Sample records for industry feedstock availability

  1. Introduction: Integrative Approaches for Estimating Current and Future Feedstock Availability

    SciTech Connect (OSTI)

    West, Tristram O.

    2010-09-08T23:59:59.000Z

    Biomass that is used to generate energy, through conversion processes or direct combustion, is referred to as a bioenergy feedstock. Establishment of bioenergy feedstocks as an agricultural commodity has the potential to alter land management, carbon stocks, water quality, and greenhouse gas emissions over large geographic areas. Estimation of current and future feedstock availability is an essential step in assessing potential environmental and economic impacts of feedstock production. The purpose of this special issue is to communicate integrative approaches that combine data and modeling capabilities for estimation of current and future feedstock availability.

  2. Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex ofBiomass Feedstock in the Petrochemical Complex of

    E-Print Network [OSTI]

    Pike, Ralph W.

    Integration of Industrial Scale Processes using Biomass Feedstock in the Petrochemical Complex ofBiomass Feedstock in the Petrochemical Complex of the Lower Mississippi River Corridor Debalina Sengupta1, Ralph W

  3. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Energy Savers [EERE]

    Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

  4. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01T23:59:59.000Z

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  5. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  6. Lignocellulosic feedstock resource assessment

    SciTech Connect (OSTI)

    Rooney, T.

    1998-09-01T23:59:59.000Z

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  7. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    SciTech Connect (OSTI)

    Christopher T Wright

    2006-07-01T23:59:59.000Z

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  8. Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)

    E-Print Network [OSTI]

    ) About ten years ago ORNL launched BFIN providing a gateway to a wealth of biomass feedstock information and industry stakeholders formed with the goal of annually producing biomass feedstock aimed for cost determined the biomass feedstocks available within a region and identified research gaps and other barriers

  9. Evolution and Development of Effective Feedstock Specifications

    SciTech Connect (OSTI)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01T23:59:59.000Z

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  10. THE POTENTIAL OF FRESHWATER MACROALGAE AS A BIOFUELS FEEDSTOCK AND THE INFLUENCE OF NUTRIENT AVAILABILITY ON FRESHWATER MACROALGAL BIOMASS PRODUCTION

    E-Print Network [OSTI]

    Yun, Jin-Ho

    2014-12-31T23:59:59.000Z

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative...

  11. Streamlining Bioenergy Feedstock Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Streamlining Bioenergy Feedstock Engineering The DOE Biomass Program's feedstock research and development tools enable collaboration and sharing of feedstock development knowledge...

  12. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect (OSTI)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  13. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect (OSTI)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18T23:59:59.000Z

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of the total. Among the nations studied, Brazil is the source of about two-thirds of available supplies, followed distantly by Argentina (12%), India and the CBI region.

  14. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  15. Chapter 19: Modeling Tools and Strategies for Developing Sustainable Feedstock Supplies 319 Modeling Tools and Strategies for Developing Sustainable Feedstock Supplies

    E-Print Network [OSTI]

    Dietze, Michael

    biofuel industry around biomass feedstock requires a comprehensive evaluation of agronomic, environmental

  16. alternative feedstocks program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the goal of annually producing biomass feedstock aimed for cost determined the biomass feedstocks available within a region and identified research gaps and other barriers 3...

  17. Cellulosic Biomass Feedstocks and Logistics for Ethanol Production

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

    2007-10-01T23:59:59.000Z

    The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 35–50% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

  18. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01T23:59:59.000Z

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  19. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01T23:59:59.000Z

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  20. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01T23:59:59.000Z

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be accomplished in a sustainable manner • Feedstock Infrastructure – An integrated feedstock supply system must be developed and implemented that can serve the feedstock needs of the biorefinery at the cost, quality, and consistency of the set targets • System Profitability – Economic profitability and sustainability need to be ensured for all required participants in the feedstock supply system. For each step in the biomass supply process—production, harvesting and collection, storage, preprocessing, system integration, and transportation—this roadmap addresses the current technical situations, performance targets, technical barriers, R&D needs, and R&D priorities to overcome technical barriers and achieve performance targets. Crop residue biomass is an attractive starting feedstock, which shows the best near-term promise as a biorefinery feedstock. Because crop residue is a by-product of grain production, it is an abundant, underutilized, and low cost biomass resource. Corn stover and cereal straw are the two most abundant crop residues available in the United States. Therefore, this roadmap focuses primarily on the R&D needed for using these biomass sources as viable biorefinery feedstocks. However, achieving the goal of 1 billion dry tons of lignocellulosic feedstock will require the use of other biomass sources such as dedicated energy crops. In the long term, the R&D needs identified in this roadmap will need to accommodate these other sources of biomass as well.

  1. A Collaborative Industry-MDRU Research Project Available for Sponsorship

    E-Print Network [OSTI]

    Michelson, David G.

    A Collaborative Industry-MDRU Research Project Available for Sponsorship Carbon Sequestration emissions. Incorporation of carbon sequestration activities into mine operations will generate economic to permanently trap the green- house gas carbon dioxide (CO2 ) thus affording environmental and regulatory

  2. Optimizing the availability of a buffered industrial process

    DOE Patents [OSTI]

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24T23:59:59.000Z

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  3. International Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among Statesfor a Smart1.2.1.5 International

  4. Articulating feedstock delivery device

    DOE Patents [OSTI]

    Jordan, Kevin

    2013-11-05T23:59:59.000Z

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  5. Processing Cost Analysis for Biomass Feedstocks

    SciTech Connect (OSTI)

    Badger, P.C.

    2002-11-20T23:59:59.000Z

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the years the industry has shown a good deal of ingenuity and, as a result, has developed several cost effective methods of processing and handling wood. SMB systems usually cannot afford to perform much onsite processing and therefore usually purchase fuels processed to specification. Owners of larger systems try to minimize onsite processing to minimize processing costs. Whole truck dumpers are expensive, but allow for faster and easier unloading, which reduces labor costs and charges by the haulers. Storage costs are a major factor in overall costs, thus the amount of fuel reserve is an important consideration. Silos and bins are relatively expensive compared to open piles used for larger facilities, but may be required depending on space available, wood characteristics, and amount of wood to be stored. For larger systems, a front-end loader has a lot of flexibility in use and is an essential piece of equipment for moving material. Few opportunities appear to exist for improving the cost effectiveness of these systems.

  6. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    SciTech Connect (OSTI)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01T23:59:59.000Z

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  7. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect (OSTI)

    Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

    2013-05-07T23:59:59.000Z

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or �clearing house� for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  8. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  9. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  10. Developing better biomass feedstock | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Developing better biomass feedstock Developing better biomass feedstock Released: September 04, 2014 Multi-omics unlocking the workings of plants Kim Hixson, an EMSL research...

  11. feedstock | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal & Biomass AlternativesSupplements to Coal - Feedstock Flexibility As important as coal is as a primary gasification feedstock, gasification technology offers the important...

  12. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01T23:59:59.000Z

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  13. of Biofuels Sustainable Feedstocks

    E-Print Network [OSTI]

    The Next Generation of Biofuels Sustainable Feedstocks Cost-Competitive Options #12;Photos courtesy the evolutionary code for an entirely new generation of biofuels capable of transforming the American automobile biofuels at a cost competitive with that of gasoline. Equally important, they are using crops

  14. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  15. CBTL Design Case Summary Conventional Feedstock Supply System - Herbaceous

    SciTech Connect (OSTI)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01T23:59:59.000Z

    A conventional bale feedstock design has been established that represents supply system technologies, costs, and logistics that are achievable today for supplying herbaceous feedstocks as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move herbaceous biomass feedstock from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the uses of field-dried corn stover or switchgrass as a feedstock to annually supply an 800,000 DM ton conversion facility.

  16. Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    J. Jacobson; R. Mohammad; K. Cafferty; K. Kenney; E. Searcy; J. Hansen

    2014-09-01T23:59:59.000Z

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  17. Biomass Feedstock Supply Modeling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS THIS6, 2015 Feedstock

  18. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  19. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  20. The Future of Bioenergy Feedstock Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Bioenergy Feedstock Production Cornell University June, 2013 John Ferrell Feedstock Technology Lead Bioenergy Technologies Office US Department of Energy 2...

  1. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    SciTech Connect (OSTI)

    Bozell, J. J.; Landucci, R.

    1993-07-01T23:59:59.000Z

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  2. Interactions among bioenergy feedstock choices, landscape dynamics, and land use

    SciTech Connect (OSTI)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Wright, Lynn L [ORNL; Perlack, Robert D [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL

    2011-01-01T23:59:59.000Z

    Landscape implications of bioenergy feedstock choices are significant and depend on land-use practices and their environmental impacts. Although land-use changes and carbon emissions associated with bioenergy feedstock production are dynamic and complicated, lignocellulosic feedstocks may offer opportunities that enhance sustainability when compared to other transportation fuel alternatives. For bioenergy sustainability, major drivers and concerns revolve around energy security, food production, land productivity, soil carbon and erosion, greenhouse gas emissions, biodiversity, air quality, and water quantity and quality. The many implications of bioenergy feedstock choices require several indicators at multiple scales to provide a more complete accounting of effects. Ultimately, the long-term sustainability of bioenergy feedstock resources (as well as food supplies) throughout the world depends on land-use practices and landscape dynamics. Land-management decisions often invoke trade-offs among potential environmental effects and social and economic factors as well as future opportunities for resource use. The hypothesis being addressed in this paper is that sustainability of bioenergy feedstock production can be achieved via appropriately designed crop residue and perennial lignocellulosic systems. We find that decision makers need scientific advancements and adequate data that both provide quantitative and qualitative measures of the effects of bioenergy feedstock choices at different spatial and temporal scales and allow fair comparisons among available options for renewable liquid fuels.

  3. RAFT Regional Algal Feedstock Testbed

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy RAFT Regional Algal Feedstock Testbed Kimberly Ogden, Professor, University of Arizona, Engineering Technical Lead, National Alliance for Advanced Biofuels and Bioproducts

  4. A national research & development strategy for biomass crop feedstocks

    SciTech Connect (OSTI)

    Wright, L.L.; Cushman, J.H.

    1997-07-01T23:59:59.000Z

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  5. Regional Feedstock Partnership 2010 Switchgrass Report

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    ;Overall Objective ! Establish and perform replicated field trials of diverse herbaceous biomass feedstocks

  6. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for low-cost separation technologies and processes. Improved separation could improve carbon dioxide sequestration, improve process performance, and reduce capital expenses....

  7. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-Print Network [OSTI]

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

  8. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect (OSTI)

    Thekdi, Arvind [E3M Inc; Nimbalkar, Sachin U [ORNL

    2015-01-01T23:59:59.000Z

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  9. Thermochemical Feedstock Interface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energy (DOE)Department1AOffice

  10. C3 Feedstock Optimization for Multiproduct Polypropylene

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    feedstocks with different prices and propylene purities. Best operation will balance production rate facility Chemical and refinery grade feedstocks with different prices and propylene purities. Best Polypropylene Propane return Reactor effluent Distillation Polymerization FeedTank Propylene (91%) ~79

  11. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office ........................................................................... 11 Options for liquid biofuel feedstock transport ............................................................................. agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid

  12. Process for desulfurizing petroleum feedstocks

    SciTech Connect (OSTI)

    Gordon, John Howard; Alvare, Javier

    2014-06-10T23:59:59.000Z

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  13. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-18T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. At least 80% of the particles pass through a 1/4 inch screen having a 6.3 mm nominal sieve opening but are retained by a No. 10 screen having a 2 mm nominal sieve opening. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  14. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2011-10-11T23:59:59.000Z

    A novel class of flowable biomass feedstock particles with unusually large surface areas that can be manufactured in remarkably uniform sizes using low-energy comminution techniques. The feedstock particles are roughly parallelepiped in shape and characterized by a length dimension (L) aligned substantially with the grain direction and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. The particles exhibit a disrupted grain structure with prominent end and surface checks that greatly enhances their skeletal surface area as compared to their envelope surface area. The L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers. The W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers. The L.times.W dimensions define a pair of substantially parallel top surfaces characterized by some surface checking between longitudinally arrayed fibers. The feedstock particles are manufactured from a variety of plant biomass materials including wood, crop residues, plantation grasses, hemp, bagasse, and bamboo.

  15. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  16. CBTL Design Case Summary Conventional Feedstock Supply System - Woody

    SciTech Connect (OSTI)

    Christopher T. Wright; Erin M. Searcy

    2012-02-01T23:59:59.000Z

    A conventional woody feedstock design has been developed that represents supply system technologies, costs, and logistics that are achievable today for supplying woody biomass as a blendstock with coal for energy production. Efforts are made to identify bottlenecks and optimize the efficiency and capacities of this supply system, within the constraints and consideration of existing local feedstock supplies, equipment, and permitting requirements. The feedstock supply system logistics operations encompass all of the activities necessary to move woody biomass from the production location to the conversion reactor ready for blending and insertion. This supply system includes operations that are currently available such that costs and logistics are reasonable and reliable. The system modeled for this research project includes the use of the slash stream since it is a more conservative analysis and represents the material actually used in the experimental part of the project.

  17. Synthetic carbonaceous fuels and feedstocks

    DOE Patents [OSTI]

    Steinberg, Meyer (Huntington Station, NY)

    1980-01-01T23:59:59.000Z

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  18. Feedstock Logistics | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6AwardsScorecardLogistics Feedstock

  19. Low-Cost Titanium Powder for Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Titanium Powder for Feedstock Principal Investigator: Curt Lavender Presenter: Mark T. Smith Pacific Northwest National Laboratory OVT 2008 DOE Peer Review February 28, 2008 This...

  20. Practical Considerations of Moisture in Baled Biomass Feedstocks

    SciTech Connect (OSTI)

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01T23:59:59.000Z

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  1. Document: P1312 Category: Nanotechnology, Physical Science Applications License Status: Available for licensing Texas Industry Cluster: Energy

    E-Print Network [OSTI]

    Lightsey, Glenn

    : Available for licensing Texas Industry Cluster: Energy Scalable methods of producing three-dimensional nanocomposites for energy, semiconductor, and advanced manufacturing applications Problem Currently, the production of nanoparticles and nanostructured films is difficult, because nanoparticles are hard to produce

  2. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics....

  3. AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters AMO Fuel and Feedstock Flexibility: Fuel-Flexible Combustion...

  4. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2012-04-17T23:59:59.000Z

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  5. New Diesel Feedstocks and Future Fuels

    Broader source: Energy.gov (indexed) [DOE]

    August 23, 2006 C H R Y S L E R G R O U P Outline 1. First and Second Generation Biodiesel 2. Feedstocks for FAME-Based Biodiesel 3. Second Generation Biodiesel - BTL 4....

  6. Integration of Feedstock Assembly System and Cellulosic Ethanol Conversion Models to Analyze Bioenergy System Performance

    SciTech Connect (OSTI)

    Jared M. Abodeely; Douglas S. McCorkle; Kenneth M. Bryden; David J. Muth; Daniel Wendt; Kevin Kenney

    2010-09-01T23:59:59.000Z

    Research barriers continue to exist in all phases of the emerging cellulosic ethanol biorefining industry. These barriers include the identification and development of a sustainable and abundant biomass feedstock, the assembly of viable assembly systems formatting the feedstock and moving it from the field (e.g., the forest) to the biorefinery, and improving conversion technologies. Each of these phases of cellulosic ethanol production are fundamentally connected, but computational tools used to support and inform analysis within each phase remain largely disparate. This paper discusses the integration of a feedstock assembly system modeling toolkit and an Aspen Plus® conversion process model. Many important biomass feedstock characteristics, such as composition, moisture, particle size and distribution, ash content, etc. are impacted and most effectively managed within the assembly system, but generally come at an economic cost. This integration of the assembly system and the conversion process modeling tools will facilitate a seamless investigation of the assembly system conversion process interface. Through the integrated framework, the user can design the assembly system for a particular biorefinery by specifying location, feedstock, equipment, and unit operation specifications. The assembly system modeling toolkit then provides economic valuation, and detailed biomass feedstock composition and formatting information. This data is seamlessly and dynamically used to run the Aspen Plus® conversion process model. The model can then be used to investigate the design of systems for cellulosic ethanol production from field to final product.

  7. Fluidized bed pyrolysis of terrestrial biomass feedstocks

    SciTech Connect (OSTI)

    Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

  8. Engine Performance and Exhaust Emissions of a Diesel Engine From Various Biodiesel Feedstock 

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2011-02-22T23:59:59.000Z

    , vegetable oils, or recycled restaurant grease with alcohol and catalyst, is gaining popularity in recent years as a substitute for petroleum diesel. Ninety percent (90%) of U.S. biodiesel industry makes use of soybean oil as its feedstock. However, soybean...

  9. Modeling and Optimization of Next Generation Feedstock Development for Chemical Process

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Modeling and Optimization of Next Generation Feedstock Development for Chemical Process Industry -Glutamic acid Anaerobic digestion mass Cellulose Biogas Bio oil Gasoline Diesel Butanol Dimethyl ether,Oil Polyol Biodiesel Glycerin Naphtha and Diesel Liquefaction / d h l Thermo chemical Protein Protein

  10. Tuesday Webcast for Industry: Tax Rebates/Credits Available for Energy Efficiency Actions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarch 4; RSVP by Feb.DepartmentWorking with theTax

  11. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09T23:59:59.000Z

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    those of untreated biomass feedstocks; 3. Evaluation of theconcentration in biomass feedstocks [165]. Level of Volatileto carbon ratio when biomass feedstocks are mixed to form a

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  15. Design and Analysis of Flexible Biodiesel Processes with Multiple Feedstocks 

    E-Print Network [OSTI]

    Pokoo-Aikins, Grace Amarachukwu

    2011-10-21T23:59:59.000Z

    With the growing interest in converting a wide variety of biomass-based feedstocks to biofuels, there is a need to develop effective procedures for the design and optimization of multi-feedstock biorefineries. The unifying goal of this work...

