Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

2

UN Alcohol Energy Data: Consumption by transportation industry...  

Open Energy Info (EERE)

by transportation industry The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

3

Department of Energy Receives Highest Transportation Industry Safety Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives Highest Transportation Industry Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary national organization that assists communities in emergency preparedness and response. "I'm very proud that The Department of Energy has raised the bar for community-based transportation emergency preparedness," Secretary of Energy Samuel W. Bodman said. "Safety is our number one priority, and we will

4

Energy use in the marine transportation industry: Task I, Industry Summary. Final report  

SciTech Connect

Task I, Industry Summary, defines the current marine transportation industry in terms of population, activities, and energy use. It identifies the various operating or service sectors of the marine transportation industry and determines the numbers and types of vessels, their operating characteristics, and energy consumption. The analysis includes all powered water-borne craft, with the exception of those owned or operated by a government organization and fixed offshore production platforms. The energy consumption analysis of the marine transportation industry concludes with 4 major findings: the marine transportation industry consumes 2.934 quads annually; energy consumption in the marine transportation sector represents 15% of the energy consumed for transportation services; the foreign trade sector consumes 80% of the estimated marine transportation energy requirements; and a minimum of 28% of the energy required by the marine transportation industry is purchased in the US. In each additional chapter (foreign trade, Great Lakes, coastal shipping, offshore, inland waterways, fishing sectors, and recreational boats) the subjects are described in terms of population, operating profiles, energy consumption, typical or generic vessels, costs, and cargo movements.

1977-09-01T23:59:59.000Z

5

Energy study of the marine transportation industry. Volume I. Executive summary  

SciTech Connect

This report covers the conclusions and recommendations resulting from an examination of energy use in the marine transportation industry. It will assist DOE in formulating research and development programs that will promote energy conservation. The results of the analysis determined that the maritime transportation industry consumed approximately 2.9 quads in 1974. This consumption is expected to rise to 6.7 quads by the year 2000. In response to the need to reduce energy consumption below the projected level for the year 2000, conservation-oriented R and D programs were investigated. Two program areas recommended for funding by DOE are diesel bottoming cycles and adiabatic diesels. The methodology used is discussed in the Executive Summary. Volumes II and III cover Tasks I and II, Industry Summary and Regulations and Tariffs, respectively. Volume IV combines Tasks III and IV, Efficiency Improvements and Industry Future. A fifth volume, which is available from DOE, contains documentation of the Marine Transportation Energy Model (MTEM).

1978-06-01T23:59:59.000Z

6

Energy use in the marine transportation industry: Task II. Regulations and Tariffs. Final report, Volume III  

SciTech Connect

The evaluation of the energy impacts of regulations and tariffs is structured around three sequential steps: identification of agencies and organizations that impact the commercial marine transportation industry; identification of existing or proposed regulations that were perceived to have a significant energy impact; and quantification of the energy impacts. Following the introductory chapter, Chapter II describes the regulatory structure of the commercial marine transportation industry and includes a description of the role of each organization and the legislative basis for their jurisdiction and an identification of major areas of regulation and those areas that have an energy impact. Chapters III through IX each address one of the 7 existing or proposed regulatory or legislative actions that have an energy impact. Energy impacts of the state of Washington's tanker regulations, of tanker segregated ballast requirements, of inland waterway user charges, of cargo pooling and service rationalization, of the availability of intermodal container transportation services, of capacity limitations at lock and dam 26 on the Mississippi River and the energy implications of the transportation alternatives available for the West Coast crude oil supplies are discussed. (MCW)

1977-12-01T23:59:59.000Z

7

Economic impact of energy shortages on commercial air transportation and aviation manufacture. Volume 2. Aviation industries profiles and energy usage characteristics  

SciTech Connect

The purpose of this study was to determine the economic impact of energy scarcity on the air transportation industry. Volume II provides a data base on the characteristics and operating performances of the air transportation industry and the aircraft, engines, and parts manufacturing industries, including energy usage characteristics and efficiency. (BYB)

Gorham, J.E.; Gross, D.; Snipes, J.C.

1975-06-01T23:59:59.000Z

8

Executive summary of an energy study of the marine transportation industry. Volume I. Draft final report  

SciTech Connect

The conclusions and recommendations resulting from an examination of energy use in the marine transportation industry are presented. The methodology used is discussed. Specific information is discussed concerning energy consumption and productivity in these sectors: foreign trade; Great Lakes; inland waterways; coastal; offshore; pleasure craft; and fishing and miscellaneous. Based on the energy savings potentials calculated, the programs relating to slow speed diesels, diesel bottoming cycles, and hull maintenance and smoothing are recommended for funding in FY1978. Three high risk program areas that should be evaluated in the future are identified as: adiabatic diesels, Naval Academy heat balance engine, and closed cycle gas turbines. (MCW)

1977-08-17T23:59:59.000Z

9

transportation industry | OpenEI  

Open Energy Info (EERE)

25 25 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279625 Varnish cache server transportation industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by the transportation industry. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption

10

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

11

Electric Utilities Industrial Transportation  

E-Print Network (OSTI)

• 240 million vehicles on the road • Approximately 9M new cars & light trucks for 2009. Average is 15.7 M/yr 2002-2007 • 11.5 Million barrels of oil per day consumed by on-road vehicles • Light-duty vehicles consume 60 % of transportation fuel, and account for 42% of total US petroleum use. Vehicle Technologies Program eere.energy.gov For Light-duty Passenger Vehicles Where are the opportunities for reducing transportation petroleum demand?

