National Library of Energy BETA

Sample records for industries bulk chemicals

  1. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  2. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  3. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  4. Chemical Industry Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  5. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a ... TECHNOLOGY VISION 2020: The U.S. Chemical Industry Gasoline Biodesulfurization Fact Sheet ...

  6. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  7. Sanyo Chemical Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Sanyo Chemical Industries Place: Tokyo, Japan Zip: 103-0023 Product: String representation "Sanyo is a petr ... uction process." is...

  8. Lee Chung Yung Chemical Industry Corporation | Open Energy Information

    Open Energy Info (EERE)

    Chung Yung Chemical Industry Corporation Jump to: navigation, search Name: Lee Chung Yung Chemical Industry Corporation Place: Taipei, Taiwan Product: Chemical manufacturer...

  9. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect (OSTI)

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  10. Nova Chemicals Reliance Industries JV | Open Energy Information

    Open Energy Info (EERE)

    Product: Nova Chemicals has signed an agreement with Reliance Industries to construct energy efficient buildings in India. References: Nova Chemicals & Reliance Industries...

  11. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  12. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  13. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    SciTech Connect (OSTI)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  14. Chemical Industry Vision 2020. Annual Report 2004 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Industry; ITP; AMO; Chemicals; Vision Word Cloud More ...

  15. Energy and Environmental Profile of the Chemicals Industry

    SciTech Connect (OSTI)

    Pellegrino, Joan L.

    2000-05-01

    This informative report provides an overview of the U.S. Chemical Industry including data on market trends, energy and material consumption, and an environmental overview.

  16. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    According to the American Chemistry Council, the industry has reduced energy ... Employment Chemistry companies in the United States directly employ 784,000 people and ...

  17. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical Industry, May 2000

    Office of Energy Efficiency and Renewable Energy (EERE)

    Profiles about the ethylene chain, propylene chain, benzene-toulene-xylene chain, agricultural chemicals chain, chlor-alkali industry, and supporting processes

  18. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect (OSTI)

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  19. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  20. Technology Vision 2020 The U.S. Chemical Industry

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Technology Vision 2020 is a call to action, innovation, and change for the U.S. chemical industry. The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  1. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nations critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  2. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul (Northridge, CA); Hays, Charles C. (Pasadena, CA); Johnson, William L. (Pasadena, CA)

    2007-07-17

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  3. In-situ ductile metal/bulk metallic glass matrix composites formed by chemical partitioning

    DOE Patents [OSTI]

    Kim, Choong Paul; Hays, Charles C.; Johnson, William L.

    2004-03-23

    A composite metal object comprises ductile crystalline metal particles in an amorphous metal matrix. An alloy is heated above its liquidus temperature. Upon cooling from the high temperature melt, the alloy chemically partitions, forming dendrites in the melt. Upon cooling the remaining liquid below the glass transition temperature it freezes to the amorphous state, producing a two-phase microstructure containing crystalline particles in an amorphous metal matrix. The ductile metal particles have a size in the range of from 0.1 to 15 micrometers and spacing in the range of from 0.1 to 20 micrometers. Preferably, the particle size is in the range of from 0.5 to 8 micrometers and spacing is in the range of from 1 to 10 micrometers. The volume proportion of particles is in the range of from 5 to 50% and preferably 15 to 35%. Differential cooling can produce oriented dendrites of ductile metal phase in an amorphous matrix. Examples are given in the Zr--Ti--Cu--Ni--Be alloy bulk glass forming system with added niobium.

  4. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOE Patents [OSTI]

    Tucker, Mark D [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  5. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry

    Broader source: Energy.gov [DOE]

    This report represents the November 1999 workshop efforts and subsequent contributions of 50 leading scientific and industry experts in biocatalyst use and development.

  6. Reactive formulations for a neutralization of toxic industrial chemicals

    DOE Patents [OSTI]

    Tucker, Mark D.; Betty, Rita G.

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  7. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  8. In Situ Sensors for the Chemical Industry- Final Report

    SciTech Connect (OSTI)

    Tate, J.D.; Knittel, Trevor

    2006-06-30

    The project focused on analytical techniques that can be applied in situ. The innovative component of this project is the focus on achieving a significant breakthrough in two of the three primary Process Analytical (PA) fields. PA measurements can roughly be broken down into: ? Single component measurements, ? Multiple component measurements and ? Multiple component isomer analysis. This project targeted single component measurements and multiple component measurements with two basic technologies, and to move these measurements to the process, achieving many of the process control needs. During the project the following achievements were made: ? Development of a low cost Tunable Diode Laser (TDL) Analyzer system for measurement of 1) Oxygen in process and combustion applications, 2) part per million (ppm) H2O impurities in aggressive service, 3) ppm CO in large scale combustion systems. This product is now commercially available ? Development of a process pathlength enhanced (high sensitivity) Laser Based Analyzer for measurement of product impurities. This product is now commercially available. ? Development of signal processing methods to eliminate measurement errors in complex and changing backgrounds (critical to chemical industry measurements). This development is incorporated into 2 commercially available products. ? Development of signal processing methods to allow multi-component measurements in complex chemical streams. This development is incorporated into 2 commercially available products. ? Development of process interface designs to allow in-situ application of TDL technology in aggressive (corrosive, high temperature, high pressure) commonly found in chemical processes. This development is incorporated in the commercially available ASI TDL analyzer. ? Field proving of 3 laser-based analyzer systems in process control and combustion applications at Dow Chemical. Laser based analyzers have been available for >5yrs, however significant product price

  9. Cogeneration handbook for the chemical process industries. [Contains glossary

    SciTech Connect (OSTI)

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  10. Hydrogen fuel cells in chemical industry: The assemini project

    SciTech Connect (OSTI)

    Caserza, G.; Bozzoni, T.; Porcino, G.; Pasquinucci, A.

    1996-12-31

    Chemical and petrochemical industries generate large quantities of hydrogen-rich streams, in the range 50%-100% H{sub 2} concentration by volume, as by-products of electrochemical or dehydrogenation processes, or exhausts/purging in hydrogenation processes. Due to safety aspects, and because of the low density, which makes difficult transportation and storage, such streams often constitute a problem for plant managers. In most cases recycling within the plant processes is not possible, and transportation to other sites, generally by truck after compression in cylinders, is not economical. Many of these streams arc therefore simply co-burned in plant boilers, and in some cases even wasted by venting or flaring. Their value ranges from zero (if vented), to the value of the fuel used in the boiler, where they are co-burned.

  11. TECHNOLOGY VISION 2020: The U.S. Chemical Industry | Department of Energy

    Office of Environmental Management (EM)

    TECHNOLOGY VISION 2020: The U.S. Chemical Industry TECHNOLOGY VISION 2020: The U.S. Chemical Industry chem_vision.pdf (309.03 KB) More Documents & Publications ITP Chemicals: Technology Roadmap for Computational Chemistry WORKSHOP: SUSTAINABILITY IN MANUFACTURING, JANUARY 6-7 Manufacturing Innovation Multi-Topic Workshop Report

  12. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009

    Broader source: Energy.gov [DOE]

    Report summarizing the results of the August 19–20, 2009, Industrial Feedstock Flexibility Workshop

  13. Chemical Industry R&D Roadmap for Nanomaterials By Design. From Fundamentals to Function

    SciTech Connect (OSTI)

    none,

    2003-12-01

    Vision2020 agreed to join NNI and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (DOE/EERE) in sponsoring the "Nanomaterials and the Chemical Industry Roadmap Workshop" on September 30-October 2, 2002. This roadmap, Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function, is based on the scientific priorities expressed by workshop participants from the chemical industry, universities, and government laboratories.

  14. Technology Vision 2020 - The U.S. Chemical Industry

    SciTech Connect (OSTI)

    1996-12-01

    The body of this report outlines the current state of the industry, a vision for tomorrow, and the technical advances needed to make this vision a reality.

