National Library of Energy BETA

Sample records for industry carbon emissions

  1. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  2. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  3. Energy-Related Carbon Emissions, by Industry, 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Efficiency Page > Energy Energy-Related Carbon Emissions > Total Table Total Energy-Related Carbon Emissions for Manufacturing Industries, 1994 Carbon Emissions (million...

  4. Post-harvest carbon emissions and sequestration in southern United States forest industries

    SciTech Connect (OSTI)

    Row, C.

    1997-12-31

    Whether the forest industries in the southern United States are net emitters or sequesters of carbon from the atmosphere depends on one`s viewpoint. In the short-term, the solid-wood industries-lumber, plywood, and panels--appear to sequester more carbon than is in the fossil fuels they use for processing. The paper industries, however, emit more carbon from fossil fuels than they sequester in the pulp and paper they manufacture. This viewpoint is quite limited. If one considers the life-cycles of solid-wood and paper products from seedlings to landfill, these industries sequester more carbon than they emit from burning fossil fuels. These industries also generate large amounts of energy by replacing fossil fuels with biofuels from processing residues, and wood-based products produce more energy from incineration and landfill gases. Use of the carbon in these biofuels in effect keeps fossil fuel carbon in the ground, considering that at least that amount of carbon would be emitted in producing alternative materials. Another way of looking the emission balances is that wood-based materials, pound for pound or use for use, are the most {open_quotes}carbon efficient{close_quotes} group of major industrial materials. 5 refs., 12 figs.

  5. Energy-Related Carbon Emissions in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel...

  6. Production, Energy, and Carbon Emissions: A Data Profile of the Iron and Steel Industry

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  7. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes the Southern California Gas Company’s Industrial End User program that helps large industrial customers increase energy efficiency and reduce energy use and GHG emissions.

  8. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  9. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect (OSTI)

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  10. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  11. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US ...

  12. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a...

  13. Table 10 U.S. Carbon Dioxide Emissions from Industrial Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008," "DOEEIA-0573(2008) (Washington, DC, December ...

  14. Table 6 U.S. Carbon Dioxide Emissions from Energy and Industry...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... table are revised from the data contained in the previous EIA report, Emissions of Greenhouse Gases in the United States 2008," "DOEEIA-0573(2008) (Washington, DC, December ...

  15. Carbon Constraints and the Electric Power Industry

    SciTech Connect (OSTI)

    2007-11-15

    The report is designed to provide a thorough understanding of the type of carbon constraints that are likely to be imposed, when they are likely to take effect, and how they will impact the electric power industry. The main objective of the report is to provide industry participants with the knowledge they need to plan for and react to a future in which carbon emissions are restricted. The main goal of the report is to ensure an understanding of the likely restrictions that will be placed on carbon emissions, the methods available for reducing their carbon emissions, and the impact that carbon reductions will have on the electric power industry. A secondary goal of the report is to provide information on key carbon programs and market participants to enable companies to begin participating in the international carbon marketplace. Topics covered in the report include: overview of what climate change and the Kyoto Protocol are; analysis of the impacts of climate change on the U.S. and domestic efforts to mandate carbon reductions; description of carbon reduction mechanisms and the types of carbon credits that can be created; evaluation of the benefits of carbon trading and the rules for participation under Kyoto; Description of the methods for reducing carbon emissions available to the U.S. electric power industry; analysis of the impact of carbon restrictions on the U.S. electric power industry in terms of both prices and revenues; evaluation of the impact of carbon restrictions on renewable energy; overview of the current state of the global carbon market including descriptions of the three major marketplaces; descriptions of the industry and government programs already underway to reduce carbon emissions in the U.S. electric power industry; and, profiles of the major international carbon exchanges and brokers.

  16. Potentials for reductions of carbon dioxide emissions of industrial sector in transitional economies -- A case study of implementation of absorption heat devices and co-generation

    SciTech Connect (OSTI)

    Remec, J.; Dolsak, N.

    1996-12-31

    World carbon dioxide emissions, caused by commercial energy-generation, contribute to about 57% of global warming potential. Central and East European (CEE) countries together with former USSR emitted about 25% of the world carbon dioxide emissions, predominantly because of high energy intensity of their industries and dependence on coal. Energy efficiency improvements can reduce the high level of carbon dioxide emissions per unit of output, which significantly exceeds the levels of the industry in the European Union. CEE countries` most pressing environmental goal is a reduction of local air and water pollution. Therefore, when analyzing potentials for the reduction of greenhouse gases emissions in these countries, they need to concentrate on the activities which would also decrease local pollution. The paper focuses on technologies which would reduce the need for fossil fuel burning by improving energy efficiency in industry. Process industries are very energy intensive. Structure changes of the products are carried out with operations which require input and output of heat. Heat demand is usually met by combustion of fossil fuels, cold is produced with electricity. Technical potentials of absorption heat devices (AHD) and co-generation in process industry as well as their market penetration potentials are analyzed for Slovenia, one of the fastest transforming CEE economies.

  17. Carbon Emissions: Chemicals Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 URL: http:www.eia.govemeuefficiencycarbonemissionschemicals.html Contact Us File...

  18. Weekly Wrap-Up: Testing Wind Blades, Converting Carbon Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    captured carbon dioxide (CO2) emissions from industrial sources into useful products. ... in private cost-share - will seek to use CO2 emissions from industrial sources to create ...

  19. Carbon Capture and Storage from Industrial Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated American Recovery and Reinvestment Act (Recovery Act)

  20. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  1. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  2. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  3. Plastic Bags Might Kickstart the Carbon Capture Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Plastic Bags Might Kickstart the Carbon Capture Industry Plastic Bags Might Kickstart the Carbon Capture Industry May 6, 2016 - 5:46pm Addthis This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from electricity generation (coal, gas and oil). Green bars represent CO2

  4. Distributed Energy Resources for Carbon Emissions Mitigation

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

  5. Carbon Emissions: Petroleum Refining Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact: Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 Contact Us URL: http:www.eia.govemeuefficiencycarbonemissionspetroleum...

  6. How the Carbon Emissions Were Estimated

    U.S. Energy Information Administration (EIA) Indexed Site

    dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels...

  7. Table 4. 2011 State energy-related carbon dioxide emission shares...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emission shares by sector " "percent of total" ,"shares" "State","Commercial","Electric Power","Residential","Industrial","Transportation"...

  8. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  9. Field Emission and Nanostructure of Carbon Films

    SciTech Connect (OSTI)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  10. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 | Department of Energy Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 The purpose of this 1999 paper is to estimate the remaining CHP potential in the chemicals and pulp/paper industries by capacity size, and estimate energy savings and

  11. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  12. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary

  13. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  14. Asia Carbon Emission Management India Pvt Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Asia Carbon Emission Management India Pvt Ltd Jump to: navigation, search Name: Asia Carbon Emission Management India Pvt Ltd Place: Chennai, Tamil Nadu, India Zip: 600 034 Sector:...

  15. Industrial Carbon Capture Project Selections | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Carbon Capture Project Selections Industrial Carbon Capture Project Selections Industrial Carbon Capture Project Selections September 2, 2010 These projects have been selected for negotiation of awards; final award amounts may vary. Industrial Carbon Capture Project Selections (71.28 KB) More Documents & Publications ICCS_Project_Selections.pdf CCSTF - Final Report Before the Subcommittee on Energy -- House Science, Space, and Technology Committee

  16. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  17. Energy Use and Carbon Emissions: Some International Comparisons

    Reports and Publications (EIA)

    1994-01-01

    Presents energy use and carbon emissions patterns in a world context. The report contrasts trends in economically developed and developing areas of the world since 1970, presents a disaggregated view of the "Group of Seven" (G7) key industrialized countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) and examines sectoral energy use patterns within each of the G7 countries.

  18. Trading permanent and temporary carbon emissions credits

    SciTech Connect (OSTI)

    Marland, Gregg; Marland, Eric

    2009-08-01

    In this issue of Climatic Change, Van Kooten (2009) addresses an issue that has bedeviled negotiators since the drafting stage of the Kyoto Protocol. If we accept that increasing withdrawals of carbon dioxide from the atmpshere has the same net impact on the climate system as reducing emissions of carbon dioxide to the atmosphere, how do we design a system that allows trading of one for the other? As van Kooten expresses the challenge: 'The problem is that emissions reduction and carbon sequestration, while opposite sides of the same coin in some sense, are not directly comparable, thereby inhibiting their trade in carbon markets.' He explains: 'The difficulty centers on the length of time that mitigation strategies without CO{sub 2} from entering the atmosphere - the duration problem.' While reducing emissions of CO{sub 2} represents an essentially permanent benefit for the atmosphere, capturing CO{sub 2} that has been produced (whether capture is from the atmosphere or directly from, for example, the exhaust from power plants) there is the challenge of storing the carbon adn the risk that it will yet escape to the atmosphere. Permanent benefit to the atmosphere is often not assured for carbon sequestration activities. This is especially true if the carbon is taken up and stored in the biosphere - e.g. in forest trees or agricultural soils.

  19. Grid Expansion Planning for Carbon Emissions Reduction

    SciTech Connect (OSTI)

    Bent, Russell W.; Toole, Gasper L.

    2012-07-18

    There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

  20. Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers.

