National Library of Energy BETA

Sample records for industry energy consumption

  1. Industrial sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    Improving Well Productivity Based Modeling with the Incorporation of Geologic Dependencies Troy Cook and Dana Van Wagener October 14, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES October 2014 Tony

  2. International Energy Outlook 2016-Industrial sector energy consumption -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration 7. Industrial sector energy consumption print version Overview The industrial sector uses more delivered energy [294] than any other end-use sector, consuming about 54% of the world's total delivered energy. The industrial sector can be categorized by three distinct industry types: energy-intensive manufacturing, nonenergy-intensive manufacturing, and nonmanufacturing (Table 7-1). The mix and intensity of fuels consumed in the industrial sector vary across

  3. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  4. US industrial process heating energy consumption: 1985

    SciTech Connect (OSTI)

    McDermott, H.; Chapman, M.A.

    1988-02-01

    The objective of this report was to refine and update energy-use estimates for US industrial process heating based on categories defined in an earlier study sponsored by Gas Research Institute (GRI) (Report No. GRI--84/0187. 154 refs., 77 tabs.

  5. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  6. Manufacturing-Industrial Energy Consumption Survey(MECS) Historical...

    U.S. Energy Information Administration (EIA) Indexed Site

    reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring...

  7. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  8. Benchmarking the energy efficiency of Dutch industry: An assessment of the expected effect on energy consumption and CO2 emissions

    SciTech Connect (OSTI)

    Phylipsen, Dian; Blok, Kornelis; Worrell, Ernst; De Beer, Jeroen

    2002-06-01

    As part of its energy and climate policy the Dutch government has reached an agreement with the Dutch energy-intensive industry that is explicitly based on industry's relative energy efficiency performance. The energy efficiency of the Dutch industry is benchmarked against that of comparable industries in countries world-wide. In the agreement, industry is required to belong to the top-of-the-world in terms of energy efficiency. In return, the government refrains from implementing additional climate policies.This article assesses the potential effects of this agreement on energy consumption and CO2 emissions by comparing the current level of energy efficiency of the Dutch industry - including electricity production - to that of the most efficient countries and regions. At the current structure achieving the regional best practice level for the selected energy-intensive industries would result in a 5plus or minus 2 percent lower current primary energy consumption than the actual level. Most of the savings are expected in the petrochemical industry and in electricity generation. Avoided CO2 emissions would amount to 4 Mt CO2. A first estimate of the effect of the benchmarking agreement in 2012 suggests primary energy savings of 50-130 PJ or 5-10 Mt CO2 avoided compared to the estimated Business as Usual development (5-15 percent). This saving is smaller than what a continuation of the existing policies of Long Term Agreements would probably deliver.

  9. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect (OSTI)

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  10. China's Top-1000 Energy-Consuming Enterprises Program:Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn; Wang, Xuejun; Yun, Jiang

    2008-06-02

    In 2005, the Chinese government announced an ambitious goal of reducing energy consumption per unit of GDP by 20% between 2005 and 2010. One of the key initiatives for realizing this goal is the Top-1000 Energy-Consuming Enterprises program. The energy consumption of these 1000 enterprises accounted for 33% of national and 47% of industrial energy usage in 2004. Under the Top-1000 program, 2010 energy consumption targets were determined for each enterprise. The objective of this paper is to evaluate the program design and initial results, given limited information and data, in order to understand the possible implications of its success in terms of energy and carbon dioxide emissions reductions and to recommend future program modifications based on international experience with similar target-setting agreement programs. Even though the Top-1000 Program was designed and implemented rapidly, it appears that--depending upon the GDP growth rate--it could contribute to somewhere between approximately 10% and 25% of the savings required to support China's efforts to meet a 20% reduction in energy use per unit of GDP by 2010.

  11. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  12. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  13. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  14. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  15. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  16. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  17. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  18. Modeling plant-level industrial energy demand with the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD)

    SciTech Connect (OSTI)

    Boyd, G.A.; Neifer, M.J.; Ross, M.H.

