National Library of Energy BETA

Sample records for industries food products

  1. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect (OSTI)

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  2. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  3. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, ...

  4. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  5. Energy conservation by hyperfiltration: food industry background literature survey

    SciTech Connect (OSTI)

    Not Available

    1980-04-15

    The application of hyperfiltration to selected food product streams and food processing wastewaters for energy conservation was examined. This literature survey had led to the following conclusions: no research has been conducted in the food industry using membranes with hot process streams due to the temperature limitation (< 40/sup 0/C) of the typically studied cellulose acetate membranes; based on the bench-scale research reviewed, concentration of fruit and vegetable juices with membranes appears to be technically feasible; pretreatment and product recovery research was conducted with membranes on citrus peel oil, potato processing and brine wastewaters and wheys. The experiments demonstrated that these applications are feasible; many of the problems that have been identified with membranes are associated with either the suspended solids or the high osmotic pressure and viscosity of many foods; research using dynamic membranes has been conducted with various effluents, at temperatures to approx. 100/sup 0/C, at pressures to 1200 psi and with suspended solids to approx. 2%; and, the dynamic membrane is being prototype tested by NASA for high temperature processing of shower water. The literature review substantiates potential for dynamic membrane on porous stainless tubes to process a number of hot process and effluent streams in the food processing industry. Hot water for recycle and product concentrations are major areas with potential for economic application. The two plants involved in the first phase of the project should be reviewed to identify potential energy conservation applications. As many as possible of the conservation applications should be tested during the screening phase at each site. The most promising applications at each site should be evaluated more intensively to establish engineering estimates of the economics of this technology for the canned fruit and vegetable segment of the food industry.

  6. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  7. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  8. Dr Writer s Food Products Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dr Writer s Food Products Pvt Ltd Jump to: navigation, search Name: Dr. Writer(tm)s Food Products Pvt. Ltd. Place: Mumbai, Maharashtra, India Sector: Biomass Product:...

  9. Forest Products Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Products Industry Profile Forest Products Industry Profile Wood and paper products meet the everyday needs of consumers and businesses. They provide materials essential for communication, education, packaging, construction, shelter, sanitation, and protection. The U.S. forest products industry is based on a renewable and sustainable raw material: wood. It practices recovery and recycling in its operations. Its forests help the global carbon balance by taking up carbon dioxide from the

  10. Karlsruhe Institute for Industrial Production | Open Energy Informatio...

    Open Energy Info (EERE)

    Karlsruhe Institute for Industrial Production Jump to: navigation, search Name: Karlsruhe Institute for Industrial Production Place: Karlsruhe, Germany Zip: 76187 Product: String...

  11. Cogeneration handbook for the food processing industry. [Contains glossary

    SciTech Connect (OSTI)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  12. TrendSetter Solar Products Inc aka Trendsetter Industries formerly...

    Open Energy Info (EERE)

    TrendSetter Solar Products Inc aka Trendsetter Industries formerly Six River Solar Jump to: navigation, search Name: TrendSetter Solar Products Inc (aka Trendsetter Industries,...

  13. Forest Products Industry of the Future

    SciTech Connect (OSTI)

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  14. EIA Energy Efficiency-Table 4f. Industrial Production Indexes...

    Gasoline and Diesel Fuel Update (EIA)

    f Page Last Modified: May 2010 Table 4f. Industrial Production Indexes by Selected Industries, 1998, 2002, and 2006 (2000 100) MECS Survey Years NAICS Subsector and Industry 1998...

  15. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  16. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  17. ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 7: INDUSTRIAL FOOD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leak detection Preliminary study how laser perforation of blueberry can improve fruit infusion with more yield and better quality Laser food processing (marker and micro...

  18. Industrial and Agricultural Production Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    food processing, cold storage, agricultural, greenhouses, irrigation districts, and waterwastewater treatment. Standard prescriptive incentives include lighting, green motor...

  19. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  20. Institute for Industrial Productivity (IIP) | Open Energy Information

    Open Energy Info (EERE)

    20037-1701 Website: www.iipnetwork.org References: www.iipnetwork.org The Institute for Industrial Productivity provides companies and governments with the best energy efficiency...

  1. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  2. Covered Product Category: Industrial Luminaires (High/Low Bay) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Industrial Luminaires (High/Low Bay) Covered Product Category: Industrial Luminaires (High/Low Bay) The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Energy Efficiency Requirements for Industrial

  3. Application and energy saving potential of superheated steam drying in the food industry

    SciTech Connect (OSTI)

    Fitzpatrick, J. [Univ. College Cork (United Kingdom); Robinson, A. [Stork Engineering, Uxbridge (United Kingdom)

    1996-12-31

    The possibilities of using superheated steam in heat and mass transfer processes such as drying have lately been investigated and tested by several industries. The mode of operation, energy saving potential, advantages of and problems with this media in contact with foodstuffs and food waste sludge are discussed in this article.

  4. OIT Forest Products Motor Challenge Industry Profile: Motor System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The chart below shows how the motor systems electricity use is broken down into various ... forest products industry and DOE. A key feature of this partnership was a strategic ...

  5. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect (OSTI)

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the educational components addressing the production of bioethanol, biodiesel, and bioplastics provide graduates that can assist American industries in including greater renewable content in feedstocks for materials and fuels. Finally, the collaboration fostered by this grant led to the drafting of a new book entitled, Bioengineering for Sustainability: Materials and Fuels for the 21st Century. This text will be widely available to the public interested in learning more about these important areas of technology.

  6. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  7. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  8. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  9. Combustion Turbine CHP System for Food Processing Industry- Presentation by Frito-Lay North America, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  10. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect (OSTI)

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  11. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  12. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    SciTech Connect (OSTI)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  13. ISSUANCE 2016-05-19: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

  14. ISSUANCE 2016-02-26: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

  15. Food production and consumption near the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-01-01

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study's scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  16. Food production and consumption near the Savannah River Site

    SciTech Connect (OSTI)

    Hamby, D.M.

    1991-12-31

    Routine operations at the Savannah River Site (SRS) result in the release of radionuclides to the atmosphere and to the Savannah River. The resulting radiological doses to the off-site maximum individual and the 80-km population are estimated on a yearly basis. These estimates are generated using dose models prescribed in the NRC Reg. Guide 1.109 for the commercial nuclear power industry. A study of land and water usage characteristics in the region of the Savannah River Site has been conducted to determine site-specific values of the NRC dose model parameters. The study`s scope included local characteristics of meat, milk, vegetable production; Savannah River recreational activities and fish harvests; meat, milk, vegetable, and seafood consumption rates; and Savannah River drinking-water populations. Average and maximum consumption rates of beef, milk, vegetables, and fish have been determined for individuals residing in the southern United States. The study suggest that many of the consumption rates provided by the NRC may not be appropriate for residents of the South. Average consumption rates are slightly higher than the defaults provided by the NRC. Maximum consumption rates, however, are typically lower than NRC values. Agricultural productivity in the SRS region was found to be quite different than NRC recommendations. Off-site doses have been predicted using both NRC and SRS parameter values to demonstrate the significance of site-specific data.

  17. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect (OSTI)

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  18. The Production Tax Credit is Key to a Strong U.S. Wind Industry

    Broader source: Energy.gov [DOE]

    New report finds the production tax credit has been critical to the growth of the U.S. wind industry.

  19. Selling green power in California: Product, industry, and market trends

    SciTech Connect (OSTI)

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  20. ITP Forest Products: Report for AIChE Pulp and Paper Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report PDF icon ...

  1. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect (OSTI)

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  2. Research, Development and Demonstration of Bio-Mass Boiler for Food Industry

    SciTech Connect (OSTI)

    Fisher, Steve; Knapp, David

    2012-07-01

    Frito-Lay is working to reduce carbon emissions from their manufacturing plants. As part of this effort, they invested in a biomass-fired boiler at the Topeka, Kansas, plant. Frito-Lay partnered with Burns & McDonnell Engineering, Inc. and CPL Systems, Inc., to design and construct a steam producing boiler using carbon neutral fuels such as wood wastes (e.g. tree bark), shipping pallets, and used rubber vehicle tires. The U.S. Department of Energy (DOE) joined with Frito-Lay, Burns & McDonnell, and CPL to analyze the reductions in carbon dioxide (CO2) emissions that result from use of biomass-fired boilers in the food manufacturing environment. DOE support provided for the data collection and analysis, and reporting necessary to evaluate boiler efficiencies and reductions in CO2 emissions. The Frito-Lay biomass-fired boiler has resulted in significant reductions in CO2 emissions from the Topeka production facility. The use of natural gas has been reduced by 400 to 420 million standard cubic feet per year with corresponding reductions of 24,000 to 25,000 tons of CO2. The boiler does require auxiliary functions, however, that are unnecessary for a gas-fired boiler. These include heavy motors and fans for moving fuel and firing the boiler, trucks and equipment for delivering the fuel and moving at the boiler plant, and chippers for preparing the fuel prior to delivery. Each of these operations requires the combustion of fossil fuels or electricity and has associated CO2 emissions. Even after accounting for each of these auxiliary processes, however, the biomass-fired boiler results in net emission reductions of 22,500 to 23,500 tons of CO2 per year.

  3. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  4. Covered Product Category: Industrial Luminaires (High/Low Bay)

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance and Federal efficiency requirements for Industrial Luminaires (High/Low Bay). Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  5. Shenzhen Prosunpro PengSangPu Solar Industrial Products Corporation...

    Open Energy Info (EERE)

    China Zip: 518055 Sector: Solar Product: Shenzhen Prosunpro makes and installs flat panel solar passive energy collectors and engineers central solar hot water systems....

  6. Bioaccumulation and food chain transfer of corrosion products from radioactive stainless steel

    SciTech Connect (OSTI)

    Young, J.S.

    1986-07-01

    Two sets of experiments were conducted to determine if corrosion products from radioactive Type 347 stainless steel could be biologically transferred from sediment through a marine food chain, and whether corrosion products dissolved in seawater could be bioaccumulated and then eliminated. Corrosion products containing /sup 60/Co and /sup 63/Ni from the radioactive stainless steel were introduced into marine sediments. Infaunal polychaete worms exposed to these sediments bioaccumulated the radionuclides. The feeding of these worms to shrimp and fish resulted in a trophic transfer of the radioactive products across a one-step food chain. The magnitude of the transfers are described in terms of transfer factors. Dissolved corrosion products as measured by the radionuclides were also bioaccumulated by shrimp and fish concentrating more than fish. Concentration factors were calculated.

  7. Establishment of a Graduate Certificate Program in Biobased Industrial Products – Final Technical Report

    SciTech Connect (OSTI)

    John R. Schlup

    2005-11-04

    A certificate of graduate studies in Biobased Industrial Products is to be established at Kansas State University (KSU) along with the development of a similar program at Pittsburg State University, Pittsburg, KS. At KSU, the program of study will be coordinated through the steering committee of the Agricultural Products Utilization Forum (APUF); the certificate of graduate studies will be awarded through the Graduate School of Kansas State University. This certificate will establish an interdisciplinary program of study that will: (1) ensure participating students receive a broad education in several disciplines related to Biobased Industrial Products, (2) provide a documented course of study for students preferring a freestanding certificate program, and (3) provide a paradigm shift in student awareness away from petroleum-based feedstocks to the utilization of renewable resources for fuels and chemical feedstocks. The academic program described herein will accomplish this goal by: (1) providing exposure to several academic disciplines key to Biobased Industrial Products; (2) improving university/industry collaboration through an external advisory board, distance learning opportunities, and student internships; (3) expanding the disciplines represented on the students' supervisory committee; (4) establishing a seminar series on Biobased Industrial Products that draws upon expert speakers representing several disciplines; and (5) increasing collaboration between disciplines. Numerous research programs emphasizing Biobased Industrial Products currently exist at KSU and PSU. The certificate of graduate studies, the emphasis on interdisciplinary collaboration within the students? thesis research, the proposed seminar series, and formation of an industrial advisory board will: (1) provide an interdisciplinary academic experience that spans several departments, four colleges, four research centers, and two universities; (2) tangibly promote collaboration between KSU and PSU; (3) catalyze involvement of plant geneticists with researchers active in the development and utilization of biobased industrial products; and, (4) promote university/industry collaboration.

  8. ISSUANCE 2016-04-11: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

  9. Hazardous waste minimization. Part 3. Waste minimization in the paint and allied products industry

    SciTech Connect (OSTI)

    Lorton, G.A.

    1988-04-01

    This paper looks at waste minimization practices available to the paint and coatings industry. The paper begins with an introduction to the industry and a description of the products. The steps involved in the manufacture of paints and coatings are then described. The paper then identifies the wastes generated. Source reduction and recycling techniques are the predominant means of minimizing waste in this industry. Equipment cleaning wastes are the largest category of wastes, and the paper concentrates on equipment and techniques available to reduce or eliminate these wastes. Techniques are described to reduce the other wastes from manufacturing operations. The paper concludes with a discussion of changing industry product trends and the effect that these trends will have on the generation of waste.

  10. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    SciTech Connect (OSTI)

    Shi, Ruijie

    2013-12-30

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  11. Industrial Assessment Centers: AMO Technical Assistance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assessment Centers Overview * DOE funds engineering programs at national ... Fabricated Metal, 11.5% All Others, 15.2% Food Products, 14.9% Stone, Clay & Glass, 4.2% ...

  12. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  13. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  14. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    SciTech Connect (OSTI)

    Maranon, E.; Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y.; Gomez, L.; Garcia, M.M.

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  15. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... the forest products industry through innovation 2 The U.S. Forest Products Industry's ...

  16. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  17. ISSUANCE 2015-05-12: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Consumer and Commercial Water Heaters

  18. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  19. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  20. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  1. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  2. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect (OSTI)

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  3. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect (OSTI)

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the research, technology transfer/outreach was a large component of CPCPC's activities. Efficient technology transfer was critical for the deployment of new technologies into the field. CPCPC organized and hosted technology transfer meetings, tours, and tutorials, attended outreach conferences and workshops to represent CPCPC and attract new members, prepared and distributed reports and publications, and developed and maintained a Web site. The second contract ended December 31, 2010, and it is apparent that CPCPC positively impacted the carbon industry and coal research. Statistics and information were compiled to provide a comprehensive account of the impact the consortium had and the beneficial outcomes of many of the individual projects. Project fact sheet, success stories, and other project information were prepared. Two topical reports, a Synthesis report and a Web report, were prepared detailing this information.