  16. Ligncellulosic feedstock supply systems with intermodal and overseas transportation

    SciTech Connect (OSTI)

    Ric Hoefnagels; Kara Cafferty; Erin Searcy; Jacob J. Jacobson; Martin Junginger; Thijs Cornelissen; Andre Faaij

    2014-12-01T23:59:59.000Z

    With growing demand for biomass from industrial uses and international trade, the logistic operations required to economically move the biomass from the field or forest to the end users have become increasingly complex. In addition to economics, understanding energy and GHG emissions is required to design cost effective, sustainable logistic process operations; in order to improve international supply chains it is also important to understate their interdependencies and related uncertainties. This article presents an approach to assess lignocellulosic feedstock supply systems at the operational level. For this purpose, the Biomass Logistic Model (BLM) has been linked with the Geographic Information Systems based Biomass Intermodal Transportation model (BIT-UU) and extended with inter-continental transport routes. Case studies of herbaceous and woody biomass, produced in the U.S. Midwest and U.S. Southeast, respectively, and shipped to Europe for conversion to Fischer-Tropsch (FT) diesel are included to demonstrate how intermodal transportation and, in particular, overseas shipping integrates with the bioenergy supply chains. For the cases demonstrated, biomass can be supplied at 99 € Mg-1 to 117 € Mg-1 (dry) and converted to FT-diesel at 19 € GJ-1 to 24 € GJ-1 depending on the feedstock type and location, intermediate (chips or pellets) and size of the FT-diesel production plant. With the flexibility to change the design of supply chains as well as input variables, many alternative supply chain cases can be assessed.

  17. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01T23:59:59.000Z

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  19. Feedstock Production Datasets from the Bioenergy Knowledge Discovery Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. [copied from https://www.bioenergykdf.net/content/about] Holdings include datasets, models, and maps and the collections are growing due to both DOE contributions and data uploads from individuals.

  20. Feedstock Logistics Datasets from DOE's Bioenergy Knowledge Discovery Framework (KDF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Bioenergy Knowledge Discovery Framework invites users to discover the power of bioenergy through an interface that provides extensive access to research data and literature, GIS mapping tools, and collaborative networks. The Bioenergy KDF supports efforts to develop a robust and sustainable bioenergy industry. The KDF facilitates informed decision making by providing a means to synthesize, analyze, and visualize vast amounts of information in a relevant and succinct manner. It harnesses Web 2.0 and social networking technologies to build a collective knowledge system that can better examine the economic and environmental impacts of development options for biomass feedstock production, biorefineries, and related infrastructure. Holdings include datasets, models, and maps. [from https://www.bioenergykdf.net/content/about

  1. Feedstock Economics for Global Steam Crackers

    E-Print Network [OSTI]

    McCormack, G.; Pavone, T.

    ECONOMIC FACTORS pa~ticula~ count~y p~ovides compa~ative economics on which In calculating p~oduction costs design c~acklng feedstock in each ~egion, f~om the 5 p~oduces ethylene at the lowest alte~native c~acking feedstocks, cost. Compa~lng ~ows...~icing scena~ios. * local ta)(es & insu~ance LOW COST PRODUCERS RESULTS F~om Table 2, the low cost Using all of the above, SRI p~oduce~s a~e Indonesia, Saudi calculated ethylene p~oduction A~abia, South Ko~ea. the US Gulf cost, and cost plus 251. p...

  2. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  4. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversionResults in

  5. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 | Department of

  6. Feedstocks (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruary 17, 2015Martin E. Griswold,Feedstocks

  7. Advanced Feedstock Supply System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy Efficiency GrantsElectrocatalystsFeedstock

  8. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  9. Economic Policy and Resource Implications of Biofuel Feedstock Production

    E-Print Network [OSTI]

    Adusumilli, Naveen

    2012-10-19T23:59:59.000Z

    Page 3-4 Net Biofuel Production From Biomass Feedstocks Taking Into Account The Net Energy Ratio Associated With Each Of The Biomass Feedstocks, Switchgrass And High Energy Sorghum In This Case....S. energy supply and the consequent impact on cost of production of biofuels, 4 4 expanding to a national analysis viewing the macro implications of the RFS related to biomass feedstock. The results are of value to decision and policy makers. 1...

  10. E-Print Network 3.0 - air transportation industry Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and information that characterize the biomass industry, from the production of biomass feedstocks to their end use... of Energy Efficiency and Renewable Energy. Center for...

  11. Operational Model for C3 Feedstock Optimization on a

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Chemical and refinery grade feedstocks with different prices and propylene purities. Best operation Polypropylene production facility Chemical and refinery grade feedstocks with different prices and propyleneTank Propylene (91%) ~79% propylene ~95% propylene 3 #12;Process and Problem Description Chemical Grade (CG

  12. ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES Keith L. Kline Gbadebo A Government or any agency thereof. #12;ORNL/TM-2007/224 BIOFUEL FEEDSTOCK ASSESSMENT FOR SELECTED COUNTRIES To Support the DOE study of Worldwide Potential to Produce Biofuels with a focus on U.S. Imports Keith L

  13. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01T23:59:59.000Z

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is the main electricity consuming process in the chemical industry, next to oxygen and nitrogen production. We estimate final electricity use at 173 PJ (48 TWh) and fuel use of 38 PJ. Total primary energy consumption is estimated at 526 PJ (including credits for hydrogen export). The energy intensity is estimated at an electricity consumption of 4380 kWh/tonne chlorine and fuel consumption of 3.45 GJ/tonne chlorine, where all energy use is allocated to chlorine production. Assuming an average power generation efficiency of 33% the primary energy consumption is estimated at 47.8 GJ/tonne chlorine (allocating all energy use to chlorine).

  14. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    DOE Patents [OSTI]

    Doyle, Glenn Michael (Lakewood, CO); Ideker, Virgene Linda (Arvada, CO); Siegwarth, James David (Boulder, CO)

    2002-01-01T23:59:59.000Z

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  15. Feedstock Quality Factor Calibration and Data Model Development

    SciTech Connect (OSTI)

    Richard D. Boardman; Tyler L. Westover; Garold L. Gresham

    2010-05-01T23:59:59.000Z

    The goal of the feedstock assembly operation is to deliver uniform, quality-assured feedstock materials that will enhance downstream system performance by avoiding problems in the conversion equipment. In order to achieve this goal, there is a need for rapid screening tools and methodologies for assessing the thermochemical quality characteristics of biomass feedstock through the assembly process. Laser-induced breakdown spectroscopy (LIBS) has been identified as potential technique that could allow rapid elemental analyses of the inorganic content of biomass feedstocks; and consequently, would complement the carbohydrate data provided by near-infrared spectrometry (NIRS). These constituents, including Si, K, Ca, Na, S, P, Cl, Mg, Fe and Al, create a number of downstream problems in thermochemical processes. In particular, they reduce the energy content of the feedstock, influence reaction pathways, contribute to fouling and corrosion within systems, poison catalysts, and impact waste streams.

  16. Optimizing Feedstock Logistics and Assessment of Hydrologic Impacts for Sustainable Bio-Energy Production 

    E-Print Network [OSTI]

    Ha, Mi-Ae 1979-

    2012-12-11T23:59:59.000Z

    effective system to convert biomass from agricultural feedstocks to bio-crude oil. Mobile pyrolysis units could be moved to the feedstock production fields thereby greatly simplifying feedstock logistics. In the North Central (NC) region of the U...

  17. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  18. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01T23:59:59.000Z

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  19. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Energy efficiency and energy awareness in Botswana; ESI,attitudes towards and awareness of energy efficiency; •limited awareness of the availability of energy-saving and

  20. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01T23:59:59.000Z

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.

  1. Method for determining processability of a hydrocarbon containing feedstock

    DOE Patents [OSTI]

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10T23:59:59.000Z

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  2. Document: L1334 | Category: Physical Science, Materials License Status: Available for licensing || Texas Industry Cluster: Biotechnology and Life Sciences

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing || Texas Industry Cluster: Biotechnology and Life Sciences Nanocomposite membranes for energy. These markets include hydrogen production, medical devices, advanced materials, and drug delivery. Development Engineering, The University of Texas at Austin OTC Contact Brian Cummings, Associate Director, Life Sciences

  3. Thermochemical Feedstock Interfact Presentation for the BETO...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. biofuels industry. 3 | Bioenergy Technologies Office eere.energy.gov Project Quad Chart Overview Timeline * Start: October 2010 * End: September 2017 * 70% complete Barriers...

  4. Mechanistic kinetic modeling of the hydrocracking of complex feedstocks

    E-Print Network [OSTI]

    Kumar, Hans

    2009-05-15T23:59:59.000Z

    Two separate mechanistic kinetic models have been developed for the hydrocracking of complex feedstocks. The first model is targeted for the hydrocracking of vacuum gas oil. The second one addresses specifically the hydrocracking of long...

  5. amorphous powder feedstock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas A&M University - TxSpace Summary: Page 3-4 Net Biofuel Production From Biomass Feedstocks Taking Into Account The Net Energy Ratio Associated With Each Of The Biomass...

  6. Design and Analysis of Flexible Biodiesel Processes with Multiple Feedstocks

    E-Print Network [OSTI]

    Pokoo-Aikins, Grace Amarachukwu

    2011-10-21T23:59:59.000Z

    DESIGN AND ANALYSIS OF FLEXIBLE BIODIESEL PROCESSES WITH MULTIPLE FEEDSTOCKS A Dissertation by GRACE AMARACHUKWU POKOO-AIKINS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2010 Major Subject: Chemical Engineering DESIGN AND ANALYSIS OF FLEXIBLE BIODIESEL PROCESSES WITH MULTIPLE FEEDSTOCKS A Dissertation by GRACE AMARACHUKWU POKOO...

  7. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    SciTech Connect (OSTI)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-06-30T23:59:59.000Z

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO{sub x}, CO{sub 2}, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  8. 2014-12-31 Issuance: Energy Conservation Standards for Commercial and Industrial Fans and Blowers; Extension of Comment Period for Notice of Data Availability

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register extension of comment period for notice of data availability regarding energy conservation standards for commercial and industrial fans and blowers, as issued by the Deputy Assistant Secretary for Energy Efficiency on December 31, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  9. Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass -- Executive Summary

    SciTech Connect (OSTI)

    J. Richard Hess; Christopher T. Wright; Kevin L. Kenney; Erin M. Searcy

    2009-04-01T23:59:59.000Z

    This report, Uniform-Format Solid Feedstock Supply System: A Commodity-Scale Design to Produce an Infrastructure-Compatible Bulk Solid from Lignocellulosic Biomass, prepared by Idaho National Laboratory (INL), acknowledges the need and provides supportive designs for an evolutionary progression from present day conventional bale-based supply systems to a uniform-format, bulk solid supply system that transitions incrementally as the industry launches and matures. These designs couple to and build from current state of technology and address science and engineering constraints that have been identified by rigorous sensitivity analyses as having the greatest impact on feedstock supply system efficiencies and costs.

  10. Processes prevent detrimental effects from As and Hg in feedstocks

    SciTech Connect (OSTI)

    Sarrazin, P.; Cameron, C.J.; Barthel, Y. (Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)); Morrison, M.E. (IFP Enterprises Texas Inc., Houston, TX (United States))

    1993-01-25T23:59:59.000Z

    The wide range of mercury and arsenic species sometimes present in raw condensates or crude oils can cause major problems such as corrosion and reduced catalyst life. This paper reports on simple, low-investment, feedstock treatment procedures which have been developed that eliminate both As and Hg impurities with very high efficiencies. During the past 20 years, refiners and petrochemical producers have experienced a serious increase in catalyst poisoning caused by mercury and arsenic. This phenomenon may be partically explained by the diversification of the feedstock supply resulting from the need to optimize the profitability of refining and petrochemical operations. The utilization of a more diverse feedstock supply containing metal impurities has led to operating problems such as corrosion of aluminum alloys in steam cracker cold boxes.

  11. New catalysts improves heavy feedstock hydro-cracking

    SciTech Connect (OSTI)

    Hoek, A.; Huizinga, T.; Esener, A.A.; Maxwell, I.E.; Stork, W. (Koninklijke/Shell Laboratorium, Amsterdam (NL)); van de Meerakker, F.J. (Shell Internationale Petroleum Maatschappij BV, The Hauge (NL)); Sy, O. (Shell Canada Ltd., Oakville, Ontario (CA))

    1991-04-22T23:59:59.000Z

    A new zeolite-Y-based second-stage hydrocracking catalyst, designated S-703, has been developed by Shell. Laboratory testing and commercial use show it has significantly improved performance with respect to gas make and middle-distillate selectivity in processing heavy feedstocks when compared to a Shell catalyst, S-753, developed earlier. Further, the new catalyst exhibits enhanced stability. Extensive laboratory testing of the S-703 catalyst has been carried out under single-stage, stacked- bed, two-stage-flow, and series-flow conditions. Commercial experience with the new catalyst has now been obtained in several units. To date, the commercial results have confirmed the laboratory results in terms of the superior, heavy- feedstock processing performance of the new catalyst in all respects. Because the trend toward heavier feedstocks is expected to continue, it is likely that catalysts such as S- 703 will find increasing applications in hydrocrackers in the future.

  12. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01T23:59:59.000Z

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  13. Renewable chemical feedstock - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewableIndustrial

  14. Challenge # 1. Feedstock & Production | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & Production Challenge # 1. Feedstock

  15. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    SciTech Connect (OSTI)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26T23:59:59.000Z

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  16. Energy Management and Computers in the Pulp and Paper Industry

    E-Print Network [OSTI]

    Sommerfeld, J. T.; Hartley, E. M.

    1981-01-01T23:59:59.000Z

    dryer hood waste heat. o Biomass feedstocks for the production of specialized chemial products. o Crossing of the stone groundwood process with the thermomechanical pulping process. 236 ESL-IE-81-04-42 Proceedings from the Third Industrial Energy...

  17. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Debinski, Diane M.

    a growing portion of our bioenergy feedstocks. While such second generation feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

  18. Developing a Portfolio of Sustainable Bioenergy Feedstock Production Systems for the US Midwest: A Research and Demonstration Project

    E-Print Network [OSTI]

    Jager, Henriette I.

    a growing portion of our bioenergy feedstocks. While such "second generation" feedstocks show numerous on fossil fuels. In response, the demand for feedstocks for liquid biofuels will continue to grow

  19. Feedstock Logistics of a Mobile Pyrolysis System and Assessment of Soil Loss Due to Biomass Removal for Bioenergy Production 

    E-Print Network [OSTI]

    Bumguardner, Marisa

    2012-10-19T23:59:59.000Z

    The purpose of this study was to assess feedstock logistics for a mobile pyrolysis system and to quantify the amount of soil loss caused by harvesting agricultural feedstocks for bioenergy production. The analysis of feedstock logistics...

  20. Life-cycle assessment of local feedstock supply scenarios to compare1 candidate biomass sources2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Running Title : LCA of local biomass feedstocks3 4 Caroline H. Godard1* , Joachim Boissy1 , Benoît scientific elements to both support the42 choice of flax shives as the main biomass feedstock, and to help

  1. Algae as a Feedstock for Transportation Fuels. The Future of Biofuels?

    SciTech Connect (OSTI)

    McGill, Ralph [Sentech, Inc., Fuels, Engines, and Emissions Consulting, Knoxville, TN (United States)

    2008-05-15T23:59:59.000Z

    Events in world energy markets over the past several years have prompted many new technical developments as well as political support for alternative transportation fuels, especially those that are renewable. We have seen dramatic rises in the demand for and production of fuel ethanol from sugar cane and corn and biodiesel from vegetable oils. The quantities of these fuels being used continue to rise dramatically, and their use is helping to create a political climate for doing even more. But, the quantities are still far too small to stem the tide of rising crude prices worldwide. In fact, the use of some traditional crops (corn, sugar, soy, etc.) in making fuels instead of food is apparently beginning to impact the cost of food worldwide. Thus, there is considerable interest in developing alternative biofuel feedstocks for use in making fuels -- feedstocks that are not used in the food industries. Of course, we know that there is a lot of work in developing cellulosic-based ethanol that would be made from woody biomass. Process development is the critical path for this option, and the breakthrough in reducing the cost of the process has been elusive thus far. Making biodiesel from vegetable oils is a well-developed and inexpensive process, but to date there have been few reasonable alternatives for making biodiesel, although advanced processes such as gasification of biomass remain an option.

  2. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    SciTech Connect (OSTI)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01T23:59:59.000Z

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  3. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    feedstocks at a dual fluidised bed gasifier: Impacts ofThe ash chemistry in fluidised bed gasification of biomass

  4. World Academy of Science, Engineering and Technology 64 2012 Effect of Biomass Feedstocks on the

    E-Print Network [OSTI]

    Hydrogenated Biodiesel; Panatcha Bovornseripatai; Siriporn Jongpatiwut; Somchai Osuwan; Suchada Butnark

    and selectivity in hydrogenated biodiesel. In this work, the effect of biomass feedstocks (i.e. beef

  5. A case study of agricultural residue availability and cost for a cellulosic ethanol conversion facility in the Henan province of China

    SciTech Connect (OSTI)

    Webb, Erin [ORNL; Wu, Yun [ORNL

    2012-05-01T23:59:59.000Z

    A preliminary analysis of the availability and cost of corn stover and wheat straw for the area surrounding a demonstration biorefinery in the Henan Province of China was performed as a case study of potential cooperative analyses of bioenergy feedstocks between researchers and industry in the US and China. Though limited in scope, the purpose of this analysis is to provide insight into some of the issues and challenges of estimating feedstock availability in China and how this relates to analyses of feedstocks in the U.S. Completing this analysis also highlighted the importance of improving communication between U.S. researchers and Chinese collaborators. Understanding the units and terms used in the data provided by Tianguan proved to be a significant challenge. This was further complicated by language barriers between collaborators in the U.S. and China. The Tianguan demonstration biorefinery has a current capacity of 3k tons (1 million gallons) of cellulosic ethanol per year with plans to scale up to 10k tons (3.34 million gallons) per year. Using data provided by Tianguan staff in summer of 2011, the costs and availability of corn stover and wheat straw were estimated. Currently, there are sufficient volumes of wheat straw and corn stover that are considered 'waste' and would likely be available for bioenergy in the 20-km (12-mile) region surrounding the demonstration biorefinery at a low cost. However, as the industry grows, competition for feedstock will grow and prices are likely to rise as producers demand additional compensation to fully recover costs.