Edwin Owens; Million Barrels Per Day

1994-01-01T23:59:59.000Z

12

Energy study of railroad freight transportation. Volume 4. Efficiency improvements and industry future  

DOE Green Energy (OSTI)

Railroad equipment and operating practices were largely developed in an era during which the price of fuel was a relatively minor part of the cost of railroad operations; however, fuel has now become a scarce and expensive resource. Although many opportunities exist for installing new equipment and operating practices that will result in fuel conservation, cost and market factors can promote or retard the rate at which changes are adopted, and only limited technology may be available for use in conservation applications. Conservation opportunities are identified and potential technological and operational improvements are described that can be introduced; the process of introducing new technology in the railroad industry is analyzed; the future of the railroad industry is assessed; and research and development that will contribute to the adoption of energy conservation equipment or processes in the industry are identified.

Not Available

1979-08-01T23:59:59.000Z

13

USDA, Departments of Energy and Navy Seek Input from Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry...

14

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

15

Guardian Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Industries Jump to: navigation, search Name Guardian Industries Place Auburn Hills, MI Website http://www.guardian.com/ References Results of NREL Testing (Glass Magazine)[1] Guardian News Archive[2] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Guardian Industries is a company located in Auburn Hills, MI. References ↑ "Results of NREL Testing (Glass Magazine)" ↑ "Guardian News Archive" Retrieved from "http://en.openei.org/w/index.php?title=Guardian_Industries&oldid=381719" Categories: Clean Energy Organizations

16

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

17

Industrial | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends Despite a 54-percent increase in industrial shipments, industrial energy...

18

Pages that link to "Industry" | Open Energy Information  

Open Energy Info (EERE)

Transport Sectors: Policy Drivers and International Trade Aspects ( links) Asia-Energy Efficiency Guide to Industry ( links) Supporting Entrepreneurs for...

19

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

20

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

22

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

23

industrial | U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Perspectives: Industrial and transportation sectors lead energy use by sector. ... New EIA data show total grid-connected photovoltaic solar capacity. October ...

24

Energy Efficiency Fund (Electric) - Commercial and Industrial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

25

Industrial Distributed Energy: Combined Heat & Power | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Distributed Energy: Combined Heat & Power Industrial Distributed Energy: Combined Heat & Power Information about the Department of Energy's Industrial Technologies...

26

Industrial Energy Procurement Contracts  

E-Print Network (OSTI)

Rates are going down and services are improving! Or are they? As opportunities to directly contract for energy expand from the larger industrials to include mid-market companies, existing energy supply and service contracts will be renegotiated and new ones developed. Many of these mid-level industrial customers typically lack in-house expertise on energy procurement, yet their operations use significant amounts of energy. This paper looks at some of the issues involved in the main terms of a procurement contract, as well as issues in contract formation and termination. Finally the paper reviews some of the recent energy aggregation and outsourcing deals to highlight some that worked and some that didn't.

Thompson, P.; Cooney, K.

2000-04-01T23:59:59.000Z

27

Green Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Inc Jump to: navigation, search Name Green Energy Industries Inc Sector Marine and Hydrokinetic Website http:http:www.gecorpusa.co Region United States...

28

Millennium Energy Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name Millennium Energy Industries Place Jordan Zip 1182 Sector Solar Product Jordan-based solar energy firm focused in MENA region....

29

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

30

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

31

Shale Play Industry Transportation Challenges,  

E-Print Network (OSTI)

­ High volume commodi-es flows in and out of shale plays · Sand In....Oil in excess of 50 MMT/Yr. · Life of current Shale Oil & Gas explora-on trend ­ 2012) #12;Shale Play Oil Industry A Look at the Baaken · 2-3 Unit Trains

Minnesota, University of

32

Industrial Energy Use Indices  

E-Print Network (OSTI)

Energy use indices and associated coefficients of variation are computed for major industry categories for electricity and natural gas use in small and medium-sized plants in the U.S. Standard deviations often exceed the average EUI for an energy type, with coefficients of variation averaging 290% for 8,200 plants from all areas of the continental U.S. Data from milder climates appears more scattered than that from colder climates. For example, the ratio of the average of coefficient of variations for all industry types in warm versus cold regions of the U.S. generally is greater than unity. Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center database.

Hanegan, A.; Heffington, W. M.

2007-01-01T23:59:59.000Z

33

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here you’ll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

34

AMO Industrial Distributed Energy: Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficiency by 2020. The Industrial Energy EfficiencyCombined Heat & Power Working Group is developing a number of resources. News Energy Department Invests in...