  4. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    SciTech Connect (OSTI)

    Gualtieri, Alessandro F.; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Lassinantti Gualtieri, Magdalena; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-15

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  5. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    SciTech Connect (OSTI)

    Huang, Shi; Fulbright, Scott P; Zeng, Xiaowei; Yates, Tracy; Wardle, Greg; Chisholm, Stephen T; Xu, Jian; Lammers, Peter

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We apply a principal component analysis across the initial sample set to draw correlations between sample variables and changes in microbiome populations.

  6. Corrosion-resistant alloy products for oil and gas industries by the HIP clad process

    SciTech Connect (OSTI)

    Bishop, M.

    1984-10-01

    Sour gas wells, which have extremely corrosive environments, are occurring more and more frequently as oil companies are forced to drill deeper wells to find new reserves. This places a premium on tubular goods and wellhead components that can withstand the hydrogen sulfide (H/sub 2/S), brine, and sulphur found in sour gas. The oil industry is currently injecting water or oil-base inhibitors into the bottom of the wells to prevent corrosion of the tubulars and wellhead components. The inhibitor coats the steel, as it flows upward with the oil or gas, protecting it from corrosion. Unfortunately, it is often uneconomical to transport inhibitors to offshore rigs, and high temperature wells can cause the inhibitors to break down and render them useless. Because of these problems, products made from corrosion-resistant alloys are being developed and tested. One of the most important developments in this area is the use of cladding.

  7. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial ...

  8. Industry Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Partnerships

  9. The influence of slaughterhouse waste on fermentative H{sub 2} production from food waste: Preliminary results

    SciTech Connect (OSTI)

    Boni, Maria Rosaria; Sbaffoni, Silvia; Tuccinardi, Letizia

    2013-06-15

    Highlights: • Co-digestion process finalized to bio-H{sub 2} production was tested in batch tests. • Slaughterhouse waste (SHW) and food waste (FW) were co-digested in different proportions. • The presence of SHW affected the H{sub 2} production from FW. • When SHW ranging between 50% and 70% the H{sub 2} production is improved. • SHW percentages above 70%, led to a depletion in H{sub 2} production. - Abstract: The aim of this study was to evaluate the influence of slaughterhouse waste (SHW; essentially the skin, fats, and meat waste of pork, poultry, and beef) in a fermentative co-digestion process for H{sub 2} production from pre-selected organic waste taken from a refectory (food waste [FW]). Batch tests under mesophilic conditions were conducted in stirred reactors filled with different proportions of FW and SHW. The addition of 60% and 70% SHW to a mixture of SHW and FW improved H{sub 2} production compared to that in FW only, reaching H{sub 2}-production yields of 145 and 109 ml gVS{sub 0}{sup -1}, respectively, which are 1.5–2 times higher than that obtained with FW alone. Although the SHW ensured a more stable fermentative process due to its high buffering capacity, a depletion of H{sub 2} production occurred when SHW fraction was higher than 70%. Above this percentage, the formation of foam and aggregated material created non-homogenous conditions of digestion. Additionally, the increasing amount of SHW in the reactors may lead to an accumulation of long chain fatty acids (LCFAs), which are potentially toxic for anaerobic microorganisms and may inhibit the normal evolution of the fermentative process.

  10. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  11. Federal Register Vol. 76 No. 44, 12422-12505- Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)

    Broader source: Energy.gov [DOE]

    Federal Register Vol. 76 No. 44, 12422-12505 - Energy Conservation Program: Certification, Compliance, and Enforcement for Consumer Products and Commercial and Industrial Equipment (March 7, 2011)....

  12. ISSUANCE 2015-06-25: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Test Procedures for Residential and Commercial Water Heaters; Correction

  13. Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011

    Broader source: Energy.gov [DOE]

    This document is the Energy Conservation Program for Consumer Products and Commercial and Industrial Equipment-- AHRI Annual Meeting CCE Overview and Update Presenation, dated April 13, 2011

  14. WOSMIP II- Workshop on Signatures of Medical and Industrial Isotope Production

    SciTech Connect (OSTI)

    Matthews, Murray; Achim, Pascal; Auer, M.; Bell, Randy; Bowyer, Ted W.; Braekers, Damien; Bradley, Ed; Briyatmoko, Budi; Berglund, Helena; Camps, Johan; Carranza, Eduardo C.; Carty, Fitz; DeCaire, Richard; Deconninck, Benoit; DeGeer, Lars E.; Druce, Michael; Friese, Judah I.; Hague, Robert; Hoffman, Ian; Khrustalev, Kirill; Lucas, John C.; Mattassi, G.; Mattila, Aleski; Nava, Elisabetta; Nikkinin, Mika; Papastefanou, Constantin; Piefer, Gregory R.; Quintana, Eduardo; Ross, Ole; Rotty, Michel; Sabzian, Mohammad; Saey, Paul R.; Sameh, A. A.; Safari, M.; Schoppner, Michael; Siebert, Petra; Unger, Klaus K.; Vargas, Albert

    2011-11-01

    Medical and industrial fadioisotopes are fundamental tools used in science, medicine and industry with an ever expanding usage in medical practice where their availability is vital. Very sensitive environmental radionuclide monitoring networks have been developed for nuclear-security-related monitoring [particularly Comprehensive Test-Ban-Treaty (CTBT) compliance verification] and are now operational.

  15. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  16. The U.S. Dry-Mill Ethanol Industry: Biobased Products and Bioenergy Initiative Success Stories

    SciTech Connect (OSTI)

    2009-10-28

    This fact sheet provides an overview of the history of ethanol production in the United States and describes innovations in dry-mill ethanol production.

  17. " Row: Industry-Specific Technologies...

    U.S. Energy Information Administration (EIA) Indexed Site

    ," Membrane Hyperfiltration to Separate Water from Food Products",255,13949,2345,2.3 ... ," Membrane Hyperfiltration to Separate Water from Food Products",5,34,11,1 ...

  18. ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and Paper Industry

    Broader source: Energy.gov [DOE]

    The United States is the world's leading producer, consumer, and exporter of pulp, paper, and paperboard products.

  19. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  20. West Pico Food | Open Energy Information

    Open Energy Info (EERE)

    Pico Food Jump to: navigation, search Name: West Pico Food Place: Vernon, California Sector: Solar Product: A distributor of wholesale frozen foods to supermarket chains in...

  1. Trends in radionuclide concentrations for selected wildlife and food products near the Hanford Site from 1971 through 1988

    SciTech Connect (OSTI)

    Eberhardt, L.E.; Cadwell, L.L.; Price, K.R.; Carlile, D.W.; Alaska Dept. of Fish and Game, Juneau, AK )

    1989-09-01

    From 1971 through 1988 at least 40 species of wildlife and 27 different types of food products were collected and analyzed for radionuclides as part of the Pacific Northwest Laboratory (PNL) Environmental Monitoring Program. This report summarizes the results of these analyses for sample types collected for all or most of the 18-year period. The objectives of this summary investigation were to identify long-term trends or significant year-to-year changes in radionuclide concentrations and, if possible, relate any observed changes in radionuclide concentrations to their sources and probable causes. Statistical techniques were employed to test for long-term trends. Conspicuous short-term changes in radionuclide concentrations were identified from inspection of the data. 30 refs., 16 figs., 4 tabs.

  2. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect (OSTI)

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  3. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  4. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-23

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  5. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

  6. Intelligent Production Monitoring and Control based on Three Main Modules for Automated Manufacturing Cells in the Automotive Industry

    SciTech Connect (OSTI)

    Berger, Ulrich; Kretzschmann, Ralf; Algebra, A. Vargas Veronica

    2008-06-12

    The automotive industry is distinguished by regionalization and customization of products. As consequence, the diversity of products will increase while the lot sizes will decrease. Thus, more product types will be handled along the process chain and common production paradigms will fail. Although Rapid Manufacturing (RM) methodology will be used for producing small individual lot sizes, new solution for joining and assembling these components are needed. On the other hand, the non-availability of existing operational knowledge and the absence of dynamic and explicit knowledge retrieval minimize the achievement of on-demand capabilities. Thus, in this paper, an approach for an Intelligent Production System will be introduced. The concept is based on three interlinked main modules: a Technology Data Catalogue (TDC) based on an ontology system, an Automated Scheduling Processor (ASP) based on graph theory and a central Programmable Automation Controller (PAC) for real-time sensor/actor communication. The concept is being implemented in a laboratory set-up with several assembly and joining processes and will be experimentally validated in some research and development projects.

  7. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.

  8. Re-utilization of Industrial CO2 for Algae Production Using a Phase Change Material

    SciTech Connect (OSTI)

    Joseph, Brian

    2013-12-31

    This is the final report of a 36-month Phase II cooperative agreement. Under this project, Touchstone Research Laboratory (Touchstone) investigated the merits of incorporating a Phase Change Material (PCM) into an open-pond algae production system that can capture and re-use the CO2 from a coal-fired flue gas source located in Wooster, OH. The primary objective of the project was to design, construct, and operate a series of open algae ponds that accept a slipstream of flue gas from a coal-fired source and convert a significant portion of the CO2 to liquid biofuels, electricity, and specialty products, while demonstrating the merits of the PCM technology. Construction of the pilot facility and shakedown of the facility in Wooster, OH, was completed during the first two years, and the focus of the last year was on operations and the cultivation of algae. During this Phase II effort a large-scale algae concentration unit from OpenAlgae was installed and utilized to continuously harvest algae from indoor raceways. An Algae Lysing Unit and Oil Recovery Unit were also received and installed. Initial parameters for lysing nanochloropsis were tested. Conditions were established that showed the lysing operation was effective at killing the algae cells. Continuous harvesting activities yielded over 200 kg algae dry weight for Ponds 1, 2 and 4. Studies were conducted to determine the effect of anaerobic digestion effluent as a nutrient source and the resulting lipid productivity of the algae. Lipid content and total fatty acids were unaffected by culture system and nutrient source, indicating that open raceway ponds fed diluted anaerobic digestion effluent can obtain similar lipid productivities to open raceway ponds using commercial nutrients. Data were also collected with respect to the performance of the PCM material on the pilot-scale raceway ponds. Parameters such as evaporative water loss, temperature differences, and growth/productivity were tracked. The pond with the PCM material was consistently 2 to 5°C warmer than the control pond. This difference did not seem to increase significantly over time. During phase transitions for the PCM, the magnitude of the difference between the daily minimum and maximum temperatures decreased, resulting in smaller daily temperature fluctuations. A thin layer of PCM material reduced overall water loss by 74% and consistently provided algae densities that were 80% greater than the control pond.

  9. ITP Industrial Distributed Energy: Combustion Turbine CHP System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Combustion Turbine CHP System for Food Processing Industry Reducing Industry's Environmental Footprint and Easing Transmission Congestion Based at a...

  10. Industrial cogeneration optimization program. Final report, September 1979

    SciTech Connect (OSTI)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  11. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  12. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-08-27

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of 2002 SWC request-for-proposal, (2) organized and hosted the Spring SWC meeting in Columbus, Ohio for membership proposal presentations and review; (3) tentatively scheduled the 2002 fall technology transfer meeting sites, and (4) continued to recruit additional Consortium members. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  13. Southeastern Center for Industrial Energy Intensity Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    equipment manufacturing, and food manufacturing, the industrial ... Existing continuing education resources at the universities target graduating engineering ...

  14. Review of tribological sinks in six major industries

    SciTech Connect (OSTI)

    Imhoff, C.H.; Brown, D.R.; Hane, G.J.; Hutchinson, R.A.; Erickson, R.; Merriman, T.; Gruber, T.; Barber, S.

    1985-09-01

    Friction and material wear occur throughout all industries and are involved in many processes within each industry. These conditions make assessing tribological activity overall in industry very complex and expensive. Therefore, a research strategy to obtain preliminary information on only the most significant industrial tribological sinks was defined. The industries examined were selected according to both the magnitude of overall energy consumption (particularly machine drive) and the known presence of significant tribological sinks. The six industries chosen are as follows: mining, agriculture, primary metals, chemicals/refining, food, and pulp and paper. They were reviewed to identify and characterize the major tribology sinks. It was concluded that wear losses are greater than friction losses, and that reducing wear rates would improve industrial productivity.

  15. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    SciTech Connect (OSTI)

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; Weston, David; Cottingham, Robert; Hartwell, James; Davis, Sarah C.; Silvera, Katia; Ming, Ray; Schlauch, Karen; Abraham, Paul E.; Stewart, J. Ryan; Guo, Hao -Bo; Nair, Sujithkumar S.; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Albion, Rebecca; Ha, Jungmin; Lim, Sung Don; Wone, Bernard W. M.; Yim, Won Cheol; Garcia, Travis; Mayer, Jesse A.; Petereit, Juli; Casey, Erin; Hettich, Robert L.; Ceusters, John; Ranjan, Priya; Palla, Kaitlin J.; Yin, Hengfu; Reyes-Garcia, Casandra; Andrade, Jose Luis; Freschi, Luciano; Beltran, Juan D.; Dever, Louisa V.; Boxall, Susanna F.; Waller, Jade; Davies, Jack; Bupphada, Phaitun; Kadu, Nirja; Winter, Klaus; Sage, Rowan F.; Aguilar, Cristobal N.; Schmutz, Jeremy; Jenkins, Jerry; Holtum, Joseph A.M.

    2015-07-07

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal COâ‚‚ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAM crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.

  16. A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xiaohan; Cushman, John C.; Borland, Anne M.; Edwards, Erika; Wullschleger, Stan D.; Tuskan, Gerald A.; Owen, Nick; Griffiths, Howard; Smith, J. Andrew C.; Cestari De Paoli, Henrique; et al

    2015-01-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that features nocturnal CO₂ uptake, facilitates increased water-use efficiency (WUE), and enables CAM plants to inhabit water-limited environments such as semi-arid deserts or seasonally dry forests. Human population growth and global climate change now present challenges for agricultural production systems to increase food, feed, forage, fiber, and fuel production. One approach to meet these challenges is to increase reliance on CAM crops, such as Agave and Opuntia, for biomass production on semi-arid, abandoned, marginal, or degraded agricultural lands. Major research efforts are now underway to assess the productivity of CAMmore » crop species and to harness the WUE of CAM by engineering this pathway into existing food and bioenergy crops. An improved understanding of CAM gained through intensive and expanded research efforts has potential for high returns on research investment in the foreseeable future. To help realize the potential of sustainable dryland agricultural systems, it is necessary to address scientific questions related to the genomic features, regulatory mechanisms, and evolution of CAM; CAM-into-C3 engineering; and the production of CAM crops. Answering these questions requires collaborative efforts to build infrastructure for CAM model systems, field trials, mutant collections, and data management.« less

  17. Flat Ge-doped optical fibres for food irradiation dosimetry

    SciTech Connect (OSTI)

    Noor, N. Mohd; Jusoh, M. A.; Razis, A. F. Abdull; Alawiah, A.; Bradley, D. A.