  6. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    SciTech Connect (OSTI)

    Pauly, Markus [UC Berkeley] [UC Berkeley; Hake, Sarah [USDA Albany] [USDA Albany

    2013-10-31T23:59:59.000Z

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  7. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    SciTech Connect (OSTI)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15T23:59:59.000Z

    The pursuit of a stable, economically-sound, and environmentally-friendly source of transportation fuel has led to extensive research and development (R&D) efforts focused on the conversion of various feedstocks into biofuels. Some feedstocks, such as sugar cane, corn and woody biomass, are targeted because their structures can be broken down into sugars and fermented into alcohols. Other feedstocks, such as vegetable oils, are appealing because they contain considerable amounts of lipids, which can be extracted and converted into biodiesel or other fuels. While significant R&D and commercial strides have been made with each of these feedstocks, technical and market barriers (e.g., cost, scalability, infrastructure requirements, and 'food vs. fuel' debates) currently limit the penetration of the resultant biofuels into the mainstream. Because of algae's ability to potentially address several of these barriers, its use as a feedstock for biofuels has led to much excitement and initiative within the energy industry. Algae are highly diverse, singleor multi-cellular organisms comprised of mostly lipids, protein, and carbohydrates, which may be used to produce a wide variety of biofuels. Algae offer many competitive advantages over other feedstocks, including: 1) Higher potential lipid content than terrestrial plants, sometimes exceeding 50% of the cell's dry biomass (U.S. DOE, May '10; Tornabene et al., 1983) 2) Rapid growth rates that are 20-30 times higher than terrestrial crops (McDill, 2009) and, in some cases, capable of doubling in size with 10 hours 3) Diverse number of species that can collectively thrive in a wide range of environments throughout the world, presenting an overall high overall tolerance for climate, sunlight, nutrient levels, etc. 4) Daily harvesting potential instead of seasonal harvest periods associated with terrestrial crops 5) Potential to redirect CO2 from industry operations to algal cultivation facilities to be used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  8. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01T23:59:59.000Z

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  9. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    SciTech Connect (OSTI)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01T23:59:59.000Z

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  10. Land application of thin stillage from a grain sorghum feedstock 

    E-Print Network [OSTI]

    Jenkins, Joseph Wendell

    1985-01-01T23:59:59.000Z

    Committee; Dr. John M. Sweeten Thin sti 1 1 age is the wastewater from alcohol production after the wet solids have been separated from the waste- water stream. Because of thin sti 1 1 age's high organic content, it may be utilized in a land application... system. Thin sti 1 1 age from a grain sorghum feedstock was applied to crops in the field and greenhouse using sprinkler and surface irrigation methods. Application rates varied from 150 to 593 m stil lage/ha-yr, adding 334 to 1040 kg N/ha- yr. Soil...

  11. 2011 Biomass Program Platform Peer Review: Feedstock | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy MoreEnergy back_cover.pdfFeedstock 2011

  12. The Development of a Hydrothermal Method for Slurry Feedstock Preparation for Gasification Technology

    E-Print Network [OSTI]

    He, Wei

    2011-01-01T23:59:59.000Z

    behavior, etc. ; 4. HTP of other renewable feedstocks, suchHydro-Thermal Pretreatment (HTP) process that will result inof a laboratory scale HTP process. Four carbonaceous

  13. Rapid characterization of lignocellulosic feedstocks for fuels and chemicals: Molecular beam mass spectrometric approach

    SciTech Connect (OSTI)

    Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    Rapid characterization of biomass feedstocks has a pivotal role in the development of biomass energy because of the large number of samples that must be analyzed due to the diversity of biomass feedstocks and the significant differences in the chemical and physical properties of these feedstocks. Several biomass feedstocks (herbaceous, woody, and agricultural residues) were screened for the effects of storage, season of harvest, geographic location, clonal, and species variation on the pyrolysis products of the feed stocks. For herbaceous species such as sericea lespedeza, the season of harvest had a significant effect on the pyrolysis products. Effects of clonal variation on the composition of hybrid poplar feedstocks was easily discerned with the molecular beam mass spectrometric analysis. The effect of geographic location on the poplar clones pyrolysis products was minimal. However in the case of switchgrass, varietal influence on the pyrolysis products was minimal, but where the plant was grown had a strong influence on the pyrolysis products of the feedstock. Significant differences because of species variation could also be shown from the pyrolysis products of various biomass feedstocks. The influence of storage time on biomass samples stored outside in the open could also be discerned from the pyrolysis products of the feedstocks. The differences noted in the pyrolysis products of the feedstocks were noted for samples which were significantly degraded during storage either through the action of microflora or weathering.

  14. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2003-01-01T23:59:59.000Z

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  15. Nipa (Nypa fruticans) sap as a potential feedstock for ethanol production Pramila Tamunaidu1

    E-Print Network [OSTI]

    Takada, Shoji

    . Introduction Currently the global ethanol supply is produced mainly from sugar and starch feedstocks. Sugar these feedstocks rely heavily on non-renewable fossil fuels and exploitation of forest lands which has negative cutting down the plant as in sugarcane which consequently produces large biomass waste such as straw

  16. SWITCHGRASS RESPONSE TO N FERTILIZER ACROSS DIVERSE ENVIRONMENTS CONTACT INFORMATION: A: A REGIONAL FEEDSTOCK PARTNERSHIP REPORT

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    : A REGIONAL FEEDSTOCK PARTNERSHIP REPORT Vance Owens a , David Bransby b , Rodney Farris c , John Fike d , Emily Heaton e , Chang Oh Hong a , Carla Hopkins b , Hilary Mayton f , Rob Mitchell g , Donald Viands f f The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative

  17. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    DOE Patents [OSTI]

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14T23:59:59.000Z

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  18. Industrial Fuel Switching - Emerging NGL Opportunities 

    E-Print Network [OSTI]

    Cascone, R.

    2004-01-01T23:59:59.000Z

    INDUSTRIAL FUEL SWITCHING - EMERGING NGL OPPORTUNITIES Ron Cascone Manager Special Projects, Utilities and Environmental Nexant, Inc. White Plains, NY ABSTRACT Removing butanes and pentanes from gasoline to meet local... feedstocks, convert them to alternative fuels, or sell them as heating fuels. Industrial fuel users can switch from fuel oil, natural gas or LPG for short periods to these clean and/or more economic fuels. Current regulations will necessitate removing...

  19. The usability of switchgrass, rice straw, and logging residue as feedstocks for power generation in East Texas 

    E-Print Network [OSTI]

    Hong, Sung Wook

    2007-09-17T23:59:59.000Z

    increases. Current biomass feedstock production costs are generally too high for biomass feedstock to replace coal in power generation. However I find that GHG offset prices can make biomass economically attractive. In particular GHG offset prices...

  20. Document: P1332 Category: Physical Sciences, Chemical/Materials License Status: Available for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products

    E-Print Network [OSTI]

    Lightsey, Glenn

    for licensing Texas Industry Cluster: Petroleum Refining & Chemical Products Lower-cost fuel cells Problem, and they offer an alternative to petroleum-burning internal combustion engines. The U.S. Environ- mental and as a replacement for off-grid small power and grid production power plants. Development Stage/IP Status Lab

  1. CdTe Feedstock Development and Validation: Cooperative Research and Development Final Report, CRADA Number CRD-08-00280

    SciTech Connect (OSTI)

    Albin, D.

    2011-05-01T23:59:59.000Z

    The goal of this work was to evaluate different CdTe feedstock formulations (feedstock provided by Redlen) to determine if they would significantly improve CdTe performance with ancillary benefits associated with whether changes in feedstock would affect CdTe cell processing and possibly reliability of cells. Feedstock also included attempts to intentionally dope the CdTe with pre-selected elements.

  2. Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock

    E-Print Network [OSTI]

    California at Riverside, University of

    -tolerant biofuels feedstock Hongjia Li,abd Marcus B. Foston,cd Rajeev Kumar,bd Reichel Samuel,cd Xiadi Gao,abd Fan lignocellulosic feedstock for biofuels production. Because agave composition will establish the maximum potential for further characterization and conversion of different agave species as biofuels feedstocks for semi

  3. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    DOE Patents [OSTI]

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23T23:59:59.000Z

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  4. Feedstock blending studies with laboratory indirectly heated gasifiers

    SciTech Connect (OSTI)

    Green, A.E.S.; Mullin, J.P.

    1999-10-01T23:59:59.000Z

    To support the further development of indirectly heated gasifiers intended to provide fuels for advanced gas turbines, several indirectly heated laboratory gasifiers were constructed. During many comparative tests, advantages and problems with each system were observed. The most useful systems make use of laboratory tube furnaces in conjunction with temperature, time and pressure or volume yield measuring systems and a gas chromatograph with a thermal conductivity detector. In this paper, high temperature pyrolysis results obtained with the latest system are presented. Contrasting feedstocks suitable for commercial systems separately or in blends are used. Yield versus time measurements are used to determine relevant rate constants and outputs. Since the rate constants are mainly reflective of heat transfer effects, cylindrical dowel sticks of varying radii were volatilized. The data set leads to an analytic heat transfer model that considers the hemicellulose, cellulose, and lignin components of the dowels. Also developed from the dowel experiments is an approximate procedure for estimating the proportionate releases of CO, CO{sub 2}, CH{sub 4}, and H{sub 2} for any type of biomass whose component proportions are known.

  5. Technology Offer Cell factory for R-mandelate biosynthesis from feed-stock

    E-Print Network [OSTI]

    , fermentative procedure. The biocatalytic process starts from feed-stock. No use of petrol derived chemicals and deprotection) and/or use of highly toxic chemicals (Cyanide) synthesis and work-up; use of petrol derived

  6. Perennial Agroenergy Feedstocks as En Route Habitat for Spring Migratory Birds

    E-Print Network [OSTI]

    Landis, Doug

    to evaluate the ability of two candidate second-generation agroenergy feed- stocks (switchgrass, Panicum- generation agroenergy feedstocks may provide suitable hab- itat. We take a multi-scaled spatial approach. Keywords Biofuels . Agriculture . Grassland birds . Habitat selection . Agroecology . Switchgrass

  7. Synthesis of Mesoporous Aluminophosphates as Potential Catalysts in the Upgrading Petroleum Feedstocks

    SciTech Connect (OSTI)

    Ingram, Conrad, PH.D.

    2002-03-20T23:59:59.000Z

    This project focuses on the synthesis of mesoporous aluminophosphate (AlPO) catalysts for application in the acid catalyzed conversion of large petroleum feedstock compounds to Useful middle distillates and naphtha transportation fuels.

  8. The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks 

    E-Print Network [OSTI]

    McLaughlin, Will

    2012-02-14T23:59:59.000Z

    biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a...

  9. Investigating the Use of Ion Exchange Resins for Processing Biodiesel Feedstocks 

    E-Print Network [OSTI]

    Jamal, Yousuf 1973-

    2012-11-27T23:59:59.000Z

    Ion exchange resins, commonly used in water treatment, demonstrate promise for the production of biodiesel from biomass feedstocks. The goal of this presented PhD research is to investigate novel uses of ion exchange resins for processing biodiesel...

  10. Wide Hybridization, Genomic, and Overwintering Characterization of High-Biomass Sorghum Spp. Feedstocks 

    E-Print Network [OSTI]

    Whitmire, David Kyle

    2012-10-19T23:59:59.000Z

    feedstocks incentivizes the development of versatile biomass products with greater end-use possibilities, as in either a forage or bioenergy system. High-biomass, perennial grasses offer dual-use potential in either forage or biofuel systems. In 2009...

  11. The Economic and Financial Implications of Supplying a Bioenergy Conversion Facility with Cellulosic Biomass Feedstocks

    E-Print Network [OSTI]

    McLaughlin, Will

    2012-02-14T23:59:59.000Z

    biomass feedstocks. Targeting the Middle Gulf Coast, Edna-Ganado, Texas area, mathematical programming in the form of a cost-minimization linear programming model(Sorghasaurus) is used to assess the financial and economic logistics costs for supplying a...

  12. Investigating the Use of Ion Exchange Resins for Processing Biodiesel Feedstocks

    E-Print Network [OSTI]

    Jamal, Yousuf 1973-

    2012-11-27T23:59:59.000Z

    Ion exchange resins, commonly used in water treatment, demonstrate promise for the production of biodiesel from biomass feedstocks. The goal of this presented PhD research is to investigate novel uses of ion exchange resins for processing biodiesel...

  13. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31T23:59:59.000Z

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this report is based on publicly-available reports, journal articles, and case studies from applications of technologies around the world.

  14. Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria

    DOE Patents [OSTI]

    Ooteghem, Suellen Van (Morgantown, WV)

    2005-09-13T23:59:59.000Z

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  15. Process for Generation of Hydrogen Gas from Various Feedstocks Using Thermophilic Bacteria

    SciTech Connect (OSTI)

    Ooteghem Van, Suellen

    2005-09-13T23:59:59.000Z

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45 degrees C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  16. A Review on Biomass Densification Systems to Develop Uniform Feedstock Commodities for Bioenergy Application

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Christopher T. Wright; J. Richard Hess; Kevin L. Kenney

    2011-11-01T23:59:59.000Z

    Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties like size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (a) baler, (b) pellet mill, (c) cuber, (d) screw extruder, (e) briquette press, (f) roller press, (g) tablet press, and (g) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pretreatment options like preheating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulphonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States Standard) or CEN (European Standard).

  17. The MRL Polymer Characterization Facility has instrumentation available for use by all campus researchers, researchers from other universities, and local industry: Circular Dichroism

    E-Print Network [OSTI]

    Bigelow, Stephen

    The MRL Polymer Characterization Facility has instrumentation available for use by all campus request training by e-mail: kbrzez@mrl.ucsb.edu. Before class please read the manual: http://www.mrl.ucsb.edu/polymer-characterization-facility/instruments Users of the MRL Polymer Characterization Facility are required to complete the EH&S Laboratory Safety

  18. Improved Method for Isolation of Microbial RNA from Biofuel Feedstock for Metatranscriptomics

    SciTech Connect (OSTI)

    Piao, Hailan; Markillie, Lye Meng; Culley, David E.; Mackie, Roderick I.; Hess, Matthias

    2013-03-28T23:59:59.000Z

    Metatranscriptomics—gene express profiling via DNA sequencing—is a powerful tool to identify genes that are ac- tively expressed and might contribute to the phenotype of individual organisms or the phenome (the sum of several phenotypes) of a microbial community. Furthermore, metatranscriptome studies can result in extensive catalogues of genes that encode for enzymes of industrial relevance. In both cases, a major challenge for generating a high quality metatranscriptome is the extreme lability of RNA and its susceptibility to ubiquitous RNAses. The microbial commu- nity (the microbiome) of the cow rumen efficiently degrades lignocelullosic biomass, generates significant amounts of methane, a greenhouse gas twenty times more potent than carbon dioxide, and is of general importance for the physio- logical wellbeing of the host animal. Metatranscriptomes of the rumen microbiome from animals kept under different conditions and from various types of rumen-incubated biomass can be expected to provide new insights into these highly interesting phenotypes and subsequently provide the framework for an enhanced understanding of this socio- economically important ecosystem. The ability to isolate large amounts of intact RNA will significantly facilitate accu- rate transcript annotation and expression profiling. Here we report a method that combines mechanical disruption with chemical homogenization of the sample material and consistently yields 1 mg of intact RNA from 1 g of rumen-in- cubated biofuel feedstock. The yield of total RNA obtained with our method exceeds the RNA yield achieved with pre- viously reported isolation techniques, which renders RNA isolated with the method presented here as an ideal starting material for metatranscriptomic analyses and other molecular biology applications that require significant amounts of starting material.

  19. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

    1995-12-01T23:59:59.000Z

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  20. Sensors and Actuators A 176 (2012) 6471 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Chow, Lee

    2012-01-01T23:59:59.000Z

    feedstock for potential res- idential fuel cell systems because the infrastructure to supply natural gas is already established and the technology for producing hydrogen from natural gas [1] is available

  1. Journal of Biotechnology 147 (2010) 212218 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States a r t i c l e i n f o Keywords: Rhodococcus opacus PD630 TAG Biodiesel Triacylglycerol Glucose a b s t r a c t Biodiesel great potential as a future source of industrial biodiesel on starchy cellulosic feedstocks

  2. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01T23:59:59.000Z

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  3. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    DOE Patents [OSTI]

    Peters, William A. (Lexington, MA); Howard, Jack B. (Winchester, MA); Modestino, Anthony J. (Hanson, MA); Vogel, Fredreric (Villigen PSI, CH); Steffin, Carsten R. (Herne, DE)

    2009-02-24T23:59:59.000Z

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  4. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    SciTech Connect (OSTI)

    Tsai, S.P.; Moon, S.H.

    1997-07-01T23:59:59.000Z

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  5. The Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Peterson, Keith L.; Muzatko, Danielle S.; Alderson, Eric V.; Hart, Todd R.; Neuenschwander, Gary G.