35

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

sponsored avoided cost studies, energy efficiency programat various costs is with energy efficiency supply curves.Energy Efficiency in Industry Table 4 summarizes the benefit-cost

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

36

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Eligibility Commercial Industrial...

37

Industrial Energy Management and Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Standards Industrial Energy Management and Standards Industrial Energy Management and Standards Industrial Energy Management and Standards More Documents &...

38

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Industry, California: Energy Resources (Redirected from Industry, CA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0197335, -117.9586754 Loading map......

39

ENERGY STAR Challenge for Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR plant certification ENERGY STAR Challenge for Industry See who has taken the Challenge See who has achieved the Challenge See who is promoting the Challenge ENERGY...

40

Success stories: Industrial energy management | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

stories Production Strategy Saves Money & Energy: Eastman Chemical Company Related resources Guidelines for Energy Management Energy guides Industrial service and product providers...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

42

Industries in focus | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

43

Industrial Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

44

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network (OSTI)

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY ANALYSES FOR THE 2007 INTEGRATED ENERGY POLICY REPORT Jim Page, Malachi Weng-Gutierrez, and Gordon Schremp Fossil Fuels Office Fuels and Transportation....................................................................................................... 3 SUMMARY OF PROPOSED TRANSPORTATION ENERGY ANALYSES ............... 4 Background

45

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Name Industrial Energy Audit Guidebook: Guidelines...

46

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

innovation and lets industry pick winning technologies. TheTransforming the Oil Industry intothe Energy Industry BY DANIEL SPERLING AND SONIA YEH A C C E

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

47

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

48

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the country’s greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

49

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

50

Westminster Energy Environment Transport Forum | Open Energy...  

Open Energy Info (EERE)

Westminster Energy Environment Transport Forum Jump to: navigation, search Name Westminster Energy, Environment & Transport Forum Place United Kingdom Product String representation...

51

Innovation in Processing of Light Metals for Transportation Industries  

Science Conference Proceedings (OSTI)

Symposium, Innovation in Processing of Light Metals for Transportation Industries: A Symposium in Honor of C. Ravi Ravindran. Sponsorship. Organizer(

52

Midstate Electric Cooperative - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial...

53

Industrial Energy Efficiency:Policy, Initiatives, & Opportunities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency:Policy, Initiatives, & Opportunities Industrial Energy Efficiency:Policy, Initiatives, & Opportunities presentation Industrial Energy Efficiency:Policy, Initiatives, &...

54

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

1980-12-01T23:59:59.000Z

55

Transportation Energy-Efficiency Workshop  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Transportation Sector Energy-Efficiency Workshop on March 21, 1996

56

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

57

Outlook for Industrial Energy Benchmarking  

E-Print Network (OSTI)

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common understanding of opportunities for energy efficiency improvements and provide additional information to improve the competitiveness of U.S. industry. The EPA's initial benchmarking efforts will focus on industrial power facilities. The key industries of interest include the most energy intensive industries, such as chemical, pulp and paper, and iron and steel manufacturing.

Hartley, Z.

2000-04-01T23:59:59.000Z

58

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

Economic Profile of the California Energy Industry Analysisand R.L. Cooper, "California Energy Outlook," LawrenceDivision Analysis of the California Energy Industry Energy

Authors, Various

2010-01-01T23:59:59.000Z

59

AMO Industrial Distributed Energy: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

60

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

62

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

63

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

64

Shrenik Industries | Open Energy Information  

Open Energy Info (EERE)

India Zip 416 109 Sector Wind energy Product Maharashtra-based wind turbine tower manufacturer and subsidiary of the Sanjay Ghodawat Group of Industries. References...

65

Ventower Industries | Open Energy Information  

Open Energy Info (EERE)

Place Monroe, Michigan Zip 48161 Sector Wind energy Product Michigan-based wind turbine tower manufacturer. References Ventower Industries1 LinkedIn Connections CrunchBase...

66

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013...

67

Eolica Industrial | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Eolica Industrial Place Sao Paulo, Sao Paulo, Brazil Zip 01020-901 Sector Wind energy Product Brazil based wind turbine steel towers and...

68

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility...

69

Industrial Energy Efficiency Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or is distributed immediately for direct use. Energy is then processed using a variety of highly energy-intensive systems, including steam, process heating, and

70

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

California’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

71

Transportation Energy Data Book, Edition 18  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

72

Energy consumption in the pipeline industry  

SciTech Connect

Estimates are developed of the energy consumption and energy intensity (EI) of five categories of U.S. pipeline industries: natural gas, crude oil, petroleum products, coal slurry, and water. For comparability with other transportation modes, it is desirable to calculate EI in Btu/Ton-Mile, and this is done, although the necessary unit conversions introduce additional uncertainties. Since water and sewer lines operate by lift and gravity, a comparable EI is not definable.

Banks, W. F.