    1992-08-01

    This report discusses Phase 1 of a project to help the US Department of Energy determine the applicability of the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD) for industrial modeling and analysis. Research was conducted at the US Bureau of the Census; disclosure of the MECS/LRD data used as a basis for this report was subject to the Bureau`s confidentiality restriction. The project is designed to examine the plant-level energy behavior of energy-intensive industries. In Phase 1, six industries at the four-digit standard industrial classification (SIC) level were studied. The utility of analyzing four-digit SIC samples at the plant level is mixed, but the plant-level structure of the MECS/LRD makes analyzing samples disaggregated below the four-digit level feasible, particularly when the MECS/LRD data are combined with trade association or other external data. When external data are used, the validity of using value of shipments as a measure of output for analyzing energy use can also be examined. Phase 1 results indicate that technical efficiency and the distribution of energy intensities vary significantly at the plant level. They also show that the six industries exhibit monopsony-like behavior; that is, energy prices vary significantly at the plant level, with lower prices being correlated with a higher level of energy consumption. Finally, they show to what degree selected energy-intensive products are manufactured outside their primary industry.

  19. Appliance Energy Consumption in Australia | Open Energy Information

    Open Energy Info (EERE)

    ?viewPublicatio Equivalent URI: cleanenergysolutions.orgcontentappliance-energy-consumption-australi DeploymentPrograms: Industry Codes & Standards Regulations:...

  20. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Industrial Consumption ... 8:25:14 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption ...

  1. ,"New York Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Consumption ... 8:25:17 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption ...

  2. ,"New Jersey Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Consumption ... 8:25:13 AM" "Back to Contents","Data 1: New Jersey Natural Gas Industrial Consumption ...

  3. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:52 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico Natural Gas Industrial Consumption (MMcf)" ...

  4. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:45 AM" "Back to Contents","Data 1: North Carolina Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NC2" "Date","North Carolina Natural Gas Industrial Consumption ...

  5. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:47 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  6. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8:56:46 AM" "Back to Contents","Data 1: North Dakota Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035ND2" "Date","North Dakota Natural Gas Industrial Consumption ...

  7. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Survey (MECS) Steel Analysis Brief Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials

  8. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Survey (MECS) Steel Analysis Brief Steel Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities Introduction The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers,

  9. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  10. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates

  11. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  12. ,"South Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  13. ,"South Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  14. ,"Rhode Island Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  15. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release...

  16. Energy Information Administration - Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  17. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 4 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1 (Estimates in Btu or Physical Units) XLS Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census Region,

  18. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  19. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  20. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) More Documents ...

  1. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  5. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  6. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  8. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  15. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994:...

  16. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  17. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  18. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  19. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  20. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  1. 2014 Manufacturing Energy Consumption Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  2. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  3. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  4. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  5. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  6. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  8. Commercial Miscellaneous Electric Loads Report: Energy Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    loads account for an increasingly large portion of commercial electricity consumption. ... This includes analysis of their unit energy consumption and annual electricity consumption ...

  9. Transportation Energy Consumption Surveys

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Hydropower Biofuels: Ethanol & Biodiesel Wind Geothermal Solar Energy in Brief How much U.S. electricity is generated from renewable energy?...

  10. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  11. Energy Intensity Indicators: Commercial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure C1 below reports as index numbers over the period 1970 through 2011: 1) commercial building floor space, 2) energy use based on source energy consumption, 3) energy intensity, and 4) the...

  12. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Gasoline and Diesel Fuel Update (EIA)

    The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least ... Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) took ...

  13. 2009 Energy Consumption Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person Per capita energy consumption across all sectors of the economy. Click on a state for more information.

  14. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  15. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  16. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  17. Community Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-21

    The TDIST3 program performs an analysis of large integrated community total energy systems (TES) supplying thermal and electrical energy from one or more power stations. The program models the time-dependent energy demands of a group of representative building types, distributes the thermal demands within a thermal utility system (TUS), simulates the dynamic response of a group of power stations in meeting the TUS demands, and designs an optimal base-loaded (electrically) power plant and thermal energymore » storage reservoir combination. The capital cost of the TES is evaluated. The program was developed primarily to analyze thermal utility systems supplied with high temperature water (HTW) from more than one power plant. The TUS consists of a transmission loop and secondary loops with a heat exchanger linking each secondary loop to the transmission loop. The power stations electrical output supplies all community buildings and the HTW supplies the thermal demand of the buildings connected through the TUS, a piping network. Basic components of the TES model are one or more power stations connected to the transmission loop. These may be dual-purpose, producing electricity and HTW, or just heating plants producing HTW. A thermal storage reservoir is located at one power station. The secondary loops may have heating plants connected to them. The transmission loop delivers HTW to local districts; the secondary loops deliver the energy to the individual buildings in a district.« less