    2004-03-25T23:59:59.000Z

    Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus or sulfur, aluminum or silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydrolysis) or ammonium ions (from more severe breakdown) both of which might interfere with catalysis. The effects of these components on catalytic hydrogenation processing has been studied in batch reactor processing tests

  6. The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    DeLucia, Evan

    2011-04-26T23:59:59.000Z

    Evan DeLucia of the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute talks about "The Promise and Challenge of Producing Biofuel Feedstocks: An Ecological Perspective" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  7. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    SciTech Connect (OSTI)

    Khanna, Madhu

    2010-03-26T23:59:59.000Z

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  8. Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate Research Assistant

    E-Print Network [OSTI]

    Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate................................................................................................... 9 5. Environmental and Social Issues of Energy Production using Poultry Litter ....................................... 10 5.1 Issues on the anaerobic digestion of poultry litter for energy production

  9. Agave: a biofuel feedstock for arid and semi-arid environments

    SciTech Connect (OSTI)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31T23:59:59.000Z

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  10. USING RESIDENT SMALL MAMMALS TO ASSESS THE HABITAT POTENTIAL OF EXPERIMENTAL BIOFUELS FEEDSTOCKS

    E-Print Network [OSTI]

    USING RESIDENT SMALL MAMMALS TO ASSESS THE HABITAT POTENTIAL OF EXPERIMENTAL BIOFUELS FEEDSTOCKS ...................................................................................................................35 CHAPTER 2: Comparing survival of deer mice across experimental biofuels plots in Eastern South ...................................................................................................................65 CHAPTER 3: Small mammal diversity across 4 experimental biofuels plots in Eastern South Dakota

  11. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Khanna, Madhu

    2011-04-26T23:59:59.000Z

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  12. Nanoparticle Technology for Biorefining of Non-Food Source Feedstocks

    SciTech Connect (OSTI)

    Pruski, Marek; Trewyn, Brian G.; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22T23:59:59.000Z

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  13. Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    introduction of biomass feedstocks. However, these optionsthe example of adding biomass feedstocks processing), or be

  14. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10T23:59:59.000Z

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  15. Ecological sustainability of energy cane as a biofuel feedstock Assess the ecological sustainability of deploying energy cane on land previously used for

    E-Print Network [OSTI]

    DeLucia, Evan H.

    Ecological sustainability of energy cane as a biofuel feedstock Objective Assess the ecological to the ecological sustainability of the wide-scale deployment of biofuel feedstocks. Key among these issues are how replacing current land use with biofuel feedstocks will affect the fluxes of greenhouse gases (CO2, CH4, N20

  16. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    John W. Rich

    2003-06-01T23:59:59.000Z

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from January 1, 2003 through March 31, 2003. Phase I Task 6 activities of Preliminary Site Analysis were documented and reported as a separate Topical Report on February 2003. Most of the other technical activities were on hold pending on DOE's announcement of the Clean Coal Power Initiative (CCPI) awards. WMPI was awarded one of the CCPI projects in late January 2003 to engineer, construct and operate a first-of-kind gasification/liquefaction facility in the U.S. as a continued effort for the current WMPI EECP engineering feasibility study. Since then, project technical activities were focused on: (1) planning/revising the existing EECP work scope for transition into CCPI, and (2) ''jump starting'' all environmentally related work in pursue of NEPA and PA DEP permitting approval.

  17. EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect (OSTI)

    Unknown

    2002-07-01T23:59:59.000Z

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

  18. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  19. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  20. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, Meyer (Melville, NY); Grohse, Edward W. (Port Jefferson, NY)

    1995-01-01T23:59:59.000Z

    A process for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol.

  1. Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol

    DOE Patents [OSTI]

    Steinberg, M.; Grohse, E.W.

    1995-06-27T23:59:59.000Z

    A process is described for the production of a pollutant-free particulate carbon (i.e., a substantially ash-, sulfur- and nitrogen-free carbon) from carbonaceous feedstocks. The basic process involves de-oxygenating one of the gas streams formed in a cyclic hydropyrolysis-methane pyrolysis process in order to improve conversion of the initial carbonaceous feedstock. De-oxygenation is effected by catalytically converting carbon monoxide, carbon dioxide, and hydrogen contained in one of the pyrolysis gas streams, preferably the latter, to a methanol co-product. There are thus produced two products whose use is known per se, viz., a substantially pollutant-free particulate carbon black and methanol. These products may be admixed in the form of a liquid slurry of carbon black in methanol. 3 figs.

  2. Novel Intergrated Process to Process to Produce Fuels from Coal and Other Carbonaceous Feedstocks

    SciTech Connect (OSTI)

    Andrew Lucero

    2009-03-25T23:59:59.000Z

    BioConversion Technology, LLC has developed a novel gasifier design that produces a clean, medium to high BTU synthesis gas that can be utilized for a variety of applications. The staged, indirectly heated design produces high quality synthesis gas without the need for costly pure oxygen. This design also allows for extreme flexibility with respect to feedstocks (including those with high moisture contents) in addition to high throughputs in a small gasifier footprint. A pilot scale testing project was proposed to assist BCT with commercializing the process. A prototype gasifier constructed by BCT was transported to WRI for installation and testing. After troubleshooting, the gasifier was successfully operated with both coal and biomass feedstocks. Instrument upgrades are recommended for further testing.

  3. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    SciTech Connect (OSTI)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen; David J. Muth; Jane M. F. Johnson; John M. Baker; Hero T. Gollany; Jeff M. Novak; Diane E. Stott; Gary E. Varvel

    2010-10-01T23:59:59.000Z

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soil water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.

  4. Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover

    SciTech Connect (OSTI)

    Wolfrum, E. J.; Sluiter, A. D.

    2009-01-01T23:59:59.000Z

    We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

  5. Improving biofuel feedstocks by modifying xylan biosynthesis (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Lau, Jane [JBEI

    2013-03-01T23:59:59.000Z

    Jane Lau of the Joint BioEnergy Institute on "Improving biofuel feedstocks by modifying xylan biosynthesis" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  6. The usability of switchgrass, rice straw, and logging residue as feedstocks for power generation in East Texas

    E-Print Network [OSTI]

    Hong, Sung Wook

    2007-09-17T23:59:59.000Z

    , electricity and transport. The renewable energy strategies of the United States expect the bio- energy sector to be pre-eminent in the global market for secure, indigenous and renewable energy supplies in the next century and to play a vital role... The pros and cons of using biomass feedstock for energy purposes have been discussed in many United States and international studies. Here we present a literature review on environmental and economic issues in relation with biomass feedstock...

  7. Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock

    SciTech Connect (OSTI)

    Not listed

    2007-07-01T23:59:59.000Z

    Biomass preprocessing is a critical operation in the preparation of feedstock for the front-end of a cellulosic ethanol biorefinery. Its purpose is to chop, grind, or otherwise format the biomass material into a suitable feedstock for optimum conversion to ethanol and other bioproducts. Without this operation, the natural size, bulk density, and flowability characteristics of harvested biomass would decrease the capacities and efficiencies of feedstock assembly unit operations and biorefinery conversion processes to the degree that programmatic cost targets could not be met. The preprocessing unit operation produces a bulk flowable material that 1) improves handling and conveying efficiencies throughout the feedstock assembly system and biorefinery 2) increases biomass surface areas for improved pretreatment efficiencies, 3) reduces particle sizes for improved feedstock uniformity and density, and 4) fractionates structural components for improved compositional quality. The Idaho National Laboratory (INL) is tasked with defining the overall efficiency/effectiveness of current commercial hammer and fixed cutter grinding systems and other connecting systems such as harvest and collection, storage, transportation, and handling for a wide variety of feedstock types used in bioethanol or syngas production. This test plan details tasks and activities for two separate full-scale grinding tests: Material Characterization Test and Machine Characterization Test. For the Material Characterization Test, a small amount (~5-7 tons each) of several feedstock varieties will be ground. This test will define the fractionation characteristics of the grinder that affect the bulk density, particle size distribution, and quality of the size reduced biomass resulting from different separation screen sizes. A specific screen size will be selected based on the characteristics of the ground material. The Machine Characterization Test will then use this selected screen to grind several 30-ton batches of different feedstock varieties and moistures. This test will focus on identifying the performance parameters of the grinding system specific to the feed, fractionation, and screen separation components and their affect on machine capacity and efficiency.

  8. Developing a Sustainable Forest Biomass Industry: Case of the US Northeast

    E-Print Network [OSTI]

    Schweik, Charles M.

    . Keywords: forest biomass, sustainable, renewable energy, supply, harvest, forest landowners, socialDeveloping a Sustainable Forest Biomass Industry: Case of the US Northeast D. Damery1 , J. Benjamin in renewable energy has produced a spate of new research into the feasibility of forest biomass as a feedstock

  9. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  10. Challenges and Opportunities for Wet-Waste FeedstocksÂ…Resource Assessment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. Feedstock & Production Challenge #

  11. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10T23:59:59.000Z

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  12. Interactions of woody biofuel feedstock production systems with water resources: Considerations for sustainability.

    SciTech Connect (OSTI)

    Trettin, Carl,C.; Amatya, Devendra; Coleman, Mark.

    2008-07-01T23:59:59.000Z

    Abstract. Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and non-irrigated systems has demonstrated that woody biofuel production systems do not impair water quality. Water quality actually improves from conversion of idle or degraded agricultural lands to woody biomass plantations. Site water balance may be altered by cultivation of woody biomass plantations relative to agricultural use, due to increases in evapostranspiration (ET) and storage. Incorporation of woody biomass production plantations within the landscape provides an opportunity to improve the quality of runoff water and soil conservation. Given the centrality of water resources to the sustainability of ecosystem services and other values derived, the experience with woody biofuels feedstock production systems is positive. Keywords. Short rotation woody crop, forest hydrology, water quality, hardwood plantation.

  13. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30T23:59:59.000Z

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  14. Next Generation Logistics Systems for Delivering Optimal Biomass Feedstocks to Biorefining Industries in the Southeastern United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForumEngines |NewStateDepartment of(BETO) 2015 Project Peer

  15. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform isEnergyMeeting |Resources » Energy Resource Library » Biomass

  16. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    tariffs can re a market for power during the time when it has sult in benefits to industry, to the electric abundant capacity available. From the other rate utility, and to other ratepayers on the electric payers' perspective, there will be a continued...INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic...

  17. Application of Buckmaster Electrolyte Ion Leakage Test to Woody Biofuel Feedstocks

    SciTech Connect (OSTI)

    Broderick, Thomas F [Forest Concepts, LLC; Dooley, James H [Forest Concepts, LLC

    2014-08-28T23:59:59.000Z

    In an earlier ASABE paper, Buckmaster reported that ion conductivity of biomass leachate in aqueous solution was directly correlated with activity access to plant nutrients within the biomass materials for subsequent biological or chemical processing. The Buckmaster test involves placing a sample of the particles in a beaker of constant-temperature deionized water and monitoring the change in electrical conductivity over time. We adapted the Buckmaster method to a range of woody biomass and other cellulosic bioenergy feedstocks. Our experimental results suggest differences of electrolyte leakage between differently processed woody biomass particles may be an indicator of their utility for conversion in bioenergy processes. This simple assay appears to be particularly useful to compare different biomass comminution techniques and particle sizes for biochemical preprocessing.

  18. Engineering, Nutrient Removal, and Feedstock Conversion Evaluations of Four Corn Stover Harvest Scenarios

    SciTech Connect (OSTI)

    Reed L. Hoskinson; Douglas L. Karlen; Stuart J. Birrell; Corey W. Radtke; W.W. Wilhelm

    2007-02-01T23:59:59.000Z

    Crop residue has been identified as a near-term source of biomass for renewable fuel, heat, power, chemicals and other bio-materials. Replicated plots were established in a corn (Zea mays L.) field near Ames, IA to evaluate four harvest scenarios (low cut, high-cut top, high-cut bottom, and normal cut). A prototype one-pass harvest system was used to collect the residue samples. High-cut top and high-cut bottom samples were obtained from the same plots in two separate operations. Chemical composition, dilute acid pretreatment response, ethanol conversion efficiency and gasification parameters for each scenario were determined. Mean grain yield (10.1 Mg ha-1 dry weight) was representative of the area. The four harvest scenarios removed 6.7, 4.9, 1.7, and 5.1 Mg ha-1 of dry matter. Expressed as harvest indices (HI) the values were 0.60 for low cut, 0.66 for normal cut, and 0.61 for the total high-cut (top + bottom) scenarios, which are probably realistic for machine harvest and current hybrids. The macro-nutrient replacement value for the normal harvest scenario under our conditions was $57.36 ha-1 or $11.27 Mg-1. Harvesting stalk bottoms increased the water content, the risk of combine damage, the transportation costs, and left insufficient soil cover, while also producing a problematic feedstock. Harvesting stover at current combine height (~40 cm) would be best for farmers and ethanol producers because of better harvest speed and efficiency as well as the quality of the ethanol feedstock.

  19. Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy, and Economic Life-Cycle Analysis

    E-Print Network [OSTI]

    McCarl, Bruce A.

    virgatum) as a replacement for coal in power generation. To examine the effects of such a substitution1 Switchgrass as an Alternate Feedstock for Power Generation: Integrated Environmental, Energy into modules. The greenhouse gas (GHG) mitigation during co-firing of switchgrass with coal is found

  20. Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2

    E-Print Network [OSTI]

    DeLucia, Evan H.

    219 Current biofuel feedstock crops such as corn lead to large environmental losses of N through biofuel crops established on a rich Mollisol soil. Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops Candice M. Smith, Mark B. david,* Corey A. Mitchell, Michael d. Masters

  1. RECYCLING OF LATEX BASED PAINT AS POLYMER FEEDSTOCK MATERIALS Jennifer K. Lynch, Thomas J. Nosker, Robert Hamill, Richard L. Lehman

    E-Print Network [OSTI]

    RECYCLING OF LATEX BASED PAINT AS POLYMER FEEDSTOCK MATERIALS Jennifer K. Lynch, Thomas J. Nosker investigates the recycling of used latex paints into non-paint products. Waste latex paint was collected, dried container cost for either recycling or hazardous waste disposal, is very high for the retailer. Much

  2. This new system will allow researchers to much more rapidly screen large numbers of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio-

    E-Print Network [OSTI]

    of samples and identify the most promising biomass feedstocks for higher efficiency and lower cost bio- fuels conversion processes. NREL will be screening thousands of variants of different biomass feedstocks to link to develop the next generation of low-cost, easily convert- ible biomass feedstocks. To identify superior

  3. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  4. industrial & systems (ISE) Industrial and Systems Engineers use engineering and business principles

    E-Print Network [OSTI]

    Rohs, Remo

    to linear programming; transportation and assignment problems; dynamic program- ming; deterministic to programing, software and multimedia. USC's undergraduate ISE curriculum prepares students for industry. Programs Available · Industrial and Systems Engineering Bachelor of Science 129 units · Industrial

  5. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  6. LANDSCAPE MANAGEMENT FOR SUSTAINABLE SUPPLIES OF BIOENERGY FEEDSTOCK AND ENHANCED SOIL QUALITY

    SciTech Connect (OSTI)

    Douglas L. Karlen; David J. Muth, Jr.

    2012-09-01T23:59:59.000Z

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. As we embark on the 19th Triennial Conference of the International Soil and Tillage Research Organization (ISTRO), I am pleased to proclaim that our members are well poised to lead these endeavors because of our comprehensive understanding of soil, water, agricultural and bio-systems engineering processes. The concept of landscape management, as an approach for integrating multiple bioenergy feedstock sources, including biomass residuals, into current crop production systems, is used as the focal point to show how these ever-increasing global challenges can be met in a sustainable manner. Starting with the 2005 Billion Ton Study (BTS) goals, research and technology transfer activities leading to the 2011 U.S. Department of Energy (DOE) Revised Billion Ton Study (BT2) and development of a residue management tool to guide sustainable crop residue harvest will be reviewed. Multi-location USDA-Agricultural Research Service (ARS) Renewable Energy Assessment Project (REAP) team research and on-going partnerships between public and private sector groups will be shared to show the development of landscape management strategies that can simultaneously address the multiple factors that must be balanced to meet the global challenges. Effective landscape management strategies recognize the importance of nature’s diversity and strive to emulate those conditions to sustain multiple critical ecosystem services. To illustrate those services, the soil quality impact of harvesting crop residues are presented to show how careful, comprehensive monitoring of soil, water and air resources must be an integral part of sustainable bioenergy feedstock production systems. Preliminary analyses suggest that to sustain soil resources within the U.S. Corn Belt, corn (Zea mays L.) stover should not be harvested if average grain yields are less than 11 Mg ha-1 (175 bu ac-1) unless more intensive landscape management practices are implemented. Furthermore, although non-irrigated corn grain yields east and west of the primary Corn Belt may not consistently achieve the 11 Mg ha-1 yield levels, corn can still be part of an overall landscape approach for sustainable feedstock production. Another option for producers with consistently high yields (> 12.6 Mg ha-1 or 200 bu ac-1) that may enable them to sustainably harvest even more stover is to decrease their tillage intensity which will reduce fuel use, preserve rhizosphere carbon, and/or help maintain soil structure and soil quality benefits often attributed to no-till production systems. In conclusion, I challenge all ISTRO scientists to critically ask if your research is contributing to improved soil and crop management strategies that effectively address the complexity associated with sustainable food, feed, fiber and fuel production throughout the world.

  7. Author's personal copy Available online at www.sciencedirect.com

    E-Print Network [OSTI]

    Sims, Gerald K.

    (sometimes referred to as the `billion-ton vision') is for one billion tons of dry biomass feedstock

  8. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  9. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    SciTech Connect (OSTI)

    Mondala, Andro H.; Hernandez, Rafael; French, William Todd; Estevez, L. Antonio; Meckes, Mark; Trillo, Marlene; Hall, Jacqueline

    2011-12-01T23:59:59.000Z

    The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 Ă?Â?Ă?Â? 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletion was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 Ă?Â?Ă?Â? 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.

  10. Basic refractory and slag management for petcoke carbon feedstock in gasifiers

    SciTech Connect (OSTI)

    Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

    2014-04-22T23:59:59.000Z

    The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

  11. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    SciTech Connect (OSTI)

    Moreau, J.W.

    1980-12-01T23:59:59.000Z

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

  12. EIS-0002: Allocation of Petroleum Feedstock, Baltimore Gas & Electric Co., Sollers Point SNG Plant, Sollers Point, Baltimore County, MD

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration (ERA) developed this EIS to evaluate the social, economic and environmental impacts which may occur within the Baltimore Gas and Electric Company (BG&E) service area as a result of the ERA' s proposed decision to allocate up to 2,186,000 barrels per year of naphtha feedstock to BG&E to operate BG&E's existing synthetic natural gas facility located on Sollers Point in Baltimore County, Maryland.

