Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

here Home Savings Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting...

2

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Leaders Saving Energy Industry Leaders Saving Energy Industry Leaders Saving Energy May 6, 2010 - 11:35am Addthis Joshua DeLung Companies such as 3M, Intel, PepsiCo and Whirlpool are participating in the Energy Department's Save Energy Now LEADER initiative, committing to reducing their energy use by 25 percent or more in 10 years. Another established company participating in the program, AT&T, is also making that commitment to saving energy while producing more renewable power at many of its locations across the country."We're taking meaningful steps to run a more-efficient network and explore alternative and renewable energy use," John Schinter, director of energy for AT&T Services, Inc., says. The company utilizes wind and solar power at some of its buildings. In

3

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

4

Industrial - Utility Cogeneration Systems  

E-Print Network (OSTI)

Cogeneration may be described as an efficient method for the production of electric power in conjunction with process steam or heat which optimizes the energy supplied as fuel to maximize the energy produced for consumption. In a conventional electric utility power plant, considerable energy is wasted in the form of heat rejection to the atmosphere thru cooling towers, ponds or lakes, or to rivers. In a cogeneration system heat rejection can be minimized by systems which apply the otherwise wasted energy to process systems requiring energy in the form of steam or heat. Texas has a base load of some 75 million pounds per hour of process steam usage, of which a considerable portion could be generated through cogeneration methods. The objective of this paper is to describe the various aspects of cogeneration in a manner which will illustrate the energy saving potential available utilizing proven technology. This paper illustrates the technical and economical benefits of cogeneration in addition to demonstrating the fuel savings per unit of energy required. Specific examples show the feasibility and desirability of cogeneration systems for utility and industrial cases. Consideration of utility-industrial systems as well as industrial-industrial systems will be described in technical arrangement as well as including a discussion of financial approaches and ownership arrangements available to the parties involved. There is a considerable impetus developing for the utilization of coal as the energy source for the production of steam and electricity. In many cases, because of economics and site problems, the central cogeneration facility will be the best alternative for many users.

Harkins, H. L.

1979-01-01T23:59:59.000Z

5

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light & Water Utility - Commercial Shared Savings Loan Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) Cedarburg Light & Water Utility - Commercial Shared Savings Loan Program (Wisconsin) < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Manufacturing Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Construction Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $50,000 Program Info State Wisconsin Program Type Utility Loan Program Rebate Amount $2,500 - $50,000 Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility (CLWU) provides loans for commercial,

6

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

7

Utility Savings Estimators | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

the Utility Savings Estimators: Commercial Estimator | Residential Estimator (These *.zip files contain the Microsoft Excel macro-enabled (*.xlsm) estimator files. You will...

8

Savings by Design (Offered by five Utilities) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savings by Design (Offered by five Utilities) Savings by Design (Offered by five Utilities) Savings by Design (Offered by five Utilities) < Back Eligibility Commercial Construction Industrial Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Windows, Doors, & Skylights Solar Maximum Rebate Whole Building (owner): $150,000 Whole Building (designer): $50,000 Systems (owner): $150,000 All incentives are limited to 75% of the incremental cost Program Info State California Program Type Utility Rebate Program Rebate Amount '''Whole Building Approach (owner)''' $0.10 - $0.30/annualized kWh savings, $1.00/therm, or $100/peak kW

9

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

10

Springfield Utility Board- Energy Savings Plan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Springfield Utility Board provides industrial customers with a comprehensive report to identify cost effective efficiency improvements. Eligible measures include high efficiency motors,...

11

Innovative Utility Pricing for Industry  

E-Print Network (OSTI)

The electric utility industry represents only one source of power available to industry. Although the monopolistic structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to industry. Electric utilities face increased competition, both from other utilities and from industrial self-generation. The paper discusses competition for industrial customers and innovative pricing trends that have evolved nationally to meet the growing competition for industrial sales. Cogeneration activities and the emerging concepts of wheeling power are also discussed. Specifics of industry evaluation and reaction to utility pricing are presented. Also enumerated are examples of the response various utilities throughout the United States have made to the needs of their industrial customers through innovative rate design. Industry/utility cooperation can result in benefits to industry, to the electric utility and to all other ratepayers. This discussion includes examples of successful cooperation between industry and utilities.

Ross, J. A.

1986-06-01T23:59:59.000Z

12

Conservation saves for Minnesota municipal utility  

SciTech Connect

Hibbing Public Utilities Commission operates a 19,500-kW coal-fired generating station. The utility was concerned about its peaking power capability for the cold winter forecast for 1977--1978. An infrared aerial survey was conducted over the community and homeowners were shown the results. Residents were instructed where additional insulation was needed in the homes and banks made special loans to the homeowners to add the insulation. As a result of the efforts of on-site in plant conservation as well as that of consumers, more than $88,000 annually was saved in the cost of purchased power at the utility. A turn-back thermostat campaign and use of other energy-saving devices are planned for the 1978--1979 season. (MCW)

Vumbaco, J.A.

1978-11-01T23:59:59.000Z

13

Alternative Fuels Data Center: New Jersey Utility Saves With Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jersey Utility Jersey Utility Saves With Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Google Bookmark Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Delicious Rank Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on AddThis.com... May 7, 2011 New Jersey Utility Saves With Alternative Fuel L earn how Atlantic County transports visitors with alternative fuel

14

Utility Energy Efficiency Schemes: Savings Obligations and Trading...  

Open Energy Info (EERE)

Utility Energy Efficiency Schemes: Savings Obligations and Trading **Subscription Required** Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Energy Efficiency...

15

Motor Energy Saving Opportunities in an Industrial Plant  

E-Print Network (OSTI)

Industrial plants have enormous energy saving opportunities with electric motors. Improving motor efficiency is a conventional wisdom to save energy. Re-engineering affords far greater savings opportunities than motor efficiency improvement. Motor energy saving techniques and basics are discussed. A case study is presented where 63% motor energy savings were realized.

Kumar, B.; Elwell, A.

1999-05-01T23:59:59.000Z

16

Rochester Public Utilities - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Commercial and Industrial Energy Rochester Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Rochester Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Construction Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Varies by technology Provider Rochester Public Utilities Rochester Public Utilities (RPU) offers incentives to commercial and

17

Coldwater Board of Public Utilities - Commercial & Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial & Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial & Industrial Lighting Rebate Program Eligibility Commercial Industrial Local...

18

Blooming Prairie Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blooming Prairie Public Utilities - Commercial and Industrial Blooming Prairie Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Blooming Prairie Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate Maximum of 100,000 per customer location, per year, per technology Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use

19

Spring Valley Public Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spring Valley Public Utilities - Commercial and Industrial Energy Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Spring Valley Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Other Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

20

Coldwater Board of Public Utilities - Commercial and Industrial Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coldwater Board of Public Utilities - Commercial and Industrial Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Heating & Cooling Commercial Heating & Cooling Cooling Buying & Making Electricity Maximum Rebate 50% of Project Cost Cannot exceed 100% of a single energy efficient measure's cost. Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom: Not Specified Lighting Fluorescent Lighting: $2 - $50/fixture HID Lighting: $20 - $25/fixture Induction Bulb: $10 Metal Halide PAR Bulb: $20

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Delmarva Power - Commercial and Industrial Energy Savings Program...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Delmarva Power - Commercial and Industrial Energy Savings Program (Maryland) This is the approved revision of this page, as well as...

22

Rochester Public Utilities - Residential Conserve and Save Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rochester Public Utilities - Residential Conserve and Save Rebate Rochester Public Utilities - Residential Conserve and Save Rebate Rochester Public Utilities - Residential Conserve and Save Rebate < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Clothes Washer: $50 Dehumidifier: $65 Custom measures: contact RPU for consultation Dishwashers: $25 Refrigerators/Freezers: $25, plus $15 bonus if properly recycled Room Air Conditioners: $25, plus $15 bonus if properly recycled Compact Fluorescent Light Bulbs: 50% of cost CFL Light Fixtures: $15 LED Bulbs: $10 - $15 LED Fixtures: $20 Central AC/Ductless Mini Split( Furnace Fan Motors: $50

23

Groton Utilities - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groton Utilities - Commercial and Industrial Energy Efficiency Groton Utilities - Commercial and Industrial Energy Efficiency Rebate Programs Groton Utilities - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lighting/Vending Machine/Door Heater Controls: 50% of total cost Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Lighting (Retrofit): $0.14/kWh saved T8/T5 Fluorescent Fixture (New Construction/Major Renovation): $7 - $50 Pulse Start Metal Halide Fixture (New Construction/Major Renovation): $20 Dimmable/Controllable Ballast (New Construction/Major Renovation): $40

24

Shakopee Public Utilities - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shakopee Public Utilities - Commercial and Industrial Energy Shakopee Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Shakopee Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 50% of total project cost Program Info Expiration Date 12/15/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount New Lighting and Upgrade: $1 - $130/fixture; varies greatly, see program website for specific details Custom Project: $0.05/kWh saved up to 50% of cost Ductless Heat Pump: $100 Geothermal Heat Pump: $100 PTHP Heat Pump: $35 Chiller: $40/ton

25

Utility Energy Efficiency Schemes: Savings Obligations and Trading  

Open Energy Info (EERE)

Utility Energy Efficiency Schemes: Savings Obligations and Trading Utility Energy Efficiency Schemes: Savings Obligations and Trading **Subscription Required** Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Energy Efficiency Schemes: Savings Obligations and Trading **Subscription Required** Focus Area: Energy Efficiency, - Utility Topics: Policy Impacts Website: dx.doi.org/10.1007/s12053-008-9024-8 Equivalent URI: cleanenergysolutions.org/content/utility-energy-efficiency-schemes-sav Language: English Policies: "Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Mandates/Targets This paper attempts to answer the following questions: What is new about the recent raft of white certificate energy efficiency schemes and is there

26

Utility Savings & Refund, LLC | Open Energy Information  

Open Energy Info (EERE)

Savings & Refund, LLC Savings & Refund, LLC Jump to: navigation, search Logo: Utility Savings & Refund, LLC Name Utility Savings & Refund, LLC Address 1800 E. Garry Ave Suite 102 Place Santa Ana, California Zip 92705 Product Vanadium Redox Flow Battery Year founded 2001 Number of employees 1-10 Phone number 949 474-0511 Website [www.Utility-Savings.com www.Utility-Savings.com ] Coordinates 33.704186°, -117.852756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.704186,"lon":-117.852756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at some of its buildings. In Austin, Texas, it uses wind power for 10 percent of its electricity consumption, allowing AT&T to save 7.2 million kWh of fossil-generated electricity...

28

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

29

Cost Avoidance vs. Utility Bill Accounting - Explaining the Discrepancy Between Guaranteed Savings in ESPC Projects and Utility Bills  

E-Print Network (OSTI)

savings is not based on actual utility rate structure, buta contracted utility rate that takesthe existing utility rate at the time the contract is signed

Kumar, S.; Sartor, D.

2005-01-01T23:59:59.000Z

30

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

31

Control of energy saving at industrial enterprises  

Science Conference Proceedings (OSTI)

Problems connected with improvement of control systems for power systems of industrial enterprises, which are most important elements of energy and fuel consumption in industry, are considered. The growth of energy and fuel cost, the increasing requirements ...

A. F. Rezchikov

2010-10-01T23:59:59.000Z

32

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

33

Moorhead Public Service Utility - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Sealing Your Home Windows, Doors, & Skylights Heating Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Specialty Measures: maximum incentive cannot exceed 75% of the total project cost Program Info Expiration Date This program is offered January 1 through December 31 of the respective

34

Groton Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Information Connecticut Program Type Utility Rebate Program Rebate Amount Lighting (Retrofit): 0.14kWh saved T8T5 Fluorescent Fixture (New ConstructionMajor...

35

Anaheim Public Utilities - Commercial & Industrial New Construction Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - Commercial & Industrial New Construction Anaheim Public Utilities - Commercial & Industrial New Construction Rebate Program Anaheim Public Utilities - Commercial & Industrial New Construction Rebate Program < Back Eligibility Commercial Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate $50,000 per measure $200,000 per facility Program Info State California Program Type Utility Rebate Program Rebate Amount Lighting: $400/kW or $0.15/kWh Building Envelope: $400/kW or $0.15/kWh Mechanical: $400/kW or $0.15/kWh

36

Saint Peter Municipal Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saint Peter Municipal Utilities - Commercial and Industrial Energy Saint Peter Municipal Utilities - Commercial and Industrial Energy Efficiency Rebate Program Saint Peter Municipal Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Program Info Expiration Date 12/31/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website HVAC: see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85

37

Port Angeles Public Works and Utilities - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Port Angeles Public Works and Utilities - Commercial and Industrial Port Angeles Public Works and Utilities - Commercial and Industrial Energy Efficiency Rebate Program Port Angeles Public Works and Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Other Commercial Lighting Lighting Water Heating Maximum Rebate All Lighting: up to 70% of project cost All Custom: up to 70% of incremental energy project costs Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Improvement to Existing Lighting System: $10 - $400/fixture Improvement to Existing Lighting Controls: $35 - $60/unit New Construction Lighting: $10 - $50 New Construction Energy Smart Design Office: $0.25 - $0.50 sq/ft

38

New Prague Utilities Commission - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Prague Utilities Commission - Commercial and Industrial Energy New Prague Utilities Commission - Commercial and Industrial Energy Efficiency Rebate Program New Prague Utilities Commission - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate Maximum of 100,000 per customer location, per year, per technology Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use

39

Industrial low temperature utilization of geothermal resources  

SciTech Connect

This brief presentation on industrial utilization of low temperature geothermal resources first considers an overview of what has been achieved in using geothermal resources in this way and, second, considers potential, future industrial applications.

Howard, J.H.

1976-05-01T23:59:59.000Z

40

Waseca Utilities - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Waseca Utilities - Commercial and Industrial Energy Efficiency Rebate Program Waseca Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Commercial Lighting Lighting Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: varies widely, see program website Replacement Motors: $15 - $2,700, varies by HP and efficiency Variable Speed Drives: $60 - $3,600, varies by HP and intended use Lodging Guestroom Energy Management Systems: $75 - $85 Compressed Air Leak Correction: $4/HP of capacity VendingMiser: $50 Anti-Sweat Heater Controls/Door Miser: $40 per qualifying door

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Commercial and Industrial Energy Efficiency Rebate Program Fort Collins Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Windows, Doors, & Skylights Maximum Rebate Building Tune Up: $50,000 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Roof Top A/C: $100 - $150, plus $5 for each 0.1 SEER or IEER above minimum requirement Variable Frequency Drives: $85 - $120/HP Packaged Terminal A/C: $50, plus $5 for each 0.1 EER above minimum

42

Industry/Utility Partnerships: Formula for Success  

E-Print Network (OSTI)

Industry/utility partnerships are created when both parties work productively toward common goals. American industry faces tough global competition and to be successful must create and operate modern production facilities. Cost and energy efficient electrotechnologies play a critical role in their competitiveness. Utilities can play a central role in industrial competitiveness, not only by providing competitively priced and reliable power, but also by helping their customers to identify and implement the most appropriate technologies. When the correct environment is created, both win. Industry reduces costs and produces high quality products. The utility gains customer loyalty and achieves business success.

Smith, W. R.; Spriggs, H. D.

1995-04-01T23:59:59.000Z

43

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

44

U.S. Industries: Partner with DOE to Save Energy and Money  

SciTech Connect

This DOE Industrial Program fact sheet describes Save Energy Now, part of a national campaign to engage the public, the government, and industry in making simple but effective energy-saving choices.

2005-11-01T23:59:59.000Z

45

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstration of Energy Savings of Cool Roofs. LawrenceRivers. (1997). Capturing Energy Savings with Steam Traps.CADDET). (1997b). Energy Savings with New Industrial Paint

Galitsky, Christina

2008-01-01T23:59:59.000Z

46

Case Study Impact Evaluations of the Industrial Energy Savings Plan  

E-Print Network (OSTI)

This paper presents the results of a series of five case study impact evaluations of Energy Savings Plan (ESP) industrial energy efficiency projects funded by the Bonneville Power Administration (BPA) and Seattle City Light (City Light). These industrial sector evaluations are among the first in the Pacific Northwest to evaluate both energy and non-energy effects. The projects chosen for evaluation cover a wide range of industrial processes and end-uses. Each industrial setting, the efficiency measures installed and the processes affected are described in this paper. The report presents energy (kWh) and peak demand (kW) savings indexed to changes in production volume, an assessment of non-energy benefits to the participating customer, and cost-effectiveness analyses from four stakeholder perspectives. Levelized cost (expressed in cents per kWh) and benefit-cost ratios were calculated for each project, both including and excluding quantifiable energy non-energy benefits. A summary of conclusions and lessons learned is also provided. The evaluation team included Patrick Lilly of Regional Economic Research Inc., Paresh Parekh of Unicade Inc., D'Arcy Swanson of Pacific Sciences Inc., and Dennis Pearson at Seattle City Light.

Lilly, P.; Pearson, D.

1999-05-01T23:59:59.000Z

47

The Use of Electricity in Industry and Energy Saving - The Gamma Co-Efficient  

E-Print Network (OSTI)

Use of electricity in manufacturing processes is not only limited to its specific utilizations as motion power, lighting, electrolysis. Worldwide energy troubles involve in France a great voluntee to substitute in industrial processes the nuclear electricity to the oil-burning one. The main part of these uses the replacement thermal ones. Of course, electrical processes which will develop are technically tested and economically justified. Energetic comparison of concurrent processes leads to the use of simple factors : the gamma factor. It is, when using energy, the number of thermies which are replaced by one kWh. Gamma is not a factor for measuring the oil saving but the using efficiency. For measuring the oil saving, the author uses 'the net gain of oil weight'. Examples of applications and main results are given in various industrial branches.

Wolf, R.; Froehlich, R.

1983-01-01T23:59:59.000Z

48

Update on Energy Saving Opportunities in Industrial Electrical Power Systems  

E-Print Network (OSTI)

High electrical power costs, rising at a rate consistently above that of general inflation, force the industrial power user to continuously update and evaluate available means of saving electrical energy. This paper provides a survey of one company's experience with several methods of energy conservation in electrical distribution systems, and its present practices in this area. Topics covered include the location of large and reducible losses, the determination of the worth of these losses, and a survey of ways to reduce them in an economical manner.

Frasure, J. W.; Fredericks, C. J.

1986-06-01T23:59:59.000Z

49

Coldwater Board of Public Utilities - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart" program, offers a wide range of incentives that encourage commercial and industrial to pursue energy efficient equipment and energy saving measures. Prescriptive...

50

Wells Public Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Wells Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial Fed....

51

Moorhead Public Service Utility - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate...

52

Energy Department Develops Tool with Industry to Help Utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities Strengthen Their...

53

Energy Use and Savings in the Canadian Industrial Sector  

E-Print Network (OSTI)

The changing role of energy as a production input in the industrial sector in Canada is examined. Energy use patterns are reviewed in terms of the energy input types, both purchased and self-produced, the actual energy form and quality requirements, and the residual energy forms, in particular the rejected gaseous and liquid waste heat streams. The trends in the intensity of energy use are examined, in terms of the energy consumed per unit of production output, and relative to the cost of other production inputs. Energy consumption and intensity have been influenced by many factors: energy prices; energy types used; structural composition and product mix; the state of the national economy and international markets, etc. In addition, energy use management with the achievement of optimum economic efficiency of energy use as the objective became an increasing priority for corporate and national energy planning during the 1970's. The potential for saving energy and money, the costs and benefits, are discussed in the light of evidence from a variety of industry and government sources. It appears that the substitution of energy-saving techniques and technologies as a replacement for the use of energy inputs will remain a high priority during the 1980's.

James, B.

1982-01-01T23:59:59.000Z

54

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Energy Savings Plan Program Oregon Industrial Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heating Appliances &...

55

Industrial Utilization of Coal-Oil Mixtures  

E-Print Network (OSTI)

Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM:. Economics and details of industrial conversion to COM are discussed. CoaLiquid, Inc. of Louisville, KY, which uses ultrasonic emulsification to stabilize the cm:, has been a leader in commercial demonstration in industrial equipment. Some of these demonstrations are discussed, along with implications for the future use of COM.

Dunn, J. E.; Hawkins, G. T.

1982-01-01T23:59:59.000Z

56

Save Energy Now: Successful Partnership Benefits Industry's Bottom Line  

SciTech Connect

This fact sheet describes the elements and benefits of the U.S. DOE Industrial Technologies Program's Save Energy Now initiative. Save Energy Now is part of a national campaign, ''Easy Ways to Save Energy'', announced by DOE in 2005. This campaign educates the public about simple but effective energy choices, helps U.S. industry and the government reduce their energy use, and supports national goals for energy security. Through Save Energy Now, DOE's Industrial Technologies Program (ITP) helps industrial plants operate more efficiently and profitably by identifying ways to reduce energy use in key industrial process systems.