  15. Commercialization of Turbulent Combustion Code CREBCOM for Chemical Industry Safety

    SciTech Connect (OSTI)

    Rohatgi, Upendra

    2007-06-30

    This program developed the Kurchatov Institute’s CREBCOM (CRiteria and Experimentally Based COMbustion) code to the point where it could be commercialized and marketed for the special applications described above, as well as for general purpose combustion calculations. The CREBCOM code uses a different approach to model the explosion phenomenon. The code models, with full 3D gas dynamics, the development of an explosion in three characteristics regimes: a) slow flames, b) fast flames, and c) detonation. The transition from one regime to another is governed by a set of empirical criteria and correlations. As part of the commercialization, the code was validated with the use of experimental data. The experimental data covered a range of thermodynamic initial conditions and apparatus scale. Proprietary experimental data were provided to the Kurchatov Institute by the DuPont for this purpose. The flame acceleration and detonation data was obtained from experiments in methane and oxygen enriched air mixtures carried out in two vessels with diameters of 20 and 27 cm. The experimental data covers a wide spectrum of initial temperature (20-525C) and pressure (1-3 atm). As part of this program, the Kurchatov Institute performed experiments in a 52 cm vessel in mixtures of methane-air at room temperature and pressure to be used in the validation of the code. The objective of these tests was to obtain frame acceleration data at a scale close to that found in actual industrial processes. BNL was responsible for managing the DOE/IPP portion of the program, and for satisfying DOE reporting requirements. BNL also participated in an independent assessment of the CREBOM code. DuPont provided proprietary experimental data to the Kurchatov Institute on flame acceleration and detonation in high temperature methane and oxygen enriched air mixtures in addition to the matching fund. In addition, DuPont also supplied to KI instrumentation for pressure and temperature measurement

  16. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry

  17. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C.

    1995-12-01

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  18. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    SciTech Connect (OSTI)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  19. Industry Applications Society 42. annual petroleum and chemical industry conference: Record of conference papers

    SciTech Connect (OSTI)

    1995-12-31

    Thirty-six papers were presented relating to electrical equipment in petroleum, petrochemical, and chemical plants. They are arranged under the following topical sections: general technical program; refining subcommittee; chemical subcommittee; production subcommittee; transportation subcommittee; electrochemical subcommittee; and general session safety. All papers have been processed separately for inclusion on the data base.

  20. Federal agencies active in chemical industry-related research and development

    SciTech Connect (OSTI)

    1995-09-29

    The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined in all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.

  1. Wastewater treatment: Chemical industry. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Wastewater treatment: Chemical industry. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains a minimum of 181 citations and includes a subject term index and title list.)

  3. Wastewater treatment: Chemical industry. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds is included, as well as associated problems and recommendations for fertilizer and pesticide pollution. (Contains a minimum of 204 citations and includes a subject term index and title list.)

  4. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect (OSTI)

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  5. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  6. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  7. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-04-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  9. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Industrialization of Biology. A Roadmap to Accelerate the Advanced Manufacturing of Chemicals

    SciTech Connect (OSTI)

    Friedman, Douglas C.

    2015-09-01

    The report stresses the need for efforts to inform the public of the nature of industrial biotechnology and of its societal benefits, and to make sure that concerns are communicated effectively between the public and other stakeholders. In addition to scientific advances, a number of governance and societal factors will influence the industrialization of biology. Industry norms and standards need to be established in areas such as read/write accuracy for DNA, data and machine technology specifications, and organism performance in terms of production rates and yields. An updated regulatory regime is also needed to accelerate the safe commercialization of new host organisms, metabolic pathways, and chemical products, and regulations should be coordinated across nations to enable rapid, safe, and global access to new technologies and products.

  11. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  12. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  13. Macro-Industrial Working Group 2

    Gasoline and Diesel Fuel Update (EIA)

    projections - Macroeconomic driven: chemical shipmentsproduction - Feedstock price ... efficiency improvements * Macroeconomic chemical drivers: bulk chemicals (organic, ...

  14. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect (OSTI)

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  15. Estimated Energy Savings and Financial Impacts of Nanomaterials by Design on Selected Applications in the Chemical Industry

    SciTech Connect (OSTI)

    Thayer, Gary R.; Roach, J. Fred; Dauelsberg, Lori

    2006-03-01

    This study provides a preliminary analysis of the potential impact that nanotechnology could have on energy efficiency, economic competitiveness, waste reduction, and productivity, in the chemical and related industries.

  16. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect (OSTI)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  17. Proceedings: Strategic research meeting on electrotechnologies in the chemicals and petroleum industries

    SciTech Connect (OSTI)

    1997-10-01

    A documentation of the Strategic Research and Development Meeting of the Chemicals and Petroleum Target in the EPRI Customer Services Group, which was held in Palo Alto, July 21-22, 1997, is presented here. Included are both the business background, discussed by EPRI representatives, and the electrotechnology program reports that were presented by investigators in the various fields. The heart of the meeting was the discussion sessions, which were held the second day. Recommendations included continuing support for electroseparations, microwave-induced synthesis and electrochemically-induced reactions, support for roadmapping activities, a strong recommendation that EPRI continue to improve its information dissemination program, and especially to clarify and strengthen access to and use of existing technologies by the Chemicals and Petroleum Industries. It was strongly requested that new, innovative ways be found to accommodate the major customers of the chemicals and petroleum target area, so that they can approach more closely some of the membership benefits, especially in the technologies associated with the Chemicals and Petroleum fields.

  18. Wastewater treatment: Chemical industry. January 1980-March 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Mar 92

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The bibliography contains citations concerning wastewater treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds are included, as well as associated problems and recommendations from fertilizer and pesticide pollution. (Contains 80 citations with title list and subject index.)

  19. Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries

    SciTech Connect (OSTI)

    Gary D. McGinnis

    2001-12-31

    The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

  20. The OSHA and EPA programs on preventing chemical accidents and potential applications in the photovoltaic industry

    SciTech Connect (OSTI)

    Fthenakis, V.M.

    1996-08-01

    OSHA issued in 1992, the Process Safety Management (PSM) of Highly Hazardous Substances. This rule requires owners/operators of facilities that handle hazardous chemicals in quantities greater than the listed thresholds to establish all the elements of a PSM. EPA has issued in June 1996, the rules for a Risk Management Program which also refers to specific substances and threshold quantities. These rules are applicable to all the facilities that use or store any of 139 regulated substances at quantities ranging from 100 lb to 10,000 lb. The RMP rule covers off-site hazards, while the OSHA Process Safety Management (PSM) rule covers worker safety issues within the plant boundary. Some of the listed substances may be found in photovoltaic manufacturing facilities. This brief report presents the basic elements of these two rules and discusses their potential applicability in the photovoltaic industry.

  1. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    SciTech Connect (OSTI)

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  2. Fate and control of blistering chemical warfare agents in Kuwait`s desalination industry

    SciTech Connect (OSTI)

    Khordagui, H.K.

    1997-01-01

    Kuwait, as most of the other states located along the Western shores of the Arabian Gulf, relies upon the Gulf as its main drinking water resource via desalination. In case of seawater contamination with blistering chemical warfare agents, traces of the agents and/or degradation products in the finished water might pose a serious health hazard. The objective of the present review is to study the potential contamination, transport, fate, effect and control of blistering chemical warfare agents (CWAs), in the Kuwaiti desalination industry. In general, all the environmental factors involved in the aquatic degradation of CWAs in Kuwait marine environment except for the high salinity in case of blistering agents such as sulphur mustard, and in favor of a fast degradation process. In case of massive releases of CWAs near the Kuwaiti shorelines, turbulence resulting from tidal cycles and high temperature will affect the dissolution process and extend the toxicity of the insoluble agent. Post- and pre-chlorination during the course of seawater desalination will catalyze and significantly accelerate the hydrolysis processes of the CWAs. The heat exerted on CWAs during the power generation-desalination processes is not expected to thermally decompose them. However, the steam heat will augment the agent`s rate of hydrolysis with subsequent acceleration in their rate of detoxification. Conventional pretreatment of feed seawater for reverse-osmosis desalination is theoretically capable of reducing the concentration of CWAs by coprecipitation and adsorption on flocs formed during coagulation. Prechlorination and prolonged detention in time in pretreatment units will simultaneously promote hydrolysis reactions. 50 refs.

  3. Development and Field Trial of Dimpled-Tube Technology for Chemical Industry Process Heaters

    SciTech Connect (OSTI)

    Yaroslav Chudnovsky; Aleksandr Kozlov

    2006-10-12

    Most approaches to increasing heat transfer rates in the convection sections of gas-fired process heaters involve the incorporation of fins, baffles, turbulizers, etc. to increase either the heat transfer surface area or turbulence or both. Although these approaches are effective in increasing the heat transfer rates, this increase is invariably accompanied by an associated increase in convection section pressure drop as well as, for heaters firing ‘dirty’ fuel mixtures, increased fouling of the tubes – both of which are highly undesirable. GTI has identified an approach that will increase heat transfer rates without a significant increase in pressure drop or fouling rate. Compared to other types of heat transfer enhancement approaches, the proposed dimpled tube approach achieves very high heat transfer rates at the lowest pressure drops. Incorporating this approach into convection sections of chemical industry fired process heaters may increase energy efficiency by 3-5%. The energy efficiency increase will allow reducing firing rates to provide the required heating duty while reducing the emissions of CO2 and NOx.