    2015-04-24

    Exposing food to radiation can improve hygiene quality, germination control, retard sprouting, and enhance physical attributes of the food product. To provide for food safety, radiation dosimetry in irradiated food is required. Herein, fabricated germanium doped (Ge-doped) optical fibres have been used. The fibres have been irradiated using a gamma source irradiator, doses in the range 1 kGy to 10 kGy being delivered. Using Ge-doped optical fibres of variable size, type and dopant concentration, study has been made of linearity, reproducibility, and fading. The thermoluminescence (TL) yield of the fibres were obtained and compared. The fibres exhibit a linear dose response over the investigated range of doses, with mean reproducibility to within 2.69 % to 8.77 %, exceeding the dose range of all commercial dosimeters used in evaluating high doses for the food irradiation industry. TL fading of the Ge-doped flat fibres has been found to be < 13%.

  18. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R.; Guariguata, G.; Salmen, F.G.

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  19. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect (OSTI)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  20. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

  1. INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING TRANSFORMATIONAL ENERGY PRODUCTIVITY GAINS INDUSTRIAL SCALE DEMONSTRATION OF SMART MANUFACTURING ACHIEVING ...

  2. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  3. Lien Hwa Industrial Corporation | Open Energy Information

    Open Energy Info (EERE)

    Lien Hwa Industrial Corporation Jump to: navigation, search Name: Lien Hwa Industrial Corporation Place: Taipei, Taiwan Product: Lien Hwa Industrial Corporation is an agricultural,...

  4. TG Agro Industrial | Open Energy Information

    Open Energy Info (EERE)

    TG Agro Industrial Jump to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a...

  5. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  6. Meehan s Industrial | Open Energy Information

    Open Energy Info (EERE)

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  7. MRL Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  8. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  9. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  10. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2003 through September 30, 2004

    SciTech Connect (OSTI)

    Andresen, John; Schobert, Harold; Miller, Bruce G

    2006-03-01

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected 10 projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the various subcontractors on March 1, 2004.

  11. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  12. Energy Department, Northwest Food Processors Association Set Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Goals for Industry | Department of Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry February 17, 2009 - 12:00am Addthis PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies

  13. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  14. Advanced, Energy-Efficient Hybrid Membrane System for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... host industrial sites for field test Food & beverage Ethanol Pulp & ... GoNo---Go - Preliminary draft engineering design package for ...

  15. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  16. Economic evaluation and conceptual design of optimal agricultural systems for production of food and energy. Final report

    SciTech Connect (OSTI)

    1982-03-01

    The major technical and economic considerations which determined the scope of the study and the structure of the linear programming (LP) models are discussed. Four models, each representing a typical crop, beef, dairy, or swine farm in conjunction with ethanol facilities are characterized by the same general behavioral and mathematical model structure. Specific activities, constraints, and data for each of the four models are presented. An overview of the model structure is provided in the context of the general scope and background assumptions, and of its LP implementation. Simulated initial conditions and outcomes are reported for typical Illinois farms. Policy implications are discussed as related to agriculture, energy, and inter-industry coordination. (MHR)

  17. Enviromech Industries | Open Energy Information

    Open Energy Info (EERE)

    search Name: Enviromech Industries Place: Thousands Palms, California Zip: 92276 Product: Alternative fuel system design and integration company. References: Enviromech...

  18. CEMI Industrial Efficiency (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.  

  19. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual savings opportunities for

  20. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  1. Development of value-added products from alumina industry mineral wastes using low-temperature-setting phosphate ceramics

    SciTech Connect (OSTI)

    Wagh, A.S.; Jeong, Seung-Young; Singh, D.

    1996-01-01

    A room-temperature process for stabilizing mineral waste streams has been developed, based on acid-base reaction between MgO and H3PO4 or acid phosphate solution. The resulting waste form sets into a hard ceramic in a few hours. In this way, various alumina industry wastes, such as red mud and treated potliner waste, can be solidified into ceramics which can be used as structural materials in waste management and construction industry. Red mud ceramics made by this process were low-porosity materials ({approx}2 vol%) with a compression strength equal to portland cement concrete (4944 psi). Bonding mechanism appears to be result of reactions of boehmite, goethite, and bayerite with the acid solution, and also encapsulation of red mud particles in Mg phosphate matrix. Possible applications include liners for ponds and thickned tailings disposal, dikes for waste ponds, and grouts. Compatability problems arising at the interface of the liner and the waste are avoided.

  2. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    SciTech Connect (OSTI)

    Bruce G. Miller

    2006-09-29

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting period (i.e., 10/01/05-09/30/06), is attached. At the annual funding meeting held in November 2004, eleven projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005. Of these fourteen 2005 projects, eleven have been completed and the final reports are attached. An annual funding meeting was held in November 2005 and the council selected five projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2006, except for one that started October 1, 2006.

  3. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2004 through September 30, 2005

    SciTech Connect (OSTI)

    Miller, Bruce G

    2006-03-01

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected ten projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten projects have been completed and the final reports for these 2004 projects are attached. An annual funding meeting was held in November 2004 and the council selected eleven projects for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2005. Three additional projects were selected for funding during the April 2005 tutorial/funding meeting. Subcontracts were let from Penn State to the subcontractors on July 1, 2005.

  4. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  5. Energy Department, Northwest Food Processors Association Set Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies Program Manager Douglas Kaempf and Northwest Food Processors Association (NWFPA) President David Zepponi signed a Memorandum of Understanding (MOU)

  6. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries

    SciTech Connect (OSTI)

    Ebner, A.D.; Ritter, J.A.

    2009-07-01

    With the growing concern about global warming placing greater demands on improving energy efficiency and reducing CO{sub 2} emissions, the need for improving the energy intensive, separation processes involving CO{sub 2} is well recognized. The US Department of Energy estimates that the separation of CO{sub 2} represents 75% of the cost associated with its separation, storage, transport, and sequestration operations. Hence, energy efficient, CO{sub 2} separation technologies with improved economics are needed for industrial processing and for future options to capture and concentrate CO{sub 2} for reuse or sequestration. The overall goal of this review is to foster the development of new adsorption and membrane technologies to improve manufacturing efficiency and reduce CO{sub 2} emissions. This study focuses on the power, petrochemical, and other CO{sub 2} emitting industries, and provides a detailed review of the current commercial CO{sub 2} separation technologies, i.e., absorption, adsorption, membrane, and cryogenic, an overview of the emerging adsorption and membrane technologies for CO{sub 2} separation, and both near and long term recommendations for future research on adsorption and membrane technologies. Flow sheets of the principal CO{sub 2} producing processes are provided for guidance and new conceptual flow sheets with ideas on the placement of CO{sub 2} separations technologies have also been devised.

  7. THE LHC CRYOMAGNET SUPPORTS IN GLASS-FIBER REINFORCED EPOXY: A LARGE SCALE INDUSTRIAL PRODUCTION WITH HIGH REPRODUCIBILITY IN PERFORMANCE

    SciTech Connect (OSTI)

    Poncet, A.; Struik, M.; Parma, V.; Trigo, J.

    2008-03-03

    The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production.The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004.This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.

  8. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    SciTech Connect (OSTI)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  9. Uranium industry annual 1998

    SciTech Connect (OSTI)

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  10. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  11. PAIS Industries Group | Open Energy Information

    Open Energy Info (EERE)

    PAIS Industries Group Jump to: navigation, search Name: PAIS Industries Group Sector: Solar Product: Plans to supply solar-grade silicon, conditional on an agreement with the Inner...

  12. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Industry Profile Chemicals Industry Profile Chemical products are essential to ... Economic The United States is the top chemical producer in the world, accounting for ...

  13. Agro Industrial Taruma | Open Energy Information

    Open Energy Info (EERE)

    Industrial Taruma Jump to: navigation, search Name: Agro Industrial Taruma Place: Sao Pedro do Turvo, Sao Paulo, Brazil Zip: 18940-000 Product: Brazil based ethanol producer...

  14. California Solar Energy Industries Association | Open Energy...

    Open Energy Info (EERE)

    Solar Energy Industries Association Jump to: navigation, search Name: California Solar Energy Industries Association Place: Rio Vista, California Zip: 94571 Sector: Solar Product:...

  15. Aditya Solar Power Industries | Open Energy Information

    Open Energy Info (EERE)

    Aditya Solar Power Industries Jump to: navigation, search Name: Aditya Solar Power Industries Place: India Sector: Solar Product: Bangalore-based solar project developer....

  16. Phoenix Bio Industries LLC | Open Energy Information

    Open Energy Info (EERE)

    Bio Industries LLC Jump to: navigation, search Name: Phoenix Bio-Industries LLC Place: Goshen, California Zip: 93227 Product: Ethanol producer. Coordinates: 37.988525,...

  17. Canyon Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Canyon Industries Inc Place: Deming, Washington State Zip: 98244 Sector: Hydro Product: Canyon Hydro produces a range of small...

  18. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: Jordan Zip: 1182 Sector: Solar Product: Jordan-based solar energy firm focused in MENA region. References: Millennium Energy Industries1 This article is a...

  19. CRV industrial Ltda | Open Energy Information

    Open Energy Info (EERE)

    CRV industrial Ltda Jump to: navigation, search Name: CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer...

  20. Yusheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yusheng Industrial Co Ltd Jump to: navigation, search Name: Yusheng Industrial Co., Ltd Place: Hunan Province, China Zip: 415000 Sector: Hydro Product: Hunan-based small hydro...

  1. Triangle biofuels Industries | Open Energy Information

    Open Energy Info (EERE)

    Triangle biofuels Industries Jump to: navigation, search Name: Triangle biofuels Industries Place: Iowa Product: Biodiesel producer developing a 19mlpa plant in Johnston, IA....

  2. Hebei Huazheng Industry | Open Energy Information

    Open Energy Info (EERE)

    Hebei Province, China Zip: 53500 Product: Hebei Huazheng Industry manufactures electrical semiconductor devices. References: Hebei Huazheng Industry1 This article is a stub. You...

  3. Clean Technology Sustainable Industries Organization | Open Energy...

    Open Energy Info (EERE)

    Sustainable Industries Organization Jump to: navigation, search Name: Clean Technology & Sustainable Industries Organization Place: Royal Oak, Michigan Zip: 48073 Product: A...

  4. Vikram Group of Industries | Open Energy Information

    Open Energy Info (EERE)

    Vikram Group of Industries Jump to: navigation, search Name: Vikram Group of Industries Place: Kolkatta, West Bengal, India Zip: 700001 Product: Kolkata-based tea processing...

  5. South Jersey Industries | Open Energy Information

    Open Energy Info (EERE)

    Jersey Industries Jump to: navigation, search Name: South Jersey Industries Place: Folsom, New Jersey Zip: 8037 Sector: Services Product: An energy services holding company....

  6. AgroIndustrial Capela | Open Energy Information

    Open Energy Info (EERE)

    AgroIndustrial Capela Jump to: navigation, search Name: AgroIndustrial Capela Place: Capela, Sergipe, Brazil Product: Brazil based ethanol producer located in Sergipe, part of...

  7. Solventus Industrial SL | Open Energy Information

    Open Energy Info (EERE)

    Name: Solventus Industrial SL Place: Alczar de San Juan, Spain Zip: 13600 Product: Spanish project developer and engineering. References: Solventus Industrial SL1 This...

  8. Sanyo Chemical Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Sanyo Chemical Industries Place: Tokyo, Japan Zip: 103-0023 Product: String representation "Sanyo is a petr ... uction process." is...

  9. Toray Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Toray Industries Inc Place: Tokyo, Japan Zip: 103 8666 Sector: Carbon, Vehicles, Wind energy Product: String representation "A...

  10. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  11. Integrated Biodiesel Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Industries Ltd Jump to: navigation, search Name: Integrated Biodiesel Industries Ltd Place: Sao Paulo, Sao Paulo, Brazil Zip: 01418-200 Product: Sao Paulo-based biodiesel producer....

  12. Angelantoni Industrie Spa | Open Energy Information

    Open Energy Info (EERE)

    Angelantoni Industrie Spa Jump to: navigation, search Name: Angelantoni Industrie Spa Place: Massa Martana, Italy Zip: 6056 Sector: Renewable Energy Product: String representation...

  13. Everbrite Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  14. Guardian Industries Corp | Open Energy Information

    Open Energy Info (EERE)

    Industries Corp Jump to: navigation, search Name: Guardian Industries Corp Place: Auburn Hills, Michigan Zip: 48326-1714 Sector: Solar Product: Michigan-based firm that...

  15. Danish Wind Industry Association | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Danish Wind Industry Association Place: Copenhagen V, Denmark Zip: DK-1552 Sector: Wind energy Product: The Danish Wind Industry Association...

  16. Assessment of On-Site Power Opportunities in the Industrial Sector

    SciTech Connect (OSTI)

    Bryson, T.

    2001-10-08

    The purpose of this report is to identify the potential for on-site power generation in the U.S. industrial sector with emphasis on nine industrial groups called the ''Industries of the Future'' (IOFs) by the U.S. Department of Energy (DOE). Through its Office of Industrial Technologies (OIT), the DOE has teamed with the IOFs to develop collaborative strategies for improving productivity, global competitiveness, energy usage and environmental performance. Total purchases for electricity and steam for the IOFs are in excess of $27 billion annually. Energy-related costs are very significant for these industries. The nine industrial groups are (1) Agriculture (SIC 1); (2) Forest products; (3) Lumber and wood products (SIC 24); (4) Paper and allied products (SIC 26); (5) Mining (SIC 11, 12, 14); (6) Glass (SIC 32); (7) Petroleum (SIC 29); (8) Chemicals (SIC 28); and (9) Metals (SIC 33): Steel, Aluminum, and Metal casting. Although not currently part of the IOF program, the food industry is included in this report because of its close relationship to the agricultural industry and its success with on-site power generation. On-site generation provides an alternative means to reduce energy costs, comply with environmental regulations, and ensure a reliable power supply. On-site generation can ease congestion in the local utility's electric grid. Electric market restructuring is exacerbating the price premium for peak electricity use and for reliability, creating considerable market interest in on-site generation.

  17. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  18. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    Jax Industries Place: Hillsboro, Oregon Product: Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates:...

  19. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: San Rafael, California Zip: 94901 Product: Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

  20. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  1. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  2. Nez Perce Tribe Biodiesel Production Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...Travel Food and Kindred Products Food and Kindred Products ... 2004 2004 - - Mineral Assessment Project: Mineral ...Owner Managed Other Creative Financing Arrangement ...