  1. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Morozova, Irina; Ignatieva, Yulia; Cabaniss, John

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile.more » Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert

  2. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

    SciTech Connect (OSTI)

    Huang, Kan; Fu, Joshua S.; Prikhodko, Vitaly Y.; Storey, John M.; Romanov, Alexander; Hodson, Elke L.; Cresko, Joe; Ignatieva, Yulia; Cabaniss, John

    2015-10-02

    Development of reliable source emission inventories is needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This paper develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile. Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russia's major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and

  3. Research on impacts of population-related factors on carbon emissions in Beijing from 1984 to 2012

    SciTech Connect (OSTI)

    Yang, Yayun; Zhao, Tao; Wang, Yanan Shi, Zhaohui

    2015-11-15

    Carbon emissions related to population factors have aroused great attention around the world. A multitude of literature mainly focused on single demographic impacts on environmental issues at the national level, and comprehensive studies concerning population-related factors at a city level are rare. This paper employed STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model incorporating PLS (Partial least squares) regression method to examine the influence of population-related factors on carbon emissions in Beijing from 1984 to 2012. Empirically results manifest that urbanization is the paramount driver. Changes in population age structure have significantly positive impacts on carbon emissions, and shrinking young population, continuous expansion of working age population and aging population will keep on increasing environmental pressures. Meanwhile, shrinking household size and expanding floating population boost the discharge of carbon emissions. Besides, per capita consumption is an important contributor of carbon emissions, while industry energy intensity is the main inhibitory factor. Based upon these findings and the specific circumstances of Beijing, policies such as promoting clean and renewable energy, improving population quality and advocating low carbon lifestyles should be enhanced to achieve targeted emissions reductions. - Highlights: • We employed the STIRPAT model to identify population-related factors of carbon emissions in Beijing. • Urbanization is the paramount driver of carbon emissions. • Changes in population age structure exert significantly positive impacts on carbon emissions. • Shrinking household size, expanding floating population and improving consumption level increase carbon emissions. • Industry energy intensity decreases carbon emissions.

  4. Carbon Emissions: Iron and Steel Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact: Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 Contact Us URL: http:www.eia.govemeuefficiencycarbonemissionssteel...

  5. Carbon Emissions: Stone, Clay, and Glass Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact: Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 Contact Us URL: http:www.eia.govemeuefficiencycarbonemissionsstone...

  6. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  7. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  8. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575

  9. New Recovery Act Funding Boosts Industrial Carbon Capture and Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development | Department of Energy Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million

  10. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  11. Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration

  12. Development of the Electricity Carbon Emission Factors for Russia...

    Open Energy Info (EERE)

    Russia Jump to: navigation, search Name Development of the Electricity Carbon Emission Factors for Russia AgencyCompany Organization European Bank for Reconstruction and...

  13. Carbon Dioxide Emissions Associated with Bioenergy and Other...

    Open Energy Info (EERE)

    and Other Biogenic Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Emissions Associated with Bioenergy and Other Biogenic Sources AgencyCompany...

  14. U.S. Energy-Related Carbon Dioxide Emissions, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Related Carbon Dioxide Emissions, 2014 November 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 1 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 2 November 2015 U.S. Energy Information Administration | U.S. Energy-Related Carbon Dioxide Emissions, 2014 3 November 2015 U.S. Energy

  15. CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting...

    Open Energy Info (EERE)

    Name: CarBen Version 3: Multisector Carbon Dioxide Emissions Accounting Tool Focus Area: Geothermal Power Topics: Policy, Deployment, & Program Impact Website: www.netl.doe.gov...

  16. Laser-induced light emission from carbon nanoparticles

    SciTech Connect (OSTI)

    Osswald, S.; Behler, K.; Gogotsi, Y.

    2008-10-01

    Strong absorption of light in a broad wavelength range and poor thermal conductance between particles of carbon nanomaterials, such as nanotubes, onions, nanodiamond, and carbon black, lead to strong thermal emission (blackbody radiation) upon laser excitation, even at a very low (milliwatts) power. The lasers commonly used during Raman spectroscopy characterization of carbon can cause sample heating to very high temperatures. While conventional thermometry is difficult in the case of nanomaterials, Raman spectral features, such as the G band of graphitic carbon and thermal emission spectra were used to estimate the temperature during light emission that led to extensive graphitization and evaporation of carbon nanomaterials, indicating local temperatures exceeding 3500 deg. C.

  17. Energy use and carbon emissions: Non-OECD countries

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report surveys world energy use and carbon emissions patterns, with particular emphasis on the non-OECD countries. The non OECD is important not only because it currently makes up 84% of world population, but because its energy consumption, carbon emissions, population, and grow domestic product have all been growing faster than OECD`s. This presentation has seven major sections: (1) overview of key trends in non-OECD energy use and carbon emissions since 1970; (2) Comparison and contrasting energy use and carbon emissions for five major non OEDC regions (former Soviet Union and eastern Europe, Pacific Rim including China, Latin America, other Asia; Africa; 3-7) presentation of aggregate and sectoral energy use and carbon emissions data for countries within each of the 5 regions.

  18. FutureGen Industrial Alliance Announces Carbon Storage Site Selection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process for FutureGen 2.0 | Department of Energy Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0 October 6, 2010 - 12:00am Addthis WASHINGTON -- The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide (CO2) collected at FutureGen 2.0, a landmark project that

  19. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    Reports and Publications (EIA)

    2015-01-01

    This analysis examines some of the factors that influence state-level carbon dioxide emissions from the consumption of fossil fuels. These factors include: the fuel mix — especially in the generation of electricity; the state climate; the population density of the state; the industrial makeup of the state and whether the state is a net exporter or importer of electricity.

  20. China's Energy and Carbon Emissions Outlook to 2050

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-02-15

    As a result of soaring energy demand from a staggering pace of economic expansion and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both a short-term energy intensity reduction goal for 2006 to 2010 as well as a long-term carbon intensity reduction goal for 2020. This study presents a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. Over the past few years, LBNL has established and significantly enhanced its China End-Use Energy Model which is based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. In addition, this analysis also evaluated China's long-term domestic energy supply in order to gauge the potential challenge China may face in meeting long-term demand for energy. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not necessarily be the case because saturation in ownership of appliances, construction of residential and commercial floor area, roadways, railways, fertilizer use, and

  1. Breakthrough Industrial Carbon Capture, Utilization and Storage Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Begins Full-Scale Operations | Department of Energy Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production

  2. Managing the cost of emissions for durable, carbon-containing products

    SciTech Connect (OSTI)

    Shirley, Kevin; Marland, Eric; Cantrell, Jenna; Marland, Gregg

    2011-03-01

    We recognize that carbon-containing products do not decay and release CO2 to the atmosphere instantaneously, but release that carbon over extended periods of time. For an initial production of a stock of carbon-containing product, we can treat the release as a probability distribution covering the time over which that release occurs. The probability distribution that models the carbon release predicts the amount of carbon that is released as a function of time. The use of a probability distribution in accounting for the release of carbon to the atmosphere realizes a fundamental shift from the idea that all carbon-containing products contribute to a single pool that decays in proportion to the size of the stock. Viewing the release of carbon as a continuous probabilistic process introduces some theoretical opportunities not available in the former paradigm by taking advantage of other fields where the use of probability distributions has been prevalent for many decades. In particular, theories developed in the life insurance industry can guide the development of pricing and payment structures for dealing with the costs associated with the oxidation and release of carbon. These costs can arise from a number of proposed policies (cap and trade, carbon tax, social cost of carbon, etc), but in the end they all result in there being a cost to releasing carbon to the atmosphere. If there is a cost to the emitter for CO2 emissions, payment for that cost will depend on both when the emissions actually occur and how payment is made. Here we outline some of the pricing and payment structures that are possible which result from analogous theories in the life insurance industry. This development not only provides useful constructs for valuing sequestered carbon, but highlights additional motivations for employing a probability distribution approach to unify accounting methodologies for stocks of carbon containing products.

  3. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  4. RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions

    SciTech Connect (OSTI)

    Wright, Anthony L; Martin, Michaela A; Gemmer, Bob; Scheihing, Paul; Quinn, James

    2007-09-01

    --those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of

  5. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  6. U.S. Energy-Related Carbon Dioxide Emissions, 2013

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy-Related Carbon Dioxide Emissions, 2013 October 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 October 2014 U.S. Energy...

  7. Carbon Dioxide Emissions From Vegetation-Kill Zones Around The...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Carbon Dioxide Emissions From Vegetation-Kill Zones Around The Resurgent Dome Of Long Valley...

  8. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990...

    Broader source: Energy.gov (indexed) [DOE]

    World Carbon Dioxide Emissions, 1990-2012 Year United States Rest of North America Central & South America Europe Eurasia Middle East Africa India China Rest of Asia & Oceania 1990 ...

  9. Energy Use and Carbon Emissions: Non-OECD Countries

    Reports and Publications (EIA)

    1994-01-01

    Presents world energy use and carbon emissions patterns, with particular emphasis on the non-OECD (Organization for Economic Cooperation and Development) countries (including the current and former centrally planned economies).

  10. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

  11. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,200...

  12. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect (OSTI)

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  13. Breakthrough Could Improve Turbine Performance, Reduce Carbon Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Power Plants | Department of Energy Could Improve Turbine Performance, Reduce Carbon Emissions from Power Plants Breakthrough Could Improve Turbine Performance, Reduce Carbon Emissions from Power Plants April 26, 2016 - 8:03am Addthis Schematic Diagram of the Breakthrough Thermal Barrier Coating by “Solution Precursor Plasma Spray” Process Schematic Diagram of the Breakthrough Thermal Barrier Coating by "Solution Precursor Plasma Spray" Process Research supported by

  14. Multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  15. Multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  16. Energy use and carbon dioxide emissions in the steel sector in key developing countries

    SciTech Connect (OSTI)

    Price, L.K.; Phylipsen, G.J.M.; Worrell, E.