  4. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    SciTech Connect (OSTI)

    John, Randy C.; Young, Arthur L.; Pelton, Arthur D.; Thompson, William T.; Wright, Ian G.

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment

  5. Waste processing and pollution in the chemical and petrochemical industries. January 1984-October 1991 (Citations from the NTIS Data Base). Rept. for Jan 84-Oct 91

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 151 citations with title list and subject index.)

  6. Waste processing and pollution in the chemical and petrochemical industries. March 1983-March 1990 (A Bibliography from the NTIS data base). Report for March 1983-March 1990

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials-recovery studies, and standards for specific industries. Sources, site-hazard evaluations, and the toxicity of specific chemicals are also discussed. (This updated bibliography contains 68 citations, 13 of which are new entries to the previous edition.)

  7. Biological alternatives to chemical identification for the ecotoxicological assessment of industrial effluents: The RTG-2 in vitro cytotoxicity test

    SciTech Connect (OSTI)

    Castano, A. . Centro de Sanidad Ambiental); Vega, M.; Blazquez, T.; Tarazona, J.V. )

    1994-10-01

    Ecotoxicology is concerned with the effects of chemicals on biological systems. Identifying components of complex aqueous effluents poses special problems, and can be useless if there is a lack of information on the biological effects of the identified chemicals. Toxicity-based (bioassay-directed) sample fractionation can be very useful, but the small amount of fractioned material is a constraint that can be solved by using in vitro tests. The RTG-2 in vitro cytotoxicity test has been used to assess (a) the efficacy of a treatment plant in the aeronautics industry and (b) the exposure of fish and molluscs cultured in Esteiro Bay to the effluent of a fish-processing factory. Ecotoxicological assessments could be done without identifying the responsible chemicals. The RTG-2 test was used in combination with concentration/fractionation procedures. It proved that the toxicity of the liquid wastes from the aeronautics industry was eliminated by the treatment, and that molluscs and fish reared in Esteiro Bay had accumulated toxic chemicals dumped by the fish-processing factory. A combination of the RTG-2 cytotoxicity test and HPLC proved to give useful information even for chemicals not identified by GC-MS.

  8. Effect of the valence electron concentration on the bulk modulus and chemical bonding in Ta{sub 2}AC and Zr{sub 2}AC (A=Al, Si, and P)

    SciTech Connect (OSTI)

    Schneider, Jochen M.; Music, Denis; Sun Zhimei

    2005-03-15

    We have studied the effect of the valence electron concentration, on the bulk modulus and the chemical bonding in Ta{sub 2}AC and Zr{sub 2}AC (A=Al, Si, and P) by means of ab initio calculations. Our equilibrium volume and the hexagonal ratio (c/a) agree well (within 2.7% and 1.2%, respectively) with previously published experimental data for Ta{sub 2}AlC. The bulk moduli of both Ta{sub 2}AC and Zr{sub 2}AC increase as Al is substituted with Si and P by 13.1% and 20.1%, respectively. This can be understood since the substitution is associated with an increased valence electron concentration, resulting in band filling and an extensive increase in cohesion.

  9. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1995-11-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  11. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  12. Carbon Dioxide Separation Technology: R&D Needs for the Chemical and Petrochemical Industries

    SciTech Connect (OSTI)

    none,

    2007-11-01

    This report, the second in a series, is designed to summarize and present recommendations for improved CO2 separation technology for industrial processes. This report provides an overview of 1) the principal CO2 producing processes, 2) the current commercial separation technologies and 3) emerging adsorption and membrane technologies for CO2 separation, and makes recommendations for future research.

  13. Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrificati...

    Office of Environmental Management (EM)

    Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System (DBVS) Review Report Hanford ETR Bulk Vitrification System - Demonstration Bulk Vitrification System ...

  14. Industrial cogeneration case study No. 2: American Cyanamid Chemical Company, Bound Brook, New Jersey

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Within a project for evaluating the economics of cogeneration for industrial plants with an electrical capacity of 10,000 to 30,000 kW, the American Cyanamid plant at Bound Brook, NJ was selected for study. Built between 1915 and 1920 this power plant was converted in the 1960's from coal-fueling to oil and natural gas. Information is presented on the plant site, fuel usage, generation costs, comparative cost of purchasable electric power, equipment used, performance, and reliability and capital and maintenance costs. (LCL)

  15. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect (OSTI)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  16. Synthesis and characterization of bulk Cu{sub 2}ZnSnX{sub 4} (X: S, Se) via thermodynamically supported mechano-chemical process

    SciTech Connect (OSTI)

    Pareek, Devendra Balasubramaniam, K.R.; Sharma, Pratibha

    2015-05-15

    Materials with the general formula, Cu{sub 2}ZnSnX{sub 4} (CZTX; X: Group 16 elements), with X being S/Se, have been receiving considerable attention due to their utility as an absorber layer in solar photovoltaics (PV). This paper reports on the synthesis of CZTSe and CZTS nanocrystalline powders at low temperatures, starting from elemental metal and chalcogen powders, via the low cost, scalable technique of ball milling. The prepared samples were well characterized using the different characterization tools. XRD, Raman, SEM and TEM studies confirm the formation of single-phase, stoichiometric, nano-crystalline kesterite CZTS and CZTSe powders. The low temperature phase selection of the complex quaternary compound in this system is seen as a direct consequence of the thermodynamic facilitation, coupled with the capability of mechano-chemical synthesis to aid in overcoming kinetic constraints. The optical bandgap of the various samples of CZTS was observed in the range of 1.4–1.6 eV and corresponding values for CZTSe was observed to be in the range of 1.08–1.18 eV. Our work provides a pathway for developing cheap, scalable, and ink-based techniques for low cost solar PV. - Graphical abstract: Display Omitted - Highlights: • A scalable route for synthesis of near phase pure CZTS/Se nano-crystals has been demonstrated. • Stoichiometric CZTS and CZTSe were synthesized via mechano-chemical synthesis route. • Synthesis at near room temperature is supported by thermodynamic calculations.

  17. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  18. ROTARY BULK SOLIDS DIVIDER

    DOE Patents [OSTI]

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  19. Carbon Emissions: Chemicals Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Stephanie Battles Stephanie.Battles@eia.doe.gov (Phone: (202) 586-7237) FAX: 202-586-0018 URL: http:www.eia.govemeuefficiencycarbonemissionschemicals.html Contact Us File...

  20. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum ... Information & Communications Technology Data Centers Materials for Industrial Use ...

  1. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  2. Opportunities to assist developing countries in the proper use of agricultural and industrial chemicals. Report of the Committee on Health and Environment. Volume 1. Research paper(Final)

    SciTech Connect (OSTI)

    Not Available

    1988-02-18

    This report was prepared to examine opportunities for promoting the proper use of agricultural and industrial chemicals, and of alternatives such as integrated pest management. Volume one provides an overview of the economic, health, and environmental costs developing countries incur from improper pesticide and chemical use and presents detailed action recommendations for the Agency for International Development (AID). Volume two provides source information: included are sections on AID's and other donors' environmental policies, the activities of other US government agencies operating abroad, and lessons learned from integrated pest management programs, along with a 35-page bibliography.

  3. Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

    SciTech Connect (OSTI)

    McKimpson, Marvin G.

    2006-04-06

    This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion

  4. Breakthrough Industrial Carbon Capture, Utilization and Storage...

    Energy Savers [EERE]

    at the Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas. ... The two retrofitted Air Products and Chemicals plants produce commercial bulk hydrogen ...

  5. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    SciTech Connect (OSTI)

    Singh, Kunwar P. Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structuretoxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  6. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006 | Department of Energy Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006 ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical

  7. Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  8. Creating bulk nanocrystalline metal.

    SciTech Connect (OSTI)

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  9. Explosive bulk charge

    SciTech Connect (OSTI)

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  10. Microfabricated bulk wave acoustic bandgap device (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated bulk wave acoustic bandgap device Title: Microfabricated bulk wave acoustic bandgap device A microfabricated bulk wave acoustic bandgap device comprises a periodic ...