  3. RESULTS OF THE TECHNICAL AND ECONOMIC FEASIBILITY ANALYSIS FOR A NOVEL BIOMASS GASIFICATION-BASED POWER GENERATION SYSTEM FOR THE FOREST PRODUCTS INDUSTRY

    SciTech Connect (OSTI)

    Bruce Bryan; Joseph Rabovitser; Sunil Ghose; Jim Patel

    2003-11-01

    In 2001, the Gas Technology Institute (GTI) entered into Cooperative Agreement DE-FC26-01NT41108 with the U.S. Department of Energy (DOE) for an Agenda 2020 project to develop an advanced biomass gasification-based power generation system for near-term deployment in the Forest Products Industry (FPI). The advanced power system combines three advanced components, including biomass gasification, 3-stage stoker-fired combustion for biomass conversion, and externally recuperated gas turbines (ERGTs) for power generation. The primary performance goals for the advanced power system are to provide increased self-generated power production for the mill and to increase wastewood utilization while decreasing fossil fuel use. Additional goals are to reduce boiler NOx and CO{sub 2} emissions. The current study was conducted to determine the technical and economic feasibility of an Advanced Power Generation System capable of meeting these goals so that a capital investment decision can be made regarding its implementation at a paper mill demonstration site in DeRidder, LA. Preliminary designs and cost estimates were developed for all major equipment, boiler modifications and balance of plant requirements including all utilities required for the project. A three-step implementation plan was developed to reduce technology risk. The plant design was found to meet the primary objectives of the project for increased bark utilization, decreased fossil fuel use, and increased self-generated power in the mill. Bark utilization for the modified plant is significantly higher (90-130%) than current operation compared to the 50% design goal. For equivalent steam production, the total gas usage for the fully implemented plant is 29% lower than current operation. While the current average steam production from No.2 Boiler is about 213,000 lb/h, the total steam production from the modified plant is 379,000 lb/h. This steam production increase will be accomplished at a grate heat release rate (GHRR) equal to the original boiler design. Boiler efficiencies (cogeneration-steam plus air) is increased from the original design value of 70% to 78.9% due to a combination of improved burnout, operation with lower excess air, and drier fuel. For the fully implemented plant, the thermal efficiency of fuel to electricity conversion is 79.8% in the cogeneration mode, 5% above the design goal. Finally, self-generated electricity will be increased from the 10.8 MW currently attributable to No.2 Boiler to 46.7MW, an increase of 332%. Environmental benefits derived from the system include a reduction in NOx emissions from the boiler of about 30-50% (90-130 tons/year) through syngas reburning, improved carbon burnout and lower excess air. This does not count NOx reduction that may be associated with replacement of purchased electricity. The project would reduce CO{sub 2} emissions from the generation of electricity to meet the mill's power requirements, including 50,000 tons/yr from a net reduction in gas usage in the mill and an additional 410,000 tons/yr reduction in CO{sub 2} emissions due to a 34 MW reduction of purchased electricity. The total CO{sub 2} reduction amounts to about 33% of the CO{sub 2} currently generated to meet the mills electricity requirement. The overall conclusion of the study is that while significant engineering challenges are presented by the proposed system, they can be met with operationally acceptable and cost effective solutions. The benefits of the system can be realized in an economic manner, with a simple payback period on the order of 6 years. The results of the study are applicable to many paper mills in the U.S. firing woodwastes and other solid fuels for steam and power production.

  4. Ashkelon Technological Industries ATI | Open Energy Information

    Open Energy Info (EERE)

    Ashkelon Technological Industries (ATI) Place: Israel Sector: Services Product: General Financial & Legal Services ( Government Public sector ) References: Ashkelon...

  5. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  6. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Industry Cluster Development Grant winners Recipients include Picuris Pueblo and Rio Arriba County February 1, 2015 A new community mural on the Hunter Ford facility in Española celebrates the building's planned revitalization and the future location of the Northern New Mexico Food Hub. A new community

  7. Solar Night Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    St Louis, Missouri Zip: 63147 Product: Manufacturer and distributor of products which store energy by day and release it by night. References: Solar Night Industries Inc1 This...

  8. Monthly Biodiesel Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Biodiesel production capacity and production million gallons Period Annual Production ... B100 is the industry designation for pure biodiesel; a biodiesel blend contains both pure ...

  9. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  10. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  11. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  12. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User...

  13. Food Sales Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Characteristics by Activity... Food Sales Food sales buildings are buildings that are used for retail or wholesale sale of food. Basic Characteristics See also: Equipment |...

  14. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  15. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  16. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  17. Flexible Distributed Energy & Water from Waste for the Food & Beverage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry - Presentation by GE Global Research, June 2011 | Department of Energy Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at

  18. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  19. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food Drive Holiday Food Drive Laboratory employees helped donate 300 boxes of nonperishable food items and 360 frozen turkeys during the 2015 annual food drive. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Annual Food & Holiday Gift Drives Mike Martinez (505) 699-3388 Community Relations & Partnerships (505) 665-4400 Email Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract workers

  20. Agricultural production in the United States by county: a compilation of information from the 1974 census of agriculture for use in terrestrial food-chain transport and assessment models

    SciTech Connect (OSTI)

    Shor, R.W.; Baes, C.F. III; Sharp, R.D.

    1982-01-01

    Terrestrial food-chain models that simulate the transport of environmentally released radionuclides incorporate parameters describing agricultural production and practice. Often a single set of default parameters, such as that listed in USNRC Regulatory Guide 1.109, is used in lieu of site-specific information. However, the geographical diversity of agricultural practice in the United States suggests the limitations of a single set of default parameters for assessment models. This report documents default parameters with a county-wide resolution based on analysis of the 1974 US Census of Agriculture for use in terrestrial food chain models. Data reported by county, together with state-based information from the US Department of Agriculture, Economic and Statistics Service, provided the basis for estimates of model input parameters. This report also describes these data bases, their limitations, and lists default parameters by county. Vegetable production is described for four categories: leafy vegetables; vegetables and fruits exposed to airborne material; vegetables, fruits, and nuts protected from airborne materials; and grains. Livestock feeds were analyzed in categories of hay, silage, pasture, and grains. Pasture consumption was estimated from cattle and sheep inventories, their feed requirements, and reported quantities of harvested forage. The results were compared with assumed yields of the pasture areas reported. In addition, non-vegetable food production estimates including milk, beef, pork, lamb, poultry, eggs, goat milk, and honey are described. The agricultural parameters and land use information - in all 47 items - are tabulated in four appendices for each of the 3067 counties of the US reported to the Census of Agriculture, excluding those in Hawaii and Alaska.

  1. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  2. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  3. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Read more... ALS, Molecular Foundry, and aBeam

  4. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  5. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    SciTech Connect (OSTI)

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  6. Directory of Tennessee's forest industries 1980

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    A directory of primary and secondary forest industries is presented. Firm names and addresses are listed by county in alphabetical order. The following information is listed for each industry: type of plant, production and employee size class, products manufactured, and equipment. For the primary industries, the major species of trees used are listed. (MHR)

  7. Allsoft Engenharia e Informatica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Allsoft Engenharia e Informatica Industrial Jump to: navigation, search Name: Allsoft Engenharia e Informatica Industrial Place: Brazil Product: A Brazilian engineering and...

  8. Shanghai New Energy industry Association SNEIA | Open Energy...

    Open Energy Info (EERE)

    (SNEIA) Place: Shanghai Municipality, China Zip: 200235 Product: Shanghai-based industrial association for new energy sector References: Shanghai New Energy industry...

  9. China South Industries Group Corp CSG | Open Energy Information

    Open Energy Info (EERE)

    Industries Group Corp CSG Jump to: navigation, search Name: China South Industries Group Corp (CSG) Place: Beijing, Beijing Municipality, China Zip: 100821 Product: Beijing-based...

  10. Amrit Bio Energy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Amrit Bio Energy Industries Ltd Jump to: navigation, search Name: Amrit Bio Energy & Industries Ltd. Place: Kolkata, West Bengal, India Zip: 700017 Sector: Biomass Product:...

  11. Solar Energy LLC Industrial Investors Group | Open Energy Information

    Open Energy Info (EERE)

    LLC Industrial Investors Group Jump to: navigation, search Name: Solar Energy LLC - Industrial Investors Group Place: Moscow, Russian Federation Zip: 119017 Sector: Solar Product:...

  12. Jay Mahesh Sugar Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sugar Industries Ltd. Place: Maharashtra, India Zip: 431131 Product: Beed-based sugar mill with cogeneration project. References: Jay Mahesh Sugar Industries Ltd.1 This article...

  13. Companhia Industrial do Nordeste Brasileiro | Open Energy Information

    Open Energy Info (EERE)

    Industrial do Nordeste Brasileiro Jump to: navigation, search Name: Companhia Industrial do Nordeste Brasileiro Place: Pernambuco, Brazil Sector: Biomass Product: Brazil based...

  14. Dapu Huatai Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dapu Huatai Industrial Co Ltd Jump to: navigation, search Name: Dapu Huatai Industrial Co., Ltd. Place: Meizhou, Guangdong Province, China Zip: 715403 Sector: Hydro Product:...

  15. Jiangxi Huahui Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huahui Industrial Co Ltd Jump to: navigation, search Name: Jiangxi Huahui Industrial Co., Ltd. Place: Fuzhou, Jiangxi Province, China Zip: 335300 Sector: Hydro Product: China-based...

  16. Triunfo Agro Industrial S A | Open Energy Information

    Open Energy Info (EERE)

    Triunfo Agro Industrial S A Jump to: navigation, search Name: Triunfo Agro Industrial SA Place: Maceio, Alagoas, Brazil Product: Brazilian ethanol producer References: Triunfo...

  17. Companhia Agro Industrial de Goiana | Open Energy Information

    Open Energy Info (EERE)

    Companhia Agro Industrial de Goiana Jump to: navigation, search Name: Companhia Agro Industrial de Goiana Place: Recife, Pernambuco, Brazil Sector: Biomass Product: Ethanol and...

  18. ShaanXi Tianhong Silicon Industrial | Open Energy Information

    Open Energy Info (EERE)

    ShaanXi Tianhong Silicon Industrial Jump to: navigation, search Name: ShaanXi Tianhong Silicon Industrial Place: Shaanxi Province, China Product: Shaaxi-based polysilicon maker...

  19. Xi an Kaixin Industrial Development | Open Energy Information

    Open Energy Info (EERE)

    Kaixin Industrial Development Jump to: navigation, search Name: Xi(tm)an Kaixin Industrial Development Place: Xian, Shaanxi Province, China Sector: Hydro Product: China-based...

  20. Agropecuaria e Industrial Serra Grande | Open Energy Information

    Open Energy Info (EERE)

    e Industrial Serra Grande Jump to: navigation, search Name: Agropecuaria e Industrial Serra Grande Place: So Raimundo das Mangabeiras, Maranhao, Brazil Product: Privately owned...

  1. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  2. Lee Chung Yung Chemical Industry Corporation | Open Energy Information

    Open Energy Info (EERE)

    Chung Yung Chemical Industry Corporation Jump to: navigation, search Name: Lee Chung Yung Chemical Industry Corporation Place: Taipei, Taiwan Product: Chemical manufacturer...

  3. Nahar Industrial Enterprises Limited NIEL | Open Energy Information

    Open Energy Info (EERE)

    Industrial Enterprises Limited NIEL Jump to: navigation, search Name: Nahar Industrial Enterprises Limited (NIEL) Place: Punjab, India Zip: 140506 Sector: Biomass Product:...

  4. Vietnam National Coal Mineral Industries Group Vinacomin | Open...

    Open Energy Info (EERE)

    National Coal Mineral Industries Group Vinacomin Jump to: navigation, search Name: Vietnam National Coal-Mineral Industries Group (Vinacomin) Place: Vietnam Product: Vietnam-based...

  5. Nova Chemicals Reliance Industries JV | Open Energy Information

    Open Energy Info (EERE)

    Product: Nova Chemicals has signed an agreement with Reliance Industries to construct energy efficient buildings in India. References: Nova Chemicals & Reliance Industries...

  6. Baoding High Tech Industry Development Zone | Open Energy Information

    Open Energy Info (EERE)

    Name: Baoding High-Tech Industry Development Zone Place: China Product: Government & NGO ( State-owned commercial entity ) References: Baoding High-Tech Industry Development...

  7. Nanjing Dalu Industry Investment Group | Open Energy Information

    Open Energy Info (EERE)

    Dalu Industry Investment Group Jump to: navigation, search Name: Nanjing Dalu Industry Investment Group Place: Beijing Municipality, China Zip: 100055 Sector: Solar Product:...

  8. Henan Yinge Industrial Investment Corporation | Open Energy Informatio...

    Open Energy Info (EERE)

    Yinge Industrial Investment Corporation Jump to: navigation, search Name: Henan Yinge Industrial Investment Corporation Place: Henan Province, China Sector: Biomass Product:...

  9. Kung Long Batteries Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Kung Long Batteries Industrial Co Ltd Jump to: navigation, search Name: Kung Long Batteries Industrial Co Ltd Place: Nantou, Taiwan Product: Manufacturer of more than 200 types of...

  10. U.S. Mining Industry Energy Bandwidth Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... materials, including aluminum, beryllium, coal, copper, gold, iron, limestone, and silica. ... exploration and production industries, since similar equipment is used in both industries. ...

  11. Shenzhen Heng Yang Solar Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Industrial Co Ltd Jump to: navigation, search Name: Shenzhen Heng Yang Solar Industrial Co Ltd Place: Shenzhen, Guangdong Province, China Zip: 518081 Product: Imported...

  12. Shenzhen Coolead Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Shenzhen Coolead Industry Co. Ltd. Place: China Product: Air conditioning R&D, equipment manufacture and sales. References: Shenzhen Coolead Industry Co....

  13. Vision Industries dba Vision Motor Corp | Open Energy Information

    Open Energy Info (EERE)

    Industries dba Vision Motor Corp Jump to: navigation, search Name: Vision Industries (dba Vision Motor Corp) Place: Santa Monica, California Zip: 90405 Product: Santa Monica-based...

  14. " Electricity Generation by Census Region, Industry...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,0.6,0.6,1.3,1.3,0.7,1.2,1.2,1.6,1.2 , 20,"Food and Kindred Products",922,172,27,17,512,5,...:",0.7,0.7,1,1.2,0.8,1.2,1.3,1.4,1.1 , 20,"Food and Kindred Products",79,19,7,5,42,1,2,0,3...