1977-12-31T23:59:59.000Z

73

Industry Profile | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Profile Industry Profile Industry Profile November 1, 2013 - 11:40am Addthis The largest energy consuming industrial sectors account for the largest share of CHP capacity; namely: Chemicals (30%), Petroleum Refining (17%), and Paper Products (14%). Other industrial sectors include: Commercial/Institutional (12%), Food (8%), Primary Metals (5%), Other Manufacturing (8%), and Other Industrial (6%). Combined heat and power (CHP)-sometimes referred to as cogeneration-involves the sequential process of producing and utilizing electricity and thermal energy from a single fuel. CHP is widely recognized to save energy and costs, while reducing carbon dioxide (CO2) and other pollutants. CHP is a realistic, near-term option for large energy efficiency improvements and significant CO2 reductions.

74

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is also available and will be finalized once all reports are released. The Buildings Industry Transportation Electricity Scenarios (BITES) tool is an interactive framework...

75

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

76

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. “Emerging Energy-Efficient Industrial Technologies,”

2005-01-01T23:59:59.000Z

77

Orion Bus Industries | Open Energy Information  

Open Energy Info (EERE)

Bus Industries Bus Industries Jump to: navigation, search Name Orion Bus Industries Place Ontario, Canada Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL Transportation Technologies and Systems Partnership Year 2001 Link to project description http://www.nrel.gov/news/press/2002/3002_hybird_buses.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Orion Bus Industries is a company located in Ontario, Canada. References Retrieved from "http://en.openei.org/w/index.php?title=Orion_Bus_Industries&oldid=381704" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version Permanent link Browse properties

78

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

79

Industry, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Industry, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0197335, -117.9586754 Loading map... "minzoom":false,"mappingservice":...

80

Industrial Energy Efficiency Assessments | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

about the Industrial Energy Efficiency Assessments program and its implementation in China. session2industrytrackpriceen.pdf session2industrytrackpricecn.pdf More...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transportation technology energy options  

SciTech Connect

New transportation technologies and their potential contribution to the solution of the energy problem are discussed. DOE transportation technologies briefly discussed are: Stirling and gas-turbine engines; constant-speed accessory-drive system; heavy-duty diesel-truck bottoming cycle; continuously variable transmission; turbocompound diesel engine; gas-turbine bus; new hydrocarbons (broad-cut petroleum fuels); alcohol fuels; synthetic fuels; advanced fuels (hydrogen); electric and hybrid vehicles; marine-diesel bottoming cycle; coal/oil-slurry marine steam turbines; pipeline bottoming cycle; and medium-speed diesel alternative fuels.

Bernard, M.J. III

1979-01-01T23:59:59.000Z

82

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Challenge for Industry Professional Engineers' Guide for Validating Statements of Energy Improvement Office of Air and Radiation Climate Protection Partnerships Division May 2013 Revised ii Introduction The U.S. Environmental Protection Agency's (U.S. EPA) ENERGY STAR program provides guidance, tools, and recognition to help companies improve their energy performance. ENERGY STAR is a voluntary partnership program that companies choose to join. Through ENERGY STAR, U.S. EPA offers a number of forms of recognition for achievements in energy efficiency. The ENERGY STAR Challenge for Industry recognizes individual industrial sites for achieving a 10 percent reduction in energy intensity within 5 years from the conclusion of an established baseline. To be

83

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

Each and every citizen has been affected by the energy crisis by now. Business and industry have especially been hurt as the rising cost of energy and its dwindling supplies are the twin jaws of a vise rapidly closing in on profits. Much work is being done in large companies; but most small to medium companies have yet to undertake a substantial energy management program. The reasons are many but often they simply I do not understand the savings possible or the techniques available. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future.

Estes, C. B.; Turner, W. C.

1980-01-01T23:59:59.000Z

84

Carbon Emissions: Food Industry - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The wet corn milling industry emits almost a sixth of the energy-related carbon in the food industry. ...

85

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

86

Transportation Research | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweighting Materials Bioenergy...

87

New Mexico Natural Gas Number of Industrial Consumers - Transported...  

U.S. Energy Information Administration (EIA) Indexed Site

Transported (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

88

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

. 1 Constellation Solar Arizona LLC AZ Non_Utility . . 1 . 1 FRV SI Transport Solar LP AZ Non_Utility . 1 . . 1 MFP Co III, LLC AZ Non_Utility . 1 . . 1 RV CSU Power II LLC AZ Non_Utility . 1 . . 1 Scottsdate Solar Holdings LLC AZ Non_Utility . 1 . . 1 SunE M5C Holdings LLC AZ Non_Utility . . 1 . 1 Alliance Star Energy LLC CA Non_Utility . 1 . . 1 Applied Energy Inc CA Non_Utility . . 1 . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 Bloom Energy 2009 PPA CA Non_Utility . 1 . . 1 CPKelco U S Inc CA Non_Utility . . 1 . 1 Calpine Corp-Agnews CA Non_Utility . 1 . . 1 Cardinal Cogen Inc CA Non_Utility . 1 . . 1 City of Madera CA WWTP CA Non_Utility . . 1 . 1 DPC Juniper, LLC CA Non_Utility . . 1 . 1 DPC Juniper, LLC CA Non_Utility . . 1 . 1 Energy Alchemy TA Vernalis, LLC CA Non_Utility . . 1 . 1 Enfinity NorCal 1 FAA LLC

89

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

90

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

energy savings are related to energy price changes through1997 dollars. All energy prices and savings were evaluatedthe relationship of energy prices to industry-wide energy

Worrell, Ernst

2011-01-01T23:59:59.000Z

91

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Scheme for Industry: The Energy Audit,” Proceedings of thefacilities conduct energy audits, employ an energy manager,1994), and the mandatory energy audits and energy management

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

92

AMO Industrial Distributed Energy: Clean Energy Application Centers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Industrial Distributed Energy Search Search Help Industrial Distributed Energy EERE...