2006-10-01T23:59:59.000Z

57

Cost Avoidance vs. Utility Bill Accounting - Explaining theDiscrepancy Between Guaranteed Savings in ESPC Projects and UtilityBills  

SciTech Connect

Federal agencies often ask if Energy Savings PerformanceContracts (ESPCs) result in the energy and cost savings projected duringthe project development phase. After investing in ESPCs, federal agenciesexpect a reduction in the total energy use and energy cost at the agencylevel. Such questions about the program are common when implementing anESPC project. But is this a fair or accurate perception? Moreimportantly, should the federal agencies evaluate the success or failureof ESPCs by comparing the utility costs before and after projectimplementation?In fact, ESPC contracts employ measurement andverification (M&V) protocols to measure and ensure kilowatt-hour orBTU savings at the project level. In most cases, the translation toenergy cost savings is not based on actual utility rate structure, but acontracted utility rate that takes the existing utility rate at the timethe contract is signed with a clause to escalate the utility rate by afixed percentage for the duration of the contract. Reporting mechanisms,which advertise these savings in dollars, may imply an impact to budgetsat a much higher level depending on actual utility rate structure. FEMPhas prepared the following analysis to explain why the utility billreduction may not materialize, demonstrate its larger implication onagency s energy reduction goals, and advocate setting the rightexpectations at the outset to preempt the often asked question why I amnot seeing the savings in my utility bill?

Kumar, S.; Sartor, D.

2005-08-15T23:59:59.000Z

58

Seeing Savings from an ESPC Project in Fort Polk's Utility Bills  

SciTech Connect

Federal agencies have implemented many energy efficiency projects over the years with direct funding or alternative financing vehicles such as energy savings performance contracts (ESPCs). While it is generally accepted that these projects save energy and costs, the savings are usually not obvious in the utility bills. This is true for many valid technical reasons, even when savings are verified in other ways to the highest degree of certainty. However, any perceived deficiency in the evidence for savings is problematic when auditors or other observers evaluate the outcome of energy projects and the achievements of energy management programs. This report discusses under what circumstances energy savings should or should not be evident in utility bills. In the special case of a large ESPC project at the Army's Fort Polk, the analysis of utility bills carried out by the authors does unequivocally confirm and quantify savings. The data requirements and methods for arriving at definitive answers through utility bill analysis are demonstrated in our discussion of the Fort Polk project. The following paragraphs address why the government generally should not expect to see savings from ESPC projects in their utility bills. We also review lessons learned and best practices for measurement and verification (M&V) that can assure best value for the government and are more practical, straightforward, and cost-effective than utility bill analysis.

Shonder, J.A.

2005-03-08T23:59:59.000Z

59

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

Not Available

2008-12-01T23:59:59.000Z

60

Marketing Reordering of the Electric Utility Industry  

E-Print Network (OSTI)

ELCON is a group of large industrial consumers of electricity with facilities in most of the 50 states and many foreign countries. Our members produce a wide range of products including steel, aluminum, chemicals, industrial gases, glass, motor vehicles, textiles and food. ELCON members consume approximately ten percent of all electricity sold to industrial customers and nearly five percent of all electricity consumed in the United States. We require an adequate and reliable supply of electricity at reasonable prices, so as you can imagine, we have a continuing interest in all aspects of the production, pricing, and delivery of electricity. ELCON member companies believe strongly that the electric utility industry is undergoing a market reordering that is being shaped by technological, institutional and legal forces. We see technical developments that now make small-scale generation economically attractive, if not downright desirable. Key regulatory and consumer institutions are taking fresh, new looks at issues such as wheeling and access to the grid that used to be considered sacred and untouchable. Some states are passing laws and implementing regulations that will require new thinking and new operating procedures on the part of utilities and consumers. I see these developments as logical reactions to changes in market forces. Change will take place. The relevant questions are: How will regulators and policy makers be influenced by market forces in the future? And: Will utilities, consumers and regulators attempt to benefit from market pressures or, alternatively, try to oppose what I believe is inevitable evolution to a more market-oriented electric industry?

Anderson, J. A.

1986-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network (OSTI)

The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic evaluation involving process data from 12 industrial plants to determine if thermal energy storage (TES) systems can be used with commercially available energy management equipment to enhance the recovery and utilization of industrial waste heat. Results showing estimated installed costs, net energy savings, economic benefits, and utility impact are presented at both single plant and industry levels for 14 of 24 applications having after tax ROR's in excess of 20 percent. Maximum energy and cost savings for 9 of these 14 systems are shown to be conditional on the use of TES.

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

62

Industry-Government Partnership Funds New Energy-Saving ...  

Science Conference Proceedings (OSTI)

... PowerLight Corporation Berkeley, Calif. Solar roof cooling and electricity generation. ... Energy-saving thermostat with variable deadband control. ...

2012-12-13T23:59:59.000Z

63

Energy Saving in the Foundry Industry by using the CRIMSON ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Energy Conservation in Metals. Presentation Title, Energy Saving in the...

64

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jan Aceti Jan Aceti Concord Light February 19, 2013 Concord Municipal Light Plant Photo Credit: K.M. Peterson  7,600 Customers ◦ 6,000 Residential ◦ 1,600 Commercial/Institutional/Governmental  Retail Sales: 180,000,000 kWh per Year  Peak Electrical Demand: 40 MW  Power Purchased from Facilities in Northeast Year # of Installations kW DC kW AC 1999 1 5 5 2008 3 4.2 4.0 2009 5 75.0 74.6 2010 3 158 151 2011 7 36 35 2012 19 143 137 2013 2 8.2 7.7 Total 40 429 414 Residential 35 178 170  $1,000 per kW AC, up to $5,000  Retail Net Metering  Replaced Retail Net Metering with Wholesale Net Metering ◦ Credit at Avg. Monthly Spot Market Energy Price  Rebate: 10 Years Worth of Estimated Cost Savings, Up to 5 kW AC of Installed Capacity  Transmission Cost Savings  Forward Capacity Market Cost Savings

65

PPL Electric Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and...

66

The Impact of Energy Saving Policies on Industries in China.  

E-Print Network (OSTI)

??Current design and implementation of China's energy saving policies are characterized by multiple, mixed policy instruments and spatially based regulatory disparity. The dissertation replies on (more)

Zhu, Junming

2013-01-01T23:59:59.000Z

67

Industry insight Energy and utilities In a nutshell  

E-Print Network (OSTI)

in highly specific areas within the oil and gas, waste management, recycling and renewable energies sectors1 Industry insight ­ Energy and utilities In a nutshell The UK's energy and utilities industry management; renewable energy industries; energy conservation organisations. The industry employs around 530

Martin, Ralph R.

68

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given by Jan Aceti of Concord Light at the February 19, 2013, CommRE webinar which focused on how municipal utilities fund solar energy projects.

69

Cedarburg Light & Water Utility - Commercial Shared Savings Loan...  

Open Energy Info (EERE)

Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New Pages Recent Changes All...

70

Industrial Boiler Optimization Utilizing CO Control  

E-Print Network (OSTI)

Escalating energy costs have caused industry to search the technical section for the current state-of-the-art in combustion and control technology for power generation. Long a forgotten area in many industrial facilities, today the steam generating complex is the focus of many corporate and plant managers. This paper discusses the approach of a large chemical company that is effectively utilizing a direct digital control (DOC) system coupled with the measurement of carbon monoxide to optimize boiler combustion and generate steam in the most cost effective manner. Significant reductions in the amount of excess air have resulted from the use of CO as a control parameter. Previously, combustion effectiveness was determined by the more typical 02 measurement. For reasons of boiler leakage and gas stratification, this control technique was not suitable when operating close to stoichiometry. The use of DOC type control in our multiple boiler installation has also enabled the intelligent allocation of boiler capacity by evaluating steam demand versus incremental boiler steam cost. The system selectively increases or decreases boiler loads within specified constraints to provide the lowest overall steam production cost while continuing to meet the steam demand.

Ruoff, C. W.; Reiter, R. E.

1980-01-01T23:59:59.000Z

71

Promoting Energy Efficiency in Industry: Utility Roles and Perspectives  

E-Print Network (OSTI)

This paper identifies the factors that influence industrial firms' decisions to invest in energy efficiency and notes how the emerging wave of electric utility 'demand-side' planning and marketing can help industry control costs of production and also improve utility operations. The external and internal influences on electric utility demand-side management are identified, along with typical objectives of utility marketing programs. The concept of 'strategic marketing' is also introduced. Finally, a summary of selected electric utility experiences with industrial programs is provided, along with emerging trends in utility marketing.

Limaye, D. R.; Davis, T. D.

1984-01-01T23:59:59.000Z

72

Industrial Utilization of Surfactants: Principles & Practice  

Science Conference Proceedings (OSTI)

This book presents, in nonmathematical fashion, the principles underlying the use of surfactants in industrial products and processes, how these principles are used to select surfactants for use in a variety of industrial applications, and tables of surfac

73

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

74

Coldwater Board of Public Utilities- Commercial & Industrial Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

75

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and cooling equipment, motors, insulation,...

76

Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

77

Advanced Manufacturing Office: Utility Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Save Energy Now Utility Partnerships In order to reduce industrial energy intensity and use, the Industrial Technologies Program (ITP) is forming...

78

Research Findings on Energy Savings in Industrial Power Supplies  

Science Conference Proceedings (OSTI)

This report summarizes the final results of research conducted in 2007 on ways to improve the energy efficiency of industrial power supplies. The research findings and analysis confirm that significant opportunities exist for greater efficiencies in the use of a variety of industrial power supply technologies, especially in the area of transformers, motors, variable speed drives, and lighting.

2008-03-31T23:59:59.000Z

79

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Incentives Program Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program Eligibility Commercial Industrial InstallerContractor Savings...

80

Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Key Energy-Saving Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants Large Plants Number of U.S. Plants All Plants 84,298 112,398 4,014 200,710 System-Specific Assessments Crosscutting Assessments Industry Breakdown 4 | Advanced Manufacturing Office eere.energy.gov 4,014 large plants use 58% of the energy Energy Saving

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Shakopee Public Utilities - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single Packaged Air Conditioning (including Rooftop Units): 50 - 65 Shakopee Public Utilities (SPU) offers a wide array of rebates and incentives encouraging its commercial...

82

Cogeneration: The Need for Utility-Industry Cooperation  

E-Print Network (OSTI)

Cogeneration is receiving increasing attention because of its potential for efficient utilization of energy. Many recent cogeneration studies, however, have concentrated on the benefits and costs of cogeneration to industry, giving little consideration to utility roles and perspectives. This paper provides an overview of a project sponsored by the Electric Power Research Institute to evaluate industrial cogeneration applications, taking into account utility interactions and impacts. Recent changes in federal legislation, particularly the enactment of the Public Utility Regulatory Policies Act (PURPA), have attempted to remove many of the institutional barriers which in the past made industry hesitant to invest in cogeneration. However, to implement the most attractive cogeneration systems industry must consider the changing economics of utility power generation. Also, despite the attractiveness of cogeneration, many industrial managers are reluctant to invest scarce capital in an area which they do not consider a natural extension of their business. At the same time, many utilities facing slower load growth and economic/environmental /institutional constraints on capacity expansion are willing to consider cogeneration as an option. Cogeneration projects can be highly complementary to the traditional utility business and possibly offer an attractive profit potential. Also, utilities can offer industry the needed expertise to implement and operate cogeneration systems. Considerable benefits may therefore be derived from cooperative cogeneration ventures among utilities and industrial firms. Many different organizational and financial arrangements can be structured, including third party financing. The, paper will briefly discuss the need for and benefits of cooperative efforts and provide illustrative examples of different institutional arrangements.

Limaye, D. R.

1982-01-01T23:59:59.000Z

83

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

84

Analysis of Energy Savings in the Federal Sector through Utilities Service Programs  

Science Conference Proceedings (OSTI)

As a result of the lack of sufficient appropriations for energy-related projects at federal sites, the Department of Energy (DOE) Office of Federal Energy Management Programs (FEMP) has encouraged the use of alternative financing as a method to fund energy efficiency, water conservation, and renewable energy capital retrofit projects. One of the potential avenues for agencies to obtain alternative financing is through their servicing utility. Since the passage of the Energy Policy Act of 1992 (EPACT), more than 1,200 projects have been facilitated in this manner. The amount of the capital investment per project has varied markedly, depending on the need of the federal agency, number of facilities at a specific site, and nature of the retrofit technology. To help promote the use of this financing mechanism, FEMP created the Federal Utility Partnership Working Group to foster enhanced relationships between utilities and both federal agencies and their sites so projects could be identified, designed, financed, and constructed. Formation of this Working Group also allowed FEMP the opportunity to collect, on a voluntary basis, specific information regarding individual projects in order to document results, which could assist in determining the contribution to mandated energy saving goals. Accurate and complete data existed for 528 of these projects to allow an analysis of total energy savings as a function of capital cost. Projects that consisted of the category labeled controls/upgrades/ repairs yielded the largest energy savings per capital dollar of investment (~14,500 Btu per dollar). Other projects with high energy savings per capital dollar of investment included comprehensive upgrades, central plant upgrades, boiler/chiller replacement, and lighting and mechanical system upgrades. This article summarizes the findings from the analysis, provides some insight into the types of projects that yield the best savings per dollar of investment, and possible explanation for the results.

McMordie-Stoughton, Katherine L.; Solana, Amy E.; Bates, Derrick J.; Sandusky, William F.

2005-01-01T23:59:59.000Z

85

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

86

Save Energy Now (SEN) Assessment Helps Expand Energy Management Program at Shaw Industries: Flooring Company Saves $872,000 Annually by Improving Steam System Efficiency  

Science Conference Proceedings (OSTI)

This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

Not Available

2008-07-01T23:59:59.000Z

87

Anaheim Public Utilities - Commercial & Industrial New Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Program Type Utility Rebate Program Rebate Amount Lighting: 400kW or 0.15kWh Building Envelope: 400kW or 0.15kWh Mechanical: 400kW or 0.15kWh Anaheim Public...

88

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

SciTech Connect

The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industrys structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

2011-12-01T23:59:59.000Z

89

Georgia County Turning Industrial and Farm Waste Into Big Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia County Turning Industrial and Farm Waste Into Big Energy Georgia County Turning Industrial and Farm Waste Into Big Energy Savings Georgia County Turning Industrial and Farm Waste Into Big Energy Savings March 30, 2011 - 2:44pm Addthis Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Tertia Speiser Project Officer, Golden Field Office What does this project do? Methane gas from biosolids, fats, oils, greases and other high strength industrial wastes is turned into energy. The county is improving efficiency and providing an alternative to clogging the sewers. The "Gas to Energy" system minimizes the impact of rising energy costs on consumers.

90

Georgia County Turning Industrial and Farm Waste Into Big Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia County Turning Industrial and Farm Waste Into Big Energy Georgia County Turning Industrial and Farm Waste Into Big Energy Savings Georgia County Turning Industrial and Farm Waste Into Big Energy Savings March 30, 2011 - 2:44pm Addthis Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Interior view of the Gwinnett County "Gas To Energy" Project | Photo Courtesy of Gwinnett County, GA Tertia Speiser Project Officer, Golden Field Office What does this project do? Methane gas from biosolids, fats, oils, greases and other high strength industrial wastes is turned into energy. The county is improving efficiency and providing an alternative to clogging the sewers. The "Gas to Energy" system minimizes the impact of rising energy costs on consumers.

91

Sustainable Communities--Business Opportunities for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

The purposes of this study are to: develop and articulate a vision of sustainable communities of the future and identify and delineate resulting technology challenges and business opportunities facing the electric utility industry.

2006-01-30T23:59:59.000Z

92

Energy Department Develops Tool with Industry to Help Utilities Strengthen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develops Tool with Industry to Help Utilities Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities June 28, 2012 - 10:24am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's commitment to protecting America's critical energy infrastructure, U.S. Energy Secretary Steven Chu today announced the release of a new Cybersecurity Self-Evaluation Survey Tool for utilities that will strengthen protection of the nation's electric grid from cybersecurity threats. Today's announcement is part of a broader White House initiative to develop a Cybersecurity Capability Maturity Model for the electricity sector, which aims to support the private sector and utilities nationwide in determining

93

Industrial Load Shaping: A Utility Strategy to Deal with Competition  

E-Print Network (OSTI)

In recent years competition from various sources such as cogeneration and bypass has led many utilities to refocus attention on their large industrial customers. Industrial load shaping is a customized program involving cost-effective process modifications and operational changes which result in a restructuring of the electric load profile of individual manufacturing facilities. Both the customer and the utility should realize benefits from these changes. There are five generic load shaping categories: rescheduling operations, capacity additions, product storage, automation and flexible manufacturing and electrotechnologies. The customized nature of the program requires that the utility work with industry experts to help customers identify specific load shape opportunities. The remainder of this paper provides guidelines for utility planners interested in developing such a program. It begins with an overview of general objectives, technology alternatives, market evaluation and selection criteria, and program implementation and monitoring procedures. The paper concludes with two utility case studies.

Bules, D.

1987-09-01T23:59:59.000Z

94

The Industry/Utility Interface - An Overview  

E-Print Network (OSTI)

For many years, starting in the Jate forties, a number of different factors combined to make self-generation of electrical energy cost-prohibitive except for a few very large users of electrical service. The nation's utilities were virtually a true monopoly. An annual growth rate of electrical energy consumption of 8-9% per year, the continuing availability of increasingly larger and larger, more efficient generating units, coupled with fuel prices of less than 25c per million BTU'S, perpetuated this monopoly up into the mid-seventies.

Hamilton, D. E.

1990-06-01T23:59:59.000Z

95

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

2008-12-01T23:59:59.000Z

96

Electric Utility Industrial DSM and M&V Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydros large commercial and industrial non-transmission class customers. It is a direct energy acquisition program that is based on a partnering approach with BC Hydros business customers. A customer that commits to being a Power Smart Partner gains access to financial support and assistance with the identification and implementation of electricity savings projects. A direct financial incentive is provided to lower customers funding requirements and to improve the payback and/or investment criteria for energy efficiency projects. Projects are evaluated against established criteria set forth by BC Hydro. Projects which prove to be the most cost-effective on a $/kWh basis receive funds. For transmission-voltage customers, BC Hydro has recently implemented a new tariff designed to encourage energy reduction. The new tariff is an inclining block tariff and is known as the Stepped Rate. The customers consumption is compared against their Customer Baseline Load (CBL). The first 90% of the customers consumption is billed at a Tier 1 rate. The remaining consumption is billed at a Tier 2 rate, approximately two times the Tier 1 rate. There are mechanisms in place to adjust the customers CBL to account for activities such as customer-funded demand-side-management projects and customer plant expansion projects. This paper will discuss BC Hydros M&V program in terms of the process, operations and M&V results to date for the PSP. In addition, the paper will discuss the new Stepped Rate tariff intricacies in terms of CBL setting, CBL adjustments and transmission customer Impact Study guideline requirements.

Lau, K. P. K.

2008-01-01T23:59:59.000Z

97

The Gas Utility View of Industrial Energy Conservation  

E-Print Network (OSTI)

The gas industry fostered more efficient energy utilization long before the idea of energy conservation became fashionable. It became apparent in the late '60's that misguided Federal Legislation was discouraging necessary search for new gas supplies and the gas industry mounted a determined engineering and development effort to stretch existing supplies until changes in the legislation could be implemented. These and similar programs are ongoing even now that the outlook for new gas supplies is constantly improving. This paper makes references to specific efforts by gas utilities in concert with industrial users.

Loberg, T. J.

1980-01-01T23:59:59.000Z

98

Electric Utility Industry Experience with Geomagnetic Disturbances  

Science Conference Proceedings (OSTI)

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

Barnes, P.R.

1991-01-01T23:59:59.000Z

99

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

1991-09-01T23:59:59.000Z

100

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Breakthrough Industrial Carbon Capture, Utilization and Storage Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Industrial Carbon Capture, Utilization and Storage Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas. Supported by a $284 million Energy Department investment, the company has successfully begun capturing carbon dioxide from industrial operations and is now using that carbon for enhanced oil recovery (EOR) and securely storing it underground. This first-of-a-kind, breakthrough project

102

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

103

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Comprehensive energy management assistance within the industrial section is currently being offered by a growing number of electric utilities as part of their efforts to - provide additonal demand side services to their industrial customers. One of the keys to these enhanced services is the availability of a unique Industrial Energy Conservation and Management (EC&M) computer model that can be used to evaluate the technical and economic benefits of installing proposed process related energy management systems within an industrial plant. Details of an EPRI sponsored pilot program are summarized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportunities in HL&P's and other utility service areas. This capability is currently being offered to HL&P's industrial customers and is primarily concerned with identifying and evaluating possible process heat recovery and other energy management opportunities to show how a plant's energy related operating costs can be reduced.