    2001-04-01

    Iron and steel production consumes enormous quantities of energy, especially in developing countries where outdated, inefficient technologies are still used to produce iron and steel. Carbon dioxide emissions from steel production, which range between 5 and 15% of total country emissions in key developing countries (Brazil, China, India, Mexico, and South Africa), will continue to grow as these countries develop and as demand for steel products such as materials, automobiles, and appliances increases. In this report, we describe the key steel processes, discuss typical energy-intensity values for these processes, review historical trends in iron and steel production by process in five key developing countries, describe the steel industry in each of the five key developing countries, present international comparisons of energy use and carbon dioxide emissions among these countries, and provide our assessment of the technical potential to reduce these emissions based on best-practice benchmarking. Using a best practice benchmark, we find that significant savings, in the range of 33% to 49% of total primary energy used to produce steel, are technically possible in these countries. Similarly, we find that the technical potential for reducing intensities of carbon dioxide emissions ranges between 26% and 49% of total carbon dioxide emissions from steel production in these countries.

  17. Short-Term Energy Outlook Model Documentation: Carbon Dioxide (CO2) Emissions Model

    Reports and Publications (EIA)

    2009-01-01

    Description of the procedures for estimating carbon dioxide emissions in the Short-Term Energy Outlook

  18. Waste management activities and carbon emissions in Africa

    SciTech Connect (OSTI)

    Couth, R.; Trois, C.

    2011-01-15

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  19. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect (OSTI)

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  20. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect (OSTI)

    S. W. Allendorf; D. K. Ottesen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1998-11-02

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom of line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  1. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  2. Long-Term US Industrial Energy Use and CO2 Emissions

    SciTech Connect (OSTI)

    Wise, Marshall A.; Sinha, Paramita; Smith, Steven J.; Lurz, Joshua P.

    2007-12-03

    We present a description and scenario results from our recently-developed long-term model of United States industrial sector energy consumption, which we have incorporated as a module within the ObjECTS-MiniCAM integrated assessment model. This new industrial model focuses on energy technology and fuel choices over a 100 year period and allows examination of the industrial sector response to climate policies within a global modeling framework. A key challenge was to define a level of aggregation that would be able to represent the dynamics of industrial energy demand responses to prices and policies, but at a level that remains tractable over a long time frame. In our initial results, we find that electrification is an important response to a climate policy, although there are services where there are practical and economic limits to electrification, and the ability to switch to a low-carbon fuel becomes key. Cogeneration of heat and power using biomass may also play a role in reducing carbon emissions under a policy constraint.

  3. Energy-Related Carbon Dioxide Emissions in U.S. Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    Based on the Manufacturing Energy Consumption Survey (MECS) conducted by the U.S. Department of Energy, Energy Information Administration (EIA), this paper presents historical energy-related carbon dioxide emission estimates for energy-intensive sub-sectors and 23 industries. Estimates are based on surveys of more than 15,000 manufacturing plants in 1991, 1994, 1998, and 2002. EIA is currently developing its collection of manufacturing data for 2006.

  4. Carbon-containing cathodes for enhanced electron emission

    DOE Patents [OSTI]

    Cao, Renyu; Pan, Lawrence; Vergara, German; Fox, Ciaran

    2000-01-01

    A cathode has electropositive atoms directly bonded to a carbon-containing substrate. Preferably, the substrate comprises diamond or diamond-like (sp.sup.3) carbon, and the electropositive atoms are Cs. The cathode displays superior efficiency and durability. In one embodiment, the cathode has a negative electron affinity (NEA). The cathode can be used for field emission, thermionic emission, or photoemission. Upon exposure to air or oxygen, the cathode performance can be restored by annealing or other methods. Applications include detectors, electron multipliers, sensors, imaging systems, and displays, particularly flat panel displays.

  5. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  6. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    SciTech Connect (OSTI)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  7. Options for reducing carbon dioxide emissions

    SciTech Connect (OSTI)

    Rosenfeld, A.H.; Price, L.

    1991-08-01

    Improvements in energy efficiency can significantly reduce the annual growth in greenhouse gas emissions. Such improvements occur when energy intensity is reduced; no reduction in energy services is required. Using the concept of cost of conserved energy'' to develop conservation supply curves similar to resource supply curves, researchers consistently find that electricity and natural gas savings of nearly 50% of current consumption are possible for US buildings. Such reductions in energy consumption directly reduce emissions of greenhouse gases. To capture these savings, we must continue to develop energy-efficient technologies and strategies. This paper describes three recent energy-efficient technologies that benefited from energy conservation research and development (R D) funding: high-frequency ballasts, compact fluorescent lamps, and low-emissivity windows. Other advanced technologies and strategies of spectrally selective windows, superwindows, electrochromic windows, advanced insulation, low-flow showerheads, improved recessed lamp fixtures, whitening surfaces and planting urban trees, daylighting, and thermal energy storage are also discussed. 33 refs., 9 figs., 3 tabs.

  8. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect (OSTI)

    Viswanathan, V. V.; Davies, R. W.; Holbery, J.

    2006-04-01

    This report analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities.

  9. Sri Lanka-Rapid Assessment of City Emissions (RACE) for Low Carbon...

    Open Energy Info (EERE)

    Assessment of City Emissions (RACE) for Low Carbon Cities: Transport and Building Electricity Use Jump to: navigation, search Name Sri Lanka-Rapid Assessment of City Emissions...

  10. NETL's Carbon Capture Simulation for Industry Impact (CCSI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL's Carbon Capture Simulation for Industry Impact (CCSI 2 ) program is officially extending an opportunity for CO 2 capture technology developers to collaborate with CCSI 2 personnel. CCSI 2 has developed a computational Toolset for computational modeling efforts required for efficiently informing R&D and reducing the risk leading up to commercialization. CCSI 2 is granting developers an opportunity to tap into the CCSI groups' modeling expertise and to become adept at using the CCSI

  11. Table 5. Per capita energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Per capita energy-related carbon dioxide emissions by State (2000-2011)" "metric tons of carbon dioxide per person" ,,,"Change" ,,,"2000 to 2011"...

  12. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  13. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  14. Table 11.2a Carbon Dioxide Emissions From Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 ...

  15. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect (OSTI)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  16. Unusual emission lines of carbon in the 170-190 A region on NSTX...

    Office of Scientific and Technical Information (OSTI)

    Unusual emission lines of carbon in the 170-190 A region on NSTX Citation Details In-Document Search Title: Unusual emission lines of carbon in the 170-190 A region on NSTX Authors: ...

  17. Unusual emission lines of carbon in the 170-190 A region on NSTX...

    Office of Scientific and Technical Information (OSTI)

    Unusual emission lines of carbon in the 170-190 A region on NSTX Citation Details In-Document Search Title: Unusual emission lines of carbon in the 170-190 A region on NSTX You...

  18. The Elephant in the Room: Dealing with Carbon Emissions from Synthetic Transportation Fuels Production

    SciTech Connect (OSTI)

    Parker, Graham B.; Dahowski, Robert T.

    2007-07-11

    Carbon dioxide (CO2), produced by conversion of hydrocarbons to energy, primarily via fossil fuel combustion, is one of the most ubiquitous and significant greenhouse gases (GHGs). Concerns over climate change precipitated by rising atmospheric GHG concentrations have prompted many industrialized nations to begin adopting limits on emissions to inhibit increases in atmospheric CO2 levels. The United Nations Framework Convention on Climate Change states as a key goal the stabilization of atmospheric CO2 at a level that prevents dangerous anthropogenic interference with the planets climate systems. This will require sharply reducing emissions growth rates in developing nations, and reducing CO2 emissions in the industrialized world to half current rates in the next 50 years. And ultimately, stabilization will require that annual emissions drop to almost zero.Recently, there has been interest in producing synthetic transportation fuels via coal-to-liquids (CTL) production, particularly in countries where there is an abundant supply of domestic coal, including the United States. This paper provides an overview of the current state of CTL technologies and deployment, a discussion of costs and technical requirements for mitigating the CO2 impacts associated with a CTL facility, and the challenges facing the CTL industry as it moves toward maturity.

  19. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  20. Energy, Carbon-emission and Financial Savings from Thermostat Control

    SciTech Connect (OSTI)

    Blasing, T J; Schroeder, Dana

    2013-08-01

    Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

  1. Carbon Fiber and Clean Energy: 4 Uses for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Clean Energy: 4 Uses for Industry Carbon Fiber and Clean Energy: 4 Uses for Industry February 7, 2014 - 3:27pm Addthis Oxidized fibers move to a high temperature furnace, where material is converted into carbon fiber at Oak Ridge National Laboratory's Carbon Fiber Technology Facility (CFTC). The CFTC enables companies to test low-cost carbon fiber for use in several industries including the clean energy sector. | Photo courtesy of Oak Ridge National Laboratory Oxidized fibers move to a high

  2. Spontaneous emission from the C3 radical in carbon plasma

    SciTech Connect (OSTI)

    Nemes, Laszlo; Keszler, Anna M.; Parigger, Christian G.; Hornkohl, James O.; Michelsen, Hope A.; Stakhursky, Vadim

    2007-07-01

    Spontaneous emission measurements are discussed for the Swings transitions of the C3 radical in laser-generated graphite plasma, and the spectroscopy of the C3 radical in carbon vapor and plasma is summarized. A review is given of some theoretical calculations and emission spectroscopic investigations are presented. Time-averaged, laser-induced optical breakdown spectra arereported from Nd:YAG laser generated graphite microplasma. In 200-300 Torr of argon and helium, and depending on the specific experimental configuration,a weak emission continuum is observed centered at 400 nm when using a laser fluence of typically1 J/cm2. Such continua were not detected in our previous experiments using focused laser radiation. The possibilities for the origin of this continuum are considered.