  18. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  19. Vehicle Energy Consumption and Performance Analysis | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption and Performance Analysis Vehicle Energy Consumption and Performance Analysis Argonne researchers have applied their expertise in modeling, simulation and control to ...

  20. EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  1. Energy Intensity Indicators: Residential Source Energy Consumption

    Broader source: Energy.gov [DOE]

    Figure R1 below reports as index numbers over the period 1970 through 2011: 1) the number of U.S. households, 2) the average size of those housing units, 3) residential source energy consumption, 4...

  2. "Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent

  3. Visualization of United States Energy Consumption | Open Energy...

    Open Energy Info (EERE)

    Energy Consumption Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Visualization of United States Energy Consumption AgencyCompany Organization: Energy Information...

  4. Household vehicles energy consumption 1994

    SciTech Connect (OSTI)

    1997-08-01

    Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

  5. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  6. ,"New Hampshire Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural ...

  7. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  8. Household energy consumption and expenditures, 1990

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  9. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  10. Manufacturing Energy Consumption Survey (MECS) - Residential...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. ...

  11. Table 8.4c Consumption for Electricity Generation by Energy Source...

    U.S. Energy Information Administration (EIA) Indexed Site

    c Consumption for Electricity Generation by Energy Source: Commercial and Industrial ... Power Plants Into Energy-Use Sectors," at end of section. * Totals may not equal sum of ...

  12. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  13. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also collects data on total energy supply (sales). For the information on sales totals, a different reporting system is used for each fuel and the boundaries between the different sectors (e.g., residential, commercial, industrial) are drawn differently for each fuel. Background EIA sales

  14. Household energy consumption and expenditures, 1987

    SciTech Connect (OSTI)

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  15. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    Projections - U.S. Energy Information Administration (EIA) 2012 CBECS Preliminary Results What is a commercial building? The CBECS includes buildings greater than 1,000 square feet that devote more than half of their floorspace to activity that is neither residential, manufacturing, industrial, nor agricultural. When will energy consumption estimates be available? Energy consumption and expenditures data will be available beginning in spring 2015. CBECS data collection is currently in its

  16. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  17. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC ...

  18. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed

  19. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLS PDF Table

  20. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  1. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  2. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  3. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  4. Industrial geospatial analysis tool for energy evaluation

    DOE Patents [OSTI]

    Alkadi, Nasr E.; Starke, Michael R.

    2016-06-28

    An industrial analytic system processes industrial data. A database engine provides access to a plurality of database management systems that serve energy consumption and product sales data. An input filter that selectively passes the filtered data streams that comprise energy sales data, location data, and a business classification code data in datasets by removing selected datasets that do not include energy information. A standard deviation filter removes datasets from the filtered data streams that fall outside of a predetermined variation from an average value. A computation module analyzes the correlation between electrical energy consumption within a standard industrial classification code represented in the datasets and a programmable criterion.

  5. South Dakota Natural Gas Industrial Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 ...

  6. Residential Energy Consumption Survey (RECS) - U.S. Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration (EIA) ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary › FAQS › Overview Data 2009 2005 2001 1997 1993 Previous Analysis & Projections RECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial,"

  7. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  8. Trends in Commercial Buildings--Trends in Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Part 1. Energy Consumption Data Tables Total Energy Intensity Intensity by Energy Source Background: Site and Primary Energy Trends in Energy Consumption and Energy Sources Part...

  9. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the most recent consumption and expenditures data from the Residential Energy Consumption Survey (RECS). ...

  10. Industrial Facility Combustion Energy Use

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  11. Residential Energy Consumption Survey (RECS) - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  12. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  13. Energy and Environmental Profile of the Chemicals Industry

    SciTech Connect (OSTI)

    Pellegrino, Joan L.