  15. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  16. Study of lignocellulose components for production of lactic acid

    SciTech Connect (OSTI)

    Padukone, N.; Schmidt, S.L.; Goodman, B.J.; Wyman, C.E.

    1993-12-31

    Lactic acid promises to be an important chemical feedstock in the future for the production of biodegradable and biocompatible polymers. About half of the current US consumption is imported to meet the escalating demand from both the food and chemical industries. The potential future market for polylactide products would further stress the domestic capacity of lactic acid production. Renewable resources such as lignocellulosic crops and wastes are abundant and could be utilized for the production of important fuels and chemicals. This would not only reduce our dependence on limited reserves of fossil fuels but also alleviate the environmental burden of waste accumulation and disposal.

  17. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  18. Industrial Process Heating - Technology Assessment

    Energy Savers [EERE]

    ... energy used 75 in lower temperature industrial process ... F. and where there is availability of low cost 77 fuel or by ... products 533 Water treatment chemistry 534 535 Sensors ...

  19. Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites

    SciTech Connect (OSTI)

    Niu, Jing; Arentshorst, Mark; Nair, P. Deepa S.; Dai, Ziyu; Baker, Scott E.; Frisvad, Jens C.; Nielsen, Kristian F.; Punt, Peter J.; Ram, Arthur F. J.

    2015-11-13

    The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. As a result, we show that our systems genetics approach is a powerful tool to identify trait mutations.

  20. Food Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    was a food service building were only asked whether the building was a restaurant, bar, fast food chain, or cafeteria (all the same category) or some other type of food service...

  1. Purchasing Energy-Efficient Hot Food Holding Cabinets | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hot Food Holding Cabinets Purchasing Energy-Efficient Hot Food Holding Cabinets The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically

  2. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  3. The Impact of Ethanol Production on U.S. and Regional Gasoline Prices and on the Profitability of the U.S. Oil Refinery Industry

    SciTech Connect (OSTI)

    Du, Xiaodong; Hayes, Dermot J.

    2008-04-01

    This report details pooled regional time-series data and panel data estimation used to quantify the impact of monthly ethanol production on monthly retail regular gasoline prices.

  4. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    liquid fuel from wood and other non-food biomass Our key product is Renewable ... petroleum replacement from cellulosic non- food biomass Powerful unit economics - cash ...

  5. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1991--December 1991

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year`s project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  6. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  7. FutureGen Industrial Alliance Inc | Open Energy Information

    Open Energy Info (EERE)

    FutureGen Industrial Alliance Inc Jump to: navigation, search Name: FutureGen Industrial Alliance Inc Place: Washington, Washington, DC Zip: 20006 Product: The FutureGen Industrial...

  8. Industrial Solar Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology Corp Jump to: navigation, search Name: Industrial Solar Technology Corp Place: Golden, Colorado Zip: CO 80403-1 Product: IST designs, manufactures, installs and...

  9. Unichem Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Unichem produces high resolution screen printing equipment for crystalline silicon solar cell production. References: Unichem Industries Inc1 This article is a stub. You...

  10. Biodiesel Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  11. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Info (EERE)

    development of industry in developing nations. UNIDO focuses on three key areas: Poverty reduction through productive activities Trade capacity-building Energy and...

  12. SLS Power Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd. Place: Bangalore, Karnataka, India Sector: Hydro Product: Bangalore-based small hydro project developer. References: SLS Power Industries Ltd.1 This article is a stub....

  13. Beckons Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Beckons Industries Ltd Place: Mohali, Chandigarh, India Zip: 160055 Sector: Biofuels Product: India-based algae technology developer for...

  14. Siddeshwari Industries Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Muzaffarnagar, Uttar Pradesh, India Zip: 251001 Product: Muzaffarnagar based paper mill with cogeneration activities References: Siddeshwari Industries Pvt Ltd.1 This...

  15. Minxing Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co. Ltd. Place: Sichuan Province, China Zip: 625700 Sector: Hydro Product: Sichuan-based small hydro project developer. References: Minxing Industry Co. Ltd.1 This article is a...

  16. Cathay Industrial Biotech Ltd | Open Energy Information

    Open Energy Info (EERE)

    and supplier of chemicals, fuels and polymers that is exploring biobutanol research and production. References: Cathay Industrial Biotech Ltd1 This article is a stub. You can...

  17. Thompson Technology Industries TTI | Open Energy Information

    Open Energy Info (EERE)

    TTI Jump to: navigation, search Name: Thompson Technology Industries (TTI) Place: Novato, California Zip: 94949 Sector: Solar Product: Designer and manufacturer of solar tracking...

  18. Taiwan Glass Industry Corp | Open Energy Information

    Open Energy Info (EERE)

    Taiwan Glass Industry Corp Place: Taipei, Taiwan Zip: 10566 Product: Engaged in the manufacturing, processing and selling of various types of glass. References: Taiwan Glass...

  19. PRAJ Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    molasses based distillery technology, plant and equipment for alcohol, fuel ethanol and beer production. References: PRAJ Industries Ltd1 This article is a stub. You can help...

  20. Plastic Magen Industry | Open Energy Information

    Open Energy Info (EERE)

    products with a lifetime guarantee, including the Heliocol and Sunstar-brand solar water heating systems. References: Plastic Magen Industry1 This article is a stub. You...

  1. Mitsubishi Heavy Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Mitsubishi Heavy Industries Ltd Place: Tokyo, Tokyo, Japan Zip: 108 8215 Product: Integrated technology company and power equipment supplier....

  2. Nisshinbo Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Nisshinbo Industries Inc Place: Tokyo, Tokyo, Japan Zip: 103-8650 Product: Japanese manufacturing company; its Electronics division offers...

  3. Kishimura Industry Co | Open Energy Information

    Open Energy Info (EERE)

    Co Jump to: navigation, search Name: Kishimura Industry Co Place: Kanagawa-Ken, Japan Sector: Solar, Vehicles Product: Developer of solar power systems and 'Eco-Mobile',...

  4. Stabilizing System Pressure; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  5. Maintaining System Air Quality; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  6. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  7. Minimize Compressed Air Leaks; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  8. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... industries, requiring natural gas to melt aluminum and electricity to run equipment. ... Automated Fluidized Bed Heat Treatment System Age Bed Quench Tank Robot Product raised ...

  9. Industrial Research Ltd IRL | Open Energy Information

    Open Energy Info (EERE)

    Research Ltd IRL Jump to: navigation, search Name: Industrial Research Ltd (IRL) Place: New Zealand Sector: Services Product: General Financial & Legal Services ( State-owned...

  10. Global Industry Analysts | Open Energy Information

    Open Energy Info (EERE)

    search Name: Global Industry Analysts Address: 6150 Hellyer Avenue Place: San Jose, California Zip: 95138 Region: Bay Area Product: Market research services Year Founded:...

  11. Microcab Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Microcab Industries Ltd Place: Coventry, United Kingdom Zip: CV1 2TT Sector: Hydro, Hydrogen Product: Urban taxi and light freight vehicle powered by a hydrogen fuel cell....

  12. Solar Power Industries SPI | Open Energy Information

    Open Energy Info (EERE)

    Pennsylvania Zip: 15012 Product: US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References: Solar Power Industries (SPI)1 This article is a...

  13. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties

    SciTech Connect (OSTI)

    Piskur, Jure; Ling, Zhihao; Marcet-Houben, Marina; Ishchuk, Olena P.; Aerts, Andrea; LaButti, Kurt; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Compagno, Concetta; Bisson, Linda; Grigoriev, Igor V.; Gabaldon, Toni; Phister, Trevor

    2012-03-14

    The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several ?food-relevant? properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds.

  14. Biogas and alcohol fuels production. Proceedings of the Seminar on Biomass, Energy for City, Farm, and Industry, Chicago, IL, October 25, 26, 1979

    SciTech Connect (OSTI)

    Goldstein, J.

    1980-01-01

    Basic principles of anaerobic digestion are considered along with the status of the Imperial Valley Biogas Project, the Department of Energy program for the recovery of energy and materials from urban waste, the principles of alcohol production from wastes, the mechanical recovery of a refuse-derived cellulosic feedstock for ethanol production, and the production of ethanol from cellulosic biomass. Attention is given to on-farm alcohol fuel production, the current status and future role of gasohol production, methane generation from small scale farms, farmsite installations of energy harvester anaerobic digesters, biogas/composting and landfill recovery, farm-scale composting as an option to anaerobic digestion, designing a high-quality biogas system, and methane as fuel of the future. A description is presented of subjects which are related to landfill gas recovery, biogas purification with permselective membranes, and anaerobic digestion of marine biomass. Other topics studied include the application of biogas technology in India, biogas production in China, biogasification of organic wastes in the Republic of the Philippines, and economics and operational experience of full-scale anaerobic dairy manure digester.

  15. Materials and methods for efficient lactic acid production

    DOE Patents [OSTI]

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T; Yomano, Lorraine; Grabar, Tammy B; Moore, Jonathan C

    2013-04-23

    The present invention provides derivatives of Escherichia coli constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  16. Materials and methods for efficient lactic acid production

    DOE Patents [OSTI]

    Zhou, Shengde; Ingram, Lonnie O'Neal; Shanmugam, Keelnatham T.; Yomano, Lorraine; Grabar, Tammy B.; Moore, Jonathan C.

    2009-12-08

    The present invention provides derivatives of ethanologenic Escherichia coli K011 constructed for the production of lactic acid. The transformed E. coli of the invention are prepared by deleting the genes that encode competing pathways followed by a growth-based selection for mutants with improved performance. These transformed E. coli are useful for providing an increased supply of lactic acid for use in food and industrial applications.

  17. VAWT Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Nevada Zip: 89118 Sector: Wind energy Product: Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References: VAWT Industries Inc1 This...

  18. In Austin, Energy Secretary to Offer Supercomputer Resources to Industry

    Broader source: Energy.gov [DOE]

    Will Host Innovation Summit with Industry Leaders on How the Department’s Supercomputers Can Accelerate Development of New Products

  19. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  20. Characterization and Surface Treatment of Materials Used in MADEAL S.A. Industry Productive Process of Rims by Plasma Assisted Repetitive Pulsed Arcs Technique

    SciTech Connect (OSTI)

    Jimenez, H.; Salazar, V. H.; Devia, A.; Jaramillo, S.; Velez, G.

    2006-12-04

    A study of materials used in the molds production to aluminium rims manufacture in the MADEAL S.A. factory was carried out for apply a plasma assisted surface treatment consists in growing TiAlN hard coatings that it protects this molds in the productive process. This coating resists high oxidation temperatures, of the other of 800 deg. C, high hardness (2800 Vickers) and low friction coefficient. A plasma assisted repetitive pulsed arcs mono-evaporator system was used in the grow of the TiAlN coatings, the TiAlN target is a sinterized 50% Ti and 50% Al, in the substrate they were used two types of steel that compose the molds injection pieces for the rims production. These materials were subjected to linear and fluctuating thermal changes in the Bruker axs X-Ray diffractometer temperature chamber, what simulated the molds thermal variation in the rims production process and they were compared with TiAlN coatings subjected to same thermal changes. The Materials characterization, before and later of thermal process, was carried out using XRD, SPM and EDS techniques, to analyze the crystallographic, topographic and chemical surface structure behaviours.

  1. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  2. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual

  3. Global Energy Efficient IT Equipment Industry 2015 Market Research...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  4. Global Shuttleless Loom Industry 2015 Market Research Report...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  5. Global Dicyandiamide Industry 2015 Market Research Report | OpenEI...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  6. Global High-purity Pentoxide Industry 2015 Market Research Report...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  7. Global POF Shrink Film Industry 2015 Market Research Report ...

    Open Energy Info (EERE)

    on. Then it analyzed the world's main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  8. Sichuan Chaolei Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Chaolei Industry Co Ltd Place: Chengdu, Sichuan Province, China Zip: 610041 Product: A Chinese company with plans to become partially-integrated PV products, ranging from silica...

  9. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  10. Experimental and Numerical Investigation of Forming and Springback Behavior and the Resulting Effects on Industrial Application on a Structural Part in Mass Production

    SciTech Connect (OSTI)

    Prexl, A.; Hoffmann, H. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Golle, M. [Institute of Metal Forming and Casting, Technische Universitaet Muenchen D-85747 Garching (Germany); Institute of Punching and Blanking, Pforzheim University, D-75175 Pforzheim (Germany); Kudrass, S.; Wahl, M. [AUDI AG, D-85045 Ingolstadt (Germany)

    2011-01-17

    Springback prediction and compensation is nowadays a widely recommended discipline in finite element modeling. Many researches have shown an improvement of the accuracy in prediction of springback using advanced modeling techniques, e.g. by including the Bauschinger effect. In this work different models were investigated in the commercial simulation program AutoForm for a large series production part, manufactured from the dual phase steel HC340XD. The work shows the differences between numerical drawbead models and geometrically modeled drawbeads. Furthermore, a sensitivity analysis was made for a reduced kinematic hardening model, implemented in the finite element program AutoForm.

  11. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  12. Assistance to Oil and Gas State Agencies and Industry through Continuation of Environmental and Production Data Management and a Water Regulatory Initiative

    SciTech Connect (OSTI)

    Grunewald, Ben; Arthur, Dan; Langhus, Bruce; Gillespie, Tom; Binder, Ben; Warner, Don; Roberts, Jim; Cox, D.O.

    2002-05-31

    This grant project was a major step toward completion of the Risk Based Data Management System (RBDMS) project. Additionally the project addresses the needs identified during the projects initial phases. By implementing this project, the following outcomes were sought: (1) State regulatory agencies implemented more formalized environmental risk management practices as they pertain to the production of oil and gas, and injection via Class II wells. (2) Enhancement of oil and gas production by implementing a management system supporting the saving of abandoned or idle wells located in areas with a relatively low environmental risk of endangering underground sources of drinking water (USDWs) in a particular state. (3) Verification that protection of USDWs is adequate and additional restrictions of requirements are not necessary in areas with a relatively low environmental risk. (4) Standardization of data and information maintained by state regulatory agencies and decrease the regulatory cost burden on producers operating in multiple states, and (5) Development of a system for electronic data transfer among operators and state regulatory agencies and reduction of overall operator reporting burdens.

  13. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  14. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1990-04-01

    Recent nuclear industry briefs are presented. These briefs include: Soviet Union to build Iran nuclear plant; Dension announces cuts in Elliot Lake production; Soviet environmental study delays Rostov startup; Cogema closes two mines; Namibian sanctions lifted by USA and Canada; US Energy and Kennecott restructors joint venture; Australians reelect Hawke; China to buy Soviet nuclear plant; Olympic Dam`s first sale of concentrates to USA; Uranevz buys one-third of Cogema`s Rabbit Lake operations; East and West Germany forming joint nuclear law; and Nova Scotia extends uranium exploration plan.