93

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

,735 ,735 . 1,735 Constellation Solar Arizona LLC AZ Non_Utility . . 798 . 798 FRV SI Transport Solar LP AZ Non_Utility . 243 . . 243 MFP Co III, LLC AZ Non_Utility . 603 . . 603 RV CSU Power II LLC AZ Non_Utility . 436 . . 436 Scottsdate Solar Holdings LLC AZ Non_Utility . 49 . . 49 SunE M5C Holdings LLC AZ Non_Utility . . 212 . 212 Alliance Star Energy LLC CA Non_Utility . 266 . . 266 Applied Energy Inc CA Non_Utility . . 935 . 935 Bloom Energy 2009 PPA CA Non_Utility . 183 . . 183 Bloom Energy 2009 PPA CA Non_Utility . 382 . . 382 Bloom Energy 2009 PPA CA Non_Utility . 583 . . 583 Bloom Energy 2009 PPA CA Non_Utility . 771 . . 771 CPKelco U S Inc CA Non_Utility . . 4 . 4 Calpine Corp-Agnews CA Non_Utility . 47 . . 47 Cardinal Cogen Inc CA Non_Utility . 15,846 . . 15,846 City of Madera CA WWTP CA Non_Utility . . 310 . 310 DPC Juniper, LLC CA Non_Utility . . 21 . 21 DPC Juniper, LLC

94

Industry Leaders Saving Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Leaders Saving Energy Industry Leaders Saving Energy Industry Leaders Saving Energy May 6, 2010 - 11:35am Addthis Joshua DeLung Companies such as 3M, Intel, PepsiCo and Whirlpool are participating in the Energy Department's Save Energy Now LEADER initiative, committing to reducing their energy use by 25 percent or more in 10 years. Another established company participating in the program, AT&T, is also making that commitment to saving energy while producing more renewable power at many of its locations across the country."We're taking meaningful steps to run a more-efficient network and explore alternative and renewable energy use," John Schinter, director of energy for AT&T Services, Inc., says. The company utilizes wind and solar power at some of its buildings. In

95

Energy Basics: Industrial Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central energy generation utility system or...

96

Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link  

E-Print Network (OSTI)

Energy Unit lecture outline & graphics ­ Fritz Stahr Tues 1/21/03 - Transportation of Energy & Energy of Transportation ­ an intricate link - history of settlement & industry largely due to transportation and energy supplies - initial towns on rivers or by sea where ships could service cargo as water

97

Industrial Technology Program - Energy  

energy and eliminating oxide byproducts ... such as copper-indium- ... • Goal is to approach solar cell performance observed at lab-scale

98

Innovative Energy Efficient Industrial Ventilation  

E-Print Network (OSTI)

This paper was written to describe an innovative “on-demand” industrial ventilation system for woodworking, metalworking, food processing, pharmaceutical, chemical, and other industries. Having analyzed existing industrial ventilation in 130 factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design consumes 70 % more energy than necessary. Total potential electricity saving achieved by using on-demand systems instead of classically designed industrial ventilation in the U.S. could be 26 billion kWh. At the average electricity cost of 7 cents per kWh, this would represent $1.875 billion. Eighty such systems are already installed in the USA and European Union.

Litomisky, A.

2005-01-01T23:59:59.000Z

99

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

to Improve Energy Efficiency and Reduce Greenhouse Gasand Industrial Energy Efficiency. Energy Policy, 33: 949-Galitsky (2005) Energy efficiency improvement opportunities

Worrell, Ernst

2009-01-01T23:59:59.000Z

100

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

trends in the iron and steel industry. Energy Policy 30:initiatives of Japan’s steel industry against globalenergy use in the steel industry, but can reduce both energy

Worrell, Ernst

2009-01-01T23:59:59.000Z

102

ENERGY STAR Challenge for Industry: Statement of Energy Improvement...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry: Statement of Energy Improvement Use this form to document the energy intensity reduction of an industrial site that is participating in the ENERGY STAR...