    2000-05-01

    This informative report provides an overview of the U.S. Chemical Industry including data on market trends, energy and material consumption, and an environmental overview.

  14. ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES...

    Office of Scientific and Technical Information (OSTI)

    fuel-fired peak heating for geothermal greenhouses Rafferty, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES; AUXILIARY HEATING; CAPITALIZED COST; OPERATING...

  15. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  16. Household Vehicles Energy Consumption 1994 - Appendix C

    U.S. Energy Information Administration (EIA) Indexed Site

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  17. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix I Related EIA Publications on Energy Consumption For information about how to obtain these publi- cations, see the inside cover of this report. Please note that the...

  18. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  19. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency has offset the increase in the number and average size of housing units, according to the newly released data from the Residential Energy Consumption Survey (RECS). ...

  20. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of ...

  1. State energy data report 1993: Consumption estimates

    SciTech Connect (OSTI)

    1995-07-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  2. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  3. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  4. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced

  5. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    1996-10-01

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  6. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Usage The 1997 Residential Energy Consumption Survey (RECS) collected household energy data for the four most populated States: California, Florida, New York, and Texas. ...

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  11. "Table A45. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  12. "Table A46. Selected Energy Operating Ratios for Total Energy Consumption"

    U.S. Energy Information Administration (EIA) Indexed Site

    Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE"

  13. "Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a

  14. "Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"

    U.S. Energy Information Administration (EIA) Indexed Site

    A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent

  15. A National Perspective on Energy and Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Using EIA's Energy Consumption Surveys to Analyze Energy Programs and Policies Steven Nadel American Council for an Energy-Efficient Economy EIA 2008 Energy Conference, April 7-8, 2008 The American Council for an Energy Efficient Economy (ACEEE) * Non-profit (501c (3)) dedicated to advancing energy efficiency through research and dissemination. * ~25 staffers in Washington DC, Delaware, Michigan and Wisconsin * Focus on End-Use Efficiency in Industry, Buildings, Utilities, Transportation, &

  16. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  17. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  18. Residential Energy Consumption Survey: Quality Profile

    SciTech Connect (OSTI)

    1996-03-01

    The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

  19. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users' groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  20. Energy consumption series: Development of the 1991 Manufacturing Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1992-05-18

    The implementation and results of the proceedings concerning the Energy Information Administration assessment of the Manufacturing Energy Consumption Survey (MECS) are documented in this report. The text and Appendices C, D, and E summarize the background of the MECS data system, the events that led to the MECS redesign, the major issues address during the review process, and the eventual 1991 MECS design that resulted. For many readers, the most useful part of the report may be Appendices A and B, which contain overall summaries of the users` groups and the industrial roundtables. These appendices capture the rationale for additional data needs as provided by the users. Also, they are a rich source of information on how manufacturers deal with energy use day-to-day, how they have addressed the need for energy efficiency improvement in the past, and the opportunities and problems associated with future efforts to improve efficiency. (VC)

  1. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Canadian Energy Demand June 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Issues in International Energy Consumption Analysis: Canadian Energy Demand This report was based on Natural Resources Canada 2009 data (accessed in 2012). For more current data see Handbook tables:

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  3. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption & Efficiency Commercial Buildings Energy Consumption Survey (CBECS) Glossary FAQS Overview Data 2012 2003 1999 1995 1992 Previous Analysis & Projections ...

  4. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  5. Commercial Miscellaneous Electric Loads Report: Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization and Savings Potential in 2008 by Building Type | Department of Energy Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial Miscellaneous Electric Loads Report: Energy Consumption Characterization and Savings Potential in 2008 by Building Type Commercial miscellaneous electric loads (MELs) are generally defined as all electric loads except those related to main systems for heating,

  6. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  7. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  8. Comparison of Real World Energy Consumption to Models and DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Then, the study determines whether real world energy consumption differed substantially ... Comparison of Real World Energy Consumption to Models and Department of Energy Test ...