  15. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  16. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  17. Contributions and Future of Radioisotopes in Medical, Industrial and Space Applications

    DOE R&D Accomplishments [OSTI]

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  18. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  19. Glass needs for a growing photovoltaics industry

    SciTech Connect (OSTI)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  20. Combustion Turbine CHP System for Food Processing Industry

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  1. Flexible Distributed Energy and Water from Waste for the Food and Beverage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry - Fact Sheet, 2014 | Department of Energy Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 GE Global Research, in collaboration with GE Water & Process Technologies, GE Intelligent Platforms, SRA International, and Anheuser-Busch, developed a systematic plant-wide automation for online monitoring and supervisory control. The

  2. World Congress on Industrial Biotechnology

    Broader source: Energy.gov [DOE]

    Held this year in Montreal, Quebec, the BIO World Congress on Industrial Biotechnology will bring together business leaders, investors, and policy makers in biofuels, biobased products, and renewable chemicals. BETO Demonstration and Market Transformation Program Manager Jim Spaeth and Support Specialist Natalie Roberts will be in attendance.

  3. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Productivity Video | Department of Energy Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and

  5. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Programs Office (505) 665-4400 Email Get Expertise Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract...

  6. Temporary Food Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food Service The SLAC Café, auditorium and visitor center have been closed and will be replaced with a new Science and User Support Building (SUSB). During this construction (2013-2015), temporary food service will be provided by the Cardinal Chef Mobile Gourmet food trucks. On-Site The food trucks are located in front of Building 27. Hours of Operation Monday through Friday Breakfast: 7:30AM-9:30AM Lunch: 11:00AM-2:00PM Menu: http://www-project.slac.stanford.edu/foodtruckmenu/default.asp Local

  7. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  8. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  9. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  10. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  11. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  12. INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summer 2015 INDUSTRIAL ASSESSMENT CENTERS IAC Quarterly Update Spring 2014 INDUSTRIAL ASSESSMENT CENTERS The IAC Update, Summer 2015 About the IAC Program Beginning in 1976, the Industrial Assessment Centers (IACs) have provided small and medium-sized manufacturers with site- specific recommendations for improving energy efficiency, reducing waste, and increasing productivity through changes in processes and equipment. A typical IAC client will receive recommendations that save more than

  13. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  14. Past, Present, and Future Production...

    Office of Scientific and Technical Information (OSTI)

    limited its commercial development to the production of liq- uid smoke as food flavoring. ... Fei Yu is A ssistant Profes- sor, Department o f Agricultural & Biological Engineering, M ...

  15. SunCoal Industries GmbH | Open Energy Information

    Open Energy Info (EERE)

    Industries GmbH Place: Knigs Wusterhausen, Germany Zip: 15711 Product: Producer of bio-coal References: SunCoal Industries GmbH1 This article is a stub. You can help OpenEI...

  16. Draka Industrial Cable GmbH | Open Energy Information

    Open Energy Info (EERE)

    Draka Industrial Cable GmbH Jump to: navigation, search Name: Draka Industrial Cable GmbH Place: Wuppertal, North Rhine-Westphalia, Germany Zip: 42369 Product: Germany-based...

  17. ASi Industries GmbH | Open Energy Information

    Open Energy Info (EERE)

    Zip: D-99310 Product: Manufacturer of monocrystalline ingots and wafers for the photovoltaics industry. References: ASi Industries GmbH1 This article is a stub. You can help...

  18. Introduction to applications and industries for Microelectromechanical

    Office of Scientific and Technical Information (OSTI)

    Systems (MEMS). (Conference) | SciTech Connect Introduction to applications and industries for Microelectromechanical Systems (MEMS). Citation Details In-Document Search Title: Introduction to applications and industries for Microelectromechanical Systems (MEMS). Microelectromechanical Systems (MEMS) have gained acceptance as viable products for many commercial and government applications. MEMS are currently being used as displays for digital projection systems, sensors for airbag deployment

  19. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  20. Research and development in the textile industry

    SciTech Connect (OSTI)

    1987-06-01

    Included in the portfolio of IP's projects are the R and D activities for several advanced technologies targeted at the textile industry, one of the top ten energy intensive industries in the country. These R and D projects have primarily been aimed at improving the energy efficiency and productivity of textile production processes. Many projects in this area have been successfully completed, and some have resulted in the development and implementation of new technologies (e.g., foam processing) for various process steps. Other projects have produced technical results that have later been utilized by the industry in other capacities (e.g., hyperfiltration). Several projects at various stages of development are currently underway. This brochure describes the Office of Industrial Programs' R and D activities relevant to the textile industry. The brochure is comprised of the following: Industry Update, Energy Consumption in the Textile Industry, Energy Consumption in the Textile Industry, Potential Energy Savings in the Textile Industry, Office of Industrial Programs, R and D Efforts, and R and D Data Base.

  1. ITP Petroleum Refining: Profile of the Petroleum Refining Industry in California: California Industries of the Future Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Industrial Technologies Program (ITP) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors.

  2. Purchasing Energy-Efficient Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  3. Motech Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Motech Industries Inc Place: Hsin, Taiwan Product: Taiwan-based manufacturer of PV cells. Coordinates: 38.401501, 112.730118 Show Map Loading map... "minzoom":false,"mapp...

  4. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  5. Hydrogen Production in the U.S. and Worldwide - 2013

    SciTech Connect (OSTI)

    Brown, Daryl R.

    2015-04-01

    This article describes the different categories of hydrogen production (captive, by-product, and merchant) and presents production data for 2013 by industry within these categories. Merchant production data is provided for the top-four industrial gas companies.

  6. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  7. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  8. ITP Steel: Energy and Environmental Profile fo the U.S. Iron and Steel Industry

    Broader source: Energy.gov [DOE]

    DOE's Office of Industrial Technologes has formed a partnership with the U.S. iron and steel industry to accelerate development of technologies and processes that will improve the industry's production and energy efficiency and environmental performance.

  9. Purchasing Energy-Efficient Commercial and Industrial LED Luminaires |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercial and Industrial LED Luminaires Purchasing Energy-Efficient Commercial and Industrial LED Luminaires The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial and industrial light emitting diode (LED) luminaires, a product category covered by FEMP efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified or FEMP-designated products in all product categories covered by these

  10. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect (OSTI)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  11. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  12. Pulead Technology Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Product: China-based company which makes both Anode and Cathode material for Lithium batteries. References: Pulead Technology Industry Co, Ltd1 This article is a stub....

  13. Rayana Paper Board Industries Ltd RPBIL | Open Energy Information

    Open Energy Info (EERE)

    Pradesh, India Zip: 272175 Product: Manufacturer of media and kraft paper with cogeneration activities References: Rayana Paper Board Industries Ltd. (RPBIL)1 This article...

  14. Sumitomo Metal Industries Ltd Sumitomo Metals | Open Energy Informatio...

    Open Energy Info (EERE)

    Industries Ltd (Sumitomo Metals) Place: Osaka-shi, Osaka, Japan Zip: 540-0041 Sector: Solar Product: Engaged in the steel, engineering, and electronics businesses; works on...

  15. Nanjing Auheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Place: Nanjing, Jiangsu Province, China Zip: 210005 Sector: Hydro, Solar, Wind energy Product: Manufactures industrial components, including electric vehicle...

  16. Chongqing Lanxi Power Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    City, Chongqing Municipality, China Sector: Hydro Product: Chongqing-based small hydro project developer. References: Chongqing Lanxi Power Industry Co Ltd1 This article...

  17. Longchuan County Yuming Industrial Development Co Ltd | Open...

    Open Energy Info (EERE)

    Development Co Ltd Jump to: navigation, search Name: Longchuan County Yuming Industrial Development Co., Ltd. Place: Guangdong Province, China Sector: Hydro Product: China based...

  18. Bayer ABS Ltd formerly ABS Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    (formerly ABS Industries Ltd) Place: Vadodara, Gujarat, India Zip: 335871 Sector: Wind energy Product: Bayer ABS is a plastic, chemical, and pharmaceutical company. Has...

  19. Universal Scientific Industrial USI Group | Open Energy Information

    Open Energy Info (EERE)

    Group is a design and manufacturing services company that is venturing into polysilicon production. References: Universal Scientific Industrial (USI Group)1 This article is a...

  20. Thompson Technology Industries Inc TTI | Open Energy Information

    Open Energy Info (EERE)

    Inc TTI Jump to: navigation, search Name: Thompson Technology Industries, Inc. (TTI) Place: Novato, California Zip: 94949 Product: California-based maker of PV tracking systems,...

  1. DOE-STD-6005-2001; Industrial Hygiene Practices

    Office of Environmental Management (EM)

    ... American Society of Heating, Refrigerating, and Air Conditioning Engineers, ASHRAE Handbook and Product Directory, volume on "Fundamentals." 5. INDUSTRIAL HYGIENE PRACTICES ...

  2. Tamil Nadu Small and Tiny Industries Association TANSTIA | Open...

    Open Energy Info (EERE)

    Association TANSTIA Jump to: navigation, search Name: Tamil Nadu Small and Tiny Industries Association (TANSTIA) Place: India Sector: Services Product: Services & Support...

  3. Wells Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    SMMPA develops innovative products and services to help them deliver value to customers. With help from SMMPA, Wells Public Utilities provides incentives for its commercial and industrial custome...

  4. Daiwa House Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Daiwa House Industry Co Ltd Place: Osaka, Japan Zip: 530-8241 Sector: Wind energy Product: Japanese construction company; builds wind...

  5. Gantan Beauty Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Gantan Beauty Industry Co Ltd Place: Kanagawa, Japan Zip: 252-0804 Product: Manufactures, sells, and installs metal roofings; also sells...

  6. NREL Assembles Industry Group to Explore Solar Lending Potential...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assembles Industry Group to Explore Solar Lending Potential May 7, 2014 Increasingly, banks, credit unions, and other lenders are beginning to offer loan products to homeowners and ...

  7. Reduce Pumping Costs through Optimum Pipe Sizing: Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  8. Alternative Strategies for Low-Pressure End Uses; Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  9. Match Pumps to System Requirements: Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IOF focuses on the following eight energy and resource intensive industries: * Aluminum * Forest Products * Metal Casting * Petroleum * Chemicals * Glass * Mining * Steel The ...

  10. Alerion Clean Power Spa previously known as Alerion Industries...

    Open Energy Info (EERE)

    20122 Sector: Renewable Energy Product: Alerion Industries Spa is a quoted independent power producer that specialises in renewable energies. Coordinates: 45.468945, 9.18103...

  11. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  12. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  13. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  14. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  15. Review of 1989 international mineral industry activities

    SciTech Connect (OSTI)

    Kimbell, C.L. (US Bureau of Mines, Washington, DC (US))

    1990-07-01

    This article reviews global mineral industry activities for 1989. Production of coal, natural gas, and petroleum, as well as non-fuel minerals, is detailed regionally and for individual countries. The problems of changes in technology, economic and political systems are discussed where they have affected mineral production.

  16. Anaerobic digestion of municipal, industrial, and livestock wastes for energy recovery and disposal

    SciTech Connect (OSTI)

    Sax, R.I.; Lusk, P.D.

    1995-11-01

    The degradation of carbonaceous organic material by anaerobic bacteria leads to the production of methane gas (biogas) at the theoretical stoichiometric conversion rate of 0.35-cubic meters of methane per kilogram of Chemical Oxygen Demand (COD) reasonably close proximity to the site of this digestion process. The untreated biogas generated from anaerobic digestion typically contains from 55% to 75% methane content, with the balance consisting mainly of carbon dioxide and a small, but important, amount of hydrogen sulfide. The untreated biogas is normally saturated with water vapor at the temperature of the digestion process which typically is in the mesophilic range 25 to 38 degrees Celsius. This overview paper describes the types of anaerobic technologies which are presently used for the digestion of various type of municipal, industrial and livestock manure wastes, summarizes the principal developments which have taken place in the field during the past several years, and discusses the energy recovery economics for each of the three usage applications. The paper stratifies the use of anaerobic digestion technology for the treatment of wastewaters from industry (an application which has increased dramatically during the past decade) by geographical region, by industry type, very various categories of food processing, and by technology type, in all cases taking account of system size to emphasize the economics of energy production.

  17. Electrolytic Hydrogen Production Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experts from industry and national laboratories representing polymer electrolyte membrane, ...SOEC Development Hydrogen Production by Polymer Electrolyte Membrane (PEM) ...

  18. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect (OSTI)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  19. Information Technology Industry Council Comment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Technology Industry Council Comment Information Technology Industry Council Comment The Information Technology Industry Council (ITI) appreciates the opportunity to submit comments in response to the Regulatory Burden RFI.1 ITI represents the leading global innovators of information and communications technology (ICT), an industry committed to developing energy-efficient solutions both for our own products and to help enable energy efficiency in other more energy intensive sectors.

  20. Industry Information Practices and the Failure to Remember | Department of

    Office of Environmental Management (EM)

    Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual savings opportunities for

  1. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative to

  2. Better Buildings Challenge SWAP Teams with Industry for Major Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings | Department of Energy Challenge SWAP Teams with Industry for Major Energy Savings Better Buildings Challenge SWAP Teams with Industry for Major Energy Savings February 17, 2016 - 3:36pm Addthis In Better Buildings Challenge SWAP, Hilton Worldwide and Whole Foods Market swap energy teams to learn from each other and produce even greater savings. Watch all three episodes and learn more about the series. | Better Buildings Challenge video. Franklin (Lynn) Orr Franklin (Lynn) Orr Under

  3. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  4. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  5. NREL Helps Industry Partner Commercialize Promising Technology For Forest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products Industry Industry Partner Commercialize Promising Technology For Forest Products Industry For more information contact: e:mail: Public Affairs Golden, Colo., April 3, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently signed a cooperative research and development agreement (CRADA) with Minerals Technologies, Inc. of Bethlehem, Penn. to conduct research to improve the quality of paper derived from thermomechanical pulp (TMP). The 17-month

  6. Macro-Industrial Working Group 2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Macro-Industrial Working Group Macroeconomic Analysis Team: Kay Smith, Team Leader, Elizabeth Sendich, Russ Tarver, and Vipin Aurora September 11, 2012 | Washington, DC Macro section WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview Macroeconomic Team, Washington, DC, Sept. 11, 2012 2 * The overall macroeconomic outlook * The detailed industrial production outlook * Summary employment and commercial floor space outlook *

  7. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect (OSTI)

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  8. Thermal Product Solutions aka Kayex | Open Energy Information

    Open Energy Info (EERE)

    Product Solutions aka Kayex Jump to: navigation, search Name: Thermal Product Solutions (aka Kayex) Place: Rochester, New York Zip: 14624 Product: Makes industrial ovens and...