  3. Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry

    SciTech Connect (OSTI)

    Love, Lonnie J

    2012-12-01

    The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

  4. Emission and Absorption Spectroscopy of Carbon Arc Plasma during Formation of Carbon Magnetic Encapsulates

    SciTech Connect (OSTI)

    Lange, H.; Labedz, O.; Huczko, A.; Bystrzejewski, M.

    2011-11-29

    Plasma diagnostics of carbon arc discharge under conditions of carbon magnetic encapsulates formation was performed by emission and absorption spectroscopy. Content of C{sub 2} and Fe species, rotational temperatures of excited (d {sup 3} product {sub g}) and non-excited (a {sup 3} product {sub u}) states, and excitation temperatures of a {sup 5}F and a {sup 3}F levels relatively to the a {sup 5}D level of Fe atoms were determined. The results pointed to a non-equilibrium state of carbon arc plasma under prevailing discharge conditions.

  5. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-07-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is the most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuel causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant geological sink for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected regions of the US.

  6. Carbon dioxide storage potential in coalbeds: A near-term consideration for the fossil energy industry

    SciTech Connect (OSTI)

    Byrer, C.W.; Guthrie, H.D.

    1998-04-01

    The concept of using gassy unminable coalbeds for carbon dioxide (CO2) storage while concurrently initiating and enhancing coalbed methane production may be a viable near-term system for industry consideration. Coal is our most abundant and cheapest fossil fuel resource, and it has played a vital role in the stability and growth of the US economy. With the burning of coal in power plants, the energy source is also one of the fuels causing large CO2 emissions. In the near future, coal may also have a role in solving environmental greenhouse gas concerns with increasing CO2 emissions throughout the world. Coal resources may be an acceptable and significant {open_quotes}geological sink{close_quotes} for storing CO2 emissions in amenable unminable coalbeds while at the same time producing natural gas from gassy coalbeds. Industry proprietary research has shown that the recovery of coalbed methane can be enhanced by the injection of CO2 via well bores into coal deposits. Gassy coals generally have shown a 2:1 coal-absorption selectivity for CO2 over methane which could allow for the potential of targeting unminable coals near fossil fueled power plants to be utilized for storing stack gas CO2. Preliminary technical and economic assessments of this concept appear to merit further research leading to pilot demonstrations in selected re ions of the US.

  7. Secretary Chu Announces Nearly $1 Billion Public-Private Investment in Industrial Carbon Capture and Storage

    Broader source: Energy.gov [DOE]

    Three projects will create jobs, reduce carbon emissions, and increase domestic oil production by 10 million barrels of oil per year

  8. Carbon Fiber Technology Facility Set To Scale Up Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational institutions partner with the Carbon Fiber Technology Facility to develop the skilled workforce needed for widespread production of low-cost carbon fiber. Carbon fiber ...

  9. Global Carbon Emissions in the Coming Decades: The Case of China

    SciTech Connect (OSTI)

    Levine, Mark; Levine, Mark D.; Aden, Nathaniel T.

    2008-05-01

    China's annual energy-related carbon emissions surpassed those of the United States in In order to build a more robust understanding of China's energy-related carbon emissions, emissions after 2001? The divergence between actual and forecasted carbon emissions international trade, and central government policies in driving emissions growth. so greatly in error and what drove the rapid growth of China's energy-related carbon this article reviews the role of economic restructuring, urbanization, coal dependence, underscores the rapid changes that have taken place in China's energy system since 2001.

  10. Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 8: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 - Dataset Fact #898: November 9, 2015 World Carbon Dioxide Emissions, 1990-2012 - Dataset Excel file and dataset for 2015 World Carbon Dioxide Emissions, 1990-2012 fotw#898_web.xlsx (25.25 KB) More Documents & Publications ESPC Project Performance: Supplemental Data Natural Gas Imports and Exports Third Quarter Report 2015 Financial and Activity Report - December 31, 2009

  11. Table 8 U.S. Carbon Dioxide Emissions from Residential Sector...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Diioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

  12. Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Summarizes the scale and economic value of energy efficiency for reducing carbon emissions and discusses barriers to achieving the potential for cost-effective energy efficiency.

  13. Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources

    SciTech Connect (OSTI)

    Lowndes, D.H.; Merkulov, V.I.; Baylor, L.R.; Jellison, Jr., G.E.; Poker, D.B.; Kim, S.; Sohn, M.H.; Paik, N.W.

    1999-11-29

    The principal interests in this work are energetic-beam control of carbon-film properties and the roles of doping and surface morphology in field emission.

  14. Accounting for Carbon Dioxide Emissions from Biomass Energy Combustion (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Carbon Dioxide (CO2) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO2 emissions reported in Annual Energy Outlook 2010. According to current international convention, carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time]. However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions.

  15. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  16. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect (OSTI)

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  17. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",123615,113429,135133,186320,213725,288261,368728,466093,474527,472326,424044,468920,460025,479716,532836,567267,598960,591936,609416,554692,537679,573035,537827,532016,534873 "Natural

  18. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",1231,659,1067,2192,1784,1685,1521,3276,3458,3317,2740,2961,2100,5191,31138,26808,28804,28716,30315,28932,27401,36452,38256,34966,35118 "Natural

  19. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",99931,90222,83823,91500,119354,176269,216052,211528,216609,226357,259650,264498,286311,297404,417500,460041,508105,512033,464520,430505,458841,468879,540689,522031,480864 "Natural

  20. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",70007,90671,111585,201596,232586,271800,530275,680050,682504,642737,577847,569995,545792,527893,537663,539691,547446,536134,498669,508871,581609,714951,793006,802209,887372 "Natural

  1. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",187419,203816,190049,228280,255068,261594,379321,332295,339864,386689,422783,406276,405000,442941,533290,806603,915074,927928,828237,722001,838330,856101,888651,883212,931708 "Natural

  2. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",296237,272707,285211,381921,423894,422362,611096,728833,834982,883283,876816,817139,788519,806646,901203,970849,1004788,1031517,985754,929710,1254199,1273057,1252700,1466280,1403502 "Natural

  3. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",199709,185073,183247,241651,265949,247826,338318,370877,418872,490422,507490,522200,471904,535303,584707,658445,624913,669016,642197,676214,895584,983464,893411,871431,902063 "Natural

  4. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",63526,68216,73702,75879,71513,64087,68625,71467,89748,90139,96242,95639,97918,95986,101453,112255,109681,117039,94470,97854,126282,117281,110572,107938,99934 "Natural

  5. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",3229,10397,11717,23520,37512,33573,42205,42039,39260,47569,45178,52634,58508,60644,69422,70840,70629,78943,69863,78900,70225,77311,93718,104570,100041 "Natural

  6. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",156939,200702,203862,230553,252712,294302,362921,358465,346823,362690,354593,369039,358670,370730,396468,406682,453444,439598,409709,388720,425868,392676,374114,405484,400043 "Natural

  7. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",90609,77393,37116,43057,54267,40125,65730,67796,75871,66365,68531,68116,66065,69615,88588,78278,78763,76762,94981,82425,77122,89686,94690,97996,106348 "Natural

  8. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",149428,157176,149531,208591,255793,258025,278644,276798,279119,293134,292645,280869,247379,239803,214011,264723,301916,318865,368301,348474,537257,481519,683418,746419,794530 "Natural

  9. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",21804,21923,26957,48632,56528,51264,75552,102252,110055,133084,174467,205767,213903,217822,245827,243631,282135,265797,169786,235651,245005,257386,300430,290808,298461 "Natural

  10. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",328298,314945,360893,649158,643705,664660,760207,1022707,1037604,1157246,1150521,1250636,1193241,1191814,1258662,1318060,1426879,1462973,1485827,1209189,2085965,2172699,2204132,2247165,2213291 "Natural

  11. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",74880,76673,78406,95907,89405,100412,108043,108024,114991,112210,108869,117506,115993,110039,102417,110454,109339,116982,114705,122615,106452,118616,118121,113826,109400 "Natural

  12. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",280590,262221,259319,338397,419602,635141,851401,958827,903023,1096135,996972,979095,949261,1041860,1113082,1049810,1118338,1159444,1158512,1191338,1209571,1240828,1266369,1269116,1288932 "Natural

  13. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",30379,35219,54683,80578,104316,104355,165245,177379,226662,226553,228180,216716,210658,216996,215214,230523,223531,207801,218040,191445,205896,195251,171280,177034,182269 "Natural

  14. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",334864,364291,337533,430430,458950,448084,480396,494970,576589,592090,585566,632119,612135,581623,594287,721440,716364,718321,683539,636769,563557,619731,562293,544624,534050 "Natural

  15. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",55972,56438,49857,83949,117386,111860,136911,189547,190542,223296,200877,220539,279910,231117,277674,289507,268063,278805,263005,276636,220087,238627,227184,226261,213816 "Natural

  16. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",102380,93865,91218,107963,116023,184338,315497,388675,470639,483344,492024,558143,526538,681326,625874,713793,695681,701570,694797,630859,1091442,1045752,1102087,1068857,965899 "Natural

  17. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",3425770,3537968,3625314,4890928,5468885,6100901,8103586,9247549,9774485,10470741,10402086,10679025,10787045,10918087,11761081,12624901,13241327,13459993,13019310,12332252,14768599,15258782,15498937,15696398,15741783 "Natural

  18. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; et al

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  19. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect (OSTI)

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  20. Overview of Carbon Storage Research | Department of Energy

    Office of Environmental Management (EM)

    Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused ...