  9. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect (OSTI)

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants

  10. State energy data report 1995 - consumption estimates

    SciTech Connect (OSTI)

    1997-12-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  11. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  12. U.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy Consumption Estimate Final Report

    SciTech Connect (OSTI)

    None, None

    2002-09-01

    Multiyear study to evaluate light sources and identify opportunities for saving energy. This report estimates energy consumption for residential, commercial, industrial, and outdoor stationary.

  13. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in China. session_2_industry_track_price_en.pdf (1.27 MB) session_2_industry_track_price_cn.pdf (1.47 MB) More Documents & Publications UAIEE and Industrial Assessment Centers The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation Energy Efficiency Financing

  14. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: ... ESS gathers data on how much electricity, natural gas, fuel oil, and propane were ...

  15. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    According to results from EIA's 2009 Residential Energy Consumption Survey (RECS), the stock of homes built in the 1970s and 1980s averages less than 1,800 square feet (Fig. 1). ...

  16. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  17. Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Industries Association Name: Solar Energy Industries Association Address: 575 7th Street NW 400 Place: Washington, DC Zip: 20004 Number of Employees: 11-50 Year...

  18. California Solar Energy Industries Association | Open Energy...

    Open Energy Info (EERE)

    Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

  19. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: Jordan Zip: 1182 Sector: Solar Product: Jordan-based solar energy firm focused in MENA region. References: Millennium Energy Industries1 This article is a...

  20. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption Natural Gas Expenditures per Building (thousand cubic feet) per Square Foot (cubic feet) Distribution of Building-Level Intensities (cubic feetsquare foot) 25th...

  1. Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy

  2. Energy Consumption of Die Casting Operations

    SciTech Connect (OSTI)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  4. 2002 Manufacturing Energy Consumption Survey - User Needs Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next Energy Consumption Survey (MECS) As our valued...

  5. Smart Meters Help Balance Energy Consumption at Solar Decathlon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Meters Help Balance Energy Consumption at Solar Decathlon Smart Meters Help Balance Energy Consumption at Solar Decathlon September 28, 2011 - 10:57am Addthis The Team...

  6. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  7. Appliance Standby Power and Energy Consumption in South African...

    Open Energy Info (EERE)

    Standby Power and Energy Consumption in South African Households Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Appliance Standby Power and Energy Consumption in South...

  8. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Broader source: Energy.gov (indexed) [DOE]

    off-the-shelf low-energy-consumption ultrasonic transducer can dry fabric 2 ... off-the-shelf low-energy-consumption ultrasonic transducer can dry fabric 2 ...

  9. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    national energy consumption in the United States. Technical Documentation for Report to ... Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress

  10. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy Consumption ...

  11. Colorado Industrial Energy Challenge | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Utility Engagement Activities » Colorado Industrial Energy Challenge Colorado Industrial Energy Challenge Colorado The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) has developed multiple resources and a Best Practices suite of tools to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 objective of reducing industrial energy intensity 2.5% annually over the next

  12. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  13. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    selected tabulations were produced using two different software programs, Table Producing Language (TPL) and Statistical Analysis System (SAS). Energy Information Administration...

  14. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    in hydro- power. During that time period, there was an unusual number of hydropower projects up for license renewal by the Federal Energy Regulatory Commission; hydropower...

  15. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  16. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  17. EIA Energy Efficiency-Table 1a. Table 1a. Consumption of Site...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a Page Last Modified: May 2010 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey...

  18. Energy consumption series: Lighting in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  19. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  20. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  1. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at...

  2. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    , X Y X X M. Hansen, W. Hurwitz, and W. Madlow, "Sample and Survey Methods and Theory, Volume I" (New York: John Wiley & Sons, Inc., 1953), 49 p. 166. 440 Energy...

  3. Household energy consumption and expenditures 1987

    SciTech Connect (OSTI)

    Not Available

    1990-01-22

    This report is the third in the series of reports presenting data from the 1987 Residential Energy Consumption Survey (RECS). The 1987 RECS, seventh in a series of national surveys of households and their energy suppliers, provides baseline information on household energy use in the United States. Data from the seven RECS and its companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are made available to the public in published reports such as this one, and on public use data files. This report presents data for the four Census regions and nine Census divisions on the consumption of and expenditures for electricity, natural gas, fuel oil and kerosene (as a single category), and liquefied petroleum gas (LPG). Data are also presented on consumption of wood at the Census region level. The emphasis in this report is on graphic depiction of the data. Data from previous RECS surveys are provided in the graphics, which indicate the regional trends in consumption, expenditures, and uses of energy. These graphs present data for the United States and each Census division. 12 figs., 71 tabs.