  11. Bulk Data Mover

    SciTech Connect (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections, data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/

  12. Bulk Data Mover

    Energy Science and Technology Software Center (OSTI)

    2011-01-03

    Bulk Data Mover (BDM) is a high-level data transfer management tool. BDM handles the issue of large variance in file sizes and a big portion of small files by managing the file transfers with optimized transfer queue and concurrency management algorithms. For example, climate simulation data sets are characterized by large volume of files with extreme variance in file sizes. The BDN achieves high performance using a variety of techniques, including multi-thraded concurrent transfer connections,more » data channel caching, load balancing over multiple transfer servers, and storage i/o pre-fetching. Logging information from the BDM is collected and analyzed to study the effectiveness of the transfer management algorithms. The BDM can accept a request composed of multiple files or an entire directory. The request also contains the target site and directory where the replicated files will reside. If a directory is provided at the source, then the BDM will replicate the structure of the source directory at the target site. The BDM is capable of transferring multiple files concurrently as well as using parallel TCP streams. The optimal level of concurrency or parallel streams depends on the bandwidth capacity of the storage systems at both ends of the transfer as well as achievable bandwidth of the wide-area network. Hardware req.-PC, MAC, Multi-platform & Workstation; Software req.: Compile/version-Java 1.50_x or ablove; Type of files: source code, executable modules, installation instructions other, user guide; URL: http://sdm.lbl.gov/bdm/« less

  13. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology ...

  14. Process Intensification - Chemical Sector Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  15. Bulk Electronic Structure of Quasicrystals (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals Prev Next Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; Singh, Sanjay ; ...

  16. Bulk Electronic Structure of Quasicrystals (Journal Article)...

    Office of Scientific and Technical Information (OSTI)

    Bulk Electronic Structure of Quasicrystals Citation Details In-Document Search Title: Bulk Electronic Structure of Quasicrystals Authors: Nayak, J. ; Maniraj, M. ; Rai, Abhishek ; ...

  17. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  18. RAPID/BulkTransmission | Open Energy Information

    Open Energy Info (EERE)

    regulatory processes and requirements by searching our regulatory flowchart library. Learn more about bulk transmission. BulkTransCoverage.png Regulations and permitting...

  19. Bulk Fuel Procurement Process & Alternative Drop-in Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bulk Fuel Procurement Process & Alternative Drop-in Fuel Bulk Fuel Procurement Process & Alternative Drop-in Fuel Jeanne Binder, DLA Energy, presentation on Bulk Fuel Procurement Process & Alternative Drop-in Fuel at the Advanced Biofuels Industry Roundtable. 7_binder_roundtable.pdf (1.17 MB) More Documents & Publications DLA Energy: Your Supplemental Energy Contracting Venue Advanced Drop-In Biofuels Initiative Agenda FUPWG Spring 2015 Agenda and Presentations

  20. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  1. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile of the U.S. Chemical Industry, May 2000 ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical Industry, May 2000 PDF icon ...

  2. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants,

  3. Impact of the revised OSHA exposure standard on evaluation and control of benzene and other volatile organic chemicals in the liquid petroleum pipeline industry

    SciTech Connect (OSTI)

    Mercer, D.O.

    1989-01-01

    The primary purpose of this study was to determine the benzene exposure potential of workers in the liquid petroleum pipeline industry and to assess the impact of compliance with the revised standard on this industry. In addition, exposure to ethylene dibromide (EDB), and ethylene dichloride (EDC), which have toxicological profiles similar to that of benzene and are routinely found in this industry, were evaluated and appropriate control protocols were recommended. Exposure potential to benzene in excess of the 0.5 ppm (8-hour TWA) OSHA action level was shown to be limited to three free product handling operations, and that this increased exposure potential was dependent on the length of time necessary to perform the operations. The incidence and magnitude of benzene overexposure was not severe and control could be accomplished with engineering methods, along with work practice controls and personal protective equipment. Through application of a risk assessment model it was shown that 14 excess leukemia deaths per one thousand workers could be expected in the employee population that routinely performs those operation having maximum benzene exposure potential. This compares to less than on excess leukemia death per one thousand workers in the total work population. The evaluation of EDB and EDC indicated that exposure potential to EDB was of greatest concern. Even though exposure could be limited through application of standard industrial hygiene methods, any control protocol short of total elimination of EDB from the product stream may be not sufficient to reduce exposure to accepted levels.

  4. Bulk Hauling Equipment for CHG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BULK HAULING EQUIPMENT FOR CHG Don Baldwin Director of Product Development - Hexagon Lincoln HEXAGON LINCOLN TITAN(tm) Module System Compressed Hydrogen Gas * Capacity 250 bar - 616 kg 350 bar - 809 kg 540 bar - 1155 kg * Gross Vehicle Weight (with prime mover) 250 bar - 28 450 kg 350 bar - 30 820 kg 540 bar - 39 440 kg * Purchase Cost 250 bar - $510,000 350 bar - $633,750 540 bar - $1,100,000 Compressed Natural Gas * Capacity (250 bar at 15 C) - 7412 kg * GVW (With prime mover) - 35 250 kg *

  5. Introduction to IEEE 841-1994, IEEE standard for petroleum and chemical industry: Severe duty totally enclosed fan-cooled (TEFC) squirrel cage induction motors -- up to and including 500 hp

    SciTech Connect (OSTI)

    Doughty, R.L.

    1995-12-31

    IEEE 841, Recommended Practice for Chemical Industry Severe Duty Squirrel-Cage Induction Motors--600 V and Below, first issued in 1986, has been significantly revised and reissued as a Standard. The scope has been increased to include severe duty TEFC squirrel-cage induction motors with antifriction bearings in sizes up to and including 500 horsepower. Motor rated voltages of 2,300 V and 4,000 V have been added. Changes to the standard are reviewed in detail. Requirements are identified that improve motor reliability and increase motor life.

  6. Mitsui Chemicals Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Mitsui Chemicals Inc Place: Tokyo, Tokyo, Japan Zip: 105-7117 Sector: Solar Product: Chemicals maker including plastics, industrial...

  7. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  8. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, ...

  9. ITP Chemicals: Final Report: Evaluation of Alternative Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, ...

  10. RCRA Subtitle C TSD facilities and solvent recovery facilities: Section 313 of the Emergency Planning and Community Right-to-Know Act. Toxic chemical release inventory; Industry guidance

    SciTech Connect (OSTI)

    1999-01-01

    The purpose of this guidance document is to assist facilities in SIC code 4953 that are regulated under the Resource Conservation and Recovery Act (RCRA), Subtitle C and facilities in SIC code 7389 that are primarily engaged in solvent recovery services on a contract or fee basis. This document explains the EPCRA Section 313 and PPA Section 6607 reporting requirements (collectively referred to as the EPCRA Section 313) reporting requirements, and discusses specific release and other waste management activities encountered at many facilities in these industries. The objectives of this manual are to: clarify EPCRA Section 313 requirements for industry; increase the accuracy and completeness of the data being reported by RCRA Subtitle C TSD and solvent recovery facilities; and reduce the level of effort expended by those facilities that prepare an EPCRA Section 313 report.

  11. Organization of bulk power markets: A concept paper

    SciTech Connect (OSTI)

    Kahn, E.; Stoft, S.

    1995-12-01

    The electricity industry in the US today is at a crossroads. The restructuring debate going on in most regions has made it clear that the traditional model of vertically integrated firms serving defined franchise areas and regulated by state commissions may not be the pattern for the future. The demands of large customers seeking direct access to power markets, the entry of new participants, and proposed reforms of the regulatory process all signify a momentum for fundamental change in the organization of the industry. This paper addresses electricity restructuring from the perspective of bulk power markets. The authors focus attention on the organization of electricity trade and the various ways it has been and might be conducted. Their approach concentrates on conceptual models and empirical case studies, not on specific proposals made by particular utilities or commissions. They review literature in economics and power system engineering that is relevant to the major questions. The objective is to provide conceptual background to industry participants, e.g. utility staff, regulatory staff, new entrants, who are working on specific proposals. While they formulate many questions, they do not provide definitive answers on most issues. They attempt to put the industry restructuring dialogue in a neutral setting, translating the language of economists for engineers and vice versa. Towards this end they begin with a review of the basic economic institutions in the US bulk power markets and a summary of the engineering practices that dominate trade today.

  12. Permanent magnet with MgB{sub 2} bulk superconductor

    SciTech Connect (OSTI)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  13. RAPID/BulkTransmission/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    BulkTransmissionAir Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  14. Synthesis of bulk superhard semiconducting B-C material (Journal...