  1. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    SciTech Connect (OSTI)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  2. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",75942,74612,77622,73584,67035,68211,73160,71833,72868,65726,78479,71176,70031,74549,76060,78823,77315,86718,97033,84291,72229,66566,70208,70953,73346 "Natural gas",24,32,43,31,32,28,24,20,22,26,21,32,23,11,21,21,18,18,15,67,17,17,18,17,17

  3. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",2678,2913,2945,2496,2411,2528,2657,2436,2377,2224,2352,2003,4545,4179,12561,8368,14490,13929,13523,14632,10598,10080,10152,10210,15458 "Natural gas",13,10,10,11,11,11,12,11,15,13,15,9,10,10,13,11,13,11,11,9,12,12,10,12,12

  4. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",22489,23613,21336,32674,36693,36140,48338,56547,49229,52823,60439,69394,70766,72877,74807,78901,105738,130165,124044,124899,142176,134872,131544,129444,125036 "Natural gas",74,79,70,55,67,80,83,86,73,64,79,58,51,58,36,17,17,9,3,7,8,6,10,6,7

  5. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",28407,39974,42818,46853,49433,47566,60452,64793,64512,63888,64999,77596,91396,93908,90489,93098,100573,101386,94727,96615,107836,99745,101864,98418,102580 "Natural gas",26,27,26,25,26,31,33,35,32,30,26,24,21,24,17,12,11,11,9,11,6,2,1,1,1

  6. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",908,770,7247,503,1311,1313,3007,2737,2879,2816,2847,3419,5880,12228,21148,826,6824,12175,11335,11392,9645,9330,10225,11777,12265 "Natural gas",29,29,34,32,28,19,15,19,23,17,13,9,20,9,10,8,7,6,2,4,6,3,3,4,4

  7. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Natural gas",0,0,0,0," "," "," "," "," "," "," "," "," "," "," "," "," "," "," ","

  8. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",792,2209,1435,1287,1387,1663,1680,1060,1015,1274,1572,1475,2154,1433,12585,3354,4019,4820,4805,4357,3617,3211,2070,278,86 "Natural gas",403,373,325,426,95,121,93,89,89,110,122,127,106,76,902,582,579,537,455,588,53,50,52,51,49

  9. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",2094,3029,2301,1616,3801,1603,3358,4111,1689,1787,4238,3737,3116,987,2999,3506,3816,3005,3148,3177,5267,6079,6088,2978,6107 "Natural gas",6,8,4,2,3,2,3,3,2,2,3,3,1,2,2,2,2,2,1,1,2,2,1,1,1

  10. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",72805,92466,103353,107646,114216,99306,163998,147940,144691,148303,148788,152375,147800,153599,171226,170930,190205,168878,170396,182534,198945,218025,209712,224123,201125 "Natural gas",11,10,11,6,6,2,4,3,3,2,7,1,2,3,3,3,4,6,4,3,3,3,2,1,1

  11. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",31498,29975,32930,39191,44555,50230,93495,112481,108414,123188,114657,131419,124338,113912,112947,115880,117443,108221,116046,99115,71337,70094,65762,76140,85243 "Natural gas",4,6,17,6,7,6,6,2,2,2,1,2,3,4,2,64,4,1,2,6,6,4,3,10,7

  12. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",559,540,292,401,546,476,1538,2006,2016,1840,1726,1423,1117,1593,6269,2349,2978,4015,3934,4090,4323,4505,4521,4465,5574 "Natural gas",8,8,11,13,14,14,13,13,12,15,20,22,23,22,7,0,0,0,0,0,0,0,0,0,0

  13. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",36332,37512,40857,51044,47095,214124,244867,278286,282500,284301,287448,272978,265412,259499,262294,261255,272677,254326,251603,229197,233251,251845,243295,238056,265492 "Natural gas",12,12,40,17,4,6,6,4,4,4,3,8,4,3,3,3,2,2,2,2,7,3,4,6,6

  14. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",34022,30926,31068,52422,57174,66187,83399,85598,88204,89899,95334,91757,91775,77334,102028,108278,104657,109711,101136,97511,129370,125407,106236,90988,105228 "Natural gas",7,15,18,9,11,31,14,7,4,6,4,3,3,3,4,3,3,1,1,1,3,2,3,3,1

  15. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",14254,16726,13490,16901,20469,20711,19989,22596,19849,19767,20971,17185,19797,30725,23733,25315,24694,22706,20068,36432,20996,20385,22070,20386,17702 "Natural gas",0,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,1,1

  16. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",63940,66824,63689,74955,71501,77133,76598,69205,71725,73730,74657,69360,68130,70701,60647,61435,58084,62785,65736,61065,56657,60780,53652,53558,51742 "Natural gas",0,0,2,0,0,0,1,1,6,3,0,0,0,2,0,0,0,0,0,1,0,0,0,1,1

  17. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",10164,7366,4640,5225,7841,7856,9315,8488,9169,53291,54356,51433,49197,49926,52960,48612,49659,50086,52898,50190,52644,52075,56550,54099,53261 "Natural gas",52,57,58,49,53,60,55,63,53,45,37,28,21,97,41,12,20,13,18,13,15,12,11,6,7

  18. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",2166,2689,1694,24041,36405,32333,36146,40115,38096,41306,37066,33607,38594,44473,46296,39840,40221,49137,41011,40508,37609,39548,42845,33246,41324 "Natural gas",8,8,16,15,13,11,14,7,11,10,7,15,0,0,1,0,0,0,0,0,0,0,0," ","

  19. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",2395,2333,2866,4464,15060,12671,38115,50089,61099,69561,51500,50631,48855,50013,80835,63535,61420,73406,67588,58450,50184,56327,55383,57266,69123 "Natural gas",33,37,73,79,51,32,29,23,25,22,14,29,23,33,40,41,36,41,43,51,49,46,40,30,22

  20. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",12014,17706,16538,17799,16546,19273,22214,26645,31168,30757,38493,51035,50982,62371,69031,73913,81488,82737,78595,75755,63018,57673,58306,50395,59574 "Natural gas",43,23,22,23,22,21,20,17,18,9,8,9,10,14,11,12,14,11,12,168,9,8,7,8,9

  1. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",43936,51793,63584,81442,127715,123709,246364,392943,482961,516957,488210,481288,481923,473655,497039,497620,532992,556780,522206,439975,415724,472747,424519,374981,378382 "Natural gas",62,54,43,36,21,9,8,8,4,7,4,8,8,4,2,2,2,1,1,2,1,2,1,1,1

  2. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",52698,56827,87164,94480,127427,132855,136415,137982,130699,138294,150488,141328,141498,156233,153590,191764,195793,178826,178368,210373,152684,147327,146371,189694,146402 "Natural gas",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

  3. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",7425,13959,11463,13100,15640,11050,11305,14027,8697,12104,12828,13522,12580,18027,14858,17160,13840,7342,6383,6143,16823,14892,16478,10708,7280 "Natural gas",46,52,39,27,52,63,69,44,32,34,30,28,23,28,24,18,19,10,10,7,9,6,6,4,2

  4. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Natural Gas",10,11,19,20,18,17,14,15,15,13,12,18,17,19,15,14,18,14,14,10,11,11,11,7,3 "Natural gas",2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0

  5. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",13839,15332,12825,11249,13129,11929,13720,9194,11957,10723,14375,12596,25263,14439,14224,26837,24162,26742,16418,35460,33368,30740,31866,32623,31176 "Natural gas",1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0 "Other","

  6. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",80454,78177,89276,144447,143016,130005,234674,265029,290290,297970,341496,370895,374163,396595,500011,533235,563085,614328,610082,570892,849088,895318,843606,796681,838243 "Natural gas",4,7,20,7,4,1,1,0,0,0,0,2,1,1,3,1,2,1,1,2,1,1,3,1,2

  7. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",23525,23545,21953,24864,28075,32614,24593,27565,37366,34547,37057,35348,32849,35716,33918,30837,33609,33601,32715,33485,29978,32977,30210,28162,31653 "Natural gas",22,17,17,12,12,15,18,19,8,1,3,6,3,3,2,1,1,1,1,3,2,1,1,1,0

  8. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",3362,2820,1690,1695,3221,4203,3123,2707,2256,3945,7475,9309,19572,68959,85701,89418,76615,65080,80288,55300,71156,73657,73826,63973,62933 "Natural gas",36,43,21,19,41,46,43,33,30,29,23,23,22,43,41,17,15,12,19,18,17,12,7,2,2

  9. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Coal",45629,49564,48004,85490,74270,83774,91179,91675,92333,96307,92960,92260,102300,94749,87414,106527,115147,107547,105501,113255,94338,82028,85538,84633,108365 "Natural gas",2,1,2,3,1,2,1,2,2,0,0,2,172,3,2,1,1,1,1,1,1,1,1,1,1

  10. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  11. Assessment of the feasibility of reducing emissions from gasoline and LPG industrial equipment

    SciTech Connect (OSTI)

    Bekken, M.; Wood, M.S.