  13. Environment assessment: allocation of petroleum feedstock, Algonquin SNG Inc. , Freetown SNG Plant, Bristol County, MA. [Effects of 100, 78, 49% allocations

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The proposed administrative action to deny, grant or modify the Algonquin SNG, Inc. (Algonquin) petition for an adjusted allocation of naphtha feedstock may significantly affect the ehuman environment. The volume of feedstock requested is 4,425,571 barrels per year of naphtha to be used in Algonquin's Freetown, MA synthetic natural gas (SNG) plant. Environmental impacts of 100, 78, and 49% allocations were evaluated.

  14. Availability Page 1 of 2 AVAILABILITY ANALYSIS

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Availability Page 1 of 2 AVAILABILITY ANALYSIS Section 46a-68-39 This section was found to be in compliance in the previous submission, and there were no proposals/recommendations. Availability analyses, the following were consulted in determining availability computations: 1. Employment figures (immediate labor

  15. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  16. Qualified Target Industry Tax Refund (Florida)

    Broader source: Energy.gov [DOE]

    The Qualified Target Industry Tax Refund incentive is available for companies that create high wage jobs in targeted high value-added industries. The incentive refunds up to $3,000 per new full...

  17. Daylighting Application and Effectiveness in Industrial Facilities 

    E-Print Network [OSTI]

    McCowan, B.; Birleanu, D.

    2005-01-01T23:59:59.000Z

    artificial lighting became available, most older industrial buildings had their daylighting features boarded over. With modern glazing systems and sophisticated designs that minimize glare issues, daylighting for industrial buildings is making a strong...

  18. Industrial Wastes as a Fuel

    E-Print Network [OSTI]

    Richardson, G.; Hendrix, W.

    1980-01-01T23:59:59.000Z

    available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only...

  19. Parametric Gasification of Oak and Pine Feedstocks Using the TCPDU and Slipstream Water-Gas Shift Catalysis

    SciTech Connect (OSTI)

    Hrdlicka, J.; Feik, C.; Carpenter, D.; Pomeroy, M.

    2008-12-01T23:59:59.000Z

    With oak and pine feedstocks, the Gasification of Biomass to Hydrogen project maximizes hydrogen production using the Full Stream Reformer during water-gas shift fixed-bed reactor testing. Results indicate that higher steam-to-biomass ratio and higher thermal cracker temperature yield higher hydrogen concentration. NREL's techno-economic models and analyses indicate hydrogen production from biomass may be viable at an estimated cost of $1.77/kg (current) and $1.47/kg (advanced in 2015). To verify these estimates, NREL used the Thermochemical Process Development Unit (TCPDU), an integrated system of unit operations that investigates biomass thermochemical conversion to gaseous and liquid fuels and chemicals.

  20. Development of a Low Input and sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes

    SciTech Connect (OSTI)

    Mei, Chuansheng [IALR; Nowak, Jerzy [VPISU; Seiler, John [VPISU

    2014-10-24T23:59:59.000Z

    Switchgrass represents a promising feedstock crop for US energy sustainability. However, its broad utilization for bioenergy requires improvements of biomass yields and stress tolerance. In this DOE funded project, we have been working on harnessing beneficial bacterial endophytes to enhance switchgrass performance and to develop a low input feedstock production system for marginal lands that do not compete with the production of food crops. We have demonstrated that one of most promising plant growth-promoting bacterial endophytes, Burkholderia phytofirmans strain PsJN, is able to colonize roots and significantly promote growth of switchgrass cv. Alamo under in vitro, growth chamber, greenhouse, as well as field conditions. Furthermore, PsJN bacterization improved growth and development of switchgrass seedlings, significantly stimulated plant root and shoot growth, and tiller number in the field, and enhanced biomass accumulation on both poor (p<0.001) and rich (p<0.05) soils, with more effective stimulation of plant growth in low fertility soil. Plant physiology measurements showed that PsJN inoculated Alamo had consistently lower transpiration, lower stomatal conductance, and higher water use efficiency in greenhouse conditions. These physiological changes may significantly contribute to the recorded growth enhancement. PsJN inoculation rapidly results in an increase in photosynthetic rates which contributes to the advanced growth and development. Some evidence suggests that this initial growth advantage decreases with time when resources are not limited such as in greenhouse studies. Additionally, better drought resistance and drought hardening were observed in PsJN inoculated switchgrass. Using the DOE-funded switchgrass EST microarray, in a collaboration with the Genomics Core Facility at the Noble Foundation, we have determined gene expression profile changes in both responsive switchgrass cv. Alamo and non-responsive cv. Cave-in-Rock (CR) following PsJN bacterization. With the MapMan software to analyze microarray data, the number of up- and down-regulated probes was calculated. The number of up-regulated probes in Alamo was 26, 14, 14, and 12% at 0.5, 2, 4 and 8 days after inoculation (DAI) with PsJN, respectively while the corresponding number in CR was 24, 22, 21, and 19%, respectively. In both cultivars, the largest number of up-regulated probes occurred at 0.5 DAI. Noticeable differences throughout the timeframe between Alamo and CR were that the number was dramatically decreased to half (12%) in Alamo but remained high in CR (approximately 20%). The number of down regulated genes demonstrated different trends in Alamo and CR. Alamo had an increasing trend from 9% at 0.5 DAI to 11, 17, and 28% at 2, 4, and 8 DAI, respectively. However, CR had 13% at 0.5 and 2 DAI, and declined to 10% at 4 and 8 DAI. With the aid of MapMan and PageMan, we mapped the response of the ID probes to the observed major gene regulatory network and major biosynthetic pathway changes associated with the beneficial bacterial endophyte infection, colonization, and early growth promotion process. We found significant differences in gene expression patterns between responsive and non-responsive cultivars in many pathways, including redox state regulation, signaling, proteolysis, transcription factors, as well as hormone (SA and JA in particular)-associated pathways. Form microarray data, a total of 50 key genes have been verified using qPCR. Ten of these genes were chosen for further functional study via either overexpression and/or RNAi knockout technologies. These genes were calmodulin-related calcium sensor protein (CAM), glutathione S-transferase (GST), histidine-containing phosphotransfer protein (H-221), 3 different zinc finger proteins (ZF-371, ZF131 and ZF242), EF hand transcription factor (EF-622), peroxidase, cellulose synthase catalytic submit A2 (CESA2), and Aux/IAA family. A total of 8 overexpression and 5 RNAi transgenic plants have been regenerated, and their gene expression levels determined using qPCR. Consequently

  1. INNOVATION MARKETPLACE A QUARTERLY UPDATE OF AVAILABLE TECHNOLOGIES FOR INDUSTRY

    E-Print Network [OSTI]

    · Heat Flux Sensors · Fuel Cells Highlights From Past Issues · Neutristor · Atomic Magnetometer for remote and unattended sensing applications. Sandia's chemical sensor is able to optimize sample

  2. Industrial Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf Smart

  3. INNOVATION MARKETPLACE A QUARTERLY UPDATE OF AVAILABLE TECHNOLOGIES FOR INDUSTRY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChangApplications |DOE programLog* Vol

  4. Integrated Industrial Wood Chip Utilization

    E-Print Network [OSTI]

    Owens, E. T.

    1984-01-01T23:59:59.000Z

    The sources of supply of wood residues for energy generation are described and the rationale for exploring the potential available from forest harvesting is developed. Details of three industrial-scale projects are presented and the specific...

  5. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  6. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  7. A NEW CLASS MESOPOROUS ALUMINOPHOSPHATES AS POTENTIAL CATALYSTS IN THE UPGRADING PETROLEUM FEEDSTOCKS

    SciTech Connect (OSTI)

    Conrad Ingram; Mark Mitchell

    2005-08-31T23:59:59.000Z

    A comprehensive investigation was conducted towards the synthesis and catalytic evaluation of high surface areas, uniform pore size, mesoporous aluminophosphates (AlPO{sub 4}) as potential catalysts for the upgrading of heavy petroleum feedstock, such as heavy crudes and petroleum residuum. The influence of several synthesis variables (including, the nature of the reactants, chemical composition of reaction mixtures, time and temperature) on the synthesis and physicochemical characteristics of the resulting products was explored. Phosphoric acid and three different aluminum sources, namely, aluminum hydroxide, aluminum isopropoxide and psuedobohemite alumina, were used as the inorganic precursors. Cetyltrimethylammonium chloride (C{sub 16}TACl) surfactant was used as charge compensating cation and structure directing agent in the surfactant-micellar-mediated synthesis pathway employed. Synthesis were conducted from reaction mixtures within the following typical molar composition range: xAl{sub 2}O{sub 3}:P{sub 2}O{sub 5}:yC{sub 16}TMACl: zTHMAOH: wH{sub 2}O, where x = 0.29-2.34, y = 0.24-0.98, z = 0.34-1.95, w = 86-700. Selected materials were evaluated for the conversion of isopropylbenzene (cumene) in order to understand the nature of any acid sites created. The synthesis products obtained depended strongly on the molar composition of the synthesis mixture. A lamellar (layered) phase was favored by synthesis mixtures comprised of low Al/P ratios (<0.33), low TMAOH content, high C{sub 16}TACl concentrations and high synthesis temperature (110 C). Formation of the desired hexagonal (tubular) phase was favored by higher Al/P ratios and TMAOH content, pH range between 8-10, low C{sub 16}TACl concentration and ambient temperature. The aluminum source had significant influence on the products obtained. With aluminum hydroxide (A1(OH){sub 3}) as the hydroxide source, the resulting hexagonal phase in the ''as-synthesized'' form demonstrated well defined ordered mesoporous structure for synthesis mixtures of Al/P ratios in the range of 0.47-1.25, above which increasingly disordered products were observed. The products were however unstable to calcination in air above 400 C to remove the organic template, under which structural collapsed was observed. Products formed using pseudoboehmite alumina (catapal B), were more thermally stable than those formed with aluminum isopropoxide, though all products experienced some degree of structural collapsed on calcination and yielded micro- or micro-mesoporous materials ranging from low (<500 m{sup 2}/g) to high surface areas (>500 m{sup 2}/g) and pore sizes ranging from microporous (< 1.5 nm) in some products to mesoporous (up to 3.6 nm) in other. Improvement in thermal stability was not observed when Mg and Co or bridging organic functional groups were incorporated with the mesoporous framework. The products showed negligible activity for the conversion of cumene at 300 C. Further research is necessary to investigate alternative synthesis strategies to strengthen and improve the thermal stabilities of these aluminophosphates.

  8. FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS

    SciTech Connect (OSTI)

    Kelly Jezierski; Andrew Tadd; Johannes Schwank; Roland Kibler; David McLean; Mahesh Samineni; Ryan Smith; Sameer Parvathikar; Joe Mayne; Tom Westrich; Jerry Mader; F. Michael Faubert

    2010-07-30T23:59:59.000Z

    The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were found to have lower activities under S-free conditions, but did show less effect of S on performance, in this study. Imidazolium-based ILs, choline chloride compounds and low-melting eutectics of metal nitrates were evaluated, and it was found that, ILs have some capacity to dissolve cellulose and show thermal stability to temperatures where pyrolysis begins, have no vapor pressure, (simplifying product recoveries), and can dissolve ionic metal salts, allowing for the potential of catalytic reactions on breakdown intermediates. Clear evidence of photoactive commercial TiO2 was obtained, but in-house synthesis of photoactive TiO2 proved difficult, as did fixed-bed gasification, primarily due to the challenge of removing the condensable products from the reaction zone quickly enough to prevent additional reaction. Further investigation into additional non-PGM catalysts and ILs is recommended as a follow-up to this work.

  9. Establishment of a Graduate Certificate Program in Biobased Industrial Products – Final Technical Report

    SciTech Connect (OSTI)

    John R. Schlup

    2005-11-04T23:59:59.000Z

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

  10. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users The

  11. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials Center at CornellOf SmartIndustrial Users

  12. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP »summerlectures [ICO]default Sign InIndustrial

  13. availability leaf life: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Category: Life Sciences, Materials License Status: Available for licensing Texas Industry Cluster: Biotechnology and Life Sciences Engineering Websites Summary: Jason B....

  14. First-of-a-kind supercomputer at Lawrence Livermore available...

    National Nuclear Security Administration (NNSA)

    by a partnership of Cray, Intel and Lawrence Livermore, this Cray CS300 high performance computing cluster is available for collaborative projects with industry through...

  15. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    foundries spend a higher proportion of their funds available for capital improvements on pollution control equipment. The industry as a whole, however, invests significantly in...

  16. Webinar: Delivering Transformational HPC Solutions to Industry

    SciTech Connect (OSTI)

    Streitz, Frederick

    2014-04-15T23:59:59.000Z

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  17. Webinar: Delivering Transformational HPC Solutions to Industry

    ScienceCinema (OSTI)

    Streitz, Frederick

    2014-07-22T23:59:59.000Z

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  18. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

  19. Industrial Decision Making 

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    and industrial investment decision-making. The paper will also address several important questions: • Why has industrial investment declined? • What is the outlook for industrial investment? • How can programs engage industry for future opportunities?...

  20. Thermochemical Conversion - Feedstock Interface, Bio-oils Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energy (DOE)Department1 | Bioenergy

  1. future science group 5ISSN 1759-726910.4155/BFS.12.76 2013 Future Science Ltd Special FocuS: advanced FeedStockS For advanced bioFuelS

    E-Print Network [OSTI]

    S: advanced FeedStockS For advanced bioFuelS An overview of lignocellulosic biomass feedstock harvest, processing and supply for biofuel production editorial Biofuels (2013) 4(1), 5­8 "The questions here petroleum consumption with biofuels by 2030 [1­3]. This goal implies that the demand for cellulosic feed

  2. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

  3. INDUSTRIAL ENGINEERING Industrial engineering is concerned

    E-Print Network [OSTI]

    INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

  4. Cloud Computing og availability

    E-Print Network [OSTI]

    Christensen, Henrik Bćrbak

    Cloud Computing og availability Projekt i pĺlidelighed Henrik Lavdal - 20010210 Sřren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse as a Service (SaaS) ...................................................................9 Availability i cloud

  5. Reduction on synthesis gas costs by decrease of steam/carbon and oxygen/carbon ratios in the feedstock

    SciTech Connect (OSTI)

    Basini, L.; Piovesan, L. [Snamprogetti S.p.A. Research Labs., Milano (Italy)] [Snamprogetti S.p.A. Research Labs., Milano (Italy)

    1998-01-01T23:59:59.000Z

    The costs for syngas production at low steam/carbon and oxygen/carbon ratios have been analyzed for simplified process schemes of the main syngas production technologies (steam-CO{sub 2} reforming, autothermal reforming, and combined reforming) and different synthesis gas compositions. The broad analysis arises from experimental indication on the possibility of preventing carbon formation at low steam/carbon and oxygen/carbon ratios in the feedstock by choosing an appropriate catalyst or by introducing small amounts of sulfur compounds in the reactant feed. The analysis is limited to the synthesis gas production step and does not include its downstream processes. The results indicate that technologies at low steam/carbon and oxygen/carbon ratios would have a significant positive impact on synthesis gas costs.

  6. Development of sustainable harvest strategies for cellulose-based biofuels: The effect of intensity and season of harvest on cellulosic feedstock and

    E-Print Network [OSTI]

    and Wildlife Foundation, "Budweiser Renewable Energy and Wildlife Conservation Prize," South Dakota Game, Fish) and by state and federal agencies. This project will examine how feedstock harvest will affect game bird, and Parks Federal Aid in Wildlife Restoration, and South Dakota State University Agricultural Experiment

  7. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    SciTech Connect (OSTI)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01T23:59:59.000Z

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  8. Click `Search Availability'

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    #12;Click `Search Availability' How to search for tutor availability #12;Choose `University Tutoring Services' from the drop down menu How to search for tutor availability #12;Choose the course you availability #12;Click on the appointment time you wish to receive tutoring How to sign up for a tutor #12;An

  9. Understanding Availability Ranjita Bhagwan

    E-Print Network [OSTI]

    Savage, Stefan

    Understanding Availability Ranjita Bhagwan , Stefan Savage ˇ , and Geoffrey M. Voelker of peer-to-peer systems: What does it mean when we say "availability" and how does this understanding not capture the complex time- varying nature of availability in today's peer-to-peer environments. Further, we

  10. PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II

    SciTech Connect (OSTI)

    Unknown

    2002-02-08T23:59:59.000Z

    For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumented and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.

  11. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect (OSTI)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01T23:59:59.000Z

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  12. Macro Industrial Working Group

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s

  13. Utilization of high-carbohydrate food wastes as the feedstock for degradable plastics

    SciTech Connect (OSTI)

    Tsai, S.P.; Coleman, R.D.; Tsai, TenLin S.; Bonsignore, P.V.

    1989-01-01T23:59:59.000Z

    Wastestreams from food processing industries have become an economic burden as well as a serious environmental problem. In the United States, billions of pounds of potato processed each year is typically discarded or sold as cattle feed at $3-6/ton. For large food processing plants, removal of more than 1 million gallons of waste/day/plant is required. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that (1) bioconverts existing food processing wastestream into lactic acid, and (2) utilizes lactic acid for making environmentally safe, degradable plastics. Although the initial substrate for Argonne's process development is potato waste, the process will be applied to many other high-carbohydrate food wastes. Argonne has developed a process to bioconvert greater than 90% of the fermentable starch in solid potato waste to glucose. Lactic acid is produced from glucose via fermentation and subsequently recovered/purified for plastic synthesis. A continuous lactic acid fermentation and recovery process has been designed. Batch fermentation data showed good cell growth and excellent yields (greater than 95%) of lactic acid production from the hydrolyzed potato waste. Three product recovery processes (electrodialysis, liquid-liquid extraction, and esterification) are being evaluated. Plastics containing lactic acid can be designed to have various mechanical properties and degradation rates. Argonne is developing lactic acid plastics that have some novel features. These environmentally-safe, degradable plastics have many attractive applications such as composting bags and agriculture mulch films. Other potential applications of lactic acid polymers include programmable pesticide and fertilizer delivery systems.

