat source and sink. The chapter continues with thermoelectric power generators that can address the challenge of efficient power generation from high-grade thermal energy. Chemical looping combustion systems for power generation are treated thereafter for situations when carbon emissions must be reduced by carbon dioxide separation and sequestration or partial recycling. The last section of the chapter presents a number of selected novel systems for power generation, including magneto-hydrodynamic generators, thermoacoustic generators, and cryogenic compression oxy-combustion power plants with supercritical carbon dioxide and some novel integrated systems.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

497

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

498

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Broader source: Energy.gov (indexed) [DOE]

2 Standards Applicable to Generators of Hazardous Waste 2 Standards Applicable to Generators of Hazardous Waste (Kentucky) Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also

499

Interconnection Standards for Small Generators | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Interconnection Standards for Small Generators Interconnection Standards for Small Generators Interconnection Standards for Small Generators < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Water Wind Energy Sources Solar Home Weatherization Program Info Program Type Interconnection Provider Federal Energy Regulatory Commission The Federal Energy Regulatory Commission (FERC) adopted "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in May 2005.* The FERC's standards apply only to facilities subject to the jurisdiction of the commission; these facilities

500

Form EIA-861, "Annual Electric Power Industry Report." | OpenEI  

Open Energy Info (EERE)

1, "Annual Electric Power Industry Report." 1, "Annual Electric Power Industry Report." Dataset Summary Description This is an electric utility data file that includes such information as peak load, generation, electric purchases, sales, revenues, customer counts and demand-side management programs, green pricing and net metering programs, and distributed generation capacity. The data source is the survey Form EIA-861, "Annual Electric Power Industry Report." Data for all years are final. The file F861yr09.exe is a file of data collected on the Form EIA-861, Annual Electric Power Industry Report, for the reporting period, calendar year 2009. The zipped .exe file contains 11 .xls files and one Word file, and a .pdf of the Form EIA-861. The data file structure detailed here also applies to data files for prior