    Office of Scientific and Technical Information (OSTI)

    Synthesis of bulk superhard semiconducting B-C material Citation Details In-Document Search Title: Synthesis of bulk superhard semiconducting B-C material A bulk composite ...

  15. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  16. Summary - Demonstration Bulk Vitrification System (DBVS) for...

    Office of Environmental Management (EM)

    External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for ... What the ETR Team Recommended Additional cold testing and demonstration is needed for ...

  17. Understanding Bulk Power Reliability: The Importance of Good Data and A Critical Review of Existing Sources

    SciTech Connect (OSTI)

    Fisher, Emily; Eto, Joseph H.; LaCommare, Kristina Hamachi

    2011-10-19

    Bulk power system reliability is of critical importance to the electricity sector. Complete and accurate information on events affecting the bulk power system is essential for assessing trends and efforts to maintain or improve reliability. Yet, current sources of this information were not designed with these uses in mind. They were designed, instead, to support real-time emergency notification to industry and government first-responders. This paper reviews information currently collected by both industry and government sources for this purpose and assesses factors that might affect their usefulness in supporting the academic literature that has relied upon them to draw conclusions about the reliability of the US electric power system.

  18. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  19. Chemical Supply Chain Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilitiesChemical Supply Chain Analysis content top Chemical Supply Chain Analysis NISAC has developed a range of capabilities for analyzing the consequences of disruptions to the chemical manufacturing industry. Each capability provides a different but complementary perspective on the questions of interest-questions like Given an event, will the entire chemical sector be impacted or just parts? Which chemicals, plants, and complexes could be impacted? In which regions of the country?

  20. Industry Information Practices and the Failure to Remember

    Office of Environmental Management (EM)

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  1. Cathay Industrial Biotech Ltd | Open Energy Information

    Open Energy Info (EERE)

    and supplier of chemicals, fuels and polymers that is exploring biobutanol research and production. References: Cathay Industrial Biotech Ltd1 This article is a stub. You can...

  2. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers

    SciTech Connect (OSTI)

    Wilson, William; Krakowiak, Konrad J.; Ulm, Franz-Josef

    2014-01-15

    According to recent developments in cement clinker engineering, the optimization of chemical substitutions in the main clinker phases offers a promising approach to improve both reactivity and grindability of clinkers. Thus, monitoring the chemistry of the phases may become part of the quality control at the cement plants, along with the usual measurements of the abundance of the mineralogical phases (quantitative X-ray diffraction) and the bulk chemistry (X-ray fluorescence). This paper presents a new method to assess these three complementary quantities with a single experiment. The method is based on electron microprobe spot analyses, performed over a grid located on a representative surface of the sample and interpreted with advanced statistical tools. This paper describes the method and the experimental program performed on industrial clinkers to establish the accuracy in comparison to conventional methods. -- Highlights: A new method of clinker characterization Combination of electron probe technique with cluster analysis Simultaneous assessment of phase abundance, composition and bulk chemistry Experimental validation performed on industrial clinkers.

  3. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries This ...

  4. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners venkatasubramanian.pdf (1.82 MB) More Documents & Publications Nano-structur...

  5. RAPID/BulkTransmission/Transmission Siting & Interconnection...

    Open Energy Info (EERE)

    federal review). Bulk Transmission Transmission Siting & Interconnection in New Mexico New Mexico Statutes (N.M.S.) 62-9-1, 62-9-3(B), and 62-9-3.2 No Location Permit may be...

  6. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect (OSTI)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  7. bulk power system | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  8. Bulk Vitrification Castable Refractory Block Protection Study

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Bagaasen, Larry M.; Beck, Andrew E.; Brouns, Thomas M.; Caldwell, Dustin D.; Elliott, Michael L.; Matyas, Josef; Minister, Kevin BC; Schweiger, Michael J.; Strachan, Denis M.; Tinsley, Bronnie P.; Hollenberg, Glenn W.

    2005-05-01

    Bulk vitrification (BV) was selected for a pilot-scale test and demonstration facility for supplemental treatment to accelerate the cleanup of low-activity waste (LAW) at the Hanford U.S. DOE Site. During engineering-scale (ES) tests, a small fraction of radioactive Tc (and Re, its nonradioactive surrogate) were transferred out of the LAW glass feed and molten LAW glass, and deposited on the surface and within the pores of the castable refractory block (CRB). Laboratory experiments were undertaken to understand the mechanisms of the transport Tc/Re into the CRB during vitrification and to evaluate various means of CRB protection against the deposition of leachable Tc/Re. The tests used Re as a chemical surrogate for Tc. The tests with the baseline CRB showed that the molten LAW penetrates into CRB pores before it converts to glass, leaving deposits of sulfates and chlorides when the nitrate components decompose. Na2O from the LAW reacts with the CRB to create a durable glass phase that may contain Tc/Re. Limited data from a single CRB sample taken from an ES experiment indicate that, while a fraction of Tc/Re is present in the CRB in a readily leachable form, most of the Tc/Re deposited in the refractory is retained in the form of a durable glass phase. In addition, the molten salts from the LAW, mainly sulfates, chlorides, and nitrates, begin to evaporate from BV feeds at temperatures below 800 C and condense on solid surfaces at temperatures below 530 C. Three approaches aimed at reducing or preventing the deposition of soluble Tc/Re within the CRB were proposed: metal lining, sealing the CRB surface with a glaze, and lining the CRB with ceramic tiles. Metal liners were deemed unsuitable because evaluations showed that they can cause unacceptable distortions of the electric field in the BV system. Sodium silicate and a low-alkali borosilicate glaze were selected for testing. The glazes slowed down molten salt condensate penetration, but did little to reduce the

  9. Structural origin of bulk molecular hydrogen in hydrogenated amorphous silicon

    SciTech Connect (OSTI)

    Liu, X.; Pohl, R.O.; Crandall, R.S.

    1999-07-01

    The elastic anomaly observed previously at the triple point of bulk molecular hydrogen in hydrogenated amorphous silicon films prepared by hot-wire chemical-vapor deposition has also been observed in deuterated films at the triple point of D{sub 2}. The origin of this anomaly has now been traced to bubbles formed at the crystalline-amorphous interface. An upper limit of the pressure in these bubbles at their formation temperature, 440 C, has been estimated to be 11 MPa, and is suggested to be a measure of the bonding strength between film and substrate at that temperature. Bubble formation after heat treatment at 400 C has also been observed in films prepared by plasma-enhanced chemical-vapor deposition. The internal friction anomalies resemble those observed previously in cold-worked hydrogenated iron where they have been interpreted through plastic deformation of solid hydrogen in voids.

  10. Industrial Hygiene | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hygiene Ames Laboratory's Industrial Hygiene (IH) Program is dedicated to providing employees a workplace free from or protected against recognized hazards that could potentially cause illness or injury. The basic principles of industrial hygiene are applied: Anticipation, recognition, evaluation and control of workplace hazards. The industrial hygienist participates on Readiness Review committees to assist in anticipation and recognition of chemical, physical, biological, or ergonomic hazards.

  11. Overview of Western's Interconnected Bulk Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western's Interconnected Bulk Electric System Western Area Power Admin. Objectives * Describe Western Area Power Administration Region and Facilities Overview * Explain Fundamentals of Electricity, Power Transformers and Transmission Lines * Discuss Overview of the Bulk Electric System (BES) * Objectives Review Western's Service Area Western marketing areas and offices 3 Wholesale Power Services * Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR) , Army

  12. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  13. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... biomass to prepare it as feed for processing Lack of demonstrated science Separations and direct conversion - technical ideas and new approaches, e.g., ionic liquids ...

  14. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 3323197.pdf Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Roadmap for Bioenergy and Biobased Products in the United States

  15. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  16. Industry Economists

    U.S. Energy Information Administration (EIA) Indexed Site

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  17. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  18. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  19. Decoupling Bulk and Surface Contributions in Water- Splitting Photocatalysts by In Situ Ultrafast Spectroscopy

    SciTech Connect (OSTI)

    Appavoo, Kannatassen; Mingzhao, Liu; Black, Charles T.; Sfeir, Matthew Y.

    2015-05-10

    By performing ultrafast emission spectroscopy in an operating, bias-controlled photoelectrochemical cell, we distinguish between bulk (charge transport) and surface (chemical reaction) recombination processes in a nanostructured photocatalyst and correlate its electronic properties directly with its incident-photon-to-current efficiency.

  20. Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

  1. RAPID/BulkTransmission/Exploration | Open Energy Information

    Open Energy Info (EERE)

    search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Bulk Transmission ...