    1997-12-31

    In 1994, the California Air Resources Board (ARB) approved a State Implementation Plan (SIP) to bring California`s South Coast Air Basin into compliance with federal ozone standards. The plan includes the adoption of emission controls for previously un(der)regulated off-road vehicles and equipment. Off-road industrial equipment in the 25 to 175 horsepower range has been designed to meet power and fuel economy priorities, with little effort going to emission reductions. California`s plan requires substantial emission reductions for such equipment. The application of catalysts or other emission control technologies to spark-ignited industrial equipment can feasibly and cost-effectively achieve the emission reductions required in the SIP. The paper discusses off-road catalyst application, availability, and packaging. In addition, other technologies to reduce emissions are addressed, including engine, fuel system, and exhaust system modifications, and the use of alternate fuels. Anticipated costs are also discussed. There is good reason to presume that spark-ignited industrial equipment will be able to achieve the required emission reductions in the time frame indicated in the SIP.

  12. Nonferrous industry particulate emissions: source category report. Final report, June 1983-August 1986

    SciTech Connect (OSTI)

    Burnett, M.; Minden, A.

    1986-12-01

    The report gives results of the development of particulate-emission factors based on cutoff size for inhalable particles for the nonferrous industry. After a review of available information characterizing particulate emissions from nonferrous plants, the data were summarized and rated in terms of reliability. Size-specific emission factors were developed from these data for the major processes used in the manufacture of nonferrous metals. A detailed process description is presented with emphasis on factors affecting the generation of emissions. There were replacements for Sections 7.1 (Primary Aluminum Production), 7.3 (Primary Copper Smelting), 7.6 (Primary Lead Smelting), 7.7 (Primary Zinc Smelting), and 7.11 (Secondary Lead Smelting) of EPA report AP-42. A Compilation of Air Pollutant Emissions Factors, was prepared, containing the size-specific emission factors developed during the program.

  13. Table 7. Electric power industry emissions estimates, 1990 through 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Emission type", 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992, 1991, 1990 "Sulfur dioxide (short tons)" "Natural Gas",0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 "Natural gas",38,37,26,36,40,40,39,24,39,46,47,41,42,47,52,42,45,47,46,44,13,10,9,10,8 "Petroleum",32,34,26,58,2,2,1,11,8,23,25,28,21,55,137,97,127,50,17,35,17,3,2,0,14

  14. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 4. 2013 state energy-related carbon dioxide emission shares by sector percent of total Shares State Commercial Electric Power Residential Industrial Transportation Alabama 1.5% 53.6% 1.8% 17.8% 25.3% Alaska 6.6% 7.3% 4.3% 48.4% 33.3% Arizona 2.5% 58.3% 2.6% 4.8% 31.8% Arkansas 4.2% 52.4% 3.3% 13.6% 26.5% California 4.5% 12.9% 7.9% 20.7% 54.0% Colorado 4.1% 42.6% 9.0% 15.3% 29.0% Connecticut 10.4% 19.8% 21.0% 6.8% 42.1% Delaware 5.7% 30.2% 7.0% 27.8% 29.3% District of Columbia 35.5% 0.0%

  15. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the

  16. Impact of Light-Duty Vehicle Emissions on 21st Century Carbon Dioxide Concentrations

    SciTech Connect (OSTI)

    Smith, Steven J.; Kyle, G. Page

    2007-08-04

    The impact of light-duty passenger vehicle emissions on global carbon dioxide concentrations was estimated using the MAGICC reduced-form climate model combined with the PNNL contribution to the CCSP scenarios product. Our central estimate is that tailpipe light duty vehicle emissions of carbon-dioxide over the 21st century will increase global carbon dioxide concentrations by slightly over 12 ppmv by 2100.

  17. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect (OSTI)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  18. The impacts of population change on carbon emissions in China during 1978-2008

    SciTech Connect (OSTI)

    Zhu Qin Peng Xizhe

    2012-09-15

    This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects on carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.

  19. DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use.

  20. Method of depositing multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  1. Method of depositing multi-layer carbon-based coatings for field emission

    DOE Patents [OSTI]

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  2. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non

  3. FutureGen Industrial Alliance Announces Carbon Storage Site Selection...

    Office of Environmental Management (EM)

    at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois. ...

  4. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Table 3. 2013 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Alabama 1.8 64.2 2.2 21.3 30.3 119.8 Alaska 2.4 2.6 1.6 17.5 12.0 36.1 Arizona 2.4 54.7 2.4 4.5 29.8 93.8 Arkansas 2.8 35.5 2.2 9.3 18.0 67.8 California 16.0 45.7 27.7 72.9 190.8 353.1 Colorado 3.7 38.6 8.2 13.9 26.3 90.5 Connecticut 3.6 6.8 7.2 2.3 14.4 34.3 Delaware 0.8 4.1 0.9 3.7 3.9 13.4 District of Columbia

  5. Carbon Capture and Storage from Industrial Sources | Department...

    Energy Savers [EERE]

    ... CO2 from an industrial coal-fired source to produce biofuel and other high value co-products. ... Aggregates, Ltd. cement manufacturing plant in San Antonio, Texas. (DOE Share: ...

  6. Cutting Carbon Emissions under 111(d): The case for expanding solar energy in America

    Broader source: Energy.gov [DOE]

    Solar energy is a solution technology that can provide a cost-effective, economically beneficial, and integral part of a state's effort to regulate carbon emissions from the electric sector. Solar energy's rapidly falling prices and rapidly growing generating capacity, as well as the volatility of fossil fuel prices, give solar energy the potential to transform compliance with both new carbon emission requirements and other existing requirements under the Clean Air Act.

  7. Large and stable emission current from synthesized carbon nanotube/fiber network

    SciTech Connect (OSTI)

    Di, Yunsong; Xiao, Mei; Zhang, Xiaobing Wang, Qilong; Li, Chen; Lei, Wei; Cui, Yunkang

    2014-02-14

    In order to obtain a large and stable electron field emission current, the carbon nanotubes have been synthesized on carbon fibers by cold wall chemical vapor deposition method. In the hierarchical nanostructures, carbon fibers are entangled together to form a conductive network, it could provide excellent electron transmission and adhesion property between electrode and emitters, dispersed clusters of carbon nanotubes with smaller diameters have been synthesized on the top of carbon fibers as field emitters, this kind of emitter distribution could alleviate electrostatic shielding effect and protect emitters from being wholly destroyed. Field emission properties of this kind of carbon nanotube/fiber network have been tested, up to 30?mA emission current at an applied electric field of 6.4?V/?m was emitted from as-prepared hierarchical nanostructures. Small current degradation at large emission current output by DC power operation indicated that carbon nanotube/fiber network could be a promising candidate for field emission electron source.

  8. Further Sensitivity Analysis of Hypothetical Policies to Limit Energy-Related Carbon Dioxide Emissions

    Reports and Publications (EIA)

    2013-01-01

    This analysis supplements the Annual Energy Outlook 2013 alternative cases which imposed hypothetical carbon dioxide emission fees on fossil fuel consumers. It offers further cases that examine the impacts of fees placed only on the emissions from electric power facilities, impacts of returning potential revenues to consumers, and two cap-and-trade policies.

  9. Carbon Dioxide and Helium Emissions from a Reservoir of Magmatic...

    Open Energy Info (EERE)

    in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved...

  10. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  11. Overview of Carbon Storage Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Roughly one third of the United States’ carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the...

  12. Fabrication of carbon nanotube emitters on the graphite rod and their high field emission performance

    SciTech Connect (OSTI)

    Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki; Song, Yenan; Saito, Yahachi; Jin Lee, Cheol

    2014-01-27

    Carbon nanotube (CNT) emitters with small emission area were fabricated on graphite rods using CNT films. By introducing the edge polishing process, the field emission performance of the CNT emitter was much improved, which showed a very high emission current of 6.34 mA (1.6 A/cm{sup 2}) under an applied electric field of 5.3 V/μm. It also indicates good long-term emission stability, which reveals no degradation in the emission current for 20 h. The emission patterns demonstrate uniform and well-focused electron beam spots. The enhanced field emission performance is mainly attributed to the suppressed edge emission after the edge polishing process.

  13. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect (OSTI)

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  14. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025

  15. Carbon Nanotube Field Emission Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential applications include mobile computing and communication devices, LCDs, electrostatic scrubbers for industrial air pollution control, and any applications requiring high ...

  16. Carbon emissions reduction strategies in Africa from improved waste management: A review

    SciTech Connect (OSTI)

    Couth, R.; Trois, C.

    2010-11-15

    The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.

  17. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect (OSTI)

    Dr. Atul Jain

    2005-04-17

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and

  18. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  19. Decadal growth of black carbon emissions in India - article no. L02807

    SciTech Connect (OSTI)

    Sahu, S.K.; Beig, G.; Sharma, C.

    2008-01-15

    A Geographical Information System (GIS) based methodology has been used to construct the black carbon (BC) emission inventory for the Indian geographical region. The distribution of emissions from a broader level to a spatial resolution of 1{sup o} x 1{sup o} grid has been carried out by considering micro level details and activity data of fossil fuels and bio-fuels. Our calculated total BC emissions were 1343.78 Gg and 835.50 Gg for the base years 2001 and 1991 respectively with a decadal growth of around 61%, which is highly significant. The district level analysis shows a diverse spatial distribution with the top 10% emitting districts contributing nearly 50% of total BC emission. Coal contributes more than 50% of total BC emission. All the metropolitan cities show high BC emissions due to high population density giving rise to high vehicular emissions and more demand of energy.