103

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

104

Sustainable Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

105

Green-Energy Transportation  

E-Print Network (OSTI)

Battery technology is the key bottleneck in many cyberphysical systems (CPS). For green-energy CPS transportation applications, such as hybrid electrical vehicles (HEVs) and plug-in HEVs (PHEVs), the battery system design is mostly based on lithium-ion rechargeable electrochemical battery technology, which is bulky, expensive, unreliable, and is the primary roadblock for PHEV adoption and market penetration. For PHEVs, the battery system performance and lifetime reliability are further affected by various user-dependent effects. Battery system modeling and user study are thus essential for battery system design and optimization. This paper presents detailed investigation on battery system modeling and user study for emerging PHEVs. The proposed modeling solution can accurately characterize battery system run-time charge-cycle efficiency, and long-term cycle life. In particular, it models battery system capacity variation and fading due to fabrication and run-time aging effects. An embedded monitoring system is designed and deployed in a number of HEVs and PHEVs, which can monitor users ’ driving behavior and battery usage at real time. Using the proposed modeling and monitoring solutions, we conduct user study to investigate battery system run-time usage, characterize user driving behavior, and study the impact of user driving patterns on battery system run-time charge-cycle efficiency, capacity variation and reliability, and life-cycle economy. This work is the first step in battery system design and optimization for emerging green-energy CPS transportation applications. 1.

Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic; Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic

2010-01-01T23:59:59.000Z

106

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

107

Overview of Industrial Energy Training and Software  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management ... A Suggestion for Establishing Energy Management Policy in Primary Aluminum Industry ...

108

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

109

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

110

Nanotechnology for Energy, Healthcare and Industry  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Nanotechnology for Energy, Healthcare and Industry. Sponsorship.

111

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

112

Market impacts: Improvements in the industrial sector | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy performance Communicate energy efficiency Industrial energy management information center Market impacts: Improvements in the industrial sector An effective energy...

113

Transforming the Oil Industry into the Energy Industry  

E-Print Network (OSTI)

Transforming the Oil Industry into the Energy Industry BYculprit. It consumes half the oil used in the world andconsuming two thirds of the oil and causing about one third

Sperling, Daniel; Yeh, Sonia

2009-01-01T23:59:59.000Z

114

Setting the Standard for Industrial Energy Efficiency  

E-Print Network (OSTI)

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

115

Energy Matters: Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Matters: Industrial Energy Efficiency Matters: Industrial Energy Efficiency Energy Matters: Industrial Energy Efficiency November 18, 2011 - 2:33pm Addthis On November 16, 2011, Deputy Assistant Secretary for Energy Efficiency Dr. Kathleen Hogan joined us for a live chat on Energy.gov to discuss the role of industrial energy efficiency in strengthening the American economy. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs On Wednesday, November 16th, Dr. Kathleen Hogan, Deputy Assistant Secretary for Energy Efficiency, discussed industrial energy efficiency on an Energy Matters video livechat. Dr. Hogan answered questions, submitted by industry professionals and the interested public via email, Facebook and Twitter, on how commercial building efficiency, advanced manufacturing, and corporate partnerships can

116

Danish Wind Industry Association | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Danish Wind Industry Association Place Copenhagen V, Denmark Zip DK-1552 Sector Wind energy Product The Danish Wind Industry Association (DWIA) is...

117

Industrial - Program Areas - Energy Efficiency & Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Animation The ORNL Industrial Technologies Program has made technological advances in industry that contribute to improved efficiency through decreased energy consumption, improved...

118

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place Carmo do Rio Verde, Goias, Brazil Sector Biomass Product Ethanol and biomass energy producer References CRV industrial Ltda1 LinkedIn Connections...

119

Industrial energy efficiency policy in China  

E-Print Network (OSTI)

Sinton, J.E. 1996. Energy Efficiency in Chinese Industry:and Wang, Q. 1998. "Energy Efficiency Accomplishments and1999. Status Report on Energy Efficiency Policy and Programs

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-01-01T23:59:59.000Z

120

International industrial sector energy efficiency policies  

E-Print Network (OSTI)

Summer Study on Energy Efficiency in Industry. Washington,1997. “Electric Motor Energy Efficiency Regulations: Theet al. , (eds. ). Energy Efficiency Improvements in Electric

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”of cleaner, more energy- efficient technologies can play a

2004-01-01T23:59:59.000Z

122

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”of cleaner, more energy- efficient technologies can play a

2001-01-01T23:59:59.000Z

123

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies,” Lawrenceinformation about energy efficiency technologies, their

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

124

Productivity benefits of industrial energy efficiency measures  

E-Print Network (OSTI)

of costs and benefits of industrial energy efficiencyof the annual costs of an energy efficiency measure, therebyof cost- effectiveness of energy- efficiency improvement

Worrell, Ernst

2011-01-01T23:59:59.000Z

125

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

126

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

127

Conservation and renewable energy technologies for transportation  

DOE Green Energy (OSTI)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

Not Available

1990-11-01T23:59:59.000Z

128

AMO Industrial Distributed Energy: About Industrial Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

potential to reduce greenhouse gas (GHG) emissions through energy efficiency and fossil fuel displacement by using alternative fuels and capturing waste energy streams Providing...