  4. Save Energy Now for Maryland Industry

    Broader source: Energy.gov [DOE]

    The EmPOWER Maryland Energy Efficiency Act of 2008 sets the statewide goal of a 15% reduction in both electricity and peak demand by 2015. This policy initiative was motivated by several factors, which include, but are not limited to, electricity rate increases, a potential capacity shortage, and concerns about CO2 emissions and climate change. The goals set forth by the governor and state legislature correlated closely to DOE’s Better Buildings, Better Plants program goal of reducing energy intensity in the industrial sector 25% in 10 years. For the past several years, Maryland has participated in efforts to reduce energy consumption in the state. As part of these efforts, industrial customers are recognizing more and more the importance of energy efficiency. Maryland was clearly a suitable candidate to take part in activities related to industrial energy efficiency, and the Better Buildings, Better Plants approach is one of the most proven means for delivering results to industry.

  5. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    - Energy Information Administration 8. Transportation sector energy consumption print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development

  6. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  7. QTR Webinar: Chapter 8 - Industry and Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar: Chapter 8 - Industry and Manufacturing QTR Webinar: Chapter 8 - Industry and Manufacturing Background The U.S. industrial sector accounts for approximately one-third of the overall energy consumption and associated carbon emissions in the U.S. About four-fifths of end-use industrial energy is consumed by the manufacturing sub-sector, which produces goods ranging from fundamental commodities to sophisticated final-use products. Many of these products have a significant energy and carbon

  8. Barriers to Industrial Energy Efficiency

    Broader source: Energy.gov (indexed) [DOE]

    Barriers to Industrial Energy Efficiency A Study Pursuant to Section 7 of the American Energy Manufacturing Technical Corrections Act June 2015 Blank Page iii Statutory Requirement ...

  9. Visualization of United States Renewable Consumption | Open Energy...

    Open Energy Info (EERE)

    Visualization of United States Renewable Consumption AgencyCompany Organization: Energy Information Administration Sector: Energy Resource Type: Softwaremodeling tools User...

  10. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  11. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Fossil Fuel-Generated Energy Consumption ...

  12. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  13. Household Energy Consumption Segmentation Using Hourly Data

    SciTech Connect (OSTI)

    Kwac, J; Flora, J; Rajagopal, R

    2014-01-01

    The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.

  14. Trends in Renewable Energy Consumption and Electricity - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration Trends in Renewable Energy Consumption and Electricity With data for 2010 | Release Date: December 11, 2012 | Next Release Date: Suspended Previous Issues year: 2009 (pdf) 2008(pdf) 2007(pdf) 2006(pdf) 2005(pdf) 2004(pdf) 2000(pdf) 1998(pdf) Go Summary U.S. renewable energy consumption grew by 6 percent, from 7.600 quadrillion Btu in 2009 to 8.090 quadrillion Btu in 2010. The relative share of renewable energy to total energy consumption has grown to 8 percent in 2010. Of the

  15. 1999 Commercial Buildings Energy Consumption Survey Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by

  16. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  17. Issues in International Energy Consumption Analysis: Canadian Energy Demand

    Reports and Publications (EIA)

    2015-01-01

    The residential sector is one of the main end-use sectors in Canada accounting for 16.7% of total end-use site energy consumption in 2009 (computed from NRCan 2012. pp, 4-5). In this year, the residential sector accounted for 54.5% of buildings total site energy consumption. Between 1990 and 2009, Canadian household energy consumption grew by less than 11%. Nonetheless, households contributed to 14.6% of total energy-related greenhouse gas emissions in Canada in 2009 (computed from NRCan 2012). This is the U.S. Energy Information Administrations second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in North America (mainly the United States and Canada) by using similar methodology for analyses in both countries.

  18. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (356) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  19. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2012-09-04

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  20. EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector...

  1. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for...

    Gasoline and Diesel Fuel Update (EIA)

    b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS...