  20. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  1. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2011, the U.S. Department of Energy’s National Energy Technology Laboratory established the Carbon Capture Simulation Initiative to take carbon-capture concepts from the laboratory to the power plant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. Today, the NETL-led CCSI has proven itself to be a model of successful, effective collaboration among government, industry, and academia.

  2. Industry Information Practices and the Failure to Remember

    Office of Environmental Management (EM)

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  3. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the labs total carbon footprint.

  4. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013 October 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  5. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  6. Field emission from carbon films deposited by VHF CVD on difference substrates

    SciTech Connect (OSTI)

    Abramov, A A; Andronov, A N; Felter, T E; Ioffe, A F; Kosarev, A I; Shotov, M V; Vinogradov, A J

    1999-04-01

    As previously demonstrated, non-diamond carbon (NDC) films deposited at low temperatures 200-300 C on silicon tips reduced the threshold of field emission. In this paper we will present the results of the study of field emission from flat NDC films prepared by VHF CVD. Emission measurements were performed in a diode configuration at approximately 10{sup {minus}10} Torr. NDC films were deposited on ceramic and on c-Si substrates sputter coated with layers of Ti, Cu, Ni and Pt. The back contact material influences the emission characteristics but not as a direct correlation to work function. A model of field emission from metal-NDC film structures will be discussed.

  7. Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions

    SciTech Connect (OSTI)

    Li Jian; Kundrapu, Madhusudhan; Shashurin, Alexey; Keidar, Michael

    2012-07-15

    Arc discharge supported by the erosion of anode materials is one of the most practical and efficient methods to synthesize various high-quality carbon nanostructures. By introducing a non-uniform magnetic field in arc plasmas, high-purity single-walled carbon nanotubes (SWCNT) and large-scale graphene flakes can be obtained in a single step. In this paper, ultraviolet-visible emission spectra of arc in different spots under various magnetic conditions are analyzed to provide an in situ investigation for transformation processes of evaporated species and growth of carbon nanostructures in arc. Based on the arc spectra of carbon diatomic Swan bands, vibrational temperature in arc is determined. The vibrational temperature in arc center was measured around 6950 K, which is in good agreement with our simulation results. Experimental and simulation results suggest that SWCNT are formed in the arc periphery region. Transmission electronic microscope and Raman spectroscope are also employed to characterize the properties of carbon nanostructures.

  8. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    SciTech Connect (OSTI)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to

  9. Carbon Dioxide Emissions from the Generation of Electric Power in the United States 1998

    Reports and Publications (EIA)

    1999-01-01

    The President issued a directive on April 15, 1999, requiring an annual report summarizing carbon dioxide (CO2) emissions produced by electricity generation in the United States, including both utilities and nonutilities. In response, this report is jointly submitted by the U.S. Department of Energy and the U.S. Environmental Protection Agency.

  10. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. ); Fearnside, P.M. , Manaus, AM . Departmento de Ecologia)

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  11. Evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state's energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  12. Evaluation of carbon dioxide emission control strategies in New York State. Final report, 1990--1991

    SciTech Connect (OSTI)

    Morris, S.C.; Lee, J.; Goldstein, G.; Hill, D.

    1992-01-01

    A MARKAL model was developed for the State of New York. It represents the state`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO{sub 2} emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Staff members from both organizations and other state agencies were trained in its use. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO{sub 2} emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  13. New York MARKAL: An evaluation of carbon dioxide emission control strategies in New York State

    SciTech Connect (OSTI)

    Hamilton, L.D.

    1992-12-31

    A MARKAL model was developed for the State of New York. It represents the State`s energy system as a set of typical technologies for generating, converting, and using energy as it evolves over a 45-year period. NYMARKAL was applied here in demonstration analyses to explore strategies to reduce CO2 emissions. NYMARKAL was installed at the State Energy Office and in the Offices of the New York Power Pool. Example scenarios showed that it is more difficult and more expensive to reduce carbon emissions in New York State than in the United States as a whole. Were a common carbon tax instituted, it would have less effect in New York and most carbon emissions reduction would take place elsewhere in the country where it is more cost-effective. Alternatively, were all states required to reduce CO2 emission an equal percentage (say by 20%), the cost per unit emissions reduction to New York would be much greater than in the rest of the country.

  14. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional

  15. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect (OSTI)

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov

    2007-07-01

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  16. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  17. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect (OSTI)

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  18. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    SciTech Connect (OSTI)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  19. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 μm, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  20. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect (OSTI)

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  1. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide Capture for Natural Gas and Industrial Applications Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle Wind Power ENERGY U.S. DEPARTMENT OF Clean Power Quadrennial

  2. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  3. Biotechnology for removal of carbon disulfide emissions. Final report

    SciTech Connect (OSTI)

    McIntosh, M.J.

    1995-07-01

    Biological removal in a ``biofilter`` plant of carbon disulfide and hydrogen sulfide from the air effluent of a viscose plant at Teepak, Inc., is analyzed from process and economic standpoints by use of the Aspen Plus simulation program. The metabolic product from the biofilter, 3% sulfuric acid, must be transformed at the source into either a marketable or recyclable commodity (such as 95% sulfuric acid, high-quality sulfur, or high-quality gypsum) or a material with reasonable landfill costs (such as sulfur or gypsum). The simulations indicate that the total capital requirement for production of concentrated sulfuric acid is $48.9 million; for high-quality gypsum, $40.4 million; and for high-quality sulfur, $29.4 million. Production of concentrated sulfur for landfill is not economically practical. The process to neutralize the 3% acid effluent with limestone and landfill the resulting low-quality gypsum requires the lowest total investment of the processes simulated, $8.7 million, including the biofilter plant.

  4. The importance of China's household sector for black carbon emissions - article no. L12708

    SciTech Connect (OSTI)

    Streets, D.G.; Aunan, K.

    2005-06-30

    The combustion of coal and biofuels in Chinese households is a large source of black carbon (BC), representing about 10-15% of total global emissions during the past two decades, depending on the year. How the Chinese household sector develops during the next 50 years will have an important bearing on future aerosol concentrations, because the range of possible outcomes (about 550 Gg yr{sup -1}) is greater than total BC emissions in either the United States or Europe (each about 400-500 Gg yr{sup -1}). In some Intergovernmental Panel on Climate Change scenarios biofuels persist in rural China for at least the next 50 years, whereas in other scenarios a transition to cleaner fuels and technologies effectively mitigates BC emissions. This paper discusses measures and policies that would help this transition and also raises the possibility of including BC emission reductions as a post-Kyoto option for China and other developing countries.

  5. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries

    SciTech Connect (OSTI)

    Ebner, A.D.; Ritter, J.A.

    2009-07-01

    With the growing concern about global warming placing greater demands on improving energy efficiency and reducing CO{sub 2} emissions, the need for improving the energy intensive, separation processes involving CO{sub 2} is well recognized. The US Department of Energy estimates that the separation of CO{sub 2} represents 75% of the cost associated with its separation, storage, transport, and sequestration operations. Hence, energy efficient, CO{sub 2} separation technologies with improved economics are needed for industrial processing and for future options to capture and concentrate CO{sub 2} for reuse or sequestration. The overall goal of this review is to foster the development of new adsorption and membrane technologies to improve manufacturing efficiency and reduce CO{sub 2} emissions. This study focuses on the power, petrochemical, and other CO{sub 2} emitting industries, and provides a detailed review of the current commercial CO{sub 2} separation technologies, i.e., absorption, adsorption, membrane, and cryogenic, an overview of the emerging adsorption and membrane technologies for CO{sub 2} separation, and both near and long term recommendations for future research on adsorption and membrane technologies. Flow sheets of the principal CO{sub 2} producing processes are provided for guidance and new conceptual flow sheets with ideas on the placement of CO{sub 2} separations technologies have also been devised.

  6. Return to 1990: The cost of mitigating United States carbon emissions in the post-2000 period

    SciTech Connect (OSTI)

    Edmonds, J.A.; Kim, S.H.; MacCracken, C.N.; Sands, R.D.; Wise, M.A.

    1997-10-01

    The Second Generation Model (SGM) is employed to examine four hypothetical agreements to reduce emissions in Annex 1 nations (OECD nations plus most of the nations of Eastern Europe and the former Soviet Union) to levels in the neighborhood of those which existed in 1990, with obligations taking effect in the year 2010. The authors estimate the cost to the US of complying with such agreements under three distinct conditions: no trading of emissions rights, trading of emissions rights only among Annex 1 nations, and a fully global trading regime. The authors find that the marginal cost of returning to 1990 emissions levels in the US in the absence of trading opportunities is approximately $108 per metric ton carbon in 2010. The total cost in that year is approximately 0.2% of GDP. International trade in emissions permits lowers the cost of achieving any mitigation objective by equalizing the marginal cost of carbon mitigation among countries. For the four mitigation scenarios in this study, economic costs to the US remain below 1% of GDP through at least the year 2020.

  7. US cement industry

    SciTech Connect (OSTI)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  8. MINIMIZING NET CARBON DIOXIDE EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL/BIOMASS BLENDS

    SciTech Connect (OSTI)

    Robert Hurt; Todd Lang

    2001-06-25

    Solid fuels vary significantly with respect to the amount of CO{sub 2} directly produced per unit heating value. Elemental carbon is notably worse than other solid fuels in this regard, and since carbon (char) is an intermediate product of the combustion of almost all solid fuels, there is an opportunity to reduce specific CO{sub 2} emissions by reconfiguring processes to avoid char combustion wholly or in part. The primary goal of this one-year Innovative Concepts project is to make a fundamental thermodynamic assessment of three modes of solid fuel use: (1) combustion, (2) carbonization, and (3) oxidative pyrolysis, for a wide range of coal and alternative solid fuels. This period a large set of thermodynamic calculations were carried out to assess the potential of the three processes. The results show that the net carbon dioxide emissions and the relative ranking of the different processes depends greatly on the particular baseline fossil fuel being displaced by the new technology. As an example, in a baseline natural gas environment, it is thermodynamically more advantageous to carbonize biomass than to combust it, and even more advantageous to oxidatively pyrolyze the biomass.