129

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

130

Ontario's Industrial Energy Services Program  

E-Print Network (OSTI)

The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987. This 3-year, $5-million program, while not new in concept, is thought to be unique for its depth of service and method of delivery. It provides Ontario's manufacturers with advice and funding assistance for the identification and definition of industrial energy efficiency opportunities. The first phase provides for a free comprehensive site energy audit/analysis, conducted over one to five days, by teams of private sector consultants, selected to match expertise with manufacturer's needs. The emphasis is on process and equipment improvements, but site services and buildings are also examined. The final report includes detailed descriptions of major opportunities, along with estimated costs, savings, and paybacks. The next phases provide for sharing the detailed feasibility study costs and project engineering costs for those energy projects that move to implementation. In this paper, the author briefly describes the novel administrative structure of the program, presents the results of the activities to date, and describes, in some detail, several case studies from different industrial sectors.

Ploeger, L. K.

1987-09-01T23:59:59.000Z

131

Applications of fusion thermal energy to industrial processes  

DOE Green Energy (OSTI)

The feasibility of applying fusion thermal energy as process heat in the iron-steel industry, petrochemical industry, cement industry, and in the production of acetylene fom coal via calcium carbide are discussed. These four industries were selected for analysis because they require massive amounts of energy. This preliminary study concludes that the production of synthetic fuels using fusion heat appears to be the most promising method of storing and transporting this heat. Of the four industries studied, the iron-steel and the petrochemical industries appear to be the most promising because they consume substantial amounts of hydrogen and oxygen as feedstocks. These can be produced from water using the high-temperature fusion heat. The production of hydrogen and oxygen using fusion heat will also reduce the capital investment required for these industries. These two industries also consume tremendous amounts of heat at temperatures which can be delivered from a fusion blanket via chemical heat pipes.

Bowman, R.M.; Jody, B.J.; Lu, K.C.

1980-01-01T23:59:59.000Z

132

Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Industries Association Solar Energy Industries Association Name Solar Energy Industries Association Address 575 7th Street NW #400 Place Washington, DC Zip 20004 Number of employees 11-50 Year founded 1974 Website http://www.seia.org/ Coordinates 38.897162°, -77.021563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.897162,"lon":-77.021563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

The Role of the Canadian Government in Industrial Energy Conservation  

E-Print Network (OSTI)

Canada has undertaken to become self sufficient in energy by 1990. To buy the necessary time to develop domestic supplies, energy transport systems and to extend the time life of energy reserves, we have embarked on an energy conservation program which aims at a 2% growth rate in energy use by the year 1990. The primary objective of the Industry Energy Conservation Program is to achieve a high degree of energy efficiency in manufacturing and process industries. Reduced energy costs in industry achieved through intelligent investment and operating practice is central to the program strategy. The industry program has been developed in consultation with Canadian industry and is completely voluntary on their part. The program has five main elements: 1. Industry Energy Conservation Task Forces 2. Information and awareness packages 3. Fiscal and Financial incentives 4. Industry Data Base Development and 5. Industry policy studies. By selecting the voluntary approach to deal with energy conservation we have maintained the traditional cooperative relationship between government and industry in Canada and have been able to manage a successful energy conservation program with a minimum of government intervention and bureaucracy. Industry sets the energy conservation goals, identifies the opportunities to conserve energy, and finally reports on the improvements in energy efficiency. Government for its part supports industry with a number of program elements designed to overcome the many barriers to energy efficiency which exist in Canada. These programs are deliberately biased to deal with the liquid fuel supply situation in eastern Canada and to encourage the use of wood waste as a fuel. As new barriers to the efficient use of energy are identified these programs are modified accordingly.

Godin, M. A.

1980-01-01T23:59:59.000Z

134

ENERGY STAR industrial partnership | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR industrial partnership ENERGY STAR industrial partnership Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership New ENERGY STAR industrial partners Energy guides Energy efficiency and air regulation

135

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guide/manual Website: china.lbl.gov/sites/china.lbl.gov/files/LBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Screenshot References: Industrial Energy Audit Guidebook[1] "This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and

136

California Industrial Energy Efficiency Potential  

SciTech Connect

This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

2005-06-01T23:59:59.000Z

137

Transportation Energy Data Book: Edition 29  

SciTech Connect

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

138

Transportation Energy Data Book: Edition 32  

SciTech Connect

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

139

Transportation Energy Data Book: Edition 24  

SciTech Connect

The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2005-03-08T23:59:59.000Z

140

Transportation Energy Data Book: Edition 23  

SciTech Connect

The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2003-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transportation Energy Data Book: Edition 27  

SciTech Connect

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

142

Transportation Energy Data Book: Edition 26  

SciTech Connect

The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2007-07-01T23:59:59.000Z

143

Transportation Energy Data Book: Edition 25  

SciTech Connect

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

144

Transportation Energy Data Book: Edition 28  

DOE Green Energy (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

145

Transportation Energy Data Book: Edition 30  

SciTech Connect

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

146

Transportation Energy Data Book: Edition 31  

SciTech Connect

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

147

U.S. Industrial Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second U.S.-China Second U.S.-China Energy Efficiency Forum May 6, 2011 James Quinn Energy Efficiency & Renewable Energy U.S. Department of Energy U.S. Industrial Energy Efficiency Programs 2 | Industrial Energy Efficiency eere.energy.gov Global Energy Challenges Energy efficiency and renewable energy provide solutions to global energy challenges. Security Environment Economy Clean Energy Solutions Overarching Challenges: * Carbon reduction * Market delivery of clean energy technologies * Research and development needs * Economic growth * Workforce development 3 | Industrial Energy Efficiency eere.energy.gov U.S. industry accounts for about one-third of all U.S. energy consumption. Petroleum Natural Gas Electricity* Coal and Coke Renewable Energy Residential 21.8% Industry 31.4% Commercial