  2. Regulatory Roadmap Workshop for Federal Bulk Transmission Regulations...

    Open Energy Info (EERE)

    for bulk transmission. Date: Tuesday, 29 July, 2014 - 09:30 - 15:30 Location: NREL Education Center Auditorium Golden, Colorado Groups: Federal Bulk Transmission Regulatory...

  3. RAPID/BulkTransmission/Water Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionWater Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  4. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and ... "Date","U.S. Finished Motor Gasoline Stocks at Refineries, Bulk ...

  5. Design of Bulk Nanocomposites as High Efficiency Thermoelectric...

    Office of Science (SC) Website

    Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier ... News & Events Publications History Contact BES Home 04.27.12 Design of Bulk Nanocomposites ...

  6. RAPID/BulkTransmission/General Construction | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionGeneral Construction < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  7. RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...

    Open Energy Info (EERE)

    Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

  8. RAPID/BulkTransmission/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  9. Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications...

    Office of Scientific and Technical Information (OSTI)

    Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications Citation Details In-Document Search Title: Linux Kernel Co-Scheduling For Bulk Synchronous Parallel ...

  10. Material Profile Influences in Bulk-Heterojunctions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Material Profile Influences in Bulk-Heterojunctions Citation Details In-Document Search Title: Material Profile Influences in Bulk-Heterojunctions he morphology in mixed ...

  11. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    in Bulk Organic Electrolytes from First Principles Molecular Dynamics Citation Details In-Document Search Title: Lithium Ion Solvation and Diffusion in Bulk Organic ...

  12. Stability analysis of 5D gravitational solutions with N bulk...

    Office of Scientific and Technical Information (OSTI)

    Stability analysis of 5D gravitational solutions with N bulk scalar fields Prev Next Title: Stability analysis of 5D gravitational solutions with N bulk scalar fields ...

  13. RAPID/BulkTransmission/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  14. Bulk-memory processor for data acquisition

    SciTech Connect (OSTI)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user.

  15. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  16. Orchestrating Bulk Data Movement in Grid Environments

    SciTech Connect (OSTI)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  17. Batteryless Chemical Detection - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployable chemical sensors for military, industrial, and environmental applications. ... small enough to serve in unique situations ranging from military to medical applications. ...

  18. Thermal Conductivity Measurements of Bulk Thermoelectric Materials (Prop. 2004-067)

    SciTech Connect (OSTI)

    Wang, Hsin; Porter, Wallace D; Sharp, J

    2006-01-01

    Thermal conductivity is an important material property of the bulk thermoelectrics. To improve ZT a reduced thermal conductivity is always desired. However, there is no standard material for thermoelectrics and the test results, even on the same material, often show significant scatter. The scatter in thermal conductivity made reported ZT values uncertain and sometime unrepeatable. One of the reasons for the uncertainty is due to the microstructure differences resulting from sintering, heat treatment and other processing parameters. They selected commonly used bulk thermoelectric materials and conducted thermal conductivity measurements using the laser flash diffusivity and differential scanning calorimeter (DSC) systems. Thermal conductivity was measured as a function of temperature of temperature from room temperature to 500 K and back to room temperature. The effect of thermal cycling on the bulk thermoelectric was studied. Comnbined with measurements on electrical resistivity and Seebeck coefficient, they show the use of a ZT map in selecting thermoelectrics. The commercial bulk material showed very good consistency and reliability compared to other bulk materials. The goal is to develop a thermal transport properties database for the bulk thermoelectrics and make the information available to the research community and industry.

  19. Development of a Bulk-Format System to Harvest, Handle, Store, and Deliver High-Tonnage Low-Moisture Switchgrass Feedstock

    SciTech Connect (OSTI)

    Womac, Alvin; Groothuis, Mitch; Westover, Tyler; Phanphanich, Manunya; Webb, Erin; Sokhansanj, Shahab; Turhollow, Anthony

    2013-09-24

    This project evaluates and compares comprehensive feedstock logistics systems (FLS), where a FLS is defined to comprehensively span from biomass material standing in a field to conveyance of a uniform, industrial-milled product into the throat of a biomass conversion facility (BCF). Elements of the bulk-format FLS evaluated in this project include: field-standing switchgrass dry chopped into bulk format on the farm, hauled (either loose or bulk compacted) to storage, stored with confining overburden in a protective facility, reclaimed and conveyed to bulk-format discharge, bulk compacted into an ejector trailer, and conveyed as bulk flow into the BCF. In this FLS evaluation, bulk storage bins served as a controlled and sensored proxy for large commercial stacks protected from moisture with a membrane cover.

  20. Imprinting bulk amorphous alloy at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  1. A stereoscopic look into the bulk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-07-26

    Here, we present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphisminvariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimalmore » surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.« less

  2. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Science Chemical Science Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the fatty acids could show the way to the designer production of plant fatty acids, and, in turn, to new industrial applications and new products. <a href

  3. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  4. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  5. Industrial Energy Efficiency Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  6. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  7. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  8. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  9. Working with SRNL - AMC - Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry The dynamic, long-term relationships that would emerge from this laboratory, industry, and academic collaborative would generate new concepts and approaches that not only "spin in" modern manufacturing methods that support DOE mission success but also "spin out" new innovations to support overall chemical and manufacturing competitiveness within the United States. Technology and innovation are being driven by the need to work smarter to reduce risk. The Advanced

  10. Structural rejuvenation in bulk metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; Bei, Hongbin; Yokoyama, Y.; Egami, Takeshi

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  11. DEMONSTRATION BULK VITRIFICATION SYSTEM (DBVS) EXTERNAL REVIEW

    SciTech Connect (OSTI)

    HONEYMAN, J.O.

    2007-02-08

    The Hanford mission to retrieve and immobilize 53 million gallons of radioactive waste from 177 underground storage tanks will be accomplished using a combination of processing by the waste treatment plant currently under construction, and a supplemental treatment that would process low-activity waste. Under consideration for this treatment is bulk vitrification, a versatile joule-heated melter technology which could be deployed in the tank farms. The Department proposes to demonstrate this technology under a Research, Development and Demonstration (RD and D) permit issued by the Washington State Department of Ecology using both non-radioactive simulant and blends of actual tank waste. From the demonstration program, data would be obtained on cost and technical performance to enable a decision on the potential use of bulk vitrification as the supplemental treatment technology for Hanford. An independent review by sixteen subject matter experts was conducted to assure that the technical basis of the demonstration facility design would be adequate to meet the objectives of the Demonstration Bulk Vitrification System (DBVS) program. This review explored all aspects of the program, including flowsheet chemistry, project risk, vitrification, equipment design and nuclear safety, and was carried out at a time when issues can be identified and corrected. This paper describes the mission need, review approach, technical recommendations and follow-on activities for the DBVS program.

  12. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  13. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, Randall J. (Los Angeles, CA); Cecchi, Joseph L. (Lawrenceville, NJ)

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  14. Hydrogen isotope separation utilizing bulk getters

    DOE Patents [OSTI]

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  15. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  16. Control Center and Data Management Improvements Modernize Bulk Power Operations in Georgia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost- shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Georgia System Operations Corporation's (GSOC) Smart Grid Investment Grant (SGIG) project modernized bulk

  17. Devices for collecting chemical compounds

    DOE Patents [OSTI]

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  18. Steam System Opportunity Assessment for the Pulp and Paper, Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, and Petroleum Refining Industries | Department of Energy Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from

  19. Improving the bulk data transfer experience

    SciTech Connect (OSTI)

    Guok, Chin; Guok, Chin; Lee, Jason R.; Berket, Karlo

    2008-05-07

    Scientific computations and collaborations increasingly rely on the network to provide high-speed data transfer, dissemination of results, access to instruments, support for computational steering, etc. The Energy Sciences Network is establishing a science data network to provide user driven bandwidth allocation. In a shared network environment, some reservations may not be granted due to the lack of available bandwidth on any single path. In many cases, the available bandwidth across multiple paths would be sufficient to grant the reservation. In this paper we investigate how to utilize the available bandwidth across multiple paths in the case of bulk data transfer.

  20. Towards bulk based preconditioning for quantum dotcomputations

    SciTech Connect (OSTI)

    Dongarra, Jack; Langou, Julien; Tomov, Stanimire; Channing,Andrew; Marques, Osni; Vomel, Christof; Wang, Lin-Wang

    2006-05-25

    This article describes how to accelerate the convergence of Preconditioned Conjugate Gradient (PCG) type eigensolvers for the computation of several states around the band gap of colloidal quantum dots. Our new approach uses the Hamiltonian from the bulk materials constituent for the quantum dot to design an efficient preconditioner for the folded spectrum PCG method. The technique described shows promising results when applied to CdSe quantum dot model problems. We show a decrease in the number of iteration steps by at least a factor of 4 compared to the previously used diagonal preconditioner.