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

1985-05-01T23:59:59.000Z

104

Industrial Insulation: An Energy Efficient Technology That Saves Money and Reduces  

E-Print Network (OSTI)

Increasing energy efficiency in U.S. industrial facilities is an important part of the U.S. energy policy for attaining goals such as reduced greenhouse gas emissions, a stronger economy, and greater national security. One of the quickest ways to improve energy efficiency in the manufacturing sector is to install, upgrade, and repair insulation on process piping systems and equipment. Insulation has always been a ""good thing to do"". Everyone knows it save energy by preventing heat loss-but no one knew exactly just how much. Everyone understands that insulation protects people from hot surfaces and that it prevents condensation. Until recently, however no one could quantify the emissions saved for the insulation investment incurred. In fact, quantifying the benefits of insulation in terms of energy saved versus overall cost has always been a difficult task. The chemical plant example presented had an insulation appraisal conducted and was able to quantify the possible reductions of specific greenhouse gases and demonstrate to management that installing insulation could result in major reductions in the facilities operating costs. The insulation appraisal used the new Windows version of 3E Plus, a computer software program that can now calculate how much insulation is necessary to reduce NOx, CO2, and Carbon Equivalent (CE) emissions, exactly how much energy is saved throughout applying a range of insulation thicknesses and the dollar cost savings realized through preventing energy waste.

Brayman, B.

1999-05-01T23:59:59.000Z

105

Geothermal resource utilization: paper and cane sugar industries. Final report  

DOE Green Energy (OSTI)

This study was made as a specific contribution to an overall report by the United States in the area of industrial utilization of geothermal resources. This is part of an overall study in non-electrical uses of geothermal resources for a sub-committee of the North Atlantic Treaty Organization. This study was restricted to the geopressured zone along the Northern Gulf of Mexico Coast. Also, it was limited to utilizing the thermal energy of this ''geoenergy'' resource for process use in the Pulp and Paper Industry and Cane Sugar Industry. For the selected industries and resource area, this report sets forth energy requirements; identifies specific plant and sites; includes diagrams of main processes used; describes process and equipment modifications required; describes energy recovery systems; sets forth waste disposal schemes and problems; and establishes the economics involved. The scope of work included considerable data collection, analysis and documentation. Detailed technical work was done concerning existing processes and modifications to effectively utilize geothermal energy. A brief survey was made of other industries to determine which of these has a high potential for utilizing geothermal energy.

Hornburg, C.D.; Morin, O.J.

1975-03-01T23:59:59.000Z

106

Tuesday Webcast for Industry: Key Energy-Saving Activities for Smaller Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADVANCED MANUFACTURING OFFICE Tuesday Webcast for Industry Key Energy-Saving Activities for Smaller Facilities Webcast Questions and Answers: January 10, 2012 Presenters: Tom Wenning, Technical Account Manager, Oak Ridge National Laboratory Richard D. Feustel, Corporate Energy Services Manager, Briggs & Stratton Corporation The U.S. Department of Energy's (DOE's) Office of Advanced Manufacturing Program (AMO) hosts a series of webcasts on the first Tuesday of every month from 2:00 p.m. to 3:00 p.m. Eastern Standard Time. The series' objective is to help industrial personnel learn about software

107

Energy Savings Potential and Policy for Energy Conservation in Selected Indian Manufacturing Industries  

E-Print Network (OSTI)

Minimization of damage from the rising trend of global warming would warrant two kinds of action for a country like India: a) abatement of greenhouse gas emissions and b) adaptation to climate change so as to reduce climate change related vulnerability of the people. The target of low carbon economic growth of India in terms of declining energy and carbon intensity of GDP assumes, therefore, a special significance in such context. Of the different options for lowering carbon intensity of GDP, the option of energy conservation through reduced energy intensity of output happens to be cheaper in most cases than the carbon free energy supply technology options. As the industrial sector has the largest sectoral share of final energy consumption in India this paper focuses on the assessment of energy savings potential in seven highly energy consuming industries. The paper estimates the energy savings potential for each of these industries using unit level Annual Survey of Industries data for 2007-08. The paper further develops an econometric model admitting substitutability among energy and other non-energy inputs as well as that among fuels using translog cost function for the selected industries and

Manish Gupta; Ramprasad Sengupta; Manish Gupta; Ramprasad Sengupta

2012-01-01T23:59:59.000Z

108

Supporting rural wood industry through timber utilization research. Research paper  

SciTech Connect

The report evaluates the potential impact of USDA Forest Service wood utilization and wood energy research on rural employment and income. Recent projections suggest employment will decrease in many forest products industries, such as softwood sawmilling, but will eventually increase in softwood plywood and reconstituated panel mills. Forest products industries expected to provide wages exceeding the average manufacturing production wage include logging, softwood sawmills, millwork, softwood plywood--veneer, structural wood members, particle-board, wood partitions, pulp mills, paper mills, and paperboard mills. Industries expected to pay 90 percent of the average manufacturing production wage include wood kitchen cabinets, mobile homes, prefabricated wood buildings, and wood preservatives.

Skog, K.

1991-10-01T23:59:59.000Z

109

A Methodology for Baselining the Energy Use At Large Campus Utility Plants for the Purpose of Measuring Energy Savings from Energy Conservation Retrofits  

E-Print Network (OSTI)

The development of the energy services industry and the implementation of energy savings retrofits by energy services companies has increased the focus on the performance of energy saving retrofits. Energy savings measurement, though not an exact science, has been developing as well to ensure the benefit of a retrofit and to provide a level of assurance for the customers of energy services companies. This thesis presents a useful methodology for baselining campus utility usage using regression modeling techniques and measured daily data for the purpose of measuring energy savings. The methodology of this thesis improves upon previous regression modeling of individual buildings by extending commercial building energy usage models to an entire campus, modeling the operation of a central plant, and modeling central plant equipment performance with regression models. By adding equipment production layers, the user can more easily determine the cause of changes in the primary energy usage of a central plant. The case study for the application of the methodology of this thesis was the Texas A&M University main campus central plant. Useful results were obtained by utilizing one portion of the data to develop an energy usage baseline model and using the second portion of the data to validate the performance of the baseline model. Further development of the methodology could include the addition of an economic module and refinement of the model to incorporate the use of hourly data.

Beasley, R. C.

1999-08-01T23:59:59.000Z

110

A methdology for baselining the energy use at large campus utility plants for the purpose of measuring energy savings from energy conservation retrofits  

E-Print Network (OSTI)

The development of the energy services industry and the implementation of energy savings retrofits by energy services companies has increased the focus on the performance of energy saving retrofits. Energy savings measurement, though not an exact science, has been developing as well to ensure the benefit of a retrofit and to provide a level of assurance for the customers of energy services companies. This thesis presents a useful methodology for datelining campus utility usage using regression modeling techniques and measured daily data for the purpose of measuring energy savings. The methodology of this thesis improves upon previous regression modeling of individual buildings by extending commercial building energy usage models to an entire campus, modeling the operation of a central plant, and modeling central plant equipment performance with regression models. By adding equipment production layers, the user can more easily determine the cause of changes in the primary energy usage of a central plant. The case study for the application of the methodology of this thesis was the Texas A&M University main campus central plant. Useful results were obtained by utilizing one portion of the data to develop an energy usage baseline model and using the second portion of the data to validate the performance of the baseline model. Further development of the methodology could include the addition of an economic module and refinement of the model to incorporate the use of hourly data.

Beasley, Rodney Craig

1999-01-01T23:59:59.000Z

111

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Refrigeration: Introducing Energy Saving Opportunities forManufacturing Produces Energy-Saving Opportunities. http://Demonstration of Energy Savings of Cool Roofs. Lawrence

Brush, Adrian

2012-01-01T23:59:59.000Z

112

Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry  

E-Print Network (OSTI)

Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. After describing the industry's trends, structure and production and the process's energy use, we examine energy-efficiency opportunities for corn wet millers. Where available, we provide energy savings and typical payback periods for each measure based on case studies of plants that have implemented it. Given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the industry while maintaining the quality of the products produced. Further research on the economics of the measures and their applicability to different wet milling practices is needed to assess implementation of selected technologies at individual plants.

Galitsky, C.; Worrell, E.

2003-05-01T23:59:59.000Z

113

A water utility industry conceptual asset management data warehouse model  

E-Print Network (OSTI)

Timely decision making is critical in todays competitive business world and in recent times, data warehousing has been employed by numerous companies to satisfy the needs of accurate and timely information. Data warehousing has traditionally been employed for financial and customer relationship analysis with current applications now moving to other domains, such as the medical and power industries. The asset management industry is one that has seen great strides in recent years due to improved technology, but data warehousing of asset management information has been lacking. A literature review was undertaken to determine data warehousing applications in the area of asset management, and with the lessons learned, a conceptual model of data warehousing for asset management is proposed. The water utility industry is chosen to provide a grounded example of an enterprise data warehouse model that integrates data from various local information systems. The particular issues faced in the asset management domain are highlighted, and several water utility applications are presented. KEY WORDS: data warehousing, asset management, water utility industry, design 1.

Avin Mathew; Sheng Zhang; Lin Ma; Doug Hargreaves

2006-01-01T23:59:59.000Z

114

BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry  

Science Conference Proceedings (OSTI)

Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

2005-10-15T23:59:59.000Z

115

Public Service Commission Authorization to Utilize an Alternative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial InstallerContractor Investor-Owned Utility Rural Electric Cooperative Utility Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Information...

116

Electric utility restructuring and the California biomass energy industry  

Science Conference Proceedings (OSTI)

A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

117

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

energy costs by implementing energy efficiency measures can2005a). Energy Efficiency Improvement and Cost SavingL ABORATORY Energy Efficiency Improvement and Cost Saving

Brush, Adrian

2012-01-01T23:59:59.000Z

118

Using DOE Industrial Energy Audit Data for Utility Program Design  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information since 1980. In 1992, DOE and Baltimore Gas & Electric Company (BG&E) agreed to conduct a joint demonstration project in which the EADC database would be used to assist BG&E in planning demand-side management (DSM) programs for its industrial customers. BG&E identified a variety of useful applications of the database including: estimating conservation potential, identifying conservation measures for inclusion in programs, target marketing of industries, projecting DSM program impacts, and focusing implementation efforts. Over the course of the project, BG&E identified a variety of strengths and limitations associated with the database when used for utility planning. To encourage the use of the data by other utilities and interested parties, DOE is preparing an EADC database package for general distribution in April 1993.

Glaser, C. J.; Packard, C. P.; Parfomak, P.

1993-03-01T23:59:59.000Z

119

Practical Handbook of Soybean Processing and UtilizationChapter 21 Industrial Uses for Soybeans  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 21 Industrial Uses for Soybeans Processing eChapters Processing Downloadable pdf of Chapter 21 Industrial Uses for Soybeans from ...

120

Practical Handbook of Soybean Processing and Utilization Chapter 19 Consumer and Industrial Margarines  

Science Conference Proceedings (OSTI)

Practical Handbook of Soybean Processing and Utilization Chapter 19 Consumer and Industrial Margarines Processing eChapters Processing Downloadable pdf of Chapter 19 Consumer and Industrial Margarines from

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Fauth and Yee Soong J. Fauth and Yee Soong U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA, 15236-0940 Mineral Sequestration Workshop National Energy Technology Laboratory August 8, 2001 Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Introduction - Objective - Goals - NETL Facilities * Effect of Solution Chemistry on Carbonation Efficiency - Buffered Solution + NaCl - Buffered Solution + MEA * Effect of Pretreatment on Carbonation Efficiency - Thermal Treatments - Chemical Treatments * Carbonation Reaction with Ultramafic Minerals - Serpentine - Olivine Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Carbonation Reaction with Industrial By-products

122

Save Energy Now  

SciTech Connect

This DOE Industrial Technologies Program brochure informs industrial audiences about Save Energy Now, part of ''Easy Ways to Save Energy'', a national campaign to save energy and ensure energy security.

2006-01-01T23:59:59.000Z

123

Save Energy Now  

SciTech Connect

This DOE Industrial Technologies Program brochure informs industry about Phase 2 of Save Energy Now, part of "Easy Ways to Save Energy," a national campaign to save energy and ensure energy security.

2006-10-01T23:59:59.000Z

124

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry, March 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

7335-Revision 7335-Revision ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry ® An ENERGY STAR Guide for Energy and Plant Managers Ernst Worrell, Christina Galitsky, Eric Masanet, and Wina Graus Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency March 2008 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or

125

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or...

126

Energy-saving cements obtained from chemical gypsum and other industrial wastes  

SciTech Connect

The main sources, properties and uses of chemical gypsum are reviewed and the possibility of its utilization for the manufacturing process of calcium sulfoaluminate cements is explored. In this process other industrial wastes, as sources of reactive silica and alumina, can be employed. Phosphogypsum, blast-furnace slag and fly ash were the main by-products investigated. The principal properties of calcium sulfoaluminate cements, such as synthesis, hydration and strength, were discussed. Some durability problems and suggested solutions were particularly emphasized.

Beretka, J. [CSIRO Div. of Building, Construction and Engineering, Highett, Victoria (Australia)] [CSIRO Div. of Building, Construction and Engineering, Highett, Victoria (Australia); Cioffi, R. [Univ. Degli Studi di Napoli Federico II (Italy). Dipt. di Ingegneria dei Materiali e della Produzione] [Univ. Degli Studi di Napoli Federico II (Italy). Dipt. di Ingegneria dei Materiali e della Produzione; Marroccoli, M.; Valenti, G.L. [Univ. della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell`Ambiente] [Univ. della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell`Ambiente

1996-12-31T23:59:59.000Z

127

Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry  

SciTech Connect

This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

Akyol, Bora A.

2012-09-01T23:59:59.000Z

128

What Does Industry Expect From An Electrical Utility  

E-Print Network (OSTI)

The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier quality programs we are developing include: 1. Performance and Delivery, 2. Conformance, 3. Responsiveness, 4. Communications, 5. Supplier Quality Efforts. The electric utility supplying each of our locations is our partner at that location. We do not have the same degree of flexibility to change electricity suppliers that we might have with other suppliers of goods and services. In order for our partnerships to work we must get to know each other better. We need to understand the other guys problems and then find ways to do business that are mutually beneficial to both of us. At Union Carbide our total quality process has started at the top of the corporation and is working its way throughout the organization. Our supplier quality programs are now beginning to take shape and we are relying upon our electric utility suppliers to become active in the final design and implementation of these programs.

Jensen, C. V.

1989-09-01T23:59:59.000Z

129

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

E-Print Network (OSTI)

Energy, Emissions, Savings Potential and Policy Actions, Fraunhofer Institute for Systems Technology and Innovation, Karlsruhe, Germany. Centre for the Analysis

Galitsky, Christina

2009-01-01T23:59:59.000Z

130

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Engineering (2005). Industrial Refrigeration Best PracticesEngineering (2007). Industrial Refrigeration Best Practicesdatabase/. Industrial Refrigeration Consortium (IRC) (

Brush, Adrian

2012-01-01T23:59:59.000Z

131

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

132

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network (OSTI)

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive for the industrial customer to alter their present operation. Utilities recognize that industry offers the greatest potential for peak load reduction.

Williams, M. M.

1981-01-01T23:59:59.000Z

133

City energy plan: choices for saving energy in the industrial sector, Task 2. 3 B  

SciTech Connect

The following are covered: how energy is used today, ways to save energy, ways to implement, conservation choices, and impacts of price increases and supply cutbacks. (MHR)

1976-11-01T23:59:59.000Z

134

BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Maxi Brochure 14 (an efficient daylighting system may provide evenly dispersedrefitted with daylighting systems. Various daylighting

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

135

Lessons Learned: A review of utility experience with conservation and load management programs for commercial and industrial customers  

SciTech Connect

This report examines utility experience with conservation and load management (C LM) programs of commercial and industrial (C I) customers in order to summarize the lessons learned from program experiences to date and what these teach us about how to operate successful programs in the future. This analysis was motivated by a desire to learn about programs which achieve high participation rates and high electricity savings while remaining cost effective. Also, we wanted to review the very latest experiences with innovative program approaches -- approaches that might prove useful to utilities as they scale up their C LM activities. Specific objectives of this phase of the study are threefold: (1) To disseminate information on utility C LM experience to a nationwide audience. (2) To review current New York State utility programs and make suggestions on how these programs can be improved. (3) To collect data for the final phase of the American Council for an Energy-Efficient Economy/New York State Energy Research and Development Authority project, which will examine the savings that are achievable if C LM programs are pushed to the limit'' of current knowledge on how to structure and run cost-effective C LM programs. 19 tabs.

Nadel, S.

1990-10-01T23:59:59.000Z

136

BEST Winery Guidebook: Benchmarking and Energy and Water Savings Tool for the Wine Industry  

E-Print Network (OSTI)

Drive Opportunities in Industrial Refrigeration Systems, VFDnewsletter for the Industrial Refrigeration Consortium atDrive Opportunities in Industrial Refrigeration Systems, VFD

Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy, Patrick; Zechiel, Susanne

2005-01-01T23:59:59.000Z

137

Canola: Chemistry, Production, Processing and UtilizationChapter 11 Industry Trade and Economics  

Science Conference Proceedings (OSTI)

Canola: Chemistry, Production, Processing and Utilization Chapter 11 Industry Trade and Economics Processing eChapters Processing Downloadable pdf of Chapter 11 Industry Trade and Economics, from the book ...

138

Robust Output Feedback Stabilization of Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract-- This paper boiler (Utility boiler), where the nonlinear model describes the complicated dynamics of the drum

Marquez, Horacio J.

139

Industrial Utilization of Surfactants: Principles & PracticeChapter 1 General Principles  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Chapter 1 General Principles Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of Chapter 1 General Principles from t

140

Industrial Utilization of Surfactants: Principles & PracticeChapter 6 Surfactant Applications 1  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Chapter 6 Surfactant Applications 1 Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of Chapter 6 Surfactant Applica

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Industrial Utilization of Surfactants: Principles & PracticeChapter 7 Surfactant Applications 2  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Chapter 7 Surfactant Applications 2 Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of Chapter 7 Surfactant Applica

142

Austin Utilities (Gas and Electric)- Residential Conserve and Save Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Utilities offers incentives to its residential customers for the installation of energy-efficient equipment in homes. Rebates are available for both electric and natural gas equipment....

143

Environmental Performance Measurement: A Framework for the Utility Industry  

Science Conference Proceedings (OSTI)

Utilities use environmental performance measurement (EPM) for internal management, external communication, and benchmarking. This report presents a framework to assist utilities in developing EPM processes consistent with their environmental and business goals.

1996-04-05T23:59:59.000Z

144

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

a significant source of wasted energy. A typical plant thatused to burn fuel, energy is wasted, because excessive heatenergy savings in compressed air systems. By properly sizing regulators, compressed air that is otherwise wasted

Kermeli, Katerina

2013-01-01T23:59:59.000Z

145

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network (OSTI)

2030. Three cement output projections are developed based onthese three production projections, energy savings and CO2have been a number of projections of Chinas future cement

Ke, Jing

2013-01-01T23:59:59.000Z

146

Deregulation and Resource Reconfiguration In The Electric Utility Industry  

E-Print Network (OSTI)

and Scale Economies in Electric Power Production: Some Newand Delivery of Electric Power. Land Economics 62(4): 378-1998 Challenges of Electric Power Industry Restructuring for

Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

2005-01-01T23:59:59.000Z

147

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

identify and evaluate energy-saving opportunities, recommendDemonstration of Energy Savings of Cool Roofs. LawrenceT60. Backhausen, J. (2000). Energy Saving and Emission

Worrell, Ernst

2008-01-01T23:59:59.000Z

148

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. AmericanSummer Study on Energy Efficiency in Industry. AmericanCanada, Office of Energy Efficiency, Ottawa, Ontario. Carbon

Brush, Adrian

2012-01-01T23:59:59.000Z

149

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

SciTech Connect

The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5) the amount of production of cement by type and grade (in tonnes per year); (6) the electricity generated onsite; and, (7) the energy used by fuel type; and, the amount (in RMB per year) spent on energy. The tool offers the user the opportunity to do a quick assessment or a more detailed assessment--this choice will determine the level of detail of the energy input. The detailed assessment will require energy data for each stage of production while the quick assessment will require only total energy used at the entire facility (see Section 6 for more details on quick versus detailed assessments). The benchmarking tool provides two benchmarks--one for Chinese best practices and one for international best practices. Section 2 describes the differences between these two and how each benchmark was calculated. The tool also asks for a target input by the user for the user to set goals for the facility.

Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

2008-07-30T23:59:59.000Z

150

Evaluation and Design of Utility Co-Owned Cogeneration Systems for Industrial Parks  

E-Print Network (OSTI)

The Electric Power Research Institute, EPRI, is currently evaluating the potential of utility co-owned cogeneration facilities in industrial parks. This paper describes part of the work performed by one of EPRI's contractors, Impell Corporation, chosen by EPRI to support the industrial parks study. Cogeneration benefits for park owners, tenants and the local utilities are presented. A method developed for selecting industrial park sites for cogeneration facilities and design and financing options are also discussed.

Hu, D. S.; Tamaro, R. F.; Schiller, S. R.