  2. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  3. Housing characteristics, 1987: Residential Energy Consumption Survey

    SciTech Connect (OSTI)

    Not Available

    1989-05-26

    This report is the first of a series of reports based on data from the 1987 RECS. The 1987 RECS is the seventh in the series of national surveys of households and their energy suppliers. These surveys provide baseline information on how households in the United States use energy. A cross section of housing types such as single-family detached homes, townhouses, large and small apartment buildings, condominiums, and mobile homes were included in the survey. Data from the RECS and a companion survey, the Residential Transportation Energy Consumption Survey (RTECS), are available to the public in published reports such as this one and on public use tapes. 10 figs., 69 tabs.

  4. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect (OSTI)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  5. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  6. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Using Electricity (million square feet) Electricity Energy Intensity (kWhsquare foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas (million square feet) Natural Gas Energy Intensity (cubic feetsquare foot) New England Middle Atlantic East North Central New England Middle Atlantic East North...

  8. User-needs study for the 1992 Commercial Buildings Energy Consumption Survey. [Energy Consumption Series

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Commercial Buildings Energy Consumption Survey (CBECS) that is conducted by the Energy Information Administration (EIA) is the primary source of energy data for commercial buildings in the United States. The survey began in 1979 and has subsequently been conducted in 1983, 1986, and 1989. The next survey will cover energy consumption during the year 1992. The building characteristic data will be collected between August 1992 and early December 1992. Requests for energy consumption data are mailed to the energy suppliers in January 1993, with data due by March 1993. Before each survey is sent into the field, the data users' needs are thoroughly assessed. The purpose of this report is to document the findings of that user-needs assessment for the 1992 survey.

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Q 16.4 19.1 Buildings without Cooling ... Q 8 4 3,308 1,832 1,241 5.7 4.4 2.9 Water-Heating Energy Sources Electricity ... 51 216...

  10. Household energy consumption and expenditures, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  11. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Estimation of Energy End-use Consumption CBECS 2012 - Release date: March 18, 2016 2012 CBECS The energy end-use consumption tables for the 2012 CBECS (Detailed Tables E1-E 11) provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, computing (including servers), office equipment, and other uses. Although details vary

  12. Comparison of Real World Energy Consumption to Models and DOE Test

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procedures | Department of Energy Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates the real-world energy performance of appliances and equipment as it compares with models and test procedures. The study looked to determine whether DOE and industry test procedures actually replicate real world conditions, whether performance degrades over time, and whether

  13. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment ...

  14. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  15. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  16. Mining Industry Energy Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  17. Energy Intensity Indicators: Transportation Energy Consumption

    Broader source: Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  18. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  19. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Energy Savers [EERE]

    Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress ... on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. ...

  20. New Water Booster Pump System Reduces Energy Consumption by 80...

    Broader source: Energy.gov (indexed) [DOE]

    As a result, the company reduced pumping system energy consumption by 80 percent (225,100 ... New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases ...

  1. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration (EIA) Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air

  2. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie; Nimbalkar, Sachin U; Cox, Daryl

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  3. " Row: NAICS Codes; Column: Energy-Consumption Ratios;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Subsector and Industry","(million

  4. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  5. Energy Industries of Ohio | Open Energy Information

    Open Energy Info (EERE)

    Ohio Jump to: navigation, search Name: Energy Industries of Ohio Address: Park Center Plaza, Suite 200 6100 Oak Tree Blvd Place: Independence, Ohio Zip: 44131 Website:...

  6. Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National

  7. Texas Renewable Energy Industries Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Renewable Energy Industries Association Jump to: navigation, search Logo: Texas Renewable Energy Industries Association Name: Texas Renewable Energy Industries Association Address:...

  8. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect (OSTI)

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  9. Trends in Commercial Buildings--Energy Sources Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    ** estimates adjusted to match the 1995 CBECS definition of target population Energy Information Administration Commercial Buildings Energy Consumption Survey Table 2....

  10. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grades: All Topics: Biomass, Wind Energy, Hydropower, Solar, Geothermal Owner: The NEED Project Power to the Plug: An Introduction to Energy, Electricity, Consumption, and...