  1. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C. )

    1991-01-01

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. The authors have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235}U sample mass, AmLi source strength, and source-to-sample coupling.

  2. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow The boundary entropy log(g) of a critical ...

  3. Boundary Entropy Can Increase Under Bulk RG Flow (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Boundary Entropy Can Increase Under Bulk RG Flow Citation Details In-Document Search Title: Boundary Entropy Can Increase Under Bulk RG Flow You are accessing a document from ...

  4. World Congress on Industrial Biotechnology

    Broader source: Energy.gov [DOE]

    Held this year in Montreal, Quebec, the BIO World Congress on Industrial Biotechnology will bring together business leaders, investors, and policy makers in biofuels, biobased products, and renewable chemicals. BETO Demonstration and Market Transformation Program Manager Jim Spaeth and Support Specialist Natalie Roberts will be in attendance.

  5. Substantial bulk photovoltaic effect enhancement via nanolayering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Fenggong; Young, Steve M.; Zheng, Fan; Grinberg, Ilya; Rappe, Andrew M.

    2016-01-21

    Spontaneous polarization and inversion symmetry breaking in ferroelectric materials lead to their use as photovoltaic devices. However, further advancement of their applications are hindered by the paucity of ways of reducing bandgaps and enhancing photocurrent. By unravelling the correlation between ferroelectric materials’ responses to solar irradiation and their local structure and electric polarization landscapes, here we show from first principles that substantial bulk photovoltaic effect enhancement can be achieved by nanolayering PbTiO3 with nickel ions and oxygen vacancies ((PbNiO2)x(PbTiO3)1–x). The enhancement of the total photocurrent for different spacings between the Ni-containing layers can be as high as 43 times duemore » to a smaller bandgap and photocurrent direction alignment for all absorption energies. This is due to the electrostatic effect that arises from nanolayering. Lastly, this opens up the possibility for control of the bulk photovoltaic effect in ferroelectric materials by nanoscale engineering of their structure and composition.« less

  6. Negative ion extraction from hydrogen plasma bulk

    SciTech Connect (OSTI)

    Oudini, N.; Taccogna, F.; Minelli, P.

    2013-10-15

    A two-dimensional particle-in-cell/Monte Carlo collision model has been developed and used to study low electronegative magnetized hydrogen plasma. A configuration characterized by four electrodes is used: the left electrode is biased at V{sub l} = −100 V, the right electrode is grounded, while the upper and lower transversal electrodes are biased at an intermediate voltage V{sub ud} between 0 and −100 V. A constant and homogeneous magnetic field is applied parallel to the lateral (left/right) electrodes. It is shown that in the magnetized case, the bulk plasma potential is close to the transversal electrodes bias inducing then a reversed sheath in front of the right electrode. The potential drop within the reversed sheath is controlled by the transversal electrodes bias allowing extraction of negative ions with a significant reduction of co-extracted electron current. Furthermore, introducing plasma electrodes, between the transversal electrodes and the right electrode, biased with a voltage just above the plasma bulk potential, increases the negative ion extracted current and decreases significantly the co-extracted electron current. The physical mechanism on basis of this phenomenon has been discussed.

  7. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling and Simulation in the Chemical Sciences» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of different-size nanocrystals, each

  8. Bayer ABS Ltd formerly ABS Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    (formerly ABS Industries Ltd) Place: Vadodara, Gujarat, India Zip: 335871 Sector: Wind energy Product: Bayer ABS is a plastic, chemical, and pharmaceutical company. Has...

  9. Technology transfer in the petrochemical industry

    SciTech Connect (OSTI)

    Tanaka, M.

    1994-01-01

    The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

  10. Supporting industries energy and environmental profile

    SciTech Connect (OSTI)

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  11. Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing

  12. Chemical Recycling | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  13. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2011-03-01

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  14. Organic hybrid planar-nanocrystalline bulk heterojunctions

    DOE Patents [OSTI]

    Forrest, Stephen R.; Yang, Fan

    2013-04-09

    A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks. This other photoconductive material or materials has an absorption spectra different from the donor and acceptor materials.

  15. Rotary adsorbers for continuous bulk separations

    DOE Patents [OSTI]

    Baker, Frederick S.

    2011-11-08

    A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream. The adsorbent structure may be an inherently electrically-conductive honeycomb structure.

  16. Bulk amorphous steels based on Fe alloys

    DOE Patents [OSTI]

    Lu, ZhaoPing; Liu, Chain T.

    2006-05-30

    A bulk amorphous alloy has the approximate composition: Fe.sub.(100-a-b-c-d-e)Y.sub.aMn.sub.bT.sub.cM.sub.dX.sub.e wherein: T includes at least one of the group consisting of: Ni, Cu, Cr and Co; M includes at least one of the group consisting of W, Mo, Nb, Ta, Al and Ti; X includes at least one of the group consisting of Co, Ni and Cr; a is an atomic percentage, and a<5; b is an atomic percentage, and b.ltoreq.25; c is an atomic percentage, and c.ltoreq.25; d is an atomic percentage, and d.ltoreq.25; and e is an atomic percentage, and 5.ltoreq.e.ltoreq.30.

  17. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  18. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50

  19. Chemical microsensors

    DOE Patents [OSTI]

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

  20. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  1. Chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2001-01-01

    A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

  2. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  3. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  4. Material Profile Influences in Bulk-Heterojunctions

    SciTech Connect (OSTI)

    Roehling, John D.; Rochester, Christopher W.; Ro, Hyun W.; Wang, Peng; Majewski, Jaroslaw; Batenburg, Kees J.; Arslan, Ilke; Delongchamp, Dean M.; Moule, Adam J.

    2014-10-01

    he morphology in mixed bulk-heterojunction films are compared using three different quantitative measurement techniques. We compare the vertical composition changes using high-angle annular dark-field scanning transmission electron microscopy with electron tomography and neutron and x-ray reflectometry. The three measurement techniques yield qualita-tively comparable vertical concentration measurements. The presence of a metal cathode during thermal annealing is observed to alter the fullerene concentration throughout the thickness of the film for all measurements. However, the abso-lute vertical concentration of fullerene is quantitatively different for the three measurements. The origin of the quantitative measurement differences is discussed. The authors thank Luna Innovations, Inc. for donating the endohedral fullerenes used in this study and Plextronics for the P3HT. They are gratefully thank the National Science Foundation Energy for Sustainability Program, Award No. 0933435. This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. This research was also supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  5. Determination of Bulk Dimensional Variation in Castings

    SciTech Connect (OSTI)

    Dr. James F. Cuttino Dr. Edward P. Morse

    2005-04-14

    The purpose of this work is to improve the efficiency of green sand foundries so that they may continue to compete as the most cost-effective method of fabrication while meeting tightening constraints on near-net shape manufacturing. In order to achieve this objective, the study is divided into two major components. The first component concentrated on identifying which processes control surface finish on the castings and which provide potential reductions in variations. The second component identified metrological methods that effectively discern between the geometry of bulk material versus surface finish in order to more accurately determine the quality of a part. The research resulted in the determination of an empirical relationship relating pouring parameters to dimensional variation, with an R2 value of greater than 0.79. A significant difference in variations obtained from vertical vs. horizontal molding machines was also noticed. When analyzed separately, however, the resulting empirical relationships for horizontal and vertical machines had reduced R2 values, probably due to the reduced data sets. Significant parameters when considering vertical and horizontal molding machines together included surface roughness, pattern type, iron type, pouring rate, copper content, amount of Western Bentonite, and permeability.