1984-01-01T23:59:59.000Z

151

Survey of Instrumentation and Control Practices in the Process Industries for Application to the Power Utilities  

Science Conference Proceedings (OSTI)

With impending deregulation and ever-tightening environmental constraints, utilities are increasing their emphasis on maximizing operating efficiency and reducing maintenance and operational costs. It is likely that utilities can use the capabilities of modern control and information management systems more effectively than they currently do. This report documents lessons learned over many years by experts in the process industries that might benefit the utility industry as it transitions to a competitiv...

1999-04-08T23:59:59.000Z

152

Port Angeles Public Works and Utilities - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting: up to 70% of project cost All Custom: up to 70% of incremental energy project costs Program Info State District of Columbia Program Type Utility Rebate Program Rebate...

153

Blooming Prairie Public Utilities- Commercial & Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

154

Waseca Utilities- Commercial & Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Southern Minnesota Municipal Power Agency (SMMPA) is a joint-action agency which generates and sells reliable electricity at wholesale to its eighteen non-profit, municipally-owned member utilities...

155

Save Energy Now  

SciTech Connect

This trifold describes DOE's Industrial Technologies Program's Save Energy Now campaign, and gives information on partnership opportunities for industry.

2006-03-01T23:59:59.000Z

156

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

E-Print Network (OSTI)

Pharmaceutical Industry: An ENERGY STAR Guide for Energy andPharmaceutical Industry: An ENERGY STAR Guide for Energy andAn ENERGY STAR Guide for Energy and Plant Managers.

Galitsky, Christina

2009-01-01T23:59:59.000Z

157

Methods for Determining Energy Efficiency Savings for Specific Measures |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methods for Determining Energy Efficiency Savings for Specific Methods for Determining Energy Efficiency Savings for Specific Measures Methods for Determining Energy Efficiency Savings for Specific Measures This document provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are-or are among-the most commonly used in the energy efficiency industry for certain measures or programs. Acknowledgements Introduction Commercial and Industrial Lighting Evaluation Protocol Commercial and Industrial Lighting Controls Evaluation Protocol Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol

158

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

159

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

air pollutant emissions. Steam distribution system energyimprovements to steam distribution systems primarily focusenergy in industrial steam distribution systems. Improve

Kermeli, Katerina

2013-01-01T23:59:59.000Z

160

"2012 Utility Bundled Retail Sales- Industrial"  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial" Industrial" "(Data from forms EIA-861- schedules 4A & 4D and EIA-861S)" "Entity","State","Ownership","Customers (Count)","Sales (Megawatthours)","Revenues (Thousands Dollars)","Average Price (cents/kWh)" "Alaska Electric Light&Power Co","AK","Investor Owned",94,127106,11993,9.4354318 "Chugach Electric Assn Inc","AK","Cooperative",7,54804,5902,10.769287 "City & Borough of Sitka - (AK)","AK","Municipal",15,4968,476,9.5813205 "City of Petersburg - (AK)","AK","Municipal",39,19905,2208.6,11.095705 "City of Seward - (AK)","AK","Municipal",126,33599,5828,17.345754

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

Cogeneration has become an extremely popular subject when discussing conservation and energy saving techniques. One of the key factors which effect conservation is the utility viewpoint on PURPA and cogeneration rule making. These topics are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition to utilities and industry, third party owner/operation is also a viable option to cogeneration. These options are also discussed as to their impact on the utility and the potential of these ownership arrangements.

Williams, M.

1983-01-01T23:59:59.000Z

162

Worldwide Satellite Communications for the Energy Utility Industry  

Science Conference Proceedings (OSTI)

This report examines advances in communications satellite systems that could have a high impact on an energy company's ability to manage resources located in remote areas. While satellite relevance to the energy industry has been known for a long time, only recently has new technology addressed the economic and technical constraints that have limited their use by a majority of companies.

1998-09-08T23:59:59.000Z

163

Measurement and Verification of Industrial Energy-Savings Projects Lessons Learned By Measuring Successful and Not-So Successful Projects  

E-Print Network (OSTI)

The current BC Hydro energy-conservation program is called Power Smart and was started in 2001. Of the 1200 projects completed to date over 300 have been in the manufacturing and industrial sector with savings of more than 400 GWh annually. The savings have been verified using BC Hydros Measurement and Verification (M&V) standards which follow the International Performance Measurement and Verification Protocol (IPMVP). High-cost projects with large savings have been verified using Option B, retrofit isolation measurement. BC Hydro has performed Option B M&V on 180 of the largest projects including fans, pumps, variable speed drives, compressed air, refrigeration, process controls, process optimization, heat recovery, high-efficiency motors, ball mills, refiner plates, pulp screen rotors and turbine-generators. Data is either gathered from existing metering where possible or in many cases BC Hydro installs temporary three-phase power loggers. The temporary loggers typically capture data in 15-minute intervals for several months during the baseline period and for 12 months of post-retrofit operation. This paper outlines several projects showing baseline and post-retrofit measurements. Successes, failures, and lessons learned are discussed.

Hebert, D

2008-01-01T23:59:59.000Z

164

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Council of Industrial Boiler Owners, Burke, Virginia. 9.Conservation (CIPEC). 2001b. Boilers and Heaters, Improving43 5.6.1 Boiler energy efficiency

Kermeli, Katerina

2013-01-01T23:59:59.000Z

165

Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry  

E-Print Network (OSTI)

and MAIN. 1993. Energy Technology in the Cement IndustrialNo. 16000393, September 9. Energy Technology Support Unit (of China (ITIBMIC). Energy Technology Support Unit (ETSU).

Galitsky, Christina

2009-01-01T23:59:59.000Z

166

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

Section 5.5). Industrial refrigeration systems are anotherindustrial electricity consumer and are used in many plant systems, such as HVAC, compressed air, refrigeration

Kermeli, Katerina

2013-01-01T23:59:59.000Z

167

Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry  

E-Print Network (OSTI)

of Energy Efficiency and Renewable Energy, Washington, D.C.of Energy, Energy Efficiency and Renewable Energy. Chopin,Office of Energy Efficiency and Renewable Energy, Industrial

Kermeli, Katerina

2013-01-01T23:59:59.000Z

168

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network (OSTI)

Specific cement energy consumption: conversion of power into2006. Cement industry energy consumption status and energyZhou, H. , 2007a. Energy consumption and environment

Ke, Jing

2013-01-01T23:59:59.000Z

169

Industrial Utilization of Surfactants: Principles & PracticeChapter 5 Enhancing the Performance of Surfactants  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Chapter 5 Enhancing the Performance of Surfactants Surfactants and Detergents eChapters Surfactants - Detergents AOCS FAE922504CC49A71A893E781BCF8E9F7 Press ...

170

Railroad Consolidation and Market Power: Challenges to a Deregulating Electric Utility Industry  

Science Conference Proceedings (OSTI)

The railroad industry is shrinking into a handful of mega-carriers, a development of great importance to the electric utility industry, which depends on railroads for most shipments of coal. As the electric utilities face deregulation, the impact of railroad market power on the delivered price of coal is a critical competitive issue. This report examines the motivations for railroad consolidation and assesses the likely business strategies of the five major coal hauling railroads.

1997-03-08T23:59:59.000Z

171

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

2008-03-01T23:59:59.000Z

172

Priority listing of industrial processes by total energy consumption and potential for savings. Final report  

SciTech Connect

A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

Streb, A.J.

1977-01-01T23:59:59.000Z

173

Applications of economic principles in public utility industries  

Science Conference Proceedings (OSTI)

Energy and transportation rank high among the economic concerns of American consumers and policymakers, and these concerns generate a host of technical, social, and political issues that impinge on the formulation of public utility regulatory policy. The collection of papers in this book provide evidence of the creative thinking that characterizes current approaches to the resolution of these issues. The book begins with a discussion of current attempts to develop a more comprehensive and timely definition of the concept of natural monopoly. The next three papers deal with various aspects of the problem on incorporating equity considerations into the development of rate structure. The fifth paper examines the potential impact of the current tariff structure on future explorations for oil, using the Trans-Alaska pipeline as a case study. The book concludes with two essays on various aspects of deregulation. 162 references, 4 tables.

Sichel, W.; Gies, T.G. (eds.)

1981-01-01T23:59:59.000Z

174

Federal Energy Management Program: Federal Utility Partnership Working  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Commitment to someone by E-mail Industry Commitment to someone by E-mail Share Federal Energy Management Program: Federal Utility Partnership Working Group Industry Commitment on Facebook Tweet about Federal Energy Management Program: Federal Utility Partnership Working Group Industry Commitment on Twitter Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Industry Commitment on Google Bookmark Federal Energy Management Program: Federal Utility Partnership Working Group Industry Commitment on Delicious Rank Federal Energy Management Program: Federal Utility Partnership Working Group Industry Commitment on Digg Find More places to share Federal Energy Management Program: Federal Utility Partnership Working Group Industry Commitment on AddThis.com... Energy Savings Performance Contracts

175

Electric Utilities' Role in Industrial Competitiveness: Going Beyond the Energy Audit  

E-Print Network (OSTI)

This paper describes EPRI's Partnership for Industrial Competitiveness. The Partnership, comprised of over 15 EPRI member utllities, was established to help electric utilities identify, develop; and implement competitiveness improvement opportunities for their industrial customers. To be meaningful, strategies for increasing industrial competitiveness must consider not only energy use, but also all other production inputs. To this end, the program focusses on three major areas: productivity, environmental protection, and efficiency. The effectiveness of the program will be gauged by its ability to keep utility customers "alive and well."

Jeffress, R. D.

1993-03-01T23:59:59.000Z

176

Chapter 3, Commercial and Industrial Lighting Controls Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Commercial and 3: Commercial and Industrial Lighting Controls Evaluation Protocol Stephen Carlson, DNV KEMA Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 3 - 1 Chapter 3 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 3.1 Algorithms ....................................................................................................................... 5

177

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network (OSTI)

Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a growing number of utilities, however, such peak-reduction programs don't go far enough in the face of new problems and challenges, and hence are proving ineffective or counterproductive. For example, many of a utility's largest customers--especially industrial customers who may be "locked into" seemingly inflexible process activities--have limited ability to respond to load-management programs that employ price signals as a central peak-reduction tool. Moreover, utilities in general are finding that vigorous efforts to reduce electric load can result in underutilization of base-load generating facilities. In these and other instances, "load-shaping," which emphasizes a shift of electric load or demand from peak to off-peak periods and provides for greater customer flexibility, may be a more effective strategy. This paper explains the need for and presents the components of a load-shaping program, and describes Pacific Gas and Electric Company's (PGandE) recent experience in designing and pursuing an industrial-load-shaping program. The paper also outlines important obstacles and opportunities likely to confront other utilities and industrial customers interested in working together to develop such programs.

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

1986-06-01T23:59:59.000Z

178

Empirical Assessment of Shareholder Incentive Mechanisms Designs under Aggressive Savings Goals: Case Study of a Kansas "Super-Utility"  

E-Print Network (OSTI)

achievable cost- effective energy efficiency. One of the keyto maximize cost-effective energy efficiency savings whileto capture cost-effective energy efficiency resources. In

Cappers, Peter

2010-01-01T23:59:59.000Z

179

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

2008-03-01T23:59:59.000Z

180

Department of Energy Achieves Goal of 200 Energy Savings Assessments |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieves Goal of 200 Energy Savings Achieves Goal of 200 Energy Savings Assessments Department of Energy Achieves Goal of 200 Energy Savings Assessments March 2, 2007 - 10:28am Addthis Over 50 Trillion Btus of Natural Gas Savings Found AUSTIN, TX - The U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Andy Karsner today announced the completion of Energy Savings Assessments (ESAs) at 200 of the largest industrial facilities in the nation, identifying opportunities to save over 50 trillion Btus of natural gas - roughly equivalent to the natural gas used in 700,000 American homes. In 2007, DOE will conduct 250 additional Energy Savings Assessments and offer cost-sharing options with industry, utilities and other partners. Assistant Secretary Karsner made the

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industrial Insulation: Protects the Environment, Improves Efficiency and Saves More Money Than You Can Imagine!  

E-Print Network (OSTI)

Stabilizing greenhouse gas emissions to stem the impact of global climate change is becoming one of the hottest topics heading into the new century. Regardless of which side of the issue you are on, there is no debate that increasing energy efficiency is important to environmental preservation. One of the most effective energy efficient technologies available is mineral fiber insulation. The examples presented will give energy management professionals the evidence they need to consider industrial insulation a time-tested, off-the-shelf technology for achieving major reductions in operating costs and CO2 emissions.

Brayman, W. J.

1998-04-01T23:59:59.000Z

182

User's Manual for BEST-Dairy: Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2)  

Science Conference Proceedings (OSTI)

This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).

Xu, T.; Ke, J.; Sathaye, J.

2011-04-20T23:59:59.000Z

183

How Much Can a Campus Save on Utility Bills by Turning a 5-Workday Week Into a 4Workday Week  

E-Print Network (OSTI)

The recent budget cuts campaign mandated by the governor's office had all state agencies in Texas looking for ways to reduce revenue spending. One of the cost savings opportunities perceived by many university officials is to convert a typical 5-workday week into a 4- workday week (e.g., Monday to Thursday) with 10 working hours each day during the universities summer session. The potential savings come from the fact that the universities can be partially shut down during the prolonged weekends (Friday to Sunday). It is believed that the savings from partially shutting down an extra workday is much more significant than the marginal energy increase caused by the extended working hours during workdays. This paper analyzes the potential energy cost savings of this approach for three real cases. The savings can be largely estimated by comparing whole-campus electricity consumptions between typical weekdays and weekends (or holidays). Energy overheads caused by the extended working hours (two more hours per working day) were also estimated. A limited shutdown scenario (similar to a typical weekend schedule) and a more aggressive shutdown scenario (similar to a typical holiday schedule) during the weekend periods are presented. The potential savings opportunities were from 0.32% to 1.53% of the annual electricity bills for different universities.

Zhou, J.; Giebler, T.; Wei, G.; Turner, W. D.

2003-01-01T23:59:59.000Z

184

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the Metal Fabrication Industry. 18 th National Industrial40-51. Pharmaceutical Industry Association of Puerto Rico (on Energy Efficiency in Industry. American Council for an

Galitsky, Christina

2008-01-01T23:59:59.000Z

185

Abstract--With the deregulation and restructuring of utility industry, many substation automation applications are being  

E-Print Network (OSTI)

Control and Data Acquisition (SCADA) and Energy Management System (EMS) applications of substation environment of substation automation project. It provides data to a number of application including automated1 Abstract--With the deregulation and restructuring of utility industry, many substation automation

186

Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction  

E-Print Network (OSTI)

Environmental pressures are causing many companies to rethink how they do business. Like many other areas of the country, the Gulf Coast petrochemical corridors, including those served by Gulf States Utilities, are classified as non attainment for ozone. Some people believe this classification leads to a bad environmental image. Such an image stifles further economic development and forces existing industries to renovate or close. Sixty four industrial plants located near Baton Rouge were ordered by the Louisiana Department of Environmental Quality to submit both short-term plans, which will be enforced this summer, and long- term plans to reduce ozone precursors. This paper describes a collaborative approach industry and the utility can use to help meet these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self-generated power.

Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

1991-06-01T23:59:59.000Z

187

Empirical Assessment of Shareholder Incentive Mechanisms Designs under Aggressive Savings Goals: Case Study of a Kansas "Super-Utility"  

E-Print Network (OSTI)

period as the super-utilitys rate base continues togrowth Utility Budget Category Capital Expenditure Rate baseAnnual Growth Rate (%) N/A Motivating utilities to achieve

Cappers, Peter

2010-01-01T23:59:59.000Z

188

Empirical Assessment of Shareholder Incentive Mechanisms Designs under Aggressive Savings Goals: Case Study of a Kansas "Super-Utility"  

E-Print Network (OSTI)

utilitys future sales, peak demand, and resource strategyretail elect. sales, peak demand, retail rates, emissionyear elect sales, peak demand, emission levels, financials,

Cappers, Peter

2010-01-01T23:59:59.000Z

189

Possible Savings Achievable by Recipients of Training and Software Provided by the U.S Department of Energys Industrial Technologies Program  

E-Print Network (OSTI)

Through its Save Energy Now (SEN) Initiative, the U.S. Department of Energys (DOEs) Industrial Technologies Program (ITP) disseminates information on energy efficient technologies and practices to U.S. industrial firms to improve the energy efficiency of their operations. Among other things, Save Energy Now conducts training sessions on a variety of energy systems that are important to industry (i.e., compressed air, steam, process heat, pumps, motors, and fans) and distributes software tools on those same topics. A recent Oak Ridge National Laboratory (ORNL) study collected information from recipients of SEN training and software regarding how much their total annual plant energy costs could be reduced by implementing the measures that they identified since receiving SEN services. Those same individuals were also queried regarding the portion of potential savings that were actually achieved. The responses revealed both similarities and differences between training and software recipients as well as substantial variation in the savings associated with the diverse energy systems addressed.

Schweitzer, M.; Martin, M. A.; Schmoyer, R. L.

2008-01-01T23:59:59.000Z

190

Energy Efficiency: Marketing and Service Potential for Energy Utilities' Industrial Markets  

E-Print Network (OSTI)

On paper, the match-up is simple: plant managers need solutions for energy-driven issues such as fuel bills, emissions compliance, process reliability, and workplace safety. Utilities, with their extensive customer account relationships, would be a superb channel for information outreach to the industrial community, especially if that information is value that attracts and retains customers. In practice, this match-up of industry and utility interests is often difficult to achieve. On the part of manufacturers as well as utilities, the failing is often a function of priorities. These differences are not insurmountable, however, as an array of public energy efficiency resources, already developed and freely available, can be tapped by utilities to better serve customers. Energy efficiency conveys benefits to manufacturers in the form of plant reliability and productivity, while also contributing to utilities' objectives regarding load management, growth, and return on assets. The use of trade allies and Internet communication means that this can be accomplished with negligible effort on the part of hard-pressed utility staff.

Russel, C.; Tate, R.; Tubiolo, A.

2002-04-01T23:59:59.000Z

191

Energy savings by means of fuel cell electrodes in electro-chemical industries. Progress report, August 1-October 31, 1978  

DOE Green Energy (OSTI)

Caustic half cells are described and data reported for tests run to evaluate the technology involved in the operation of air cathodes for the Caustic-Chlorine Industry. The majority of tests were run at 300 ASF in a 23% NaOH electrolyte at 75/sup 0/C with a CO/sub 2/ free air efficiency of 33%. Data are presented for a 7200-h life test which is in operation and represents the state of the art. Runs have been made to identify the limiting current density and air efficiency for the standard RA19 type air cathode. Also presented are tests involving cell temperature, electrode platinum variation and evaluation of several thin, porous, conducting substrates on which the catalyst layer is deposited during electrode fabrication. Technical data on advisory meetings and experimental cell design for hydrogen anode evaluation in the electrowinning of zinc were reported. Preliminary results demonstrate a savings of over 0.6 kWh/lb of zinc for 3 to 4 hours runs employing pure hydrogen as fuel and a 0.33 mg/cm/sup 2/ Pt anode. In the area of metal-water-air batteries a consultatory meeting was held, and the initial data obtained at Lawrence Livermore Laboratory for a standard Prototech Company air cathode in an Aluminum-Air Battery were reported to be most encouraging.

Allen, R.J.; Juda, W.; Lindstrom, R.W.

1978-12-01T23:59:59.000Z

192

Region-specific study of the electric utility industry. Phase I, final report  

SciTech Connect

This report describes the financial background of the electric utility industry in VACAR, reports on the present condition of the industry and then assesses the future of this industry. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of its cooperativeness and its representative mix of powerplants, for example coal, hydro, nuclear, oil. It was found that the supply of future economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the present condition of the electricity industry was to make the present system work. The present system is sound, and with modifications, problems could be solved within the existing framework. 8 figs., 4 tabs.

Wacaster, A.J. (ed.)

1985-07-01T23:59:59.000Z

193

Different approaches to estimating transition costs in the electric- utility industry  

SciTech Connect

The term ``transition costs`` describes the potential revenue shortfall (or welfare loss) a utility (or other actor) may experience through government-initiated deregulation of electricity generation. The potential for transition costs arises whenever a regulated industry is subject to competitive market forces as a result of explicit government action. Federal and state proposals to deregulate electricity generation sparked a national debate on transition costs in the electric-utility industry. Industry-wide transition cost estimates range from about $20 billion to $500 billion. Such disparate estimates raise important questions on estimation methods for decision makers. This report examines different approaches to estimating transition costs. The study has three objectives. First, we discuss the concept of transition cost. Second, we identify the major cost categories included in transition cost estimates and summarize the current debate on which specific costs are appropriately included in these estimates. Finally, we identify general and specific estimation approaches and assess their strengths and weaknesses. We relied primarily on the evidentiary records established at the Federal Energy Regulatory Commission and the California Public Utilities Commission to identify major cost categories and specific estimation approaches. We also contacted regulatory commission staffs in ten states to ascertain estimation activities in each of these states. We refined a classification framework to describe and assess general estimation options. We subsequently developed and applied criteria to describe and assess specific estimation approaches proposed by federal regulators, state regulators, utilities, independent power companies, and consultants.