  9. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  10. West Valley Demonstration Project Food Drive Delivers Food for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grocery stores to purchase food at or below wholesale price. Volunteers help load the food into trucks, bring it to the pantries, and stock the shelves. "The support we receive...

  11. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  12. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  13. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  14. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  15. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  16. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  17. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  18. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  19. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  20. The industrial ecology of steel

    SciTech Connect (OSTI)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  1. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    6. Employment in the U.S. uranium production industry by category, 2003-14 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

  2. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7. Employment in the U.S. uranium production industry by state, 2003-14 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195...

  3. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    1998-05-01

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  4. Global production through 2005

    SciTech Connect (OSTI)

    Foreman, N.E.

    1996-12-01

    Two companion studies released recently should provide great food for thought among geo-political strategists and various national governments. If predictions contained in these Petroconsultants studies of oil and gas production trends for the next 10 years are realized, there will be great repercussions for net exporters and importers, alike. After analyzing and predicting trends within each of the world`s significant producing nations for the 1996--2005 period, the crude oil and condensate report concludes tat global production will jump nearly 24%. By contrast, worldwide gas output will leap 40%. The cast of characters among producers and exporters that will benefit from these increases varies considerably for each fuel. On the oil side, Russia and the OPEC members, particularly the Persian Gulf nations, will be back in the driver`s seat in terms of affecting export and pricing patterns. On the gas side, the leading producers will be an interesting mix of mostly non-OPEC countries. The reemergence of Persian Gulf oil producers, coupled with an anticipated long-term decline among top non-OPEC producing nations should present a sobering picture to government planners within large net importers, such as the US. They are likely to find themselves in much the same supply trap as was experienced in the 1970s, only this time the dependence on foreign oil supplies will be much worse. Gas supplies will not be similarly constrained, and some substitution for oil is probable. Here, two articles, ``World oil industry is set for transition`` and ``Worldwide gas surges forward in next decade,`` present a summary of the findings detailed in Petroconsultants` recent studies.

  5. Statistics for Industry Groups and Industries, 2003

    SciTech Connect (OSTI)

    2009-01-18

    Statistics for the U.S. Department of Commerce including types of manufacturing, employees, and products as outlined in the Annual Survey of Manufacturers (ASM).

  6. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 CASL Industry Council Meeting March 26-27, 2013 - Cranberry Township, PA Minutes The sixth meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on March 26-27, 2013 at Westinghouse in Cranberry Township, PA. The first day of the Industry Council was chaired by John Gaertner and the second day was chaired by Heather Feldman. The meeting attendees and their affiliations are listed on Attachment 1 to these minutes. Attendance was

  7. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  8. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  9. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  10. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  11. Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry

    SciTech Connect (OSTI)

    none,

    1994-11-01

    In November 1994, the forest products industry published Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry, which articulated the industry's vision. This document set the foundation for collaborative efforts between the industry and the federal government.

  12. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  13. Macro Industrial Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    2025 * What you'll see today - Shipments - Industrial energy use (total and excluding both refining and lease &plant fuel) * AEO2015 Reference and selected side cases * AEO2015 v. ...

  14. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  15. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  16. CASL Industry Council Members:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL Industry Council Members: We are looking forward to hosting you at the upcoming CASL Industry Council Meeting on Tuesday, April 12, 2016 through Wednesday, April 13, 2016 at the following location: ALOFT Greenville Downtown Converge Conference Room 5 North Laurens Street Greenville, SC 29601 864-297-6100 Meeting Contact: Lorie Fox (865) 548-5178 Lodging: ALOFT Greenville Downtown: http://www.aloftgreenvilledowntown.com/ Hotel Information * Check-in time: 4 PM * Checkout time: 12 PM * Fast

  17. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  18. Building a More Efficient Industrial Supply Chain

    Broader source: Energy.gov [DOE]

    This infographic highlights some of the ways businesses can save money at each step of the energy supply chain. Many companies can identify low-cost ways to reduce energy costs in electricity generation, electricity transmission, industrial processes, product delivery, and retail sales.

  19. A Brief History of the Electricity Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    data and evaluating electricity restructuring James Bushnell University of California Energy Inst. www.ucei.berkeley.edu Outline * Shameless flattery - Why EIA data are so important * Why are people so unhappy? - With electricity restructuring * What EIA data have helped us learn - Production efficiencies - Market efficiency - Market competition - Environmental compliance Why EIA is so important * Important industries undergoing historic changes - Restructuring/deregulation - Environmental

  20. AMO Industrial Distributed Energy: Industrial Distributed Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... etc. because the marketing department has not yet decided upon the formal product name. ... for Energy Smart Communities-the nation's frst carbon-neutral all-digital community. ...

  1. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and ... All Issues submit Industry Cluster Development Grant winners Recipients include Picuris ...

  2. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  3. Food Service | Open Energy Information

    Open Energy Info (EERE)

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleFoodService&old...

  4. Food Sales | Open Energy Information

    Open Energy Info (EERE)

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleFoodSales&oldid...

  5. Chemical Industry Vision 2020. Annual Report 2004 (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Chemical Industry Vision 2020. Annual Report 2004 Citation Details In-Document Search Title: Chemical Industry Vision 2020. Annual Report 2004 This publication is an annual report on the activities of the Chemical Industry Vision 2020 Technology Partnership. Authors: None, None Publication Date: 2005-06-01 OSTI Identifier: 1218618 Resource Type: Technical Report Research Org: EERE Publication and Product Library Sponsoring Org: USDOE Office of Energy Efficiency and Renewable

  6. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  7. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  8. Making Industry Part of the Climate Solution

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Brown, Dr. Marilyn Ann; Jackson, Roderick K; Cox, Matthew; Cortes, Rodrigo; Deitchman, Benjamin H

    2011-06-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  9. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  10. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  11. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in ...

  12. ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    World | Department of Energy Aluminum Industry Vision: Sustainable Solutions for a Dynamic World ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World PDF icon alum_vision.pdf More Documents & Publications ITP Aluminum: Alumina Technology Roadmap U.S. Energy Requirements for Aluminum Production

  13. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 | Department of Energy Industrial Feedstock Flexibility Workshop Results, December 2009 ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 PDF icon feedstock_workshop_report.pdf More Documents & Publications 3323197.pdf Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Roadmap for Bioenergy and Biobased Products in the United States

  14. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  15. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  16. Steel Industry Technology Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steel Industry Technology Roadmap Steel Industry Technology Roadmap Table of Contents Introduction Process Improvement 2.1 Cokemaking 2.2 Ironmaking 2.3 Basic Oxygen Furnace (BOF) Steelmaking 2.4 Electric Arc Furnace (EAF) Steelmaking 2.5 Ladle Refining 2.6 Casting 2.7 Rolling and Finishing 2.8 Refractories Iron Recycling Unit 3.1 By-products 3.2 Obsolete Scrap Environment 4.1 Cokemaking 4.2 Ironmaking 4.3 Steelmaking - Basic Oxygen Furnace (BOF) 4.4 Steelmaking - Electric Arc Furnace (EAF) 4.5

  17. PIA - Industrial Hygiene Analytical System (IHAS) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PIA - Industrial Hygiene Analytical System (IHAS) PDF icon PIA - Industrial Hygiene ...

  18. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  19. Short-Term Energy Outlook Supplement: Energy-weighted industrial...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy-weighted industrial production indices December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information ...

  20. Saint Peter Municipal Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    It develops innovative products and services to help them deliver value to customers. With help from SMMPA, Saint Peter Municipal Utilities provides incentives for its commercial and industrial c...

  1. Session: Wind industry project development

    SciTech Connect (OSTI)

    Gray, Tom; Enfield, Sam

    2004-09-01

    This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

  2. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  3. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  4. Sustainable Harvest for Food and Fuel

    SciTech Connect (OSTI)

    Grosshans, Raymond R.; Kostelnik, Kevin, M.; Jacobson, Jacob J.

    2007-04-01

    The DOE Biomass Program recently implemented the Biofuels Initiative, or 30x30 program, with the dual goal of reducing U.S. dependence on foreign oil by making cellulosic ethanol cost competitive with gasoline by 2012 and by replacing 30 percent of gasoline consumption with biofuels by 2030. Experience to date with increasing ethanol production suggests that it distorts agricultural markets and therefore raises concerns about the sustainability of the DOE 30 X 30 effort: Can the U.S. agricultural system produce sufficient feedstocks for biofuel production and meet the food price and availability expectations of American consumers without causing environmental degradation that would curtail the production of both food and fuel? Efforts are underway to develop computer-based modeling tools that address this concern and support the DOE 30 X 30 goals. Beyond technical agronomic and economic concerns, however, such models must account for the publics’ growing interest in sustainable agriculture and in the mitigation of predicted global climate change. This paper discusses ongoing work at the Center for Advanced Energy Studies that investigates the potential consequences and long-term sustainability of projected biomass harvests by identifying and incorporating “sustainable harvest indicators” in a computer modeling strategy.

  5. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  6. Identification of a classical mutant in the industrial host Aspergillus

    Office of Scientific and Technical Information (OSTI)

    niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites (Journal Article) | DOE PAGES Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites « Prev Next » Title: Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is

  7. Identification of a classical mutant in the industrial host Aspergillus

    Office of Scientific and Technical Information (OSTI)

    niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites (Journal Article) | DOE PAGES Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites « Prev Next » Title: Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is

  8. Breakthrough Industrial Carbon Capture, Utilization and Storage Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Begins Full-Scale Operations | Department of Energy Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production

  9. From pandemic preparedness to biofuel production: Tobacco finds...

    Office of Scientific and Technical Information (OSTI)

    funded by the U.S. Defense Advanced Research Projects Agency (DARPA) produced 10 ... applications in synthetic biology, biofuels production and industrial enzyme production. ...

  10. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect (OSTI)

    Stooksbury, F.

    1994-06-01

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  11. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2014-10-18

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore » investments.« less

  12. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  13. Natural Gas Industrial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas ... Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports ...

  14. Food Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee Services » Food Services Food Services The Department offers many food services for employees within the Headquarters' buildings. Forrestal Forrestal Cafeteria (2nd floor, West Building). See the Cafeteria web page for further information. Hours: Monday-Friday 6:45 a.m. to 3:00 p.m. Breakfast hours are from 6:45 a.m. until 10:00 a.m., lunch from 11:00 a.m. until 2:00 p.m., and a "Happy Hour" is featured from 2:00-2:30 p.m. offering 30% off all hot and cold buffet items. Other

  15. TESTING LED COLOR-TUNABLE PRODUCTS

    Broader source: Energy.gov [DOE]

    New product capabilities and performance variables require new test methods to be developed, which is important for industry because accurate, repeatable, standardized test methods enable accurate...

  16. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  17. wave energy industry research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry research - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  18. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in ...

  19. Agile Biomanufacturing Industry Listening Workshop

    Broader source: Energy.gov [DOE]

    A consortium of nine national labs is excited to announce the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, CA. Lawrence Berkeley National Lab, Ames National Lab, Argonne National Lab, Idaho National Lab, Los Alamos National Lab, the National Renewable Energy Lab, Oak Ridge National Lab, Pacific Northwest National Lab, and Sandia National Labs seek to build an agile biomanufacturing platform for biological approaches to produce advanced biofuels, renewable chemicals, and materials that represent low greenhouse gas alternatives to molecules currently derived from petroleum. The labs envision a distributed Agile Biomanufacturing consortium that includes a Foundry to productionize the design-build-test-learn cycle for engineering biology while incorporating process integration, predictable scaling, and techno-economic analyses and life cycle assessments for bioprocess design. The DOE National Laboratories have built deep and unique capabilities that can be brought to bear to build powerful infrastructure and scientific engineering activities that will render design and implementation of new bio-based products scalable, predictable, and more cost-effective. An agile biomanufacturing platform will enable companies, national labs, and universities to develop biological processes efficiently and with reduced risk to create products with better performance than their predecessors.

  20. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  1. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  2. Low-temperature catalytic gasification of wet industrial wastes. FY 1993--1994 interim report

    SciTech Connect (OSTI)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Deverman, G.S.; Werpy, T.A.; Phelps, M.R.; Baker, E.G.; Sealock, L.J. Jr.

    1995-03-01

    Process development research is continuing on a low-temperature, catalytic gasification system that has been demonstrated to convert organics in water (dilute or concentrated) to useful and environmentally safe gases. The system, licensed under the trade name Thermochemical Environmental Energy System (TEESO), treats a wide variety of feedstocks ranging from hazardous organics in water to waste sludges from food processing. The current research program is focused on the use of continuous-feed, tubular reactors systems for testing catalysts and feedstocks in the process. A range of catalysts have been tested, including nickel and other base metals, as well as ruthenium and other precious metals. Results of extensive testing show that feedstocks, ranging from 2% para-cresol in water to potato waste and spent grain, can be processed to > 99% reduction of chemical oxygen demand (COD). The product fuel gas contains from 40% up to 75% methane, depending on the feedstock. The balance of the gas is mostly carbon dioxide with < 5% hydrogen and usually < 1% ethane and higher hydrocarbons. The byproduct water stream carries residual organics from 10 to 1,000 mg/l COD, depending on the feedstock. The level of development of TEES has progressed to the initial phases of industrial process demonstration. Testing of industrial waste streams is under way at both the bench scale and engineering scale of development.

  3. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. uranium industry, 1993-2015 Exploration and Development Surface Exploration and Development Drilling Mine Production of Uranium Uranium Concentrate Production Uranium Concentrate Shipments Employment Year Drilling (million feet) Expenditures 1 (million dollars) (million pounds U 3 O 8 ) (million pounds U 3 O 8 )

  4. Industrial Dojo Program Fosters Industrial Internet Development | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet

  5. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  6. Thanksgiving Goodwill: West Valley Demonstration Project Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive...

  7. Breakthrough Furnace Can Cut Solar Industry Costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy-uses optics to heat and purify solar cells at unmatched precision, while also boosting the cells' efficiency. As solar cells move through a manufacturer's production line, they must be oxidized, annealed, purified, diffused, etched, and layered. Heat is an

  8. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  9. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    Reid Industries Jump to: navigation, search Name: Reid Industries Address: PO Box 503 Place: San Francisco, CA Zip: 94104 Phone Number: 415-947-1050 Coordinates: 37.7923058,...