  14. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  15. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  16. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IndustryCouncil.shtml The new members that joined the Industry Council include NPP owneroperators with analysis capability: Tyrone Stevens of Exelon, and SMR vendors:...

  17. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26T23:59:59.000Z

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  18. Evaluation of the potential for using old-field vegetation as an energy feedstock: Biomass yield, chemical composition, environmental concerns, and economics

    SciTech Connect (OSTI)

    Johnston, J.W. Jr.

    1990-07-01T23:59:59.000Z

    The major focus of current research on production of biomass for use as energy feedstock involves selection of species and genotypes best suited for specific regions of the United States and development of crop management techniques that maximize biomass productivity while minimizing environmental impacts and economic costs. The two experimental sites, and abandoned soybean field (AS) and an abandoned pasture (AP) were studied. At the AS site, the effects of two harvest frequencies (1 or 2 harvests annually), two nitrogen fertilizer treatments (1 or 2 harvests annually), two nitrogen fertilizer treatments (0 or 87 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}), and two phosphorous fertilizer treatments (0 or 111 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}) were determined. At the AP site, the effects of two harvest treatments (1 or 2 harvests annually), two fertilizer treatments (56:56:135 kg of N:P:K{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}), and two lime treatments (0 or 4600 kg{center dot}ha{sup {minus}1}{center dot}yr{sup {minus}1}) were determined. At both sites, treatments were arranged in a randomized complete block 2 {times} 2 {times} 2 factorial experiment. The results of this research indicated that old-field vegetation is: (1) sufficiently productive to provide significant quantities of energy feedstock; (2) chemically suitable as an energy feedstock; (3) environmentally benign with respect to impacts related to soil erosion and nutrient depletion; (4) relatively unresponsive to fertilizer and lime inputs; and (5) economically competitive with other biomass energy feedstock candidates. 38 refs., 8 figs., 68 tabs.

  19. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    SciTech Connect (OSTI)

    Wang, D. I.C.

    1980-09-01T23:59:59.000Z

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  20. Price Projections of Feedstocks for Biofuels and Biopower in the U.S.

    SciTech Connect (OSTI)

    Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Graham, Robin Lambert [ORNL; Eaton, Laurence M [ORNL; Hellwinckel, Chad [Agricultural Policy Analysis Center, University of Tennessee; De La Torre Ugarte, Daniel G [ORNL

    2012-01-01T23:59:59.000Z

    The economic availability of biomass resources is a critical component in evaluating the commercial viability of biofuels. To evaluate projected farmgate prices and grower payments needed to procure 295 million dry Mg (325 million dry tons) of biomass in the U.S. by 2022, this research employs POLYSYS, an economic model of the U.S. agriculture sector. A price-run simulation suggests that a farmgate price of $58.42 Mg{sup -1} ($53.00 dry ton{sup -1}) is needed to procure this supply, while a demand-run simulation suggests that prices of $34.56 and $71.61 Mg{sup -1} ($30.00 and $62.00 dry ton{sup -1}) in are needed in 2012 and 2022, respectively, to procure the same supply, under baseline yield assumptions. Grower payments are reported as farmgate price minus resource-specific harvest costs.

  1. Industry Analysis February 2013

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

  2. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  3. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The AOG programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the installation of energy efficie...

  4. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01T23:59:59.000Z

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality

  5. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  6. Industrial applications of electron accelerators

    E-Print Network [OSTI]

    Cleland, M R

    2006-01-01T23:59:59.000Z

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  7. Cumulative belief degrees approach for analyzing the competitiveness of the automotive industry

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    Cumulative belief degrees approach for analyzing the competitiveness of the automotive industry: Available online xxxx Keywords: Competitiveness Automotive industry Cumulative belief degree Casual the competitiveness of the automotive industry from a national competitiveness perspective, using a three

  8. Developing a solar energy industry in Egypt

    E-Print Network [OSTI]

    AbdelMessih, Sherife (Sherife Mohsen)

    2009-01-01T23:59:59.000Z

    This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

  9. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  10. Utilize Available Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize Available Resources Print As soon as you arrive

  11. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  12. Electrotechnologies in Process Industries

    E-Print Network [OSTI]

    Amarnath, K. R.

    The Industrial Program at the Electric Power Research Institute (EPRI) promotes the efficient use of electricity to improve the competitive position of the American industry. Electrotechnologies that improve productivity, improve quality...

  13. and Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    technologicalandlogisticssystemsbygathering, structuring, and managing information. Indus- trial engineers apply their knowledge not only45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle

  14. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  15. INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY

    E-Print Network [OSTI]

    Pohl, Karsten

    INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

  16. Industry Analysis October 2010

    E-Print Network [OSTI]

    Abolmaesumi, Purang

    Different regulations for some industries in Canada, the U.S. and Europe ie. telecommunications, energy of energy, materials, industrial waste, byproducts #12;Contact Constance Adamson Stauffer Library adamsonc

  17. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  18. Mechanical & Industrial Engineering

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

  19. Precision wood particle feedstocks

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2013-07-30T23:59:59.000Z

    Wood particles having fibers aligned in a grain, wherein: the wood particles are characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L; the L.times.H dimensions define two side surfaces characterized by substantially intact longitudinally arrayed fibers; the W.times.H dimensions define two cross-grain end surfaces characterized individually as aligned either normal to the grain or oblique to the grain; the L.times.W dimensions define two substantially parallel top and bottom surfaces; and, a majority of the W.times.H surfaces in the mixture of wood particles have end checking.

  20. Oil Sands Feedstocks

    Broader source: Energy.gov (indexed) [DOE]

    for the Clean Fuels Market to Utilize Alberta Bitumen % Upgrading Upstream Upgrading Refinery Upgrading T r a n s p o r t a t i o n Synthetic Crude T Wise Purvin & Gertz June 2005...

  1. Biomass -Feedstock User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inandWBS 1.2.3.3 Biomass -

  2. USDA Feedstocks and Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and BatteryUS-EU-Japan Working Group onPHEVChief Economist

  3. Advanced Feedstock Preprocessing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 | Bioenergy

  4. Advanced Feedstock Supply System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 | BioenergyAdvanced

  5. Streamlining Bioenergy Feedstock Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol

  6. Regional Algal Feedstock Testbed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.Department WBS: 1.3.5.111 March

  7. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  8. Industrial policy and the Indian electronics industry

    E-Print Network [OSTI]

    Love, Robert (Robert Eric)

    2008-01-01T23:59:59.000Z

    Recently, production within India's Electronics sector amounted to a low $12 billion when compared to the global output of $1400 billion. The slow growth in the local industry is often judged to be the result of late ...

  9. LANSCE | Lujan Center | Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact Fredrik...

  10. Uranium industry annual 1998

    SciTech Connect (OSTI)

    NONE

    1999-04-22T23:59:59.000Z

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  11. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  12. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take of industries including consulting, technology development, software, supply chain manufacturing, engineering

  13. Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report

    SciTech Connect (OSTI)

    Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

    1993-07-01T23:59:59.000Z

    A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

  14. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    feedstock, followed by heavy oil, which requires an averageammonia is made from heavy oil and coal, which is much lesspartial oxidization of heavy fuel oil, gasification of coal,

  15. Partnering with Industry to Advance Biofuels and Bioproducts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    level of research flexibility. In particular, it can handle a wide range of biomass feedstocks and pretreatment processes. Parallel pretreatment processing trains allow for...

  16. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  17. Energy Efficiency Fund (Gas)- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Through the Connecticut Energy Efficiency Fund, rebates are available for commercial, industrial or municipal customers of Connecticut Natural Gas Corporation, Southern Connecticut Gas Company, or...

  18. al procesamiento industrial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tourism and landscape quality. However, over the past 10 years, the Runion sugar industry has had to face the difficulties of available arable land decreasing because of...

  19. arvs industry perspectives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tourism and landscape quality. However, over the past 10 years, the Runion sugar industry has had to face the difficulties of available arable land decreasing because of...

  20. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect (OSTI)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01T23:59:59.000Z

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  1. Industrial Retrofits are Possible

    E-Print Network [OSTI]

    Stobart, E. W.

    . In April of 1987, the provincial government initiated a program to assist industrial energy users to reduce their energy usage. This program was designed to concentrate on an in-depth analysis of the complete operations of industrial plants... with the analyses being performed by specialist, private sector, engineering consultants. The program is in 3 phases providing an Ontario industrial plant with an Energy Analysis, a Feasibility Analysis Grant and a Project Engineering Design Grant...

  2. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  3. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  4. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  5. Industrial waste reduction: The process problem

    SciTech Connect (OSTI)

    Valentino, F.W.; Walmet, G.E.

    1986-09-01T23:59:59.000Z

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  6. Department of Energy to Make Available up to $33.8 Million to...

    Broader source: Energy.gov (indexed) [DOE]

    This FOA focuses specifically on systems to hydrolyze and saccharify cellulosic biomass feedstocks. Saccharification enables the biorefining process by breaking down pretreated...

  7. available

    E-Print Network [OSTI]

    2013-05-23T23:59:59.000Z

    (2009) provide a robustness framework for monitoring real options under uncertainty, which play a key role in the value of various projects. Duzgun and Thiele ...

  8. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  9. State Level Analysis of Industrial Energy Use 

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    2003-01-01T23:59:59.000Z

    in the global aluminum market. Similarly, increases in electricity prices combined with declining old-growth timber inventories lead to a decline in the wood products and primary paper industries. The outlook for these industries is equally uncertain.... Available: http://www.eia.doe.gov/cneaf/electricity/esr/ esr sum.html. Washington, D.C.: USDOE. [DOE/EIA] Department of Energy, Energy Information Administration. 2000. Annual Energy Outlook 2001. DOE/EIA 0383(2001). Washington, D.C.: Department...

  10. Gasification world database 2007. Current industry status

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    Information on trends and drivers affecting the growth of the gasification industry is provided based on information in the USDOE NETL world gasification database (available on the www.netl.doe.gov website). Sectors cover syngas production in 2007, growth planned through 2010, recent industry changes, and beyond 2010 - strong growth anticipated in the United States. A list of gasification-based power plant projects, coal-to-liquid projects and coal-to-SNG projects under consideration in the USA is given.

  11. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  12. Geothermal industry assessment

    SciTech Connect (OSTI)

    Not Available

    1980-07-01T23:59:59.000Z

    An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

  13. Industrial Optimization Compact Course

    E-Print Network [OSTI]

    Kirches, Christian

    Industrial Optimization Compact Course and Challenge Workshop Optimization plays a crucial role of the processes are typically nonlinear and dyna- mic. Thus, complex dynamic optimization or optimal control in industrial optimization. February 17­20, 2014 ·9.00­17.00 IWR ·Im Neuenheimer Feld 368 ·69120 Heidelberg www

  14. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  15. INDUSTRIAL&SYSTEMS Industrial and Systems engineers use

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL&SYSTEMS Industrial and Systems engineers use engineering and business principles companies compete in today's global marketplace. The Industrial and Systems engineer's task is to take · Industrial and Systems Engineering Bachelor of Science 128 units · Industrial and Systems Engineering

  16. Uranium industry annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

  17. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09T23:59:59.000Z

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  18. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect (OSTI)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26T23:59:59.000Z

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  19. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  20. Industrial Decision Making

    E-Print Network [OSTI]

    Elliott, R. N.; McKinney, V.; Shipley, A.

    2008-01-01T23:59:59.000Z

    Domestic industrial investment has declined due to unfavorable energy prices, and external markets. Investment behavior has changed over the past few years, and will continue due to high labor costs, tight markets and an unstable U.S. economy...

  1. AI Industrial Engineering 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    This paper describes the California Energy Commission’s (Commission) energy policies and programs that save energy and money for California’s manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases...

  2. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  3. Industrial energy use indices 

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    Energy use index (EUI) is an important measure of energy use which normalizes energy use by dividing by building area. Energy use indices and associated coefficients of variation are computed for major industry categories ...

  4. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Plant managers around the world are interested in improving the energy efficiency of their facilities while both growing and modernizing their manufacturing capabilities. Emerging industrial technologies, both at the ...

  5. Animal Industries Building 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Industrial steam users recognize the need to reduce system cost in order to remain internationally competitive. Steam systems are a key utility that influence cost significantly, and represent a high value opportunity ...

  6. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  7. Engineering Industrial & Systems

    E-Print Network [OSTI]

    Berdichevsky, Victor

    powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I the skills necessary to be successful in today's global environment. EDGE exposes and trains engineering

  8. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  9. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  10. Industrial Development Fund (North Carolina)

    Broader source: Energy.gov [DOE]

    The Industrial Development Fund provides financing grants and loans through designated municipalities and counties to assist in infrastructure improvements for targeted industrial projects. The...

  11. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  12. Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst

    E-Print Network [OSTI]

    Mountziaris, T. J.

    9/13/2007 Mechanical and Industrial Engineering Industry Advisory Board University of Massachusetts Amherst Department of Mechanical and Industrial Engineering About the Mechanical and Industrial Engineering Industry Advisory Board The purpose of the Mechanical and Industrial Engineering Industry Advisory

  13. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2004-09-26T23:59:59.000Z

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  14. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk; Keith Wisecarver

    2003-09-26T23:59:59.000Z

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking.

  15. Achieve maximum application availability and

    E-Print Network [OSTI]

    Bernstein, Phil

    Highlights Achieve maximum application availability and data protection using SQL Server AlwaysOn and other high availability features Reduce planned downtime significantly with SQL Server on Windows and management of high availability and disaster recovery using integrated tools Achieve maximum application

  16. HAMILTONCLARK NREL 22nd Industry Growth Forum

    E-Print Network [OSTI]

    in a CreditConstrained World November 2009 John J. McKenna 703-288-5277 john semi-works plant ­ Venture financing difficult due to timing (post meltdown) ­ Other biofuels refineries ­ Waste Management (NYSE:WM): feedstock supply at landfills ­ Strategic investors understood

  17. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21T23:59:59.000Z

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  18. Policies on Japan's Space Industry

    E-Print Network [OSTI]

    with space emerging countries 3. Step up leading-edge science and technology as an innovation engine (1Policies on Japan's Space Industry Shuichi Kaneko Director, Space Industry Office Manufacturing Industries Bureau Ministry of Economy, Trade and Industry (METI) #12;Japan's Space Policy is based

  19. Industrial DSM: Beyond High Efficiency Lights and Motors

    E-Print Network [OSTI]

    Appelbaum, B.

    on behalf of electric utilities. These represent real-world solutions to problems in actual industrial plants in many different types of industries. DSM IN LOW TEMPERATURE REFRIGERAnON SYST M APPLICAnONS Industrial refrigeration equipment is highly... energy-intensive. In many dairy procl::."ing plants in particular, refrigeration systems are the largest electricity consumers, repre enting as much as 75 percent of plant peak demand. The availability of the refrigeration system is critical...

  20. Making Industry Part of the Climate Solution

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss [ORNL; Brown, Dr. Marilyn Ann [Georgia Institute of Technology; Jackson, Roderick K [ORNL; Cox, Matthew [Georgia Institute of Technology; Cortes, Rodrigo [Georgia Institute of Technology; Deitchman, Benjamin H [ORNL

    2011-06-01T23:59:59.000Z

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  1. Cutting Industrial Solar System Costs in Half 

    E-Print Network [OSTI]

    Niess, R. C.; Weinstein, A.

    1982-01-01T23:59:59.000Z

    collectors that result in an installed first cost that approximates one half of that of conventional solar systems. This technology is now available for producing up to 220 F hot water for industrial process heat, space heating, and service hot water heating...

  2. 3.1.1.2 Feed Processing and Handling DL2 Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Magnuson, Jon K.; Wend, Christopher F.

    2006-09-30T23:59:59.000Z

    This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.

  3. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  4. Industrial Assessment Center

    SciTech Connect (OSTI)

    Dr. Diane Schaub

    2007-03-05T23:59:59.000Z

    Since its inception, the University of Florida Industrial Assessment Center has successfully completed close to 400 energy assessments of small to medium manufacturing facilities in Florida, southern Georgia and southern Alabama. Through these efforts, recommendations were made that would result in savings of about $5 million per year, with an implementation rate of 20-25%. Approximately 80 engineering students have worked for the UF-IAC, at least 10 of whom went on to work in energy related fields after graduation. Additionally, through the popular course in Industrial Energy Management, many students have graduated from the University of Florida with a strong understanding and support of energy conservation methods.

  5. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  6. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  7. Industrial Equipment Impacts Infrastructure

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf05 IdentifiedPathways to SustainedIndustrial AssessmentIndustrial

  8. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    .8%! ! ! ! OTHER 8.4%! l4.9%! l4.0%! ! ! ! TOTAL 100.0%! 100.0%! 100.0%! ! PROGRAM STRATEGY Ontario's Industrial Energy Services Program was designed to: lead industrial energy consumers to the realization that increased energy efficiency generates... ONTARIO'S INDUSTRIAL ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program...

  9. CIVIL & ENVIRONMENTAL CE / ENE OVERVIEW PROGRAMS AVAILABLE

    E-Print Network [OSTI]

    Rohs, Remo

    , industrial facilities and addressing the problems of ground water and air pollution as well as industrial: transportation systems, water supply, waste disposal systems and industrial and commercial structures. They face, construction engineering and management and environmental engineering. Environmental Engineering is concerned

  10. civil & environmental ce / ene overview programs available

    E-Print Network [OSTI]

    Rohs, Remo

    , industrial facilities -- and addressing the problems of ground water and air pollution as well as industrial: transportation systems, water supply, waste disposal systems and industrial and commercial structures. They face, construction engineering and management and environmental engineering. Environmental Engineering is concerned

  11. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  12. Industrial Energy Use Indices

    E-Print Network [OSTI]

    Hanegan, A.; Heffington, W. M.

    2007-01-01T23:59:59.000Z

    of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used...