Baxter, L.W.

1995-10-01T23:59:59.000Z

194

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

A Sourcebook on Daylighting Systems and Components. Paris:Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersed

Galitsky, Christina

2008-01-01T23:59:59.000Z

195

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersedrefitted with daylighting systems. Various daylighting

Worrell, Ernst

2008-01-01T23:59:59.000Z

196

Impact of Industrial Electric Rate Structure on Load Management - A Utility Viewpoint  

E-Print Network (OSTI)

A few years ago our response to an inquiry regarding availability of electric service for a large industrial load was something like: 'Let us put this into our production model to determine whether we will have adequate generating capacity to commit to your needs plus load increases under contract and anticipated residential and commercial load growth. If our studies show that we will have generating capacity available, then we should allow a minimum of two years for design and construction. Of course, you will need to plan to build and maintain your substation.' Today our response would be more like 'How soon can you be ready? Can we build and/or maintain your substation for you? Perhaps we can locate a transformer for you to use until permanent facilities are in place?' What has happened to utilities such as GSU to change our perspective so quickly? The turn around began around New Years of 82 with the realization by industry that the recession which had been developing for some 6 months in retail and construction areas was now affecting basic industry. Later we learned that this recession was the most severe and long lasting in this country since the great depression of the 1930's and that fundamental changes would be required by basic industry if it were to survive. Resulting plant reductions and closings severely impacted utilities heavily dependent on industrial business.

Richardson, J. A.

1984-01-01T23:59:59.000Z

197

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institutes (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

198

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

training. Target Group: Industries in Wisconsin Format: OpenU.S. Glass Container Industry. International Glass Review,Study on Energy Efficiency in Industry, Rye Brook, New York.

Worrell, Ernst

2008-01-01T23:59:59.000Z

199

Measuring retrofit savings in commercial buildings with pre-retrofit utility billing data and post-retrofit sub-metered data  

E-Print Network (OSTI)

Methodologies to measure energy and dollar savings resulting from energy conserving retrofits in commercial buildings when both pre-retrofit and post-retrofit monitored data are available at an hourly or daily level have already been developed by several researchers. However there are many occasions when hourly or daily energy consumption data are available only for the post-retrofit period. This thesis presents a methodology for measuring retrofit savings on such occasions by establishing a pre-retrofit baseline model of energy consumption based on pre-retrofit monthly utility billing data and sub-metered daily or hourly post-retrofit data. The procedure consists of two basic parts. The first part normalizes energy use for temperature dependency using post-retrofit sub-metered hourly data, the second part accounts for scheduling effects and develops a pre-retrofit baseline model using pre-retrofit utility bills. In this way, the method explicitly accounts for both scheduling and weather effects in developing a baseline for pre-retrofit energy consumption. The methodology is first tested with data from a LoanSTAR site where both pre- and post-retrofit data are available. It is then illustrated with two other LoanSTAR sites where only post-retrofit sub-metered data and pre-retrofit monthly utility billing data are available. This thesis also employs the direct utility bill comparison method to measure retrofit savings, and extends it to include a simple temperature comparison and compares results on a monthly and annual basis with the method developed herein.

Liu, Yue

1993-01-01T23:59:59.000Z

200

Transforming the Market for Commercial and Industrial Distribution Transformers: A Government, Manufacturer, and Utility Collaboration  

E-Print Network (OSTI)

Distribution transformers offer a largely untapped opportunity for efficiency improvements in buildings. Application of energy-efficient equipment can reduce transformer losses by about 20%, substantially cutting a facilitys total electricity bill and offering typical paybacks less than three years. Since nearly all of the electricity powering the commercial and industrial sectors is stepped down in voltage by facility-owned distribution transformers, broad application of energy-efficient equipment will lead to huge economy-wide energy and dollar savings as well as associated environmental benefits. This opportunity has led to a multi-party coordinated effort that offers a new model for national partnerships to pursue market transformation. The model, called the Informal Collaborative Model for the purposes of this paper, is characterized by voluntary commitments of multiple stakeholders to carry out key market interventions in a coordinated fashion, but without pooling resources or control. Collaborative participants are joined by a common interest in establishing and expanding the market for a new product, service, or practice that will yield substantial energy savings. This paper summarizes the technical efficiency opportunity available in distribution

Andrew Delaski; Consortium For Energy Efficiency

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

WATER AND BY-PRODUCT ISSUES IN THE ELECTRIC-UTILITY INDUSTRY  

NLE Websites -- All DOE Office Websites (Extended Search)

and Power Conference in conjunction with 2 and Power Conference in conjunction with 2 nd Joint U.S.-People's Republic of China Conference on Clean Energy, November 17-19, 2003, Washington, DC A DOE R&D RESPONSE TO EMERGING COAL BY-PRODUCT AND WATER ISSUES IN THE ELECTRIC-UTILITY INDUSTRY Thomas J. Feeley, III Technology Manager U.S. Department of Energy - Office of Fossil Energy National Energy Technology Laboratory Pittsburgh, PA ABSTRACT While the regulation and control of air emissions will continue to be of primary concern to the electric-utility industry over the next several decades, other environmental-related issues may also impact the operation of existing and new coal-based power systems. Coal by-products are one such issue. Coal-fired power plants generate nearly 118 million tons of fly ash, flue gas

202

Drug and alcohol abuse: the bases for employee assistance programs in the nuclear-utility industry  

SciTech Connect

This report describes the nature, prevalence, and trends of drug and alcohol abuse among members of the US adult population and among personnel in non-nuclear industries. Analogous data specific to the nuclear utility industry are not available, so these data were gathered in order to provide a basis for regulatory planning. The nature, prevalence, and trend inforamtion was gathered using a computerized literature, telephone discussions with experts, and interviews with employee assistance program representatives from the Seattle area. This report also evaluates the possible impacts that drugs and alcohol might have on nuclear-related job performance, based on currently available nuclear utility job descriptions and on the scientific literature regarding the impairing effects of drugs and alcohol on human performance. Employee assistance programs, which can be used to minimize or eliminate job performance decrements resulting from drug or alcohol abuse, are also discussed.

Radford, L.R.; Rankin, W.L.; Barnes, V.; McGuire, M.V.; Hope, A.M.

1983-07-01T23:59:59.000Z

203

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

22 nd National Industrial Energy Technology Conference18 th National Industrial Energy Technology Conferenceof Demonstrated Energy Technologies (CADDET). (1993).

Galitsky, Christina

2008-01-01T23:59:59.000Z

204

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstrated Energy Technologies (CADDET), The Netherlands.second National Industrial Energy Technology ConferenceNational Industrial Energy Technology Conference. Houston,

Worrell, Ernst

2008-01-01T23:59:59.000Z

205

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

with New Industrial Paint Drying and Baking Oven. Case studyovens, heaters, and heat exchangers. Target Group: Any industrial

Galitsky, Christina

2008-01-01T23:59:59.000Z

206

Neural Network Technology as a Pollution Prevention Tool in the Electric Utility Industry  

E-Print Network (OSTI)

This paper documents efforts by the Lower Colorado River Authority (LCRA) to pilot test the use of neural network technology as a pollution prevention tool for reducing stack emissions from a natural gas-fired power generating facility. The project was funded in part by a grant from the U.S. Environmental Protection Agency (EPA), Region VI. Combustion control is quickly becoming an emerging alternative for reducing utility plant emissions without installing costly "end of pipe" controls. The LCRA estimates that the technology has the potential to improve the thermal efficiency of a large utility boiler by more than 1 percent. Preliminary pilot test results indicate that a 0.5 percent improvement in thermal efficiency at the 430 MW gas-fired utility boiler will result in an estimated energy savings of 76,000 mmBtus and carbon dioxide (CO2) reductions of 4,079 tons per year. This paper describes the processes that were undertaken to identify and implement the pilot project at LCRA's Thomas C. Ferguson Power Plant, located in Marble Falls, Texas. Activities performed and documented include lessons learned, equipment selection, data acquisition, model evaluation and projected emission reductions.

Johnson, M. L.

1998-04-01T23:59:59.000Z

207

Energy Storage in a Restructured Electric Utility Industry: Report on EPRI Think Tanks I and II  

Science Conference Proceedings (OSTI)

Energy storage will play an increasingly crucial role in the deregulated electric power industry, with future generation probably decreasing in size and becoming more distributed. EPRI sponsored two think tanks to explore the need for energy storage in a deregulated environment and to assess the state of development of energy storage technologies. The think tanks described the U.S. Federal Energy Regulatory Commission (FERC) view of deregulation and how electric utility deregulation compares to the dereg...

1997-09-30T23:59:59.000Z

208

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network (OSTI)

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation for the Missouri Division of Energy, identifies and evaluates technological options and describes the current status of various energy resource conservation technologies applicable industry and the economic, institutional and regulatory factors which could affect the implementation and use of these energy technologies. An industrial energy manual has been prepared, identifying technologies with significant potential for application in a specific company or plant. Six site-specific industrial case studies have been performed for industries considered suitable for cogeneration, waste heat recovery or alternative fuel use. These case studies, selected after a formal screening process, evaluate actual plant conditions and economics for Missouri industrial establishments. It is hoped that these case studies will show, by example, some of the elements that make energy resource conservation technologies economically a technically feasible in the real world.

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

209

The Future of Combustion Turbine Technology for Industrial and Utility Power Generation  

E-Print Network (OSTI)

Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper examines the status, economic outlook, and future directions of combustion turbine technology for industrial and utility power generation. The discussion takes into account the ongoing deregulation and increasing competition that are shaping the electric power generation business. Included is a comparison between heavy-duty industrial combustion turbines and their rapidly evolving competition, aeroderivative machines, with emphasis on the appropriate application of each. The prospects for future improvements in the cost and performance of combustion turbines are reviewed, and the likely impact of advanced combustion turbine power generation concepts is considered. Also summarized is the outlook for power generation fuels, including the longer term reemergence of coal and the potential for widespread use of coal gasification-based combustion turbine systems. The paper draws heavily from a technical, economic, and business analysis, Combustion Turbine Power Systems, recently completed by SFA Pacific. The analysis was sponsored by an international group of energy companies that includes utilities, independent power producers (IPPs), and power industry equipment vendors.

Karp, A. D.; Simbeck, D. R.

1994-04-01T23:59:59.000Z

210

Allegheny Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contact Utility Custom: 0.05kWh saved Provider SAIC FirstEnergy company Potomac Edison offers rebates to eligible commercial and industrial customers in Maryland service...

211

Two hundred Energy Savings Assessments identified potential annual energy savings  

E-Print Network (OSTI)

Center (IAC) teams. The Industrial Technologies Program completed 200 SENAs at U.S. industrial plants3/20/09 Two hundred Energy Savings Assessments identified potential annual energy savings of $485 million Industrial Energy Efficiency The ORNL Industrial Energy Efficiency Team supports DOE's Best

212

Mississippi Public Utility Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Public Utility Act Mississippi Public Utility Act Mississippi Public Utility Act < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Industry Recruitment/Support Siting and Permitting Provider Public Service Commission The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN) from the Mississippi Public Service Commission (PSC) before commencing construction of a new electric

213

Improved motors for utility applications. Volume 2. Industry assessment study. Final report  

SciTech Connect

Auxiliary drive motor failures in electric utility applications result in large repair costs and, energy replacement costs. In order to assess the motor reliability experience of the utility industry and identify specific problem areas, information or more than 4800 motors at 132 generating units owned by 56 utilities was collected. The computerized database encompasses all fuel sources, geographic factors and motor manufacturers. Analysis of the data, field interviews with utilities across the country and technical judgment were used to identify the major factors influencing motor reliability. In total, 1221 failures were reported which represents a rate of 4.6% failure per motor per year. Several utilities reported experience as good as 1 or 2% and others as poor as 12%. Although all manufacturers can supply reliable equipment for most applications, failures of specific components in certain specific applications appear to be associated with specific manufacturers. However, overall, 22% of all reported failures were attributed to winding failure and 13% to sleeve bearings. Numerous examples of misapplication were discovered such as the horizontal motor which was vertically mounted by an OEM, inadequately balanced hydraulic thrust loads in a packaged motor/pump system and inappropriate enclosure specified for a motor located outdoors.The internal procedures and practices of those utilities which had particularly low failure rate experience included such factors as, stringent specifications, objective purchasing policies, adequate record keeping and preventative maintenance programs. Auxiliary large drive motor failures are estimated to cost the average utility over $350,000 per unit per year for alternate energy source during outages. Future cooperative efforts by the manufacturers, the A and E firms, the OEM's and the utilities could significantly reduce this value.

Mighdoll, P.; Bloss, R.P.; Hayashi, F.

1982-10-01T23:59:59.000Z

214

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2006). Teaming Up To Save Energy US EPA, Washington DC (losses Total primary energy Source: U.S. Census (2004), U.S.plants total energy demand (U.S. DOE 2002a). Grinding. Most

Worrell, Ernst

2008-01-01T23:59:59.000Z

215

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

load factor, running time, local energy costs, and availableto significant energy cost savings over time (U.S. EPA/DOEcosts and to increase predictable earnings, especially in times of high energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

216

A Water Conservation Scenario for the Residential and Industrial Sectors in California: Potential Saveings of Water and Related Energy  

E-Print Network (OSTI)

evaporation losses in cooling towers through regular towerThe potential savings in cooling towers alone can be sub-been reduced by 27%, for cooling tower blowdown by 87%, for

Benenson, P.

2010-01-01T23:59:59.000Z

217

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Energy with Raw Materials. Ceramic Industry, July: 13-15.A New Twist to Oxy-Fuel. Ceramic Industry: October: 42-46.in the Glass Industry. The American Ceramic Society Bulletin

Worrell, Ernst

2008-01-01T23:59:59.000Z

218

VPI Corporation: Industrial Energy Assessment Helps Manufacturer Start Saving $7,000 in Less Than a Year  

SciTech Connect

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at VPI Coporation by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

2005-09-01T23:59:59.000Z

219

Region-specific study of the electric utility industry. Phases I and II. Executive summary  

Science Conference Proceedings (OSTI)

This report describes the problems either confronting or likely to confront the electric utility industry in the event of a return of high rates of inflation. It attempts to assess the future of this industry and makes recommendations to resolve fundamental problems. The Virginia-Carolinas subregion (VACAR) of the Southeastern Electric Reliability Council (SERC) was selected for this regional study because of the willingness of a wide range of parties to participate and its representative mix of powerplants, for example coal, hydro, nuclear and oil. It was found that the future supply of reliable, economic electricity is in jeopardy because of the regulatory process, the increasing risk associated with large scale generating stations and the weakening of the nuclear option. A number of options for the future were considered, including deregulation, government ownership and retaining the present system with modifications. The option selected to improve the condition of the electricity industry was to make the present system work. The present system is sound and, with modifications, problems could be solved within the existing framework. A series of recommendations, developed through a consensus building effort involving state government officials, state regulators and investor-owned utility representatives, are presented. A discussion of the need for innovative solutions and one state's approach to the problem concludes the report.

Not Available

1986-03-01T23:59:59.000Z

220

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2005a). Energy Efficiency Improvement and Cost Saving59289-Revision Energy Efficiency Improvement and Cost Saving05CH11231. Energy Efficiency Improvement and Cost Saving

Masanet, Eric

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

identify and evaluate energy-saving opportunities, recommendRivers. (1997). Capturing Energy Savings with Steam Traps.Demonstration of Energy Savings of Cool Roofs. Lawrence

Galitsky, Christina

2008-01-01T23:59:59.000Z

222

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

to identify and evaluate energy- saving opportunities,Demonstration of Energy Savings of Cool Roofs. LawrencePractice Case Study 300: Energy Savings by Reducing the Size

Neelis, Maarten

2008-01-01T23:59:59.000Z

223

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Refrigeration: Introducing Energy Saving Opportunities forPotential for Electric Energy Savings in the ManufacturingManufacturing Produces Energy- Saving Opportunities. http://

Masanet, Eric

2008-01-01T23:59:59.000Z

224

U.S. electric utility demand-side management 1993  

SciTech Connect

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

225

Empirical Assessment of Shareholder Incentive Mechanisms Designs under Aggressive Savings Goals: Case Study of a Kansas"Super-Utility"  

Science Conference Proceedings (OSTI)

Achieving significant reductions in retail electric sales is becoming a priority for policymakers in many states and is echoed at the federal level with the introduction of legislation to establish a national energy efficiency resource standard. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit motivation, or even a financial disincentive, when compared to supply-side investments. In response to an information request from the Kansas Corporation Commission staff, we conducted a financial analysis to assess the utility business case in Kansas for pursuing more aggressive energy efficiency that complies with recent state legislation. Kansas' utilities are vertically integrated and don't face retail competition. With historically low retail rates and modest experience with energy efficiency, the achievement of rapid and substantial sales reductions from energy efficiency will require a viable utility business model. Using a conglomerate of the three largest utilities in Kansas, we quantitatively illustrate the tradeoff between ratepayer and shareholder interests when a 1percent reduction in incremental sales is achieved through energy efficiency both with and without the impact of future carbon regulation. We then assess if the utility can be compensated in a manner that produces a sufficient business case but leaves an adequate amount of net resource benefits for ratepayers at a cost that is not overly burdensome. Finally, we show how several common shareholder incentive mechanisms would be designed to achieve this balance.

Cappers, Peter; Goldman, Charles

2009-08-03T23:59:59.000Z

226

Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

Negus-deWys, J. (ed.)

1990-03-01T23:59:59.000Z

227

Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

Negus-deWys, J. (ed.)

1990-03-01T23:59:59.000Z

228

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Baking Industry...

229

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry...

230

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement and Cost Saving Opportunities for the Pulp and Paper Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Pulp and Paper Industry...

231

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

U.S. industrial natural gas price, which might result in significant uncertainties. The fuel consumption

Worrell, Ernst

2008-01-01T23:59:59.000Z

232

Saving Water Saves Energy  

E-Print Network (OSTI)

H. , Groves D. California Water 2030: An Efficient Future,Preemption of Californias Water Conservation Standards for2Epdf Biermayer P. Potential Water and Energy Savings from

McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

2006-01-01T23:59:59.000Z

233

Incentive regulation in the electric utility industry. Volume II. Final report  

SciTech Connect

On October 15, 1982, Resource Consulting Group, Inc. (RCG), submitted a draft report to the Federal Energy Regulatory Commission (FERC) titled, Incentive Regulation in the Electric Utility Industry. The FERC distributed the draft report to more than 60 individuals and organizations who were requested to review and comment on the various proposals and recommendations outlined in the report. In response to the FERC's request, 18 organizations submitted formal review comments. This report contains reviewers comments on each of the three programs recommended. The three major incentive programs are: (1) Rate Control Incentive program (RCIP); (2) Construction Cost Control Incentive Program (CCIP); and (3) Automatic Rate Adjustment Mechanism (ARAM).

Goins, D.; Fisher, M.; Smiley, R.; Hass, J.; Ehrenberg, R.

1983-09-01T23:59:59.000Z

234

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

235

A New Scheme on Robust Observer Based Control Design for Nonlinear Interconnected Systems with Application to an Industrial Utility Boiler  

E-Print Network (OSTI)

with Application to an Industrial Utility Boiler Adarsha Swarnakar, Horacio Jose Marquez and Tongwen Chen Abstract. The controller design is evaluated on a natural circulation drum boiler, where the nonlinear model describes

Marquez, Horacio J.

236

The Industrial Machinery Tax Credit (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Machinery Tax Credit (Tennessee) Industrial Machinery Tax Credit (Tennessee) The Industrial Machinery Tax Credit (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Tennessee Program Type Corporate Tax Incentive Provider Tennessee Department of Economic and Community Development The Industrial Machinery Tax Credit provides tax savings from equipment investments dependent upon the size investment made during the period. To qualify for this credit, companies are not required to create new jobs.

237

The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's  

DOE Green Energy (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

Not Available

1991-01-01T23:59:59.000Z

238

Fan Energy Savings Decisions  

E-Print Network (OSTI)

Axial fans are used for thousands of industrial applications consuming millions of kilowatts daily. The decision that saves dollars is to either automatically change fan speed or change blade pitch to save up to 50 percent of consumed power over a fixed pitch, constant speed fan. A discussion of the merits of each type is presented with actual test results.

Monroe, R. C.