  6. Excitonic exchange splitting in bulk semiconductors

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1999-02-01

    We present an approach to calculate the excitonic fine-structure splittings due to electron-hole short-range exchange interactions using the local-density approximation pseudopotential method, and apply it to bulk semiconductors CdSe, InP, GaAs, and InAs. Comparing with previous theoretical results, the current calculated splittings agree well with experiments. Furthermore, we provide an approximate relationship between the short-range exchange splitting and the exciton Bohr radius, which can be used to estimate the exchange splitting for other materials. The current calculation indicates that a commonly used formula for exchange splitting in quantum dot is not valid. Finally, we find a very large pressure dependence of the exchange splitting: a factor of 4.5 increase as the lattice constant changes by 3.5{percent}. This increase is mainly due to the decrease of the Bohr radius via the change of electron effective mass. {copyright} {ital 1999} {ital The American Physical Society}

  7. Thermodynamic properties of bulk and confined water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene

    2014-11-14

    The thermodynamic response functions of water display anomalous behaviors. We study these anomalous behaviors in bulk and confined water. We use nuclear magnetic resonance (NMR) to examine the configurational specific heat and the transport parameters in both the thermal stable and the metastable supercooled phases. The data we obtain suggest that there is a behavior common to both phases: that the dynamics of water exhibit two singular temperatures belonging to the supercooled and the stable phase, respectively. One is the dynamic fragile-to-strong crossover temperature (T{sub L} ? 225K). The second, T{sup *} ? 315 5K, is a special locus of the isothermal compressibility K{sub T}(T, P) and the thermal expansion coefficient ?{sub P}(T, P) in the PT plane. In the case of water confined inside a protein, we observe that these two temperatures mark, respectively, the onset of protein flexibility from its low temperature glass state (T{sub L}) and the onset of the unfolding process (T{sup *})

  8. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  9. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers (IAC) Update -- July 2015 Read the Industrial Assessment Centers (IAC) Update -- July 2015 Industrial Assessment Centers Quarterly Update, July 2015 (845.58 KB) More Documents & Publications Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers Quarterly Update, Spring 2014 IAC Factsheet

    Industrial Assessment Centers Update, Fall 2015 Industrial Assessment Centers

  10. ARM - Campaign Instrument - ec-convair580-bulk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsec-convair580-bulk Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Environment Canada Convair 580 Bulk Parameters (EC-CONVAIR580-BULK) Instrument Categories Aerosols, Airborne Observations, Cloud Properties Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) [ Download Data ] North Slope Alaska, 2008.04.01 - 2008.04.30 Primary Measurements Taken The following measurements are those considered

  11. Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    Title: Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First Principles and Classical Reactive Molecular Dynamics Authors: Ong, M T ; Verners, O ; Draeger, E ...

  12. RAPID/BulkTransmission/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Hawaii. Use the Edit with form button to editupdate. Planning Organizations not provided Hawaii Owners not provided Current Projects not...

  13. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Alaska. Use the Edit with form button to editupdate. Planning Organizations not provided Alaska Owners not provided Current Projects not...

  14. RAPID/BulkTransmission/Texas | Open Energy Information

    Open Energy Info (EERE)

    information about BulkTransmission in Texas. Use the Edit with form button to editupdate. Planning Organizations not provided Texas Owners not provided Current Projects not...

  15. Investigation of Interfacial and Bulk Dissociation of HBr, HCl...

    Office of Scientific and Technical Information (OSTI)

    Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 Using Density Functional Theory-Based Molecular Dynamics Simulations Citation Details In-Document Search...

  16. Category:Bulk Transmission Regulatory Roadmap Sections | Open...

    Open Energy Info (EERE)

    Login | Sign Up Search Category Edit History Category:Bulk Transmission Regulatory Roadmap Sections Jump to: navigation, search GRR-logo.png Looking for the RAPIDRoadmap?...

  17. RAPID/BulkTransmission/Colorado | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Colorado. In addition, WECC provides...

  18. RAPID/BulkTransmission/Idaho | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Idaho. In addition, WECC provides an...

  19. RAPID/BulkTransmission/Washington | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Washington. In addition, WECC provides...

  20. RAPID/BulkTransmission/Nevada | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including in Nevada. WECC also provides an...

  1. RAPID/BulkTransmission/Arizona | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Arizona. WECC also provides an...

  2. RAPID/BulkTransmission/Oregon | Open Energy Information

    Open Energy Info (EERE)

    the Regional Entity responsible for coordinating and promoting Bulk Electric System reliability in the Western Interconnection, including Oregon. WECC also provides an environment...

  3. RAPID/BulkTransmission/Environment | Open Energy Information

    Open Energy Info (EERE)

    Policy Act (HEPA) Hawaii Department of Health Office of Environmental Quality Control Bulk Transmission Environment in Idaho Varies by local municipality Varies by...

  4. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOE Patents [OSTI]

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  5. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  6. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Natural Gas Plants (Thousand Barrels)","East Coast (PADD 1) Finished Motor Gasoline Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand ...

  7. RAPID/BulkTransmission/About | Open Energy Information

    Open Energy Info (EERE)

    Current Topics in Bulk Transmission West-Wide Energy Corridor Programmatic Environmental Impact Statement The West-Wide Energy Corridor Programmatic Environmental Impact Statement...

  8. Federal Bulk Transmission Regulatory Roadmapping | OpenEI Community

    Open Energy Info (EERE)

    Federal Bulk Transmission Regulatory Roadmapping Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll...

  9. Enhancing covalent mechanochemistry in bulk polymers using electrospun...

    Office of Scientific and Technical Information (OSTI)

    Enhancing covalent mechanochemistry in bulk polymers using electrospun ABA triblock copolymers Citation Details In-Document Search Title: Enhancing covalent mechanochemistry in ...

  10. High-Quality, Low-Cost Bulk Gallium Nitride Substrates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    achieving GaN bulk growth without the limitations of tradi- tional crystal growth methods. ... MEMC technology transfer and marketing staff are coordinating with the research team to ...

  11. Strategies for High Thermoelectric zT in Bulk Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used to explore, optimize and improve bulk thermoelectric materials

  12. RAPID/BulkTransmission/Site Considerations | Open Energy Information

    Open Energy Info (EERE)

    and comparison for Bulk Transmission Site Considerations across various states. To learn more detailed information about Site Considerations in a state, click on the...

  13. RAPID/BulkTransmission/Federal | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Regulatory Information Overviews Search for other...

  14. RAPID/BulkTransmission/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Access < RAPID | BulkTransmission(Redirected from RAPIDBulkTransmissionLeasing) Jump to: navigation, search RAPID Regulatory and Permitting...

  15. Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI

    Broader source: Energy.gov [DOE]

    Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research partners

  16. High Heat Flux Thermoelectric Module Using Standard Bulk Material

    Broader source: Energy.gov [DOE]

    Presents high heat flux thermoelectric module design for cooling using a novel V-shaped shunt configuration with bulk TE elements achieving high area packing fractions

  17. Ensuring a Reliable Bulk Electric System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Reliability Corporation (NERC): Ensuring a Reliable Bulk Electric System Cooling Tower Report, October 2008 Transmission Constraints and Congestion in the Western...

  18. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Conversion for Efficient Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery ...

  19. The Best of Both Worlds: Bulk Diamond Properties Realized at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a level of crystallographic and electronic ordering in purified HPHT nanodiamonds that matches fundamental properties of bulk diamond to the nanoscale while retaining its...

  20. Thackeray receives Murphree Award from the American Chemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Murphree Award in Industrial and Engineering Chemistry by the American Chemical Society (ACS). The award, sponsored by ExxonMobil Research and Engineering, recognizes outstanding...

  1. Chemical Consortium Holdings Inc ChemCon | Open Energy Information

    Open Energy Info (EERE)

    Hydro, Hydrogen Product: Develops and operates projects in the bioethanol, biodiesel, methanol, hydrogen and liquid natural gas industries. References: Chemical Consortium Holdings...

  2. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US ...

  3. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  4. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  5. Chemical sensors

    DOE Patents [OSTI]

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  6. Three Better Plants Partners Recognized at Industrial Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conference | Department of Energy Three Better Plants Partners Recognized at Industrial Energy Technology Conference Three Better Plants Partners Recognized at Industrial Energy Technology Conference June 30, 2016 - 4:20pm Addthis Jay_Wrobel_1.jpg Two Better Plants Challenge partners, Celanese Corporation and Eastman Chemical Company, and a Better Plants Program partner, The Dow Chemical Company, were recognized at the 2016 Industrial Energy Technology Conference (IETC) for their energy

  7. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  8. Bulk Hauling Equipment for CHG | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Hauling Equipment for CHG Bulk Hauling Equipment for CHG This presentation by Don Baldwin of Hexagon Composites was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop in March 2013. csd_workshop_8_baldwin.pdf (1.2 MB) More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Hydrogen Delivery Roadmap US DRIVE Hydrogen Delivery Technical Team Roadmap

  9. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOE Patents [OSTI]

    Menchhofer, Paul A.; Montgomery, Frederick C.; Baker, Frederick S.

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  10. Chemical sciences, annual report 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.