  13. INTERMOUNTAIN INDUSTRIAL ASSESSMENT CENTER

    SciTech Connect (OSTI)

    MELINDA KRAHENBUHL

    2010-05-28T23:59:59.000Z

    The U. S. Department of Energy’s Intermountain Industrial Assessment Center (IIAC) at the University of Utah has been providing eligible small- and medium-sized manufacturers with no-cost plant assessments since 2001, offering cost-effective recommendations for improvements in the areas of energy efficiency, pollution prevention, and productivity improvement.

  14. Department of Industrial Engineering Spring 2011 African Climate Exchange II

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Spring 2011 African Climate Exchange II Overview Mr. Sisay Shimelis, the sponsor and contact at African Climate Exchange approached the Industrial for packaging of the product, to reduce automation and increase job availability. Approach All required demands

  15. Transportation Biofuels in the USA Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  16. Transportation Biofuels in the US A Preliminary Innovation Systems Analysis

    E-Print Network [OSTI]

    Eggert, Anthony

    2007-01-01T23:59:59.000Z

    that can be made from biomass feedstocks including butanol,biofuels rely upon biomass feedstocks, they will be subjectfrom domestically available biomass feedstocks under certain

  17. Present and Future Uses of Industrial Absorption Heat Pumps

    E-Print Network [OSTI]

    Erickson, D. C.; Davidson, W. F.

    industries are available now. These use the H 2 0-LiBr fluid working pair, manufacturers and Japanese industry lead in but this is where their similarity with the the developmpnt ~nd use of industrial AHPs famili.ar absorption chiller ends. Japanese... and other code require~ents economically. Finally, absorptl0n chil ler units incorporate designs which are sub-optimal for industrial heat pumping. For'example in stock LiBr chillers the surface area in the evaporator and absorber tends to be about...

  18. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

  19. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  20. INDUSTRIAL ASSOCIATESHIP SCHEME Centre for Industrial Consultancy and Sponsored Research

    E-Print Network [OSTI]

    Bhashyam, Srikrishna

    this scheme: #12;(i) Energy Energy Storage (1990) Strategies for Energy Saving in Industry (1993) Pollution Control Equipment (2001) Acoustics and Noise Control for Industry (2005) Urban Air Quality

  1. Leveraging downstream data in the footwear/apparel industry

    E-Print Network [OSTI]

    Axline, Jeffrey Edward

    2007-01-01T23:59:59.000Z

    Retailers collect information regarding consumer purchases on a transactional basis. This data is not completely being leveraged by manufacturers in the footwear and apparel industry to increase on-shelf availability. ...

  2. Advanced Burners and Combustion Controls for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Ferri, J. L.

    1988-01-01T23:59:59.000Z

    When recuperators are installed on industrial furnaces, burners and ratio control systems must continue to operate reliably under a wider range of conditions. Most currently available hot air burners use dilution air to prevent fuel decomposition...

  3. INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering

    E-Print Network [OSTI]

    Rohs, Remo

    78 INDUSTRIAL & SYSTEMS Industrial and Systems engineers use engineering and business principles of physical and human resources. These engineers are involved in developing manufacturing systems to help companies compete in todays global marketplace. The Industrial and Systems engineers task is to take limited

  4. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  5. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  6. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  7. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  8. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial

  9. The impact of government policies on industrial evolution : the case of China's automotive industry

    E-Print Network [OSTI]

    Luo, Jianxi

    2006-01-01T23:59:59.000Z

    Governmental industrial policies have great influence on industrial performances and development trajectories. The infant industry theory has been the dominating theoretical foundation of the industrial policies in developing ...

  10. Research and development of industrial drying concepts using a superheated steam atmosphere with exhaust recompression

    SciTech Connect (OSTI)

    Dibella, F.A.; Doyle, E.F.; Becker, F.E.; Lang, R.

    1991-01-01T23:59:59.000Z

    For the thermal drying processes where water is to be removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. The concept utilizes a superheated steam drying atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to 55% of the energy required by a conventional air dryer. Work on Phase I: Feasibility Investigation, has been completed and the results of this work are given in this Phase I Final Report. Two designs are described for steam drying systems, one directly heated and one indirectly heated. The work on Phase I of the program also concentrated on identifying the most significant industrial applications for this superheated steam drying concept. The work consisted of evaluating information gathered from a literature search, a survey of industrial dryer manufacturers product brochures, and material provided by a major industrial dryer manufacturer. Results from the six tasks in Phase I are given. The tasks were: industrial applicability study; exploration of system configurations; designing system elements; laboratory testing; energy savings analysis; and program management and reporting. Reports on the first 5 tasks have been processed separately for inclusion on the data base.

  11. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01T23:59:59.000Z

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  12. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  13. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  14. A National Resource for Industry

    E-Print Network [OSTI]

    alloys, and metal matrix composite products carbon fibe's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first

  15. Electrotechnologies and Industrial Pollution Control

    E-Print Network [OSTI]

    Schmidt, P. S.

    The role of electrotechnologies in the control of emissions and effluents from industrial processes is discussed. Matrices are presented identifying those electrotechnologies which impact pollution in various industries. Specific examples...

  16. Deaerators in Industrial Steam Systems

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP tip sheet on deaerators in industrial steam systems provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  17. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  18. Texas Industries of the Future

    E-Print Network [OSTI]

    Ferland, K.

    The purpose of the Texas Industries of the Future program is to facilitate the development, demonstration and adoption of advanced technologies and adoption of best practices that reduce industrial energy usage, emissions, and associated costs...

  19. Fracking: An Industry Under Pressure

    E-Print Network [OSTI]

    Melville, Jo

    2013-01-01T23:59:59.000Z

    is able to squeeze out of oil and gas wells, it is a hugehugely to the local oil and gas industries, household incomeMore importantly, the oil and gas industry -- mostly through

  20. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect (OSTI)

    Lester M. Waganer

    2011-01-04T23:59:59.000Z

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  1. Theory in Biology available light

    E-Print Network [OSTI]

    Nowak, Martin A.

    Magazine R406 Theory in Biology Theory is available light Martin A. Nowak Many people praise Gregor the neutral theory of evolution, which assumes that the overwhelming majority of molecular mutations do assume the neutral theory is correct. In a brilliant PhD thesis submitted in 1964, Bill Hamilton

  2. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-08-01T23:59:59.000Z

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  3. Industrial Energy Audit Guidebook: Guidelines for Conducting...

    Open Energy Info (EERE)

    Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

  4. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  5. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Commitment Federal Utility Partnership Working Group Industry Commitment Investor-owned electric utility industry members of the Edison Electric Institute pledge to assist...

  6. Licenses Available in Energy & Utilities | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Impedance Pickoff Circuit for Fast Rise, High Voltage Signals 200802114 Microbial Fuel Cells Offer Innovative Technology for Oil, Gas Industry and Biorefineries (Related ID...

  7. Web Availability of MACHO Data

    E-Print Network [OSTI]

    R. A. Allsman; T. S. Axelrod; for the Macho Collaboration

    2001-08-28T23:59:59.000Z

    The MACHO Project generated two-color photometric lightcurves for 73 million stars in the LMC, SMC, and the galactic bulge during its 8 years of observing. This photometry, along with all images and a catalog of LMC variable stars, is now available for viewing or download from the MACHO Project websites, http://wwwmacho.anu.edu.au/ or http://wwwmacho.mcmaster.ca/ . The capabilities and organization of the new data retrieval facility is described in this paper.

  8. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  9. Industrial Cogeneration Application

    E-Print Network [OSTI]

    Mozzo, M. A.

    INDUSTRIAL COGENERATION APLLICATION Martin A. Mozzo, Jr., P.E. American Standard, Inc. New York,New York ABSTRACT Cogeneration is the sequential use of a single fuel source to generate electrical and thermal energy. It is not a new technology... been reviewing the potential of cogeneration at some of our key facilities. Our plan is to begin with a Pilot Plant 500 KW steam turbine generator to be install~d and operating in 1986. Key points to be discuss~d in the paper are: 1...

  10. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  11. Industrial energy use indices

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2008-10-10T23:59:59.000Z

    and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... the average EUI for an energy type. The combined CoV from all of the industries considered, which accounts for 8,200 plants from all areas of the continental U.S., is 290%. This paper discusses EUIs and their variations based on electricity and natural...

  12. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb2009 20103 5.53

  13. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook link to04948Industrial Green

  14. CASL - Industry Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0Link to Resources Industry

  15. CASL - Industry Council Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0Link to Resources IndustryCASL

  16. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to Industrial Energy

  17. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRYBarriers to IndustrialEnergy

  18. Tuesday Webcasts for Industry: Tax Rebates/Credits Available for Energy Efficiency Actions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest forTechnologiesTribal Utility FormationKeyEngaging

  19. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01T23:59:59.000Z

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  20. Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

  1. Austin Utilities (Gas and Electric)- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Austin Utilities offers incentives to its commercial and industrial customers for the installation of energy-efficient equipment in eligible facilities. Rebates are available for lighting equipment...

  2. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  3. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  4. Admissions Information Application forms are available from

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    Electric, Eaton, Wynni-Dixie, and many other companies. The median salary was $65,000 with possible signing instruction and hands-on student research. Industrial Engineering Produces Corporate Leaders The industrial advancement leading to future corporate leadership. Some of the department's successful alumni include: What

  5. Whitacre College of Engineering Industrial Engineering Department

    E-Print Network [OSTI]

    Gelfond, Michael

    Whitacre College of Engineering Industrial Engineering Department Department Chair and Professor of Industrial Engineering. The Industrial Engineering Department at Texas Tech University has a distinguished industrial engineering education and provide appropriate service to the department, university

  6. Faculty of Engineering & Design Industrial Placements

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Faculty of Engineering & Design Industrial Placements A guide for industry #12;Industrial placements The Faculty of Engineering & Design has built close links with engineering companies through research, projects, placements and graduate employees. We know that working with industry ensures our

  7. Competitive developments in the electric supply industry

    SciTech Connect (OSTI)

    Bruder, G.F.; Lively, M.

    1996-12-31T23:59:59.000Z

    Competition in the electric supply industry is outlined. The following topics are discussed: six impending major developments in the electric industry; recent and projected developments in the industry; where is the industry headed?; and what the future holds.

  8. Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Industrial Engineering

    E-Print Network [OSTI]

    Glowinski, Roland

    | Mechanical | Petroleum Careers in Industrial Engineering Manufacturing, service and retail industries hireBiomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial a significant number of industrial engineers. Specific industries include automobile manufacturers, electronics

  9. Beneficial reuse of oilfield waste outside of the oil and gas industry

    SciTech Connect (OSTI)

    Marinello, S.A.; Herbert, B.F.; Lillo, H. [and others

    1995-12-31T23:59:59.000Z

    If a beneficial reuse of an oilfield waste can be found, that specific byproduct is no longer a waste, but a product. With such downstream use, the environmental liabilities of the former waste are, except for any packaging or transportation requirements, potentially eliminated. There is a problem, however, with the lack of an active infrastructure to implement the process. Some states have limited programs, but participation is a problem. It is apparent that a {open_quotes}Waste Clearinghouse{close_quotes} addressing oilfield waste in conjunction with major industrial waste and feed streams is needed, but implementation remains in the future. An active network of participating suppliers and users would be the goal of such action. The benefits for industry would be a reduction in waste disposal and associated liabilities and {open_quotes}virgin{close_quotes} feedstock requirements. From the operators viewpoint, this scenario would require a compilation of the different waste/byproduct streams and their characteristics and a prioritizing of those wastes by characteristics that might affect their reuse potential. These might include: (1) the greatest likelihood of finding a market; (2) the highest potential waste volume reduction; (3) the highest cost of disposal and (4) the greatest associated hazards. For the industry as a whole, an inventorying of these byproducts and characteristics would be tied to the identification of consumers/outlets for specific byproducts. This might be accomplished through the funding of consultants/contractors specializing in clearinghouse activities and/or research into potential applications and uses. The industry needs to change it`s view of waste/byproduct streams in order to be more aware of potential downstream uses. Existing examples of reuse can be used as models for further efforts.

  10. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  11. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  12. SPIDERS Joint Capability Technology Demonstration Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPIDERS Joint Capability Technology Demonstration Industry Day Presentations SPIDERS Joint Capability Technology Demonstration Industry Day Presentations Presentations from the...

  13. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    Assistant Vice President, Corporate & Foundation Relations Inside this issue... Greetings to Industry. The founding members are American Axle and Manufacturing, Eaton Corpora- tion and John Deere. This applied

  14. Agriculture and Water Availability Issues: An Overview Prepared for 2012 Florida Agricultural Commodity & Policy Outlook Conference

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    Agriculture and Water Availability Issues: An Overview Prepared for 2012 Florida Agricultural agricultural water withdrawals (Marella 2008). Water availability will play an important role in the future of the industry. Future Water Availability. It is expected that in the future the demand for water for various

  15. State Level Analysis of Industrial Energy Use

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    industrial energy use data is not readily available. The only data available is at the national or census regional level (DOE/EIA 200Ia). As a result, a methodology was developed based upon state-level economic activity data and national energy intensity... data reported in the 1998 Manufacturing Energy Consumption Survey (MECS)(DOE/EIA 2001a) and value of shipments data reported in the 1998 Annual Survey of Manufacturing (ASM)(Department of Commerce 2000) are used to estimate energy data from...

  16. Sustainable Sourcing of Biomass Feedstock

    Broader source: Energy.gov [DOE]

    Opening Plenary Session: Bioenergy Sustainability—Charting the Path toward a Viable Future Al Lucier, Senior Vice President, National Council for Air and Stream Improvement, Inc.

  17. Challenge # 1. Feedstock & Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding RemovalCSS LetterStateDepartmentAnnounce05 U.S.September Target

  18. Feedstock Supply | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6AwardsScorecardLogistics

  19. QGESS: Specification for Selected Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: ShalePutting! ! NERSC ! Q Q U U A

  20. Industry Supply Chain Development (Ohio)

    Broader source: Energy.gov [DOE]

    Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and...

  1. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  2. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    s Nuclear Industry After Fukushima Jingdong YUAN SummaryT he March 2011 Fukushima nuclear accident has had aand speedy responses to Fukushima-like and other unexpected

  3. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Michael Volk Jr; Keith Wisecarver

    2005-10-01T23:59:59.000Z

    Delayed coking evolved steadily over the early to mid 1900s to enable refiners to convert high boiling, residual petroleum fractions to light products such as gasoline. Pound for pound, coking is the most energy intensive of any operation in a modern refinery. Large amounts of energy are required to heat the thick, poor-quality petroleum residuum to the 900 to 950 degrees F required to crack the heavy hydrocarbon molecules into lighter, more valuable products. One common misconception of delayed coking is that the product coke is a disadvantage. Although coke is a low valued (near zero economic value) byproduct, compared to transportation fuels, there is a significant worldwide trade and demand for coke as it is an economical fuel. Coke production has increased steadily over the last ten years, with further increases forecast for the foreseeable future. Current domestic production is near 111,000 tons per day. A major driving force behind this increase is the steady decline in crude quality available to refiners. Crude slates are expected to grow heavier with higher sulfur contents while environmental restrictions are expected to significantly reduce the demand for high-sulfur residual fuel oil. Light sweet crudes will continue to be available and in even greater demand than they are today. Refiners will be faced with the choice of purchasing light sweet crudes at a premium price, or adding bottom of the barrel upgrading capability, through additional new investments, to reduce the production of high-sulfur residual fuel oil and increase the production of low-sulfur distillate fuels. A second disadvantage is that liquid products from cokers frequently are unstable, i.e., they rapidly form gum and sediments. Because of intermediate investment and operating costs, delayed coking has increased in popularity among refiners worldwide. Based on the 2000 Worldwide Refining Survey published in the Oil and Gas, the delayed coking capacity for 101 refineries around the world is 2,937,439 barrels/calendar day. These cokers produce 154,607 tons of coke per day and delayed coking accounts for 88% of the world capacity. The delayed coking charge capacity in the United States is 1,787,860 b/cd. Despite its wide commercial use, only relatively few contractors and refiners are truly knowledgeable in delayed-coking design, so that this process carries with it a ''black art'' connotation. Until recently, the expected yield from cokers was determined by a simple laboratory test on the feedstock. As a result of Tulsa University's prior related research, a process model was developed that with additional work could be used to optimize existing delayed cokers over a wide range of potential feedstocks and operating conditions. The objectives of this research program are to: utilize the current micro, batch and pilot unit facilities at The University of Tulsa to enhance the understanding of the coking process; conduct additional micro and pilot unit tests with new and in-house resids and recycles to make current optimization models more robust; conduct focused kinetic experiments to enhance the furnace tube model and to enhance liquid production while minimizing sulfur in the products; conduct detailed foaming studies to optimize the process and minimize process upsets; quantify the parameters that affect coke morphology; and to utilize the knowledge gained from the experimental and modeling studies to enhance the computer programs developed in the previous JIP for optimization of the coking process. These refined computer models will then be tested against refinery data provided by the member companies. Novel concepts will also be explored for hydrogen sulfide removal of furnace gases as well as gas injection studies to reduce over-cracking. The following deliverables are scheduled from the two projects of the three-year JIP: (1) A novel method for enhancing liquid yields from delayed cokers and data that provide insight as to the optimum temperature to remove hydrogen sulfide from furnace gases. (2) An understanding of what causes foaming in c

  4. Engineering metabolic systems for production of advanced fuels

    E-Print Network [OSTI]

    Yan, Yajun; Liao, James C.