1985-05-01T23:59:59.000Z

239

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network (OSTI)

Savings From Improved Boiler Operation Kevin Carpenter Kelly Kissock Graduate Research Assistant Associate/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify boilers. The methods include calculation of combustion temperature, calculation of the relationship

Kissock, Kelly

240

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

the seasonal increases in natural gas prices in 2000 (JamesU.S. industrial natural gas price, which might result inaverage industrial natural gas price for 2002 of $4.02 per

Worrell, Ernst

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

2010-10-21T23:59:59.000Z

242

Moraine Molded Plastics, Inc.: Industrial Energy Assessment Finds Opportunities to Save $24,000 in Annual Operating Costs  

SciTech Connect

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at the Moraine Molded Plastics by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

2005-09-01T23:59:59.000Z

243

Lean, Energy, and Savings: Energy Impacts of Lean Manufacturing  

E-Print Network (OSTI)

Most utility energy efficiency programs for industry focus on equipment replacement. A key result is confidence in the amount of resulting energy savings. Utility programs focusing on behavior - that is, using a piece of equipment more optimally - often suffer from a perceived inability to accurately quantify resulting savings. The last few decades have seen a proliferation of Lean Manufacturing practices across industry, where organizations focus on eliminating waste. Energy is often a component of these wastes, but challenges in quantifying results have slowed the inclusion of Lean in utility energy efficiency programs. In 2011 the Northwest Energy Efficiency Alliance completed an effort that applied energy concepts within the Manufacturing Extension Partnership organizations of the Northwest. A critical project component was quantifying the energy savings from a Lean implementation at a food processing facility. This paper provides details on that project's approach, results, and next steps.

Milward, R.; Gilless, C.; Brown, K.

2013-01-01T23:59:59.000Z

244

The Public Utilities Regulatory Policy Act (PURPA) and US Geothermal Industry: Current controversies and trends in federal and state implementation  

DOE Green Energy (OSTI)

This report is an analysis of the issues confronting US energy policymakers and the US geothermal industry as the result of the implementation and interpretation of the 1978 Public Utility Regulatory Policies Act, commonly known as PURPA. It seeks to answer four sets of questions about PURPA: (1) What has the existence of PURPA meant to the US geothermal industry. (2) How has the interpretation of PURPA evolved over the past decade. (3) What particular portions of PURPA rule making have been most crucial to the growth and development of the geothermal industry. (4) What aspects of PURPA have been most troubling to utilities purchasing or developing geothermal energy.

Not Available

1988-09-01T23:59:59.000Z

245

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

opportunities, recommend energy efficiency actions, developM. Kushler (1997). Energy Efficiency in Automotive and Steelthe ACEEE Summer Study on Energy Efficiency in Industry, Rye

Worrell, Ernst

2008-01-01T23:59:59.000Z

246

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry. AmericanCalifornia Institute of Energy Efficiency ( CIEE). (2000b).

Galitsky, Christina

2008-01-01T23:59:59.000Z

247

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (1997). Energy Efficiency in Automotive and22 nd National Industrial Energy Technology ConferenceJr. and G. P. Looby. (1996). Energy Conservation and Waste

Galitsky, Christina

2008-01-01T23:59:59.000Z

248

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

development of renewable energy production facilities in theProduction at a Food Processing Facility. Office of Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

249

Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Focus of New Effort by is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area (Washington, DC, July 1, 2004) A new group formed to work on the important new electricity area known as demand response was announced today in Washington, DC. The United States Demand Response Coordinating Committee (DRCC) will bring together a number of parties to focus on developing information and tools needed to allow demand response to be another option employed to address national, regional and state electricity issues and challenges. The DRCC's efforts are the U.S. part of a larger, global demand response effort announced recently by the International Energy Agency's

250

The industrial consortium for the utilization of the geopressured-geothermal resource  

DOE Green Energy (OSTI)

Four feasibility studies have been developed by the INEL on thermal enhanced oil recovery (TEOR) Use of Supercritical Fluid processes for Detoxification of Pollutants, and Hydraulic Conversion to Electricity, and Direct Use. The studies provide information bases for potential industrial partners in the resource utilization. A joint proposal from Los Alamos National Laboratory (LANL) and INEL on supercritical fluid processes in going forward. Western Resources Technology has begun development of a dozen geopressured well projects. An hydraulic turbine test will be conducted at Pleasant Bayou in Summer of 1991. Dr. Wayne Steele of Anglewood, TX, a retired medical doctor, is proposing to raise fresh water Australian lobsters in the Pleasant Bayou Well fire water pond. Additional projects such as catfish farming, crayfish, desalintion plant and agricultural greenhouse use of the resource heat are waiting in the wings'' for the DOE wells to become available for pilot use projects. 2 figs.

Negus-de Wys, J.

1991-02-15T23:59:59.000Z

251

Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility  

Science Conference Proceedings (OSTI)

We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

2010-07-01T23:59:59.000Z

252

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Neelis, Maarten; Worrell, Ernst; Masanet, Eric

2008-09-01T23:59:59.000Z

253

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Practice Case Study 300: Energy Savings by Reducing the SizeRivers. (1997). Capturing Energy Savings with Steam Traps.et al. , 1997). Although energy savings are not available,

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

254

MassSAVE (Electric) - Commercial New Construction Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Electric) - Commercial New Construction Program MassSAVE (Electric) - Commercial New Construction Program MassSAVE (Electric) - Commercial New Construction Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 70% of incremental cost of higher efficiency equipment, or an amount that buys down the incremental investment to a 1.5 year simple payback. Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom Lighting: $0.40 - $1.00/watt saved High Efficiency Fluorescent Systems: $10-$35/fixture High and Low Bay Fluorescents: $20 - $40/fixture

255

Save Energy Now in Your Steam Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial steam systems.

2006-01-01T23:59:59.000Z

256

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-07-01T23:59:59.000Z

257

MassSAVE (Gas) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Manufacturing Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Projects over $25,000 or involve 5 or more equipment units, customers should contact their utility Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $500-$800 Condensed Unit Heaters: $7500 Condensing Boilers: $1,000 - $10,000 Infrared Heaters: $750 Condensing Water Heater: $500 On-Demand Tankless Water Heater: $500 - $800

258

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

SciTech Connect

The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

2008-01-01T23:59:59.000Z

259

Massachusetts Municipal Commercial Industrial Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

260

City of Palo Alto Utilities - New Construction Commercial Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Rebate Commercial Rebate Program City of Palo Alto Utilities - New Construction Commercial Rebate Program < Back Eligibility Commercial Construction Industrial Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Commercial Buildings: $150,000 City/School Buildings: $200,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Electric Rebates 20% - 30% More Efficient Than Title 24: $0.20 - $0.30/kWh saved Greater than 30% More Efficient Than Title 24: $0.30/kWh saved Gas Rebates Greater than 20% more Efficient Than Title 24: $1/therm saved Systems Approach Electric: $0.10/kWh saved Gas: $1/therm saved Provider Utility Marketing Services

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

262

Industrial Energy Management Tool 1.0 Webcast Presentation  

Science Conference Proceedings (OSTI)

Designed for use by utility sales and marketing representatives as well as industrial plant personnel, the Industrial Energy Management Tool 1.0 is a simple online tool that can help users prioritize energy efficiency measures. The tool provides an initial assessment of the percentage potential energy savings and, in a few cases, the costs effectiveness in $/kWh of energy saving measures. Three industries are covered in version 1.0 of the tool: Food processing (fruits & vegetables) Pharmaceuticals Plasti...

2009-03-23T23:59:59.000Z

263

Identification, definition and evaluation of potential impacts facing the US electric utility industry over the next decade. Final report  

SciTech Connect

There are numerous conditions of the generation system that may ultimately develop into system states affecting system reliability and security. Such generation system conditions should also be considered when evaluating the potential impacts on system operations. The following five issues have been identified to impact system reliability and security to the greatest extent: transmission access/retail wheeling; non-utility generators and independent power producers; integration of dispersed storage and generation into utility distribution systems; EMF and right-of-way limitations; Clean Air Act Amendments. Strictly speaking, some issues are interrelated and one issue cannot be completely dissociated from the others. However, this report addresses individual issues separately in order to determine all major aspects of bulk power system operations affected by each issue. The impacts of the five issues on power system reliability and security are summarized. This report examines the five critical issues that the US electric utility industry will be facing over the next decade. The investigation of their impacts on utility industry will be facing over the next decade. The investigation of their impacts on utility system reliability and security is limited to the system operation viewpoint. Those five issues will undoubtedly influence various planning aspects of the bulk transmission system. However, those subjects are beyond the scope of this report. While the issues will also influence the restructure and business of the utility industry politically, sociologically, environmentally, and economically, all discussion included in the report are focused only on technical ramifications.

Grainger, J.J.; Lee, S.S.H.

1993-11-26T23:59:59.000Z

264

Public Utility Regulation (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Regulation (Iowa) Utility Regulation (Iowa) Public Utility Regulation (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any person, partnership, business association, or corporation that owns or operates any facilities for furnishing gas by piped distribution system, electricity, communications services, or water to the public for compensation. Regulations pertaining to these facilities can be found in this section. Some exemptions apply

265

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

266

Power Quality Mitigation Technology Demonstration at Industrial Customer Sites: Industrial and Utility Harmonic Mitigation Guideline s and Case Studies  

Science Conference Proceedings (OSTI)

However the restructuring of the electric power industry shakes out, the commercial/industrial customer's need for quality power will increase; and customer service will remain a key to retaining current accounts and attracting new customers. The need for demonstrating new harmonics mitigation technologies will thus be an important factor for the wire side of the business as well as for energy service companies. This report provides guidelines for implementing harmonics mitigation demonstration projects ...

2000-11-30T23:59:59.000Z

267

Research utilization in the building industry: decision model and preliminary assessment  

Science Conference Proceedings (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

268

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry - An ENERGY STAR® Guide for Energy and Plant Managers  

NLE Websites -- All DOE Office Websites (Extended Search)

779E 779E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR ® Guide for Energy and Plant Managers Ernst Worrell, Paul Blinde, Maarten Neelis, Eliane Blomen, and Eric Masanet Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency October 2010 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or

269

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Nuclear Compact (Iowa) Iowa Industrial Institutional Investor-Owned Utility MunicipalPublic Utility Utility Midwest Nuclear Compact Commission...

270

Cool roofs could save money, save planet  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool roofs could save money, save planet Title Cool roofs could save money, save planet Publication Type Broadcast Year of Publication 2009 Authors Akbari, Hashem, and Arthur H....

271

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

272

Energy Efficiency Improvement and Cost Saving Opportunities for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry Title Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy...

273

Industry  

E-Print Network (OSTI)

energy-conservation supply curve for the US iron and steel industryindustries include electricity savings. To prevent double counting with the energy supply

Bernstein, Lenny

2008-01-01T23:59:59.000Z

274

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

275

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

276

Georgia Utility Facility Protection Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Safety and Operational Guidelines Siting and Permitting Provider Utilities Protection Center of Georgia The Georgia Utility Facility Protection Act (GUFPA) was established to protect the underground utility infrastructure of Georgia. GUFPA mandates that, before starting any mechanized digging or excavation work, you must

277

Get to the Savings NOW!  

E-Print Network (OSTI)

The majority of industrial processes are served by support systems (process heating, process cooling, etc) which have energy savings opportunities which can be divided into two distinct categories: Shutdown savings and operating point savings. It has been repeatedly demonstrated at large industrial facilities that introducing even a short idle mode on process support systems can generate paybacks of less than a year, and operating point changes often pay for themselves in a matter of months. This paper will serve to identify the potential in rotating equipment savings by either introducing an idle mode or matching the operating point of rotating equipment to the process requirement.

Sherman, J. C.

2007-05-01T23:59:59.000Z

278

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lankas opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

279

Saving Water Saves Energy  

SciTech Connect

Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

2006-06-15T23:59:59.000Z

280

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The role of the US electric utility industry in the commercialization of renewable energy technologies for power generation  

SciTech Connect

A key element in the federal government's plan to commercialize R/As was to guarantee a market for the generated electric power at an attractive price. This was provided by the passage of the Public Utility Regulatory Policies Act of 1978, better known as PURPA. Under PURPA, utilities were required to buy all that was produced by Qualifying Facilities or QFs{sup 2} and were required to pay for QF power based on the utilities; avoided costs. Utilities were also required to interconnect with such producers and provide supplemental and backup power to them at fair and reasonable rates. This article reviews the reason behind the rapid rise, and the subsequent oversupply, of R. As over the past decade in the context of the way PURPA was implemented. The article focuses on the critical role of the electric power industry in the commercialization of R/A technologies and the implications.

Nola, S.J.; Sioshansi, F.P. (Southern California Edison Co., Rosemead, CA (US))

1990-01-01T23:59:59.000Z

282

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Maxi Brochure 14.IAC, 2001). 4 Many daylighting systems have been installed

Galitsky, Christina

2008-01-01T23:59:59.000Z

283

Save water to save energy | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Save water to save energy Save water to save energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

284

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Engineering (2005). Industrial Refrigeration Best Practicesdatabase/ Industrial Refrigeration Consortium (IRC) (2004a).Drive Opportunities in Industrial Refrigeration Systems:

Masanet, Eric

2008-01-01T23:59:59.000Z

285

Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Commercial and Industrial Energy Efficiency Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate Feasibility Study: 25% of cost Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Small Business Energy Solutions (under 100kW): $0.21 - $0.50/kwh first year savings Large Commercial/Industrial (Prescriptive): $0.09/kwh first year savings Large Commercial/Industrial (Custom): $0.07 - $0.15/kwh first year savings

286

Norwich Public Utilities - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities - Commercial Energy Efficiency Rebate Norwich Public Utilities - Commercial Energy Efficiency Rebate Program Norwich Public Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Variable Frequency Drives: Contact NPU Lighting: Contact NPU HVAC: Contact NPU Natural Gas Conversions: Contact NPU Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides rebates to its commercial, industrial, institutional, and agricultural customers for high-efficiency

287

Demand-side management programs change along with the electric utility industry  

Science Conference Proceedings (OSTI)

They heyday of demand-side management may be over as far as utilities are concerned. The future path of utility demand-side management programs is obscured in a haze of important questions, especially questions regarding potential legislation and retail wheeling. Until recently, utility after utility was announcing new DSM programs, seemingly almost daily. But, as pointed out in our November issue by Robert Smock, Electric Light & Power`s editorial director, {open_quotes}Survivors of ruthless competition will not be doing much to reduce electricity sales. They`ll be doing their best to sell more of their product.

Stein, H. [ed.

1995-01-01T23:59:59.000Z

288

Port Angeles Public Works & Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Port Angeles Public Works and Utilities provides incentives for business customers to increase the energy efficiency of eligible facilities. Rebates are offered for a variety of improvements...

289

Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

for specific makes and models in Find and Compare Cars. Why Is Fuel Economy Important? Save Money Reduce Oil Dependence Costs Reduce Climate Change Increase Energy Sustainability...

290

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minimum Gas Service Standards (Ohio) Ohio Fuel Distributor Industrial Investor-Owned Utility MunicipalPublic Utility Utility Public Utilities Commission of Ohio Ohio Biomass...

291

Early, Cost-Effective Applications of Photovoltaics in the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Photovoltaic (PV)-powered systems can compete economically with conventional utility approaches such as distribution line extensions and step-down transformer installation for powering small electric loads. This study identified more than 60 cost-effective applications of PV-powered systems for utilities and their customers.

1994-01-01T23:59:59.000Z

292

RESULTS FROM THE U.S. DOE 2006 SAVE ENERGY NOW ASSESSMENT INITIATIVE: DOE's Partnership with U.S. Industry to Reduce Energy Consumption, Energy Costs, and Carbon Dioxide Emissions  

Science Conference Proceedings (OSTI)

In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club on October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more asse

Wright, Anthony L [ORNL; Martin, Michaela A [ORNL; Gemmer, Bob [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Scheihing, Paul [U.S. Department of Energy, Industrial Technologies Program; Quinn, James [U.S. Department of Energy

2007-09-01T23:59:59.000Z

293

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

Science Conference Proceedings (OSTI)

The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

2008-01-01T23:59:59.000Z

294

Otter Tail Power Company - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otter Tail Power Company - Commercial and Industrial Energy Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program Otter Tail Power Company - Commercial and Industrial Energy Efficiency Grant Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Manufacturing Appliances & Electronics Program Info State Minnesota Program Type Utility Grant Program Rebate Amount Varies Provider Customer Service Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects. Possibilities include but are not limited to:

295

Entergy New Orleans - Small Commercial and Industrial Solutions Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Small Commercial and Industrial Solutions Entergy New Orleans - Small Commercial and Industrial Solutions Program Entergy New Orleans - Small Commercial and Industrial Solutions Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate $50,000 or full cost of upgrade Program Info Funding Source New Orleans City Council State Louisiana Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Small Commercial Solutions Efficiency Improvements: $0.125 per kWh saved Large Commercial and Industrial Solutions Lighting Improvements: $0.10 per

296

Analysis of annual energy savings due to radiant barriers  

Science Conference Proceedings (OSTI)

Radiant barriers are receiving increasing attention as an energy conservation measure for residential buildings, especially for warmer climates. They are being actively promoted for use in residential attics, sometimes with exaggerated claims about savings in utility bills that will results from their installation. In order to provide consumers with factual information that would assist them in deciding upon an investment in a radiant barrier, the Department of Energy, along with an industry advisory panel, has developed a Radiant Barrier Fact Sheet. A major part of this fact sheet is estimates of energy savings that might be expected from radiant barriers in various climates. This paper presents the details of the methodology underlying the energy savings estimates, and gives a summary of values listed in the Fact Sheet. The energy savings estimates were obtained from calculations using a detailed attic thermal model coupled with DOE-2.1C. A life cycle cost analysis was performed to estimate the present value savings on utility fuel costs. The results show that the fuel cost savings vary significantly with the level of conventional insulation already in the attic and from one climate to another.

Wilkes, K.E.

1990-01-01T23:59:59.000Z

297

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

298

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

299

River Falls Municipal Utilities - Business Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Business Energy Efficiency Rebate River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) River Falls Municipal Utilities - Business Energy Efficiency Rebate Program (Wisconsin) < Back Eligibility Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Manufacturing Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Shared Savings Program: $2,500 - $50,000 Energy Improvement Incentive: Varies, Contact WPPI RFP for Energy Efficiency: Varies, Contact WPPI Efficient Lighting Program: Will match Focus on Energy incentive to $5,000

300

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 50% of the total project cost, or the individual utilities customer cap (varies per each utility). Incentives for Custom measure may not exceed 40% of the total project cost, or the individual utilities customer cap (varies per each utility). Program Info Expiration Date 12/31/2013 State Michigan

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Utility and state industrial EMS incentives programs: Experience and success factors  

SciTech Connect

This paper summarizes the results of a survey of utility and state demand-side management (DSM) programs that address efficient motor systems. The paper discusses the incentive structures in place at both the state and utility levels to encourage efficient motor systems, and the market barriers associated with implementation of efficient motor equipment. The paper also assesses how the current incentives might address the market barriers to the implementation of efficient motor systems.

Roop, J.M.; Stucky, D.J.

1993-03-01T23:59:59.000Z

302

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such an important cost factor, energy efficiency is a verythe cost-effectiveness of energy efficiency opportunities2005). Energy Efficiency Improvement and Cost Saving

Neelis, Maarten

2008-01-01T23:59:59.000Z

303

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Nath (2000). Improve Steam Turbine Efficiency. HydrocarbonOIT (2000c). New steam turbine saves chemical manufacturer $demand. Back-pressure steam turbines which may be used to

Neelis, Maarten

2008-01-01T23:59:59.000Z

304

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and was able to reduce water intake by half through doublingreporting reductions in water intake of up to 50% (Polleyplant), identifying water intake savings exceeding 50%, with

Worrell, Ernst

2011-01-01T23:59:59.000Z

305

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

i=2 Wisconsin Focus on Energy Description: Target Group:Format: Contact: URL: Energy advisors offer free servicesidentify and evaluate energy-saving opportunities, recommend

Worrell, Ernst

2011-01-01T23:59:59.000Z

306

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

and M. Kushler. (c. 1997). Energy Efficiency in Automotiveof Demonstrated Energy Technologies ( CADDET). (1987).Rivers. (1997). Capturing Energy Savings with Steam Traps.

Galitsky, Christina

2008-01-01T23:59:59.000Z

307

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

A Sourcebook on Daylighting Systems and Components. Paris,Saving Energy with Daylighting Systems. Maxi Brochure 14.an efficient daylighting system may provide evenly dispersed

Masanet, Eric

2008-01-01T23:59:59.000Z

308

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Saving Energy with Daylighting Systems. Centre for theA Sourcebook on Daylighting Systems and Components.an efficient daylighting system may provide evenly dispersed

Neelis, Maarten

2008-01-01T23:59:59.000Z

309

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Energy Management in Industry. Centre for the Analysis andEnergy Efficiency. Canadian Industry Program for Energyefficiency lighting in Industry and Commercial Buildings.

Neelis, Maarten

2008-01-01T23:59:59.000Z

310

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

fuel and electricity supplied to the industries are based onof all electricity in the chemical industry is consumed byuse of electricity in the total chemical industry and the

Neelis, Maarten

2008-01-01T23:59:59.000Z

311

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

on electricity and fuels, respectively, by industry sub-end use of electricity in the industry is refrigeration,purchasers of electricity in the industry are the frozen

Masanet, Eric

2008-01-01T23:59:59.000Z

312

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Management in the Flemish Steel Industry: the Arcelor Gentfor the iron and steel industry. Parekh, P. (2000).in the Canadian Steel Industry, Ottawa, Canada: CANMET.