  10. Industrial Process Heating - Technology Assessment

    Energy Savers [EERE]

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  11. Industrial Plans for AEO2014

    U.S. Energy Information Administration (EIA) Indexed Site

    - Replace energy consumption based on engineering judgment with specific technology or ... for AEO2014 - Glass (defaulted) - Food (not a process flow model; revise on more ...

  12. Charity Event Gives Department Employees an Excuse to Play with Their Food

    Broader source: Energy.gov [DOE]

    At the Energy Department Feeds Families Sculpture Contest, employees from across the organization made sculptures out of packaged food and household products to support the larger federal effort to help feed needy families in D.C. and beyond. In the end, participants donated 2,160 pounds of food at the event and pledged 130 pounds more.

  13. Zymomonas mobilis - Science and industrial application

    SciTech Connect (OSTI)

    Doelle, H.W.; Kirk, L.; Crittenden, R.; Toh, Hsien ); Doelle, M.B. )

    1993-01-01

    Zymomonas mobilis is undoubtedly one of the most unique bacterium within the microbial world. Known since 1912 under the names Termobacterium mobilis, Pseudomonas linderi, and Zymomonas mobilis, reviews on its uniqueness have been published in 1977 and 1988. The bacterium zymomonas mobilis not only exhibits an extraordinarily uniqueness in its biochemistry, but also in its growth behavior, energy production, and response to culture conditions, as well as cultivation techniques used. This uniqueness caused great interest in the scientific, biotechnological, and industrial worlds. Its ability to couple and uncouple energy production in favor of product formation, to respond to physical and chemical environment manipulation, as well as its restricted product formation, makes it an ideal microorganism for microbial process development. This review explores the advances made since 1987, together with new developments in the pure scientific and applied commercial areas. 362 refs.

  14. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  15. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  16. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  17. Bay Area Industrial Partners

    Broader source: Energy.gov [DOE]

    Michael Bauer, President, Chief Product Officer and Founder, Sentient Energy; Lloyd Hackel, Vice President for Advanced Technologies, Metal Improvement Corporation; and Charlie Hotz, Vice President of Research and Development, Nanosys, Inc. each presented on partnership with the National Labs.

  18. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect (OSTI)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  19. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  20. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  1. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities ...

  2. Ternion Bio Industries | Open Energy Information

    Open Energy Info (EERE)

    Ternion Bio Industries Jump to: navigation, search Logo: Ternion Bio Industries Name: Ternion Bio Industries Address: 1060 Minnesota Ave., Suite 6 Place: San Jose, California Zip:...

  3. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be...

  4. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  5. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  6. Energy Intensity Indicators: Industrial Source Energy Consumption

    Broader source: Energy.gov [DOE]

    The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the...

  7. Industrial Energy Efficiency: Designing Effective State Programs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector This ...

  8. Industrial Assessment Centers Update, March 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read the Industrial Assessment Centers (IAC) Update -- March 2015 Industrial Assessment Centers Quarterly Update, March 2015 More Documents & Publications Industrial Assessment...

  9. Advanced Biofuels Industry Roundtable - List of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuels Industry Roundtable - List of Participants Advanced Biofuels Industry Roundtable - List of Participants List of Participants from the May 18 Advanced Biofuels Industry ...

  10. Pollution prevention in the pharmaceutical industry

    SciTech Connect (OSTI)

    Venkataramani, E.S.

    1995-09-01

    A clear understanding of the process, reaction pathways, process equipment, operational requirements, and waste stream characteristics are critical for the evaluation, selection, and implementation of pollution prevention in the pharmaceutical industry. Although pollution prevention opportunities are always preferred over treatment and disposal techniques, consideration of a full range of options--including at-source treatments and disposal--is a practical necessity to ensure protection of the environment using best available technology. General housekeeping can also play a major role in waste minimization. Waste minimization and pollution prevention are not new concepts for the pharmaceutical industry. But the confidential and highly competitive nature of the business stands in the way of disseminating information regarding specific activities in this area. The pharmaceutical industry could probably do much better in this respect. Successful implementation of waste minimization in the pharmaceutical industry requires that a process modification not have a negative impact on product quality. Recovered and recycled materials must meet quality specifications that are similar to those for virgin raw materials.

  11. Commercial industry on the horizon

    SciTech Connect (OSTI)

    Belcher, J.

    2000-01-01

    About 5,000 Tcf of stranded gas reserves exist worldwide--gas that is not economically feasible to recover and move to market through pipelines. For oil producers, this is problematic for a number of reasons. What do you do with associated gas when environmental regulations worldwide are banning flaring due to concerns over greenhouse gas emissions? Reinjection is costly and may not be the best solution in every reservoir. While many producers have enormous gas reserves, they are of no value if that gas is just sitting in the ground with no potential markets at hand. How can you monetize these reserves? A potential solution to the problem of stranded gas reserves is GTL processing. This process takes methane and converts it to synthesis gas, uses the Fischer-Tropsch (FT) process to convert the synthesis gas to syncrude, and upgrades the syncrude to various hydrocarbon chains to produce a variety of refined products. Three recent developments favor commercial GTL development: environmental regulations are creating a premium for ultraclean fuels; new technology is lowering the capital costs and operating costs of GTL development; and world oil prices have risen above $20/bbl. Therefore, the oil and gas industry is taking a serious look at commercialization of GTL.

  12. Natural gas industry directory

    SciTech Connect (OSTI)

    1999-11-01

    This directory has information on the following: associations and organizations; exploration and production; gas compression; gas processors; gathering and transmission companies; liquefied natural gas; local distribution companies; marketing firms; regulatory agencies; service companies; suppliers and manufacturers; and regional buyer`s guide.

  13. Macro-Industrial Working Group Meeting 2: Industrial updates...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Team, MIWG 2, February 18, 2016 2 Technology ... & pump standards - Clean Power Plan: Part of AEO2016 ... Energy Consumption by Fuel Coal Natural Gas Purchased ...

  14. The impact of corrosion on the oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  15. The impact of corrosion on oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1995-11-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities.

  16. ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1999) | Department of Energy Aluminum Industry Roadmap for the Automotive Market (May 1999) ITP Aluminum: Aluminum Industry Roadmap for the Automotive Market (May 1999) PDF icon autoroadmap.pdf More Documents & Publications Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications Enabling Production of Lightweight Magnesium Parts for Near-Term Automotive Applications ITP Aluminum:

  17. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the

  18. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the

  19. Solar Energy Education. Industrial arts: student activities. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition (Technical Report) | SciTech Connect Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  20. Solar Energy Education. Industrial arts: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition. [Includes glossary] (Technical Report) | SciTech Connect Industrial arts: teacher's guide. Field test edition. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary] Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  1. Breakthrough Large-Scale Industrial Project Begins Carbon Capture and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilization | Department of Energy Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products

  2. Lightweight Steel Solutions for Automotive Industry

    SciTech Connect (OSTI)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-15

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  3. Outlook optimistic for 1997 E and P industry

    SciTech Connect (OSTI)

    Popov, S.

    1997-01-01

    The ninth annual Arthur Andersen Oil and Gas Industry Outlook Survey of company executives` forecasts for the US exploration and production industry were presented last month at the 17th Annual Energy Symposium. The consulting firm surveyed the chief financial officers of more than 350 US E and P companies, with 92 companies responding, including 8 majors, 9 large and 75 small independents. Overall, top E and P company executives predict 1997 to be a healthy year for the oil and gas industry. The paper discusses demand and supply, oil and gas prices, capital spending, employment, rig counts and availability, problems and opportunities.

  4. Industrial Hygiene | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hygiene Ames Laboratory's Industrial Hygiene (IH) Program is dedicated to providing employees a workplace free from or protected against recognized hazards that could potentially cause illness or injury. The basic principles of industrial hygiene are applied: Anticipation, recognition, evaluation and control of workplace hazards. The industrial hygienist participates on Readiness Review committees to assist in anticipation and recognition of chemical, physical, biological, or ergonomic hazards.

  5. Los Alamos scientists advance biomass fuel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    within the biomass molecules to make them suitable for high-energy-density fuel production. ... This is important because the use of non-food-based sources for the work (such as ...

  6. Collaborating with Industry for Innovation

    SciTech Connect (OSTI)

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  7. DMI Industries | Open Energy Information

    Open Energy Info (EERE)

    (NASDAQ: OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References: DMI Industries1 This article is a stub....

  8. Industrial Feedstock Flexibility Workshop Results

    SciTech Connect (OSTI)

    Ozokwelu, Dickson; Margolis, Nancy; Justiniano, Mauricio; Monfort, Joe; Brueske, Sabine; Sabouni, Ridah

    2009-08-01

    This report (PDF 649 KB) summarizes the results of the 2009 Industrial Feedstock Flexibility Workshop, which took place in Atlanta, GA on August 19-20, 2009.

  9. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  10. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  11. Industry Interactive Procurement System (IIPS)

    Broader source: Energy.gov [DOE]

    Presentation on DOE’s Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

  12. Southeast Electronic Book of Industrial Resources

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  13. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  14. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  15. Funding Opportunity Webinar - Building America Industry Partnerships...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar - Building America Industry Partnerships for High Performance Housing Innovations (Text Version) Funding Opportunity Webinar - Building America Industry Partnerships for ...

  16. ITP Industrial Materials: Development and Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies ITP Industrial Materials: Development and...

  17. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel ...

  18. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations April 2011 (DRAFT) Acknowledgement Guiding Principles ...

  19. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment ...

  20. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  1. Final Technical Report for University of Michigan Industrial Assessment Center

    SciTech Connect (OSTI)

    Atreya, Arvind

    2007-04-17

    The UM Industrial Assessment Center assisted 119 primary metals, automotive parts, metal casting, chemicals, forest products, agricultural, and glass manufacturers in Michigan, Ohio and Indiana to become more productive and profitable by identifying and recommending specific measures to improve energy efficiency, reduce waste and increase productivity. This directly benefits the environment by saving a total of 309,194 MMBtu of energy resulting in reduction of 0.004 metric tons of carbon emissions. The $4,618,740 implemented cost savings generated also saves jobs that are evaporating from the manufacturing industries in the US. Most importantly, the UM Industrial Assessment Center provided extremely valuable energy education to forty one UM graduate and undergraduate students. The practical experience complements their classroom education. This also has a large multiplier effect because the students take the knowledge and training with them.

  2. Optimizing the availability of a buffered industrial process

    DOE Patents [OSTI]

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  3. The future of energy efficiency in the steel industry

    SciTech Connect (OSTI)

    Lakshminarayana, B.

    1997-07-01

    Steel is present in every aspect of life, in all industrial, transportation sectors as well as in households in US. The American steel industry today can be counted among the most productive, efficient and technologically advanced in the world. Steel combines low cost with attractive engineering properties and is the most recycled of all materials. Despite these appealing characteristics of steel, the steel industry has confronted significant challenges from other competitive materials. To keep abreast with the competition it faces, pursuit of research and development activities is an absolute necessity. This competition has forced the steel industry to address many issues that here to fore were deemed unimportant. One of these areas is energy efficiency. Steelmaking energy costs comprise over 15 percent of the manufacturing cost of steel. This compares to less than five percent for most other manufacturing industries. The US steel industry, which accounts for about nine percent (1.8 quads/year) of the US industrial energy use, has made considerable progress in the area of energy efficiency. Over the past 20 years, the US steel industry has reduced its energy intensity by 43 percent. The impact of energy usage on environmental and the results of government regulations have made the industry concentrate more and more on the issues of energy efficiency. In addition, a possible energy shortage could become a global phenomenon in the 21st century if steps to conserve energy are not taken. The risk in researching and adapting new technologies is greater in the steel industry than in many other manufacturing industries. Steelmaking is capital intensive in both equipment and processes. Government/industry partnerships can help reduce such risks. The Department of Energy's Office of Industrial Technologies (DOE/OIT) has been supporting energy efficient research relevant to the steel industry. Salient features of some of the projects will be explored in this paper. These endeavors bring together the collective resources not only of the government and the industry, but also of national laboratories, universities and advanced technology companies. Such efforts continued into 21st century will make the US steel industry more environmentally friendly, energy efficient and globally competitive.

  4. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  5. Energy and materials flows in the copper industry

    SciTech Connect (OSTI)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  6. ITP Forest Products: Energy and Environmental Profile of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile of the U.S. Pulp and Paper Industry ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and Paper Industry PDF icon ...

  7. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (355) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  8. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  9. Continuing consolidation in the coal industry

    SciTech Connect (OSTI)

    Gaalaas, T.

    2006-08-15

    Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

  10. Alloys for Ethylene Production Furnaces - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Alloys for Ethylene Production Furnaces Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryEthylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace tubes. DescriptionOak Ridge National Laboratory and its industrial partners are developing

  11. Employees give to local food bank

    Broader source: Energy.gov [DOE]

    Employees in DOE's Oak Ridge Office of EM donated 3,209 pounds of food to the Second Harvest Food Bank of East Tennessee. The donation was part of the national Feds Feed Families campaign.

  12. Bioenergy Impacts Â… Non-Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the cost of producing biofuel from non-food sources (such as corn stalks, grasses, and ... Biofuel from non-food sources is becoming cheaper to produce BIOENERGY IMPACTS To learn ...

  13. U.S. uranium production industry employment, 1993-2011

    Gasoline and Diesel Fuel Update (EIA)

    Thank

  14. PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O

    Office of Legacy Management (LM)

    ... S a f e t y C o n s u l t a n t s A panel of safety consultants, a number of whom were ... Members of the safety panel, and areas i n which they specialize are: Dr. L y d i k S. ...

  15. Covered Product Category: Industrial Luminaires (High/Low Bay...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Performance Best Available FEMP-designated Less Efficient LER (lmW) 102 86 67 Power Input (W) 57 59 61 Initial Luminaire Light Output (lm) 5826 5143 4144 Annual Energy Use (kWh) ...

  16. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  17. May 12, 2011, Visiting Speakers Program Events - Aerospace Industry: Challenges and Combating Counterfeit Parts

    Energy Savers [EERE]

    Aerospace Industry: Challenges and Combating Counterfeit Parts Kirsten M. Koepsel Director of Legal Affairs & Tax, AIA May 12, 2011 Unpublished work © (2011) Aerospace Industries Association of America, Inc. Definition from AIA white paper ■ Definition: - Counterfeit product or part: A product produced or altered to resemble a product without authority or right to do so, with the intent to mislead or defraud by passing the imitation as original or genuine. (as defined in the AIA

  18. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  19. Mining Industry Energy Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  20. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Summary production statistics of the U.S. uranium industry, 1993-2015" ,"Exploration and Development Surface ","Exploration and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," Expenditures 1 (million dollars)","(million pounds U3O8)","(million pounds