    2009-01-01T23:59:59.000Z

    feedstock in the petrochemical industry. Its dehydratedand storage using existing petrochemical infrastructure with

  5. Testimony Before the Senate Committee on Agriculture, Nutrition, and Forestry Hearing on Farm Bill Policy Proposals Relating to Farm and Rural Energy Issues and

    E-Print Network [OSTI]

    Lotko, William

    cellulosic biofuels industry is being launched and will soon be informed by experience. b. Biomass feedstocks

  6. J. Nat. Resour. Life Sci. Educ., Vol. 34 2005 83 We describe our pedagogical approaches and experiences

    E-Print Network [OSTI]

    - ergy, biomass feedstocks for industrial processes). Secondly, the emerging definition of agroecology

  7. Industrial opportunities on the International Thermonuclear Experimental Reactor (ITER) project

    SciTech Connect (OSTI)

    Ellis, W.R. [Raytheon Engineers and Constructors, New York, NY (United States)

    1996-12-01T23:59:59.000Z

    Industry has been a long-term contributor to the magnetic fusion program, playing a variety of important roles over the years. Manufacturing firms, engineering-construction companies, and the electric utility industry should all be regarded as legitimate stakeholders in the fusion energy program. In a program focused primarily on energy production, industry`s future roles should follow in a natural way, leading to the commercialization of the technology. In a program focused primarily on science and technology, industry`s roles, in the near term, should be, in addition to operating existing research facilities, largely devoted to providing industrial support to the International Thermonuclear Experimental Reactor (ITER) Project. Industrial opportunities on the ITER Project will be guided by the amount of funding available to magnetic fusion generally, since ITER is funded as a component of that program. The ITER Project can conveniently be discussed in terms of its phases, namely, the present Engineering Design Activities (EDA) phase, and the future (as yet not approved) construction phase. 2 refs., 3 tabs.

  8. Providing Utilities with Tools for Industrial Marketing Programs

    E-Print Network [OSTI]

    Cahill, L. E.

    PROVIDING UTILITIES WITH TOOLS FOR INDUSTRIAL MARKETING PROGRAMS Laura E. Cahi 11 Center "for Metals Fabrication Columbus, Ohio Marketing electrotechnologies to industrial customers can be a complex task unless the right tools are available... to marketing representa tives. The Center for Metals Fabrication is using several tools to tailor marketing programs for 18 electric utilities. CMF provides: o A hotline that customer and utility representatives can use to get advice on implenenting...

  9. Creating Value Wood Products Industry

    E-Print Network [OSTI]

    Louisiana Forest Products Development Center #12;2 Louisiana is blessed with quality timberland for the Wood Products Industry The forest industry contributes more than 50 percent of the total value of all for quality information, research and education in forest products in Louisiana, recognized regionally

  10. Forschungsschwerpunkt S92 Industrial Geometry

    E-Print Network [OSTI]

    JĂĽttler, Bert

    Forschungsschwerpunkt S92 Industrial Geometry http://www.ig.jku.at Computational Geometry Robot Kinematics Computer Aided Geometric Design Image Processing INDUSTRIAL GEOMETRY Classical Geometry Computer unwanted branches of the implicitly defined curves. Moreover, it is required for many applications, e

  11. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

  12. Petroleum industry assists hurricane relief

    SciTech Connect (OSTI)

    Not Available

    1992-09-14T23:59:59.000Z

    This paper reports that the petroleum industry is aiding victims of last month's Hurricane Andrew with cash, clothing, food, water, and other supplies. Cash contributions announced as of last week totaled more than $2.7 million for distribution in South Florida and South Louisiana. Petroleum industry employees were collecting relief items such as bottled water and diapers for distribution in those areas.

  13. Career Choices: Industry vs. Academia

    E-Print Network [OSTI]

    Rohs, Remo

    Career Choices: Industry vs. Academia Yan Liu Assistant Professor Computer Science Department, IBM TJ Watson Research Center · Now, USC #12;1) What career path did you consider most during your Ph industry, and where can one make the most impact? · Best virtues in all jobs ­ Hardworking ­ Good attitude

  14. Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Reinventing the Industrial Heartland: Supply Chain Sustainability and the New Automotive Industry Swindall, VP, Business & Industry Development, WI Economic Development Corporation Manuel Sattig, BMW Group

  15. Industrial energy use indices

    E-Print Network [OSTI]

    Hanegan, Andrew Aaron

    2009-05-15T23:59:59.000Z

    , plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department...

  16. Energy conservation guide for industrial processes

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Th Energy Conservation Guide for industrial processes has simple instructions to survey energy use areas at Navy industrial activities like shipyards, Naval air rework facilities and government owned, contractor operated (GOCO) plants. This guide includes information and procedures on: organizing and conducting an industrial energy survey; evaluating purchased energy data; descriptions of industrial systems; and evaluation of industrial processes for conservation.

  17. AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A

    E-Print Network [OSTI]

    AUTOMOTIVE INDUSTRY ANALYSIS Submitted by Team A Donald Bradley Morgan Bruns Adam Fleming Jay Ling on the automotive industry, specifically, large-scale manufacturers of automobiles. The automotive industry of the automotive industry. This is followed by an analysis of the industry's structural characteristics using

  18. MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS

    E-Print Network [OSTI]

    technologies - Wind turbine - Wave energy (Wells turbine) - Tidal power 7. Flow in porous media - Darcy's law 8 - Positive displacement pumps - Systems of pumps - Industrial practice (Guest speaker) 6. Renewable energy

  19. The industrial ecology of the iron casting industry

    E-Print Network [OSTI]

    Jones, Alissa J. (Alissa Jean)

    2007-01-01T23:59:59.000Z

    Metal casting is an energy and materials intensive manufacturing process, which is an important U.S. industry. This study analyzes iron casting, in particular, for possible improvements that will result in greater efficiencies ...

  20. Identification and Alteration of Rice-Diverged Glycosyltransferases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel database facilitates data set comparison Applications and Industries Developing biofuel feedstocks Creating novel feedstock plants More InformationThe Joint BioEnergy...

  1. Assessing U.S. ESCO industry performance and market trends: Results from the NAESCO database project

    SciTech Connect (OSTI)

    Osborn, Julie; Goldman, Chuck; Hopper, Nicole; Singer, Terry

    2002-05-15T23:59:59.000Z

    The U.S. Energy Services Company (ESCO) industry is often cited as the most successful model for the private sector delivery of energy-efficiency services. This study documents actual performance of the ESCO industry in order to provide policymakers and investors with objective informative and customers with a resource for benchmarking proposed projects relative to industry performance. We have assembled a database of nearly 1500 case studies of energy-efficiency projects - the most comprehensive data set of the U.S. ESCO industry available. These projects include $2.55B of work completed by 51 ESCOs and span much of the history of this industry.

  2. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06T23:59:59.000Z

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

  3. The transition from operational availability to mission

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    THALES The transition from operational availability to mission availability Case study Unclassified The transition from operational availability to mission availability Case Study I Preface The results of my from operational availability to mission availability J.L. Schmal Management summary Thales is planning

  4. Fundamentals of Delayed Coking Joint Industry Project

    SciTech Connect (OSTI)

    Volk Jr., Michael; Wisecarver, Keith D.; Sheppard, Charles M.

    2003-02-07T23:59:59.000Z

    The coking test facilities include three reactors (or cokers) and ten utilities. Experiments were conducted using the micro-coker, pilot-coker, and stirred-batch coker. Gas products were analyzed using an on-line gas chromatograph. Liquid properties were analyzed in-house using simulated distillation (HP 5880a), high temperature gas chromatography (6890a), detailed hydrocarbon analysis, and ASTM fractionation. Coke analyses as well as feedstock analyses and some additional liquid analyses (including elemental analyses) were done off-site.

  5. Macro-Industrial Working Group 2

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s2

  6. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg a~-s2July

  7. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg

  8. Macro-Industrial Working Group: meeting 1

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocksMU Eneg30 2013

  9. Geothermal industry employment: Survey results & analysis

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

  10. High Power UV LED Industrial Curing Systems

    SciTech Connect (OSTI)

    Karlicek, Robert, F., Jr; Sargent, Robert

    2012-05-14T23:59:59.000Z

    UV curing is a green technology that is largely underutilized because UV radiation sources like Hg Lamps are unreliable and difficult to use. High Power UV LEDs are now efficient enough to replace Hg Lamps, and offer significantly improved performance relative to Hg Lamps. In this study, a modular, scalable high power UV LED curing system was designed and tested, performing well in industrial coating evaluations. In order to achieve mechanical form factors similar to commercial Hg Lamp systems, a new patent pending design was employed enabling high irradiance at long working distances. While high power UV LEDs are currently only available at longer UVA wavelengths, rapid progress on UVC LEDs and the development of new formulations designed specifically for use with UV LED sources will converge to drive more rapid adoption of UV curing technology. An assessment of the environmental impact of replacing Hg Lamp systems with UV LED systems was performed. Since UV curing is used in only a small portion of the industrial printing, painting and coating markets, the ease of use of UV LED systems should increase the use of UV curing technology. Even a small penetration of the significant number of industrial applications still using oven curing and drying will lead to significant reductions in energy consumption and reductions in the emission of green house gases and solvent emissions.

  11. Applying SE Methods Achieves Project Success to Evaluate Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock for Ethanol Production

    SciTech Connect (OSTI)

    Larry R. Zirker; Christopher T. Wright, PhD; R. Douglas Hamelin

    2008-06-01T23:59:59.000Z

    Applying basic systems engineering (SE) tools to the mission analysis phases of a 2.5-million dollar biomass pre-processing project for the U.S. Department of Energy directly assisted the project principal investigator understand the complexity and identify the gaps of a moving-target project and capture the undefined technical/functional requirements and deliverables from the project team and industrial partners. A creative application of various SE tools by non-aerospace systems engineers developed an innovative “big picture” product that combined aspects of mission analysis with a project functional flow block diagram, providing immediate understanding of the depth and breath of the biomass preprocessing effort for all team members, customers, and industrial partners. The “big picture” diagram became the blue print to write the project test plan, and provided direction to bring the project back on track and achieve project success.

  12. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  13. Canada's Voluntary Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Wolf, C. A., Jr.

    1980-01-01T23:59:59.000Z

    Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

  14. Heat Recovery in the Forge Industry

    E-Print Network [OSTI]

    Shingledecker, R. B.

    1982-01-01T23:59:59.000Z

    Department of Energy figures reveal that in 1979 the forging and stamping operations were the primary consumers of energy (27%) within the 'Fabricated Metals Products Industry' (SIC 34). Industrial furnaces utilized by the forging industry often...

  15. Industrial Geospatial Analysis Tool for Energy Evaluation

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01T23:59:59.000Z

    of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition...

  16. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2011/2012 September).................1 REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH (30).....................................................................................................2 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  17. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2010/2011 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH)...................................................................................................1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  18. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2009/2010 September).................1 . REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING (30 CREDITS)...............1 DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING (72 CREDITS

  19. GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    GRADUATE STUDENT INFORMATION MECHANICAL AND INDUSTRIAL ENGINEERING DEPARTMENT 2013/2014 September..............................3 C. COURSE REQUIREMENTS FOR A MASTER OF SCIENCE DEGREE IN INDUSTRIAL ENGINEERING AND OPERATIONS............................4 E. DUAL MASTER IN BUSINESS ADMINISTRATION AND INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

  20. Industrial Heat Pumps: Where and When 

    E-Print Network [OSTI]

    Ranade, S. M.; Chao, Y. T.

    1989-01-01T23:59:59.000Z

    A brief review of the types of industrial heat pumps is presented. General guidelines are provided for appropriate placement of industrial heat pumps. Industrial applications are used as examples to illustrate key points.

  1. Effective Transfer of Industrial Energy Conservation Technologies

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01T23:59:59.000Z

    , and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing...

  2. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    Brief 2013-9 January 2013 China’s Nuclear Industry Aftera significant impact on the future of China’s nuclear power.the importance of safety as China builds more nuclear power

  3. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01T23:59:59.000Z

    , and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due...

  4. CALIFORNIA ENERGY PETROLEUM INDUSTRY INFORMATION

    E-Print Network [OSTI]

    PETROLEUM AND NON-PETROLEUM ................................................... 40 PRODUCT DEFINITIONS Major Petroleum Product Storer and Terminal Weekly Report Major petroleum product storers, terminalCALIFORNIA ENERGY COMMISSION PETROLEUM INDUSTRY INFORMATION REPORTING ACT (PIIRA) PROGRAM REPORTING

  5. Industrial Plans for AEO2014

    U.S. Energy Information Administration (EIA) Indexed Site

    you for your attention 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

  6. Three Essays on Industrial Organization

    E-Print Network [OSTI]

    Lee, Yang Seung

    2008-12-18T23:59:59.000Z

    The dissertation discusses issues in the field of industrial organization. When the government provides better infrastructure to competing firms for innovation, private firms' R&D expenditures are affected. When the ...

  7. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  8. Uncertainty, investment, and industry evolution

    E-Print Network [OSTI]

    Caballero, Ricardo J.

    1992-01-01T23:59:59.000Z

    We study the effects of aggregate and idiosyncratic uncertainty on the entry of firms, total investment, and prices in a competitive industry with irreversible investment. We first use standard dynamic programming methods ...

  9. Outlook for Industrial Energy Benchmarking 

    E-Print Network [OSTI]

    Hartley, Z.

    2000-01-01T23:59:59.000Z

    OUTLOOK FOR INDUSTRIAL ENERGY BENCHMARKING Zoe Hartley Environmental Protection Specialist U.S. Environmental Protection Agency Washington, DC ABSTRACT The U.S. Environmental Protection Agency is exploring options to sponsor an ~d~ ~~gy...

  10. Changing Trends in Telecommunications Industry

    E-Print Network [OSTI]

    Sathyanarayanan, Ramachandran

    2010-12-17T23:59:59.000Z

    The mobile telecommunication industry is one of the fastest growing and continually changing markets in the world today. The greatest achievement of wireless technology is that it has made communications possible in the ...

  11. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01T23:59:59.000Z

    factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design...

  12. China's Nuclear Industry After Fukushima

    E-Print Network [OSTI]

    YUAN, Jingdong

    2013-01-01T23:59:59.000Z

    2013-9 January 2013 China’s Nuclear Industry After FukushimaMarch 2011 Fukushima nuclear accident has had a significanton the future of China’s nuclear power. First, it highlights

  13. Industrial Mathematics and Inverse Problems

    E-Print Network [OSTI]

    Fulmek, Markus

    #12;The Industrial Mathematics Structure in Linz 5 #12;The Blast Furnace Process 6 #12;Aims": Looking for causes of an observed or desired effect! A.Tikhonov ( 1936), geophysical problems. F

  14. Outlook for Industrial Energy Benchmarking

    E-Print Network [OSTI]

    Hartley, Z.

    The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

  15. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  16. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect (OSTI)

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01T23:59:59.000Z

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  17. EPRI's Industrial Energy Management Program

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... are funded at a level in excess of SlO million annually. By providing technical guidance and sponsoring research and development projects, these Centers and Offices are a key element in EPRI's role of improving the value of electricity to consumers...

  18. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07T23:59:59.000Z

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  19. Colorado State University Industrial Assessment Center Saves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Industrial Assessment Centers...

  20. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”Emerging Energy-Efficient Technologies for Industry Ernst

  1. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. “Emerging Energy-Efficient Industrial Technologies,”

  2. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”Emerging Energy-Efficient Technologies for Industry Ernst

  3. Green Industrial Policy: Trade and Theory

    E-Print Network [OSTI]

    Karp, Larry; Stevenson, Megan

    2012-01-01T23:59:59.000Z

    Papers Year 2012 Paper 1126 Green Industrial Policy: Trade© 2012 by author(s). Green Industrial Policy: Trade andreality and the potential for green indus- trial policy. We

  4. Industrial and Organizational Psychology Doctoral Program Handbook

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Industrial and Organizational Psychology Doctoral Program Handbook University of Central Florida chosen the University of Central Florida for your graduate training in Industrial and Organizational

  5. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  6. Tax-Exempt Industrial Revenue Bonds (Kansas)

    Broader source: Energy.gov [DOE]

    Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial,...

  7. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

  8. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World alumvision.pdf More Documents...

  9. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Environmental Management (EM)

    9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport,...

  10. Joint Capability Technology Demonstration (JCTD) Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

  11. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01T23:59:59.000Z

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  12. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01T23:59:59.000Z

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  13. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

    1994-12-01T23:59:59.000Z

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  14. amenagement durables industrie: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLUSTERS? INDUSTRY CLUSTERS IN MINNESOTA INDUSTRY CLUSTER APPROACHES IN MINNESOTA INDUSTRY CLUSTER Levinson, David M. 379 Energy Conservation in China North Industries...

  15. Availability and Utilization of Cardiac Resuscitation Centers

    E-Print Network [OSTI]

    Mumma, Bryn E.; Diercks, Deborah B.; Holmes, James F.

    2014-01-01T23:59:59.000Z

    15 Last, our data reflect availability and utilization ofNovember 2014 Mumma et al. Availability and Utilization ofB rief R esearch R eport Availability and Utilization of

  16. Available Energy Calculations for Process Engineers 

    E-Print Network [OSTI]

    Parker, A. L.

    1982-01-01T23:59:59.000Z

    Brief reviews of available energy and of the application of available energy analysis to chemical processes are given. Two alternative methods for performing available energy calculations are discussed and contrasted. The first method relies...

  17. High Availability Instrumentation Packaging Standards for the ILC and Detectors

    SciTech Connect (OSTI)

    Downing, R.W.; Larsen, R.S.; /SLAC

    2006-11-30T23:59:59.000Z

    ILC designers are exploring new packaging standards for Accelerator Controls and Instrumentation, particularly high-speed serial interconnect systems for intelligent instruments versus the existing parallel backplanes of VME, VXI and CAMAC. The High Availability Advanced Telecom Computing Architecture (ATCA) system is a new industrial open standard designed to withstand single-point hardware or software failures. The standard crate, controller, applications module and sub-modules are being investigated. All modules and sub-modules are hot-swappable. A single crate is designed for a data throughput in communications applications of 2 Tb/s and an Availability of 0.99999, which translates into a downtime of five minutes per year. The ILC is planning to develop HA architectures for controls, beam instrumentation and detector systems.

  18. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final...

  19. Nobel Lecture Series Videos Now Available Online

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lecture Series Videos Now Available Online Nobel Lecture Videos Now Available Online May 29, 2014 by Kathy Kincade (0 Comments) Three of the NERSC Nobel Lecture Series videos --...

  20. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01T23:59:59.000Z

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.