Worrell, Ernst

2011-01-01T23:59:59.000Z

313

Utilizing cable winding and industrial robots to facilitate the manufacturing of electric machines  

Science Conference Proceedings (OSTI)

Cable wound electric machines are used mainly for high voltage and direct-drive applications. They can be found in areas such as wind power, hydropower, wave power and high-voltage motors. Compared to conventional winding techniques, cable winding includes ... Keywords: Automated production, Electric machine assembly, Industrial robot, Powerformer, Stator winding, Wave energy converter

Erik Hultman; Mats Leijon

2013-02-01T23:59:59.000Z

314

Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the Compendex database). Published Search  

SciTech Connect

The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01T23:59:59.000Z

315

Saving Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Programmable thermostats can save you money on utility bills. May 30, 2012 Image of a heat exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating...

316

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Distributes Energy-Saving Tools to Help Manufacturers Save DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

317

DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributes Energy-Saving Tools to Help Manufacturers Save Distributes Energy-Saving Tools to Help Manufacturers Save Energy DOE Distributes Energy-Saving Tools to Help Manufacturers Save Energy July 26, 2006 - 4:41pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) has distributed Save Energy Now CD-ROMs containing energy-saving information and software to 3,500 large industrial plant managers across the nation as part of a DOE initiative to help cut excessive energy use at industrial facilities across the nation. The CDs bring together - in a single product - a compendium of tip sheets, case studies, technical manuals and software tools to help plants assess energy-saving opportunities. "President Bush has called on all Americans to be more energy efficient, and private industry, along with the federal government, are taking

318

Public Service Commission Authorization to Utilize an Alternative Method of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Service Commission Authorization to Utilize an Alternative Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) Public Service Commission Authorization to Utilize an Alternative Method of Cost Recovery for Certain Base Load Generation (Mississippi) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Green Power Purchasing Industry Recruitment/Support Performance-Based Incentive Public Benefits Fund Provider Public Service Commission The Senate Bill 2793 authorizes the Public Service Commission (PSC) to

319

Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry  

E-Print Network (OSTI)

The Capital Formation Challenge Facing the Steel Industry,"National Steel Industry Economics Seminar, Chicago,69-72. Industry ( 5 ) " Steel Industry Ne e d s , " Am e r i

Benenson, Peter

2011-01-01T23:59:59.000Z

320

Improved Motors for Utility Applications, Volume 1: Industry Assessment Study: Update and Analysis  

Science Conference Proceedings (OSTI)

This comprehensive analysis of power plant motor failures, which updates an earlier data base, relates failure rates to operating and maintenance practices, as well as application and manufacture. Using the expanded analytic methodology, utilities can analyze the data for other factors significant to improving motor reliability.

1985-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oregon State University Development of a Bio-based Industry Utilizing Organic Waste Streams  

E-Print Network (OSTI)

is biodiesel wastewater, or crude glycerol (CG). While the results of producing PHB, a co-polymer, from CG have goal of their research will be to implement a PHA production and composting process utilizing biodiesel the properties of the PHA co-polymers PHB and PHBV change as temperature is increased using Differential Scanning

Tullos, Desiree

322

Environmental Performance Measurement: Design, Implementation, and Review Guidance for the Utility Industry  

Science Conference Proceedings (OSTI)

Developing and implementing a process for environmental performance measurement (EPM) is an essential component of an environmental management program. This report helps electric utility companies achieve environmental and business goals by presenting a continuous improvement framework for tracking and reporting their environmental performance.

1998-11-10T23:59:59.000Z

323

Evaluation of Pen-Based and Hands-Free Computers for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

This report identifies the critical feature and design specifications of pen-based and hands-free computers for electric utility applications. The report concludes with results of a benchmark and field test designed to ensure vendor compliance with these product specifications.

1997-07-21T23:59:59.000Z

324

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Ohio Agricultural Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative StateProvincial Govt...

325

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

of Demonstrated Energy Technologies ( CADDET). (1987).second National Industrial Energy Technology Conferencesecond National Industrial Energy Technology Conference

Galitsky, Christina

2008-01-01T23:59:59.000Z

326

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

with New Industrial Paint Drying and Baking Oven. Case studyovens, heaters, and heat exchangers. Target Group: Any industrial

Galitsky, Christina

2008-01-01T23:59:59.000Z

327

Public Utility Regulatory Act, Alternative Energy Providers (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Act, Alternative Energy Providers (Texas) Regulatory Act, Alternative Energy Providers (Texas) Public Utility Regulatory Act, Alternative Energy Providers (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Safety and Operational Guidelines Provider Public Utility Commission of Texas Chapter 35 of the Public Utility Regulatory Act specifically addresses alternative energy providers, and contains provisions designed to aid such providers in selling power in Texas's competitive utility market. The

328

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

329

12 Days of Energy Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arakawa (ORNL) Secretarial Achievement Awards American Wind Manufacturing Wind Energy In America: Ventower Industries Saving Energy and Resources Revolutionizing Manufacturing...

330

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Industrial Construction MunicipalPublic Utility InstallerContractor Rural Electric Cooperative Institutional Montana Department of Natural Resources and...

331

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Photovoltaic Rebate Program Oregon Commercial Industrial Local Government Residential Solar Buying & Making Electricity Ashland Electric Utilities...

332

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating Gainesville Regional Utilities Gainesville Regional Utilities - Solar Feed-In Tariff Florida Commercial Fed. Government Industrial Institutional Local Government...

333

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Texas Utility Commercial Agricultural Investor-Owned Utility Industrial Construction...

334

Californias Industrial Energy Efficiency Best Practices Technical Outreach and Training Program  

E-Print Network (OSTI)

This paper describes the California Energy Commissions (Commission) energy policies and programs that save energy and money for Californias manufacturing and food processing industries to help retain businesses in-state and reduce greenhouse gases through decreased energy use. The Commissions objective is to achieve 2 trillion British Thermal Units (Btu) per year in energy savings for California industry by the year 2010. These energy savings will come from implementation of projects that are a direct result of plant assessments conducted by the Commission, and from improved skills of industrial equipment operators attending United States Department of Energy (DOE)-funded industrial BestPractices workshops conducted by the Commission in partnership with industry and the states utilities. In addition to energy and cost savings for Californias industrial sector, this program will also reduce direct carbon dioxide emissions from industrial processes by over 110,500 tons each year.

Kazama, D. B.; Wong, T.; Wang, J.

2007-01-01T23:59:59.000Z

335

Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002  

SciTech Connect

Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

Truett, LF

2003-09-24T23:59:59.000Z

336

Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002  

DOE Green Energy (OSTI)

Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

Truett, LF

2003-09-24T23:59:59.000Z

337

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

3 lists energy efficiency measures that are general utility6 and 7 list these measures. Cross-cutting utility energy

Galitsky, Christina

2008-01-01T23:59:59.000Z

338

The Role of Thermal Energy Storage in Industrial Energy Conservation  

E-Print Network (OSTI)

Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) have identified four especially; significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9 x 106 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through in-plant production of electricity from utilization of reject heat in the steel and cement industries.

Duscha, R. A.; Masica, W. J.

1979-01-01T23:59:59.000Z

339

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

340

Industrial Utilization of Surfactants: Principles & PracticeCh 4 Chemical Structure and Microenvironmental Effects on Surfactant Fundamental Properties/Related Performance Properties  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Ch 4 Chemical Structure and Microenvironmental Effects on Surfactant Fundamental Properties/Related Performance Properties Surfactants and Detergents eChapters Surfactants - Dete

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Industrial Utilization of Surfactants: Principles & PracticeChapter 3 How Surfactants Change the Internal Properties of the Solution Phase and Related Performance Properties  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Chapter 3 How Surfactants Change the Internal Properties of the Solution Phase and Related Performance Properties Surfactants and Detergents eChapters Surfactants - Detergents P

342

Industrial Utilization of Surfactants: Principles & PracticeChapter 2 How the Adsorption of Surfactants Changes the Properties of Interfaces and Related Performance Properties  

Science Conference Proceedings (OSTI)

Industrial Utilization of Surfactants: Principles & Practice Chapter 2 How the Adsorption of Surfactants Changes the Properties of Interfaces and Related Performance Properties Surfactants and Detergents eChapters Surfactants - Detergents

343

Savings Analysis of Utility Bills for Unmonitored Sites, Volume I: Procedures, Results, and Discussion, Texas LoanSTAR Monitoring and Analysis Program  

E-Print Network (OSTI)

The Texas LoanSTAR program is an eight year, $98 million revolving loan program, funded by oil overcharge dollars, for energy conservation retrofits in Texas state, local government and school buildings. The program began in 1988. Public sector institutions participating in the program must repay the loans according to estimated energy savings from an energy audit. As part of this program, a statewide energy Monitoring and Analysis Program (MAP) has been established. The major objectives of the LoanSTAR MAP are to: (1) verify energy and dollar savings of the retrofits; (2) reduce energy costs by identifying operational and maintenance improvements; (3) improve retrofit selection in future rounds of the LoanSTAR program; (4) initiate a data base of energy use in institutional and commercial buildings in Texas.

Wei, G.; Eggebrecht, J.; Saman, N. F.; Claridge, D. E.

1995-01-01T23:59:59.000Z

344

Energy Efficiency Savings Protocols | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Savings Protocols Energy Efficiency Savings Protocols Energy Efficiency Savings Protocols In April 2013 the U.S. Department of Energy published the first set of protocols for determining energy savings from energy efficiency measures and programs. You can read individual protocols below or all of them combined into a single report titled The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Acknowledgements Introduction Commercial and Industrial Lighting Evaluation Protocol Commercial and Industrial Lighting Controls Evaluation Protocol Small Commercial and Residential Unitary and Split System HVAC Cooling Equipment-Efficiency Upgrade Evaluation Protocol Residential Furnaces and Boilers Evaluation Protocol Residential Lighting Evaluation Protocol

345

Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results  

Science Conference Proceedings (OSTI)

Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H. [Lawrence Berkeley Lab., CA (United States); Bos, W. [Sacramento Municipal Utility District, CA (United States)

1992-12-01T23:59:59.000Z

346

Save Energy Now in Your Process Heating Systems  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

Not Available

2006-01-01T23:59:59.000Z

347

EERE: Energy-Saving Homes, Buildings, and Manufacturing - Manufacturin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

program has delivered technical assistance to thousands of industrial plants, saved industry billions of dollars and cut carbon emissions by millions of tons. With diverse...

348

Save Energy Now in Your Motor-Driven Systems  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial motor-driven systems.

2006-01-01T23:59:59.000Z

349

Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial and Industrial Energy-Efficiency Program Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State North Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually

350

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

351

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

352

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Retail Supplier Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Retrofit: 70% of project cost Compressed Air: 70% of project cost Lighting: 70% of the project cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Custom Retrofit: $0.23/annual kWh saved

353

PEPCO - Commercial and Industrial Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEPCO - Commercial and Industrial Energy Efficiency Incentives PEPCO - Commercial and Industrial Energy Efficiency Incentives Program PEPCO - Commercial and Industrial Energy Efficiency Incentives Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate All Incentives: 50% of the total installed project cost Custom Incentive Program: 50% and $250,000/electric account (including all incentive applications in a program year) Program Info Start Date 3/1/2011 State Maryland Program Type Utility Rebate Program Rebate Amount Custom Incentives: $0.16/annual kWh saved

354

"Saving Money by Saving Energy" Goes National | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National August 1, 2011 - 8:03am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory A couple of weeks ago the U.S. Department of Energy (DOE) and the Ad Council launched a national education campaign to help consumers save money on utility bills. Videos, tips, an "energy savings IQ" quiz, and a photo gallery on Facebook-as well as videos posted on YouTube-are designed to save money by saving energy. While this idea isn't new to Energy Savers, the concept is gaining ground as more and more people realize how easy it is. "Americans spend about $2,000 per household on energy every year-but many of them could save a few hundred of that without changing their lifestyle,"

355

"Saving Money by Saving Energy" Goes National | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National "Saving Money by Saving Energy" Goes National August 1, 2011 - 8:03am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory A couple of weeks ago the U.S. Department of Energy (DOE) and the Ad Council launched a national education campaign to help consumers save money on utility bills. Videos, tips, an "energy savings IQ" quiz, and a photo gallery on Facebook-as well as videos posted on YouTube-are designed to save money by saving energy. While this idea isn't new to Energy Savers, the concept is gaining ground as more and more people realize how easy it is. "Americans spend about $2,000 per household on energy every year-but many of them could save a few hundred of that without changing their lifestyle,"

356

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2006) Teaming Up to Save Energy Guide. U.S. Environmentala cost-effective manner. This Energy Guide discusses energyThe information in this Energy Guide is intended to help

Worrell, Ernst

2011-01-01T23:59:59.000Z

357

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

s Teaming Up to Save Energy guide (U.S. EPA 2006), which isis used throughout this Energy Guide for consistency. With aAn ENERGY STAR Guide for Energy and Plant Managers

Galitsky, Christina

2008-01-01T23:59:59.000Z

358

ASHRAE's Proposed Guideline 14P for Measurement of Energy and Demand Savings: How to Determine What Was Really Saved by the Retrofit  

E-Print Network (OSTI)

ASHRAE has recently completed the development of Guideline 14 to fill a need for a standard set of energy (and demand) savings calculation procedures. Guideline 14 is intended to be a guideline that provides a minimum acceptable level of performance in the measurement of energy and demand savings from energy management projects applied to residential, commercial or industrial buildings. Such measurements can serve as the basis for commercial transactions between Energy Service Companies (ESCOs) and their customers, or other energy conservation providers that rely on energy savings as the basis for repayment of the costs of the retrofit. When applied properly, ASHRAE Guideline 14 is expected to provide adequate assurance for the payment of services by allowing for well specified measurement methods that provide reasonably accurate savings calculations. ASHRAE Guideline 14 may also be used by governments to calculate pollution reductions from energy efficiency activities. Since Guideline 14 is intended to be applied to an individual building, or a few buildings served by a utility meter, large scale utility energy conservation programs, such as those involving statistical sampling, are not addressed by the current version of Guideline 14. Furthermore, metering standards and procedures for calculating savings from modifications to major industrial process loads are also not covered. This paper presents an overview of the measurement methods contained in ASHRAE Guideline 14 , including a discussion about how they were developed, and their intended relationship with other national protocols for measuring savings from energy conservation programs, such as the USDOE's International Performance Measurement and Verification Protocols (IPMVP).

Haberl, J. S.; Reeves, G.; Gillespie, K.; Claridge, D. E.; Cowan, J.; Culp, C.; Frazell, W.; Heinemeier, K.; Kromer, S.; Kummer, J.; Mazzucchi, R.; Reddy, A.; Schiller, S.; Sud, I.; Wolpert, J.; Wutka, T.

2001-01-01T23:59:59.000Z

359

A utility survey and market assessment on repowering in the electric power industry  

SciTech Connect

Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market.

Klara, J.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Weinstein, R.E. [Parsons Power Group Inc., Reading, PA (United States); Wherley, M.R. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

360

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

Industry (CII), 2007. ?Energy Saving in After TreatmentTechnologies for Energy Savings/GHG Emissions Reduction (Practice Case Study 300: Energy Savings by Reducing the Size

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

the 2005 price for industrial electricity averaged 7.62the average industrial price for electricity rose from 4.91in industrial natural gas and electricity prices in the

Masanet, Eric

2008-01-01T23:59:59.000Z

362

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

363

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs Liberty Utilities (Gas) - Commercial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Custom Projects: $100,000 (existing facilities); $250,000 (new construction) Energy Efficiency Engineering Study: $10,000 Steam Traps: $2500 Programmable Thermostats: up to five units Boiler Reset Controls: up to two units Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount

364

Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial Sites Reinvestment Tax Credit Program and Industrial Sites Reinvestment Tax Credit Program (Connecticut) Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Corporate Tax Incentive Provider Department of Economic and Community Development

365

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Manufacturing Other Appliances & Electronics Water Heating Maximum Rebate Large Commercial Energy Study: 50,000 (gas); 67,000 (combined with electric) VFD: 12,000 Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Energy Study: 50% of the cost Custom: $1/therm at less than 20% savings; $2/therm at greater than 20% savings Control/Automation Systems: $2/therm saved, up to 50% of cost

366

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Construction Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Systems Integrator Utility Virginia Department of Mines,...

367

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial InstallerContractor Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Transportation Utility Kentucky Department for Environmental...

368

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developer Industrial Investor-Owned Utility Local Government MunicipalPublic Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Virginia Department...

369

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Investor-Owned Utility Local Government MunicipalPublic Utility Rural Electric Cooperative StateProvincial Govt Utility Water Buying & Making Electricity...

370

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Developer Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative StateProvincial Govt Utility New Mexico Environment Department...

371

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agricultural Industrial Institutional Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility Buying & Making Electricity Water Home Weatherization...

372

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Construction Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility Water Buying & Making Electricity Home Weatherization...

373

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Agricultural Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative StateProvincial Govt Tribal Government Utility Alternative Fuel...

374

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Construction Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility Maryland Department of the Environment Coastal Facilities...

375

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Wells (Oklahoma) Oklahoma Agricultural Construction Fuel Distributor Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility...

376

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential MunicipalPublic Utility Rural Electric Cooperative Transportation Utility NY...

377

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Management Act (Massachusetts) Massachusetts Agricultural Industrial Institutional Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility Buying &...

378

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

School Land Board (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural...

379

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Conservation Districts (Texas) Texas Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural...

380

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Disposal Act (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility...

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Recovery Surface Activities (Texas) Texas Utility Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility Texas Commission on...

382

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Act (Texas) Texas Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural Electric...

383

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Mine Safety Act (Virginia) Virginia Commercial Construction Developer Industrial Investor-Owned Utility MunicipalPublic Utility Systems Integrator Utility Virginia Department...

384

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Conservation Compact (Multiple States) Alabama Commercial Developer Industrial Investor-Owned Utility MunicipalPublic Utility Utility Interstate Oil & Gas Compact...

385

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Ohio Loan Program (Ohio) Ohio Commercial Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Utility Alternative Fuel Vehicles Hydrogen...

386

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste and Infectious Waste Regulations (Ohio) Ohio Utility Agricultural Investor-Owned Utility Industrial MunicipalPublic Utility Local Government Rural Electric Cooperative...

387

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Quality Standards (Ohio) Ohio Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility...

388

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Permit to Construct and Permit to Operate (Vermont) Vermont Utility Agricultural Investor-Owned Utility Industrial MunicipalPublic Utility Department of...

389

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Quality (Nova Scotia, Canada) Nova Scotia Agricultural Industrial Investor-Owned Utility Multi-Family Residential MunicipalPublic Utility Rural Electric Cooperative Utility...

390

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Developer Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Systems Integrator Utility Virginia Department of Mines, Minerals and...

391

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verification, Monitoring, and Certification of Clean Energy Project (Texas) Texas Utility Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Rural...

392

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas) Texas Utility Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Rural Electric...

393

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canadian River Compact (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility...

394

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rio Grande Compact (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility Local...

395

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Utility Districts (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic...

396

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Radiation Control Act (Texas) Texas Utility Commercial Agricultural Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural Electric...

397

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Wells and Drilled or Mined Shafts (Texas) Texas Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government...

398

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pecos River Compact (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility...

399

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation of Oil and Gas (Texas) Texas Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural Electric...

400

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Clean Air Act (Texas) Texas Utility Commercial Agricultural Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural Electric...

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coastal Public Lands Management Act (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local...

402

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas on Public Lands (Texas) Texas Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural Electric...

403

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cavern Protection (Texas) Texas Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction MunicipalPublic Utility Local Government Rural Electric...

404

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Red River Compact (Texas) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic Utility Local...

405

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

opportunities, recommend energy efficiency actions, developSummer Study on Energy efficiency in Industry. AmericanACEEE Summer Study on Energy Efficiency in Industry, ACEEE,

Worrell, Ernst

2011-01-01T23:59:59.000Z

406

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

M. Kushler. (c. 1997). Energy Efficiency in Automotive andSummer Study on Energy Efficiency in Industry, Americanof Industrial Technologies, Energy Efficiency and Renewable

Galitsky, Christina

2008-01-01T23:59:59.000Z

407

Federal Energy Management Program: Energy and Cost Savings Calculators for  

NLE Websites -- All DOE Office Websites (Extended Search)

and Cost Savings Calculators for Energy-Efficient Products and Cost Savings Calculators for Energy-Efficient Products The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products. Some are Web-based tools; others are Excel spreadsheets provided by ENERGY STAR® for download. Lighting Compact Fluorescent Lamps Exit Signs Commercial and Industrial Equipment Commercial Unitary Air Conditioners Air-Cooled Chillers Commercial Heat Pumps Boilers Food Service Equipment Dishwashers Freezers Fryers Griddles Hot Food Holding Cabinets Ovens Refrigerators Steam Cookers Ice Machines Office Equipment Computers, Monitors, and Imaging Equipment Appliances Dishwashers Clothes Washers Residential Equipment Central Air Conditioners

408

MassSAVE (Electric) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » MassSAVE (Electric) - Commercial Retrofit Program MassSAVE (Electric) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. Program Info Start Date 1/1/2011 State Massachusetts Program Type Utility Rebate Program Rebate Amount Fluorescent Systems: $10-$50/fixture High and Low Bay Fluorescents: Up to $100/fixture LED Interior: $15-$50/fixture

409

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

410

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

411

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

412

Demonstration of a utility industry horizontal drilling system: Horizontal well AMH-5 installation report  

SciTech Connect

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of VOCs in soils and groundwater at the Savannah River Site (SRS) in 1989. The overall goal of the program is demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program. Directional drilling has been shown to be a successful technique for enhancing access to the subsurface, thus improving remediation systems, especially remediation systems which perform in situ. Demonstration of an innovative directional drilling system at the Integrated Demonstration Site at the SRS, was initiated in June of 1992. The directional drilling system was designed to install an in situ remediation system. The drilling system is an experimental compaction/dry drilling technique developed by Charles Machine Works (Ditch Witch{reg_sign}) of Perry, Oklahoma. A horizontal well was installed in the M Area of the SRS below and parallel to an abandoned tile process sewer line. The installation of the horizontal well was a two-part process. Part one consisted of drilling the borehole, and part two was the horizontal well completion.