  9. Just Say No to Carbon Emissions (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

    2011-04-28

    Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

  10. Just Say No to Carbon Emissions (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt

    2010-04-26

    Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.

  11. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  12. Benchmarking the energy efficiency of Dutch industry: An assessment of the expected effect on energy consumption and CO2 emissions

    SciTech Connect (OSTI)

    Phylipsen, Dian; Blok, Kornelis; Worrell, Ernst; De Beer, Jeroen

    2002-06-01

    As part of its energy and climate policy the Dutch government has reached an agreement with the Dutch energy-intensive industry that is explicitly based on industry's relative energy efficiency performance. The energy efficiency of the Dutch industry is benchmarked against that of comparable industries in countries world-wide. In the agreement, industry is required to belong to the top-of-the-world in terms of energy efficiency. In return, the government refrains from implementing additional climate policies.This article assesses the potential effects of this agreement on energy consumption and CO2 emissions by comparing the current level of energy efficiency of the Dutch industry - including electricity production - to that of the most efficient countries and regions. At the current structure achieving the regional best practice level for the selected energy-intensive industries would result in a 5plus or minus 2 percent lower current primary energy consumption than the actual level. Most of the savings are expected in the petrochemical industry and in electricity generation. Avoided CO2 emissions would amount to 4 Mt CO2. A first estimate of the effect of the benchmarking agreement in 2012 suggests primary energy savings of 50-130 PJ or 5-10 Mt CO2 avoided compared to the estimated Business as Usual development (5-15 percent). This saving is smaller than what a continuation of the existing policies of Long Term Agreements would probably deliver.

  13. Triode carbon nanotube field emission display using barrier rib structure and manufacturing method thereof

    DOE Patents [OSTI]

    Han, In-taek; Kim, Jong-min

    2003-01-01

    A triode carbon nanotube field emission display (FED) using a barrier rib structure and a manufacturing method thereof are provided. In a triode carbon nanotube FED employing barrier ribs, barrier ribs are formed on cathode lines by a screen printing method, a mesh structure is mounted on the barrier ribs, and a spacer is inserted between the barrier ribs through slots of the mesh structure, thereby stably fixing the mesh structure and the spacer within a FED panel due to support by the barrier ribs.

  14. Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Carbon Grid Study: Analysis of a 50% Emission Reduction in California Gregory Brinkman and Jennie Jorgenson National Renewable Energy Laboratory Ali Ehlen and James H. Caldwell Center for Energy Efficiency and Renewable Technologies Technical Report NREL/TP-6A20-64884 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the

  15. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    The Vulcan Project is a NASA/DOE funded effort under the North American Carbon Program (NACP) to quantify North American fossil fuel carbon dioxide (CO2) emissions at space and time scales much finer than has been achieved in the past. The purpose is to aid in quantification of the North American carbon budget, to support inverse estimation of carbon sources and sinks, and to support the demands posed by higher resolution CO2 observations (in situ and remotely sensed). The detail and scope of the Vulcan CO2 inventory has also made it a valuable tool for policymakers, demographers, social scientists and the public at large. The Vulcan project has achieved the quantification of the 2002 U.S. fossil fuel CO2 emissions at the scale of individual factories, powerplants, roadways and neighborhoods on an hourly basis. The entire inventory was built on a common 10 km x 10 km grid to facilitate atmospheric modeling. In addition to improvement in space and time resolution, Vulcan is quantified at the level of fuel type, economic sub-sector, and county/state identification. Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  16. The costs of different energy taxes for stabilizing U. S. carbon dioxide emissions: An application of the Gemini model

    SciTech Connect (OSTI)

    Leary, N.A.; Scheraga, J.D. . Climate Change Div.)

    1993-09-01

    In the absence of policies to mitigate emissions of carbon dioxide, US emissions will grow substantially over the period 1990 to 2030. One option for mitigation of carbon dioxide emissions is to tax energy use. For example, fossil energy might be taxed according to its carbon content, heating value, or market value. Using a partial equilibrium model of US energy markets that combines detailed representation of technological processes with optimizing behavior by energy users and suppliers, the authors compare the costs of using carbon, Btu, and ad valorem taxes as instruments to implement a policy of emission stabilization. The authors also examine the differential impacts of these taxes on the mix of primary energy consumed in the US. The carbon tax induces the substitution of renewables and natural gas for coal and stabilizes carbon dioxide emissions at an estimated annual cost of $125 billion. The Btu tax induces the substitution of renewables for coal, but does not encourage the use of natural gas. The estimated cost of stabilization with the Btu tax is $210 billion per year. The ad valorem tax, like the Btu tax, does not encourage the substitution of natural gas for coal. It also causes a significant shift away from oil in comparison to the carbon tax. The cost of stabilizing emissions with the ad valorem tax is estimated at $450 billion per year.

  17. FutureGen Industrial Alliance Announces Carbon Storage Site Selection Process for FutureGen 2.0

    Broader source: Energy.gov [DOE]

    The FutureGen Industrial Alliance today announced details of a process that will lead to the selection of an Illinois site for the storage of carbon dioxide collected at FutureGen 2.0, a landmark project that will advance the deployment of carbon capture and storage technology at an Ameren Energy Resources power plant in Meredosia, Illinois.

  18. Input quality, trade liberalization, and abatement of carbon-dioxide emissions

    SciTech Connect (OSTI)

    Khanna, M.; Zilberman, D.

    1996-12-31

    This paper introduces a methodology to derive the incentives provided by two alternative policies--an emissions tax vs. liberalization of trade in higher quality coal--for increasing conversion-efficiency of electricity generation and for analyzing their impact on carbon emissions as well as on output of electricity. This methodology is applied empirically to examine the potential for abatement of carbon emissions from existing coal-based plants in the thermal power sector in India through the adoption of higher qualities of coal. The paper provides strong empirical support for achieving a complementarity between the goals of abatement and increased output, through policies which remove distortions in domestic and trade policies. It also demonstrates that abatement induced by an emissions-tax alone leads to a conflict between these goals. The authors examine a situation where the availability of higher quality coal is constrained by domestic and trade barriers. The role of coal quality in improving conversion-efficiency is analyzed when microunits are heterogeneous and have putty-clay technologies. The framework developed here juxtaposes engineering relationships governing plant performance and stylized features of electricity-generating technologies with a behavioral economic model.

  19. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000 - article no. GB2018

    SciTech Connect (OSTI)

    Bond, T.C.; Bhardwaj, E.; Dong, R.; Jogani, R.; Jung, S.K.; Roden, C.; Streets, D.G.; Trautmann, N.M.

    2007-05-15

    We present an emission inventory of primary black carbon (BC) and primary organic carbon (OC) aerosols from fossil fuel and biofuel combustion between 1850 and 2000. We reconstruct fossil fuel consumption and represent changes in technology on a national and sectoral basis. Our estimates rely on new estimates of biofuel consumption, and updated emission factors for old technologies. Emissions of black carbon increase almost linearly, totaling about 1000 Gg in 1850, 2200 Gg in 1900, 3000 Gg in 1950, and 4400 Gg in 2000. Primary organic carbon shows a similar pattern, with emissions of 4100 Gg, 5800 Gg, 6700 Gg, and 8700 Gg in 1850, 1900, 1950, and 2000, respectively. Biofuel is responsible for over half of BC emission until about 1890, and dominates energy-related primary OC emission throughout the entire period. Coal contributes the greatest fraction of BC emission between 1880 and 1975, and is overtaken by emissions from biofuel around 1975, and by diesel engines around 1990. Previous work suggests a rapid rise in BC emissions between 1950 and 2000. This work supports a more gradual increase between 1950 and 2000, similar to the increase between 1850 and 1925; implementation of clean technology is a primary reason.

  20. Final Technical Report HFC Concrete: A Low-­‐Energy, Carbon-­Dioxide-­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  1. Variations in embodied energy and carbon emission intensities of construction materials

    SciTech Connect (OSTI)

    Wan Omar, Wan-Mohd-Sabki; Doh, Jeung-Hwan; Panuwatwanich, Kriengsak

    2014-11-15

    Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters in material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.

  2. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect (OSTI)

    Furimsky, E.

    2008-07-01

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  3. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    SciTech Connect (OSTI)

    Sun, Yuning; Shin, Dong Hoon; Yun, Ki Nam; Leti, Guillaume; Hwang, Yeon Mo; Song, Yenan; Saito, Yahachi; Lee, Cheol Jin

    2014-07-15

    The carbon nanotube (CNT) field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm{sup 2}. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  4. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    SciTech Connect (OSTI)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick; Calvin, Katherine V.; Kyle, G. Page

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of crop production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.

  5. The National Academies of Sciences, Engineering, and Medicine Release Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions

    Broader source: Energy.gov [DOE]

    The National Academies of Sciences, Engineering, and Medicine releases the Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions report, which focuses on large (single- and twin-aisle) planes that transport more than 100 people. These aircraft account for more than 90% of greenhouse gas emissions from all commercial aircraft.

  6. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  7. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  8. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  9. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  10. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the