Not Available

1992-12-31T23:59:59.000Z

413

Orange and Rockland Utilities (Gas) - Residential Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Gas) - Residential Efficiency Orange and Rockland Utilities (Gas) - Residential Efficiency Program Orange and Rockland Utilities (Gas) - Residential Efficiency Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Water Heating Program Info State New York Program Type Utility Rebate Program Rebate Amount Furnace: $140 - $420 Water Boiler: $350 or $700 Steam Boiler: $350 Boiler Reset Control: $70 Indirect Water Heater: $210 Programmable Thermostat: $18 Duct and Air Sealing: up to $420 Provider Orange and Rockland Utilities, Inc. Orange and Rockland Utilities provides rebates for residential customers

414

Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cedarburg Light and Water Utility - Commercial Energy Efficiency Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program Cedarburg Light and Water Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Local Government Nonprofit Schools State Government Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Unspecified ($250,000 per bid cycle) Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Varies by measure Provider Cedarburg Light and Water Utility Cedarburg Light and Water Utility provides incentives for commercial,

415

Utility Facility Siting and Environmental Protection Act (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Facility Siting and Environmental Protection Act (South Utility Facility Siting and Environmental Protection Act (South Carolina) Utility Facility Siting and Environmental Protection Act (South Carolina) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service Commission is required prior

416

Springfield Utility Board - Energy Smart Lighting Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Energy Smart Lighting Program Springfield Utility Board - Energy Smart Lighting Program Springfield Utility Board - Energy Smart Lighting Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Lighting Replacement: $1,500 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Incentives are based upon three programs offered by SUB: New Construction Lighting: $10 - $50/light fixture Commercial Lighting Replacement: $3 - $100 Commercial Lighting Implementation: not specified Energy Smart Design Office: $0.50 per square foot Provider Springfield Utility Board The Springfield Utility Board (SUB) works with their commercial customers

417

Energy and Utility Project Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Utility Project Review and Utility Project Review Energy and Utility Project Review < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources The DNR's Office of Energy and Environmental Analysis is responsible for coordinating the review of all proposed energy and utility projects in the

418

Financial Assistance to Industry Program (New Brunswick, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financial Assistance to Industry Program (New Brunswick, Canada) Financial Assistance to Industry Program (New Brunswick, Canada) Financial Assistance to Industry Program (New Brunswick, Canada) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Loan Program Provider New Brunswick Economic Development The purpose of the assistance is to provide adequate funding for capital expenditures and working capital to enable the establishment, expansion, or maintenance of eligible industries. The assistance may be provided in the

419

Preferences and concerns of potential users in the selection of solar thermal systems for industrial and small utility applications  

SciTech Connect

To achieve widespready application in the industrial and utility sectors, solar systems must be economically competitive. Economic viability is, in turn, determined by a number of supporting criteria, ranging from system reliability to dispatch characteristics to how the system supports the main product line. In addition, solar systems possess some inherent attributes that may render some of the traditional supporting criteria inappropriate or require their redefinition. Those criteria and their relation to the solar investments are discussed in three steps. First, the main concerns and preferences of the potential users, as identified in recent SERI studies, are identified. Second, the equitability of the resulting decision criteria for solar investments are examined. Finally, the implications of these criteria for solar energy's penetration into these markets are discussed.

Gresham, J.B.; Kriz, T.A.

1981-03-01T23:59:59.000Z

420

Industrial cogeneration optimization program  

SciTech Connect

The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy savings by means of fuel cell electrodes in electro-chemical industries. Annual report for August 1, 1978-July 31, 1979  

DOE Green Energy (OSTI)

The objectives of the subject program are: to evaluate experimentally, on a laboratory scale, energy and cost savings in electrowinning of zinc by substituting, for the conventional lead anode, a Prototech proprietary hydrogen anode operating on pure and impure feeds; to similarly evaluate experimentally, again on a laboratory scale, voltage, and thus energy savings in chlor-alkali membrane cells by substituting, for the conventional steel cathode, a Prototech proprietary air cathode; to consult with Lockheed and Lawrence Livermore Laboratory (LLL) on the subject of suitable air electrodes for metal/water/air batteries; and prepare cost estimates of all processes investigated based on laboratory results.

Allen, R.J.; Juda, W.; Lindstrom, R.W.; Petrow, H.G.

1979-10-31T23:59:59.000Z

422

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

423

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

424

Industrial Development (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Indiana) (Indiana) Industrial Development (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1981 State Indiana Program Type Corporate Tax Incentive Enterprise Zone Provider Indiana Economic Development Corporation An economically distressed county can apply for designation as a community

425

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

winter 2001 spike in natural gas prices across the Unitedthe average industrial natural gas price was even higher in2002 U.S. industrial natural gas price of $5.13 per MBtu was

Masanet, Eric

2008-01-01T23:59:59.000Z

426

Save water to save energy | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Save water to save energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

427

Saving Energy Saves You Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Energy Saves You Money Saving Energy Saves You Money July 19, 2011 - 3:06pm Addthis Saving energy saves you money. What could you buy with the money you save? (Ad Council...

428

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

429

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

430

Public Utilities Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities Act (Illinois) Public Utilities Act (Illinois) Public Utilities Act (Illinois) < Back Eligibility Commercial Industrial Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Illinois Program Type Environmental Regulations Generating Facility Rate-Making Safety and Operational Guidelines Provider Illinois Commerce Commission This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports. Every public utility shall furnish to the Commission all information required by it to carry into effect the provisions of this Act, and shall make specific answers to

431

Barron Electric Cooperative - Commercial, Industrial, and Agricultural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barron Electric Cooperative - Commercial, Industrial, and Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program Barron Electric Cooperative - Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $10,000 per account, not to exceed 20% of cost Scroll Refrigeration Compressors: $500 Variable Speed/Frequency Drive Motor: $500 Variable Speed Compressed Air Motor: $500 Energy Audit: One in Five Years Program Info State Wisconsin Program Type Utility Rebate Program Rebate Amount Energy Audit: Free General Lighting: $1 - $15/unit LED Lamps: $2/bulb

432

Electric Utilities Industrial Transportation  

E-Print Network (OSTI)

240 million vehicles on the road Approximately 9M new cars & light trucks for 2009. Average is 15.7 M/yr 2002-2007 11.5 Million barrels of oil per day consumed by on-road vehicles Light-duty vehicles consume 60 % of transportation fuel, and account for 42% of total US petroleum use. Vehicle Technologies Program eere.energy.gov For Light-duty Passenger Vehicles Where are the opportunities for reducing transportation petroleum demand?

Edwin Owens; Million Barrels Per Day

1994-01-01T23:59:59.000Z

433

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

second National Industrial Energy Technology ConferenceDissemination of Demonstrated Energy Technologies, projectof Demonstrated Energy Technologies. Project JP-1990-022,

Worrell, Ernst

2011-01-01T23:59:59.000Z

434

Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

industry natural gas consumption in 2002 (U.S. DOE 2005a).natural gas consumption, in physical units, of the four U.S.

Masanet, Eric

2008-01-01T23:59:59.000Z

435

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the chemical and refinery industries. Energy Researchand by petroleum refineries from the fluid catalyticproduction of propylene at refineries. In the first quarter

Neelis, Maarten

2008-01-01T23:59:59.000Z

436

ComEd - Small Business Energy Savings Program (Illinois) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Energy Savings Program (Illinois) Small Business Energy Savings Program (Illinois) ComEd - Small Business Energy Savings Program (Illinois) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Natural Gas incentives and measures may vary across territories. Program Info Start Date 6/1/2012 Expiration Date 5/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount '''Free Measures''' Energy Assessments Compact Fluorescent Lamps (CFLs) Low-flow Showerheads/Aerators Vending Machine Controls Devices Pre-rinse Sprayers '''Incentives covered up to 70% of the cost''' T8 Fluorescent Lighting Upgrades

437

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network (OSTI)

Tomato processing is a major component of California's food industry. Tomato processing is extremely energy intensive, with the processing season coinciding with the local electrical utility peak period. Significant savings are possible in the electrical energy, peak demand, natural gas consumption, and water consumption of facilities. The electrical and natural gas energy usage and efficiency measures will be presented for a sample of California tomato plants. A typical end-use distribution of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation measures and the associated savings will be presented. It is shown that an estimated electrical energy savings of 12.5%, electrical demand reduction of 17.2%, natural gas savings of 6.0%, and a fresh water usage reduction of 15.6% are achievable on a facility-wide basis.

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

438

Anoka Municipal Utility - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anoka Municipal Utility - Commercial Energy Efficiency Rebate Anoka Municipal Utility - Commercial Energy Efficiency Rebate Program Anoka Municipal Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 60% of the project cost or 100,000, whichever is less Program Info Expiration Date 3/31/13 State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies, See Program Website Motors: $200 - $5,400 Variable Speed Drives: $400 - $8,000 Provider Anoka Municipal Utility Anoka Municipal Utility (AMU) offers the Commercial and Industrial Lighting and Motor Rebate Program for commercial and industrial customers who

439

U.S. DOE Save Energy Now | Open Energy Information  

Open Energy Info (EERE)

U.S. DOE Save Energy Now U.S. DOE Save Energy Now (Redirected from Save Energy Now) Jump to: navigation, search Tool Summary Name: Save Energy Now Initiative Resources Agency/Company /Organization: U.S. Department of Energy Partner: US National Labs Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Policies/deployment programs Website: www1.eere.energy.gov/industry/saveenergynow/index.html References: Save Energy Now [1] Logo: Save Energy Now Initiative Resources Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over a period of 10 years. Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over

440

PPL Electric Utilities - Custom Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Nonprofit Schools State Government Savings Category Other Maximum Rebate Custom Efficiency Rebates: 50% of incremental cost, $500,000 per customer site per year, or 2 million per parent company Technical Study: $100,000 annually Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Incentive: $0.10 per projected first year kWh savings Technical study: 50% of cost '''The available budget for Large C&I (Commercial and Industrial) customers has been fully committed. New funding for energy efficiency projects will be available when Phase 2 begins on June 1, 2013. However, Phase 2 funding

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

US electric utility demand-side management, 1994  

SciTech Connect

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

442

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate All Gas Programs: Contact utility Custom Retrofits: 40% Comprehensive Project: 50% of total cost Program Info Funding Source Connecticut Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount

443

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Appliances & Electronics Maximum Rebate Contact EEF Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Incentives Vary Widely Provider Connecticut Light and Power All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy

444

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

Worrell, Ernst

2011-01-01T23:59:59.000Z

445

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

446

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

absorption cooling. Absorption chillers are cooling machineselectric chiller. Absorption chillers have fewer and smallerCommercially available absorption chillers can utilize one

Galitsky, Christina

2008-01-01T23:59:59.000Z

447

Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

production shutdown. Energy management systems (see Sectionsection 5.1 under Energy management systems and programs. General Utilities Energy management systems Combined heat

Galitsky, Christina

2008-01-01T23:59:59.000Z

448

Estes Park Light and Power Department - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estes Park Light and Power Department - Commercial and Industrial Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program Estes Park Light and Power Department - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate $50,000 per year Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Custom Energy Incentive: $0.10 per annual kWh saved Demand Incentive: $500 per kW saved during Summer Peak Period Cooling Efficiency Room AC: $50 - $110/ton, plus $3.50 - $5.00 for each 0.1 above minimum

449

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Maximum Rebate 20% of the annual C&I Standard Offer Program budget Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Air Compressors: $194.50/kW and $0.0750/kWh saved Duct Sealing: $188.40/kW and $0.0471 Air Infiltration: $143.20/kW and $0.0358/kWh saved

450

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in Industry, ACEEE, Washington DC, USA. Jones, T. (2001).Economy, Berkeley, CA/Washington, DC, USA. McPherson, G. ,Efficient Economy, Washington, DC, USA. Neelis, M.L. , M.

Neelis, Maarten

2008-01-01T23:59:59.000Z

451

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

2001b). Energy Efficiency Opportunity Guide in the LimeMilling Industry An ENERGY STAR Guide for Energy and PlantAn ENERGY STAR Guide for Energy and Plant Managers

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

452

Utility Generation and Clean Coal Technology (Indiana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) Utility Generation and Clean Coal Technology (Indiana) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Industry Recruitment/Support Performance-Based Incentive Rebate Program Grant Program Provider Indiana Utility Regulatory Commission This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal gasification. The statute also supports the development of projects using renewable energy sources as well

453

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Industrial Construction MunicipalPublic Utility InstallerContractor Rural Electric Cooperative Montana Department of Environmental Quality Water Quality Act...

454

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competitive Natural Gas Providers (Iowa) Iowa Commercial Fuel Distributor Industrial Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative Tribal Government...

455

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Bed Methane Protection Act (Montana) Montana Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction Municipal...

456

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) District of Columbia Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

457

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (South Dakota) South Dakota Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction Municipal...

458

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Assistance Act (Iowa) Iowa Agricultural Commercial Construction Fuel Distributor Industrial Institutional Investor-Owned Utility MunicipalPublic Utility...

459

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeshore Management by Local Governments (Montana) Montana Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

460

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Streamside Management Zones (Montana) Montana Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic...

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Action Plan (Wisconsin) Wisconsin Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic...

462

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil, Gas, and Metallic Minerals (Iowa) Iowa Agricultural Commercial Fuel Distributor Industrial InstallerContractor Investor-Owned Utility MunicipalPublic Utility Tribal...

463

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Resource Standard California Investor-Owned Utility Other California Public Utilities Commission Feed-In Tariff California Agricultural Commercial Industrial...

464

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developer Industrial Investor-Owned Utility Transportation Utility Water Buying & Making Electricity Georgia Department of Natural Resources Renewable and Non-Renewable Resources...

465

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Construction and Operation Permits (Iowa) Iowa Agricultural Industrial Institutional Investor-Owned Utility Local Government MunicipalPublic Utility Rural Electric...

466

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Processing Plant- Sulfur (New Mexico) New Mexico Developer Industrial Investor-Owned Utility Utility New Mexico Environment Department Open Burning (New Mexico) New...

467

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mining Compact Commission (multi-state) Alabama Commercial Construction Developer Industrial Investor-Owned Utility Local Government MunicipalPublic Utility Rural Electric...

468

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sabine River Compact (Multiple States) Texas Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic...

469

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appalachian States Low-Level Radioactive Waste Compact (Maryland) Maryland Commercial Construction Industrial Institutional Investor-Owned Utility MunicipalPublic Utility Retail...

470

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) South Carolina Utility Commercial Agricultural Investor-Owned Utility Industrial Construction...

471

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Offshore Natural Gas Royalty Regime (Newfoundland and Labrador, Canada) Newfoundland and Labrador Utility Investor-Owned Utility StateProvincial Govt Industrial MunicipalPublic...

472

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Quality Trading Program (Ohio) Ohio Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Rural Electric Cooperative Retail Supplier Fuel Distributor...

473

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Commercial Construction Developer General PublicConsumer Industrial Investor-Owned Utility MunicipalPublic Utility...

474

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pipelines and Underground Gas Storage (Iowa) Iowa Commercial Fuel Distributor Industrial InstallerContractor Investor-Owned Utility MunicipalPublic Utility Transportation Tribal...

475

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina) South Carolina Utility Commercial Investor-Owned Utility Industrial Construction MunicipalPublic...

476

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Wetland Rules (Vermont) Vermont Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction MunicipalPublic...

477

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Air Pollution Control Regulations, Ambient Air Quality Standards (Vermont) Vermont Utility Agricultural Investor-Owned Utility Industrial Construction MunicipalPublic...

478

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vermont Employment Growth Incentive (Vermont) Vermont Utility Commercial Agricultural Investor-Owned Utility Industrial Construction InstallerContractor Retail Supplier Fuel...

479

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Generation Project Permitting (Vermont) Vermont Construction Industrial InstallerContractor Investor-Owned Utility MunicipalPublic Utility Rural Electric Cooperative...

480

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Payroll Tax Credit (Vermont) Vermont Utility Commercial Agricultural Investor-Owned Utility Industrial Construction InstallerContractor Fuel Distributor Alternative Fuel...

Note: This page contains sample records for the topic "industrial utility savings" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Pollution Control Facilities, Tax exemption (Michigan) Michigan Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

482

Clark Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clark Public Utilities - Commercial Energy Efficiency Rebate Clark Public Utilities - Commercial Energy Efficiency Rebate Programs Clark Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Commercial/Industrial Lighting: Up to 50% project costs Custom Industrial Retrofit: $0.25/kWh up to 50% of cost Custom Industrial New Construction: $0.20 - $0.27/kWh up to 50% of cost

483

Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

the ArcelorMittal Tubaro coke oven batteries, La Revue deoperation with high PCI and low coke rate at Arcelor MittalPotentials for utilization of coke oven gas in integrated

Worrell, Ernst

2011-01-01T23:59:59.000Z

484

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

485

Otter Tail Power Company - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating &...

486

An Implementation of Intellignt Energy Saving System  

Science Conference Proceedings (OSTI)

This study was constructed an intelligent energy saving system that based on the components of Zigbee. We proposed a modular design to adapt various utilized environments, such as the lighting, air condition, office automation devices etc. We also implemented ... Keywords: Wireless Sensor Network, Energy-Saving, Context-Aware, Intelligent Control

Dong-liang Lee; Chung-liang Hsu

2011-08-01T23:59:59.000Z

487

Oklahoma Municipal Power Authority - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Municipal Power Authority - Commercial and Industrial Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program Oklahoma Municipal Power Authority - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $100,000 Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount Matching Funds up to $100,000 Provider Oklahoma Municipal Power Authority The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal

488

Shared Signals: Using Existing Facility Meters for Energy Savings Verification  

E-Print Network (OSTI)

This paper reviews and summarizes techniques for using or sharing signals from existing facility and utility meters for the purpose of verifying energy savings from industrial, institutional and large commercial energy conservation projects. Techniques for sharing or using signals from existing electric, natural gas, fuel oil, steam, steam condensate, boiler feedwater, hot water and chilled water meters will be described. The techniques and experiences reported in this paper are based on the results of the actual in-field installation of energy monitoring equipment in several hundred sites at various locations throughout the United States.

McBride, J. R.; Bohmer, C. J.; Price, S. D.; Carlson, K.; Lopez, J.

1997-04-01T23:59:59.000Z

489

U.S. DOE Save Energy Now | Open Energy Information  

Open Energy Info (EERE)

U.S. DOE Save Energy Now U.S. DOE Save Energy Now Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Save Energy Now Initiative Resources Agency/Company /Organization: U.S. Department of Energy Partner: US National Labs Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Policies/deployment programs Website: www1.eere.energy.gov/industry/saveenergynow/index.html References: Save Energy Now [1] Logo: Save Energy Now Initiative Resources Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over a period of 10 years. Save Energy Now is a U.S. Department of Energy Program partnering with US National labs is to reduce industrial energy intensity by at least 25% over a period of 10 years. Many of the Program's best practice resources,

490

Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program Marshall Municipal Utilities - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Appliances & Electronics Construction Heating Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Custom Measures: 75% of the incremental cost of the measure Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting: Varies by fixture type, wattage and application Central A/C: $100/ton Air-Source Heat Pumps: $150/ton Geothermal Heat Pumps: $200/ton Commercial Refrigeration: See Program Website

491

City of Palo Alto Utilities - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Palo Alto Utilities - Commercial Energy Efficiency Rebate Palo Alto Utilities - Commercial Energy Efficiency Rebate Program (California) City of Palo Alto Utilities - Commercial Energy Efficiency Rebate Program (California) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Construction Design & Remodeling Other Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Maximum Rebate $100,000 per CPAU fiscal year (July 1 - June 30) Incentives exceeding $50,000 must be pre-approved Custom: 50% of project cost Program Info State California Program Type Utility Rebate Program Rebate Amount T12 Fixtures: Custom Reduced Wattage T8: $1 - $1.50/unit

492