148

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the worldÂ’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nationÂ’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

149

Transportation Energy Data Book: Edition 21  

Science Conference Proceedings (OSTI)

The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2001-09-13T23:59:59.000Z

150

Transportation Energy Data Book (Edition 20)  

SciTech Connect

The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2000-10-09T23:59:59.000Z

151

Transportation Energy Databook: Edition 17  

SciTech Connect

The Transportation Energy Data Book: Edition 17 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C.

1997-08-01T23:59:59.000Z

152

Transportation Energy Futures  

E-Print Network (OSTI)

TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

Sperling, Daniel

1989-01-01T23:59:59.000Z

153

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

154

Control of energy saving at industrial enterprises  

Science Conference Proceedings (OSTI)

Problems connected with improvement of control systems for power systems of industrial enterprises, which are most important elements of energy and fuel consumption in industry, are considered. The growth of energy and fuel cost, the increasing requirements ...

A. F. Rezchikov

2010-10-01T23:59:59.000Z

155

Energy Department Partners with Industry to Train Federal Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners...

156

Geothermal Energy Industry Briefing Packet  

DOE Green Energy (OSTI)

The Earl Warren Legal Institute, part of the University of California at Berkeley, is a center for law-related interdisciplinary research and public service in areas of national social concern. Since 1975, we have worked with the U.S. Department of Energy and Lawrence Berkeley Laboratory on various projects addressing energy policy and environmental issues. We are now engaged in a major effort to identify current legal, economic and institutional obstacles to commercial development and use of geothermal energy sources. Geothermal resources--heat reservoirs beneath the earth's surface--have received increasing attention in recent years of growing energy consciousness, and much progress has been made toward understanding their nature, extent and uses. Encouraged by federal and state development programs, there now exists an active and growing community of geologists, geophysicists, engineers, drilling companies, developers and end-users of geothermal heat. However, Department of Energy studies indicate that current knowledge and available technology would support substantially broader use of the resource, particularly by private sector commercial, industrial and agricultural concerns. Accordingly, we are now seeking to determine the knowledge and attitudes of such entities toward geothermal use; the factors which will influence decisions to utilize geothermal or not; the perceived obstacles, if any, to expanded use in their own industries; and the types of government policies or programs which might minimize such obstacles. The industries we have chosen to approach have been targeted by others as potential geothermal users. However, we recognize that many firms today have little or no knowledge of the resource or of its potential applications. We have therefore prepared the following brief summary as an introduction for some, perhaps a refresher for others, and hopefully a stimulus for an exchange of ideas with all whose views we intend to solicit as our work proceeds.

Bressler, Sandra E.; Hanemann, Michael; Katz, Ira Benjamin; Nimmons, John T.

1976-01-01T23:59:59.000Z

157

Industrial Technologies Available for Licensing - Energy ...  

Industrial Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have technologies ...

158

Longmont Power & Communications - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are here Home Savings Longmont Power & Communications - Commercial and Industrial Energy Efficiency Rebate Program Longmont Power & Communications - Commercial and...

159

Nanotechnology for Energy, Environment, Electronics & Industry  

Science Conference Proceedings (OSTI)

Symposium, Nanotechnology for Energy, Environment, Electronics & Industry ... Electrochemical Optimization of TiO2 Nanotubular Structure Formation and ...

160

Industry Energy Efficiency Workshop - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Industry Sector Energy-Efficiency Workshop on March 5, 1996

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Information Administration - Transportation Energy ...  

U.S. Energy Information Administration (EIA)

Survey forms used by the U.S. Department of Energy (DOE) to collect energy information (e.g., gasoline prices, oil and gas reserves, coal production, etc.).

162

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

163

TRANSPORTATION ENERGY DATA BOOK: EDITION 21  

NLE Websites -- All DOE Office Websites (Extended Search)

6 (Edition 21 of ORNL-5198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 21 Stacy C. Davis Oak Ridge National Laboratory October 2001...

164

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2001-01-01T23:59:59.000Z

165

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2004-01-01T23:59:59.000Z

166

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7a Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

167

Export.gov - Energy Industry Associations  

NLE Websites -- All DOE Office Websites (Extended Search)

Problems Locations Domestic Offices International Offices FAQ Blog Connect Home > By Industry > Energy Print | E-mail Page Main Topics Energy Home Oil & Gas Civil Nuclear...

168

Home > Households, Buildings & Industry > Energy Efficiency ...  

U.S. Energy Information Administration (EIA)

Glossary Home > Households, Buildings & Industry > Energy Efficiency > Residential Buildings Energy Intensities > Table 4 Total Square Feet of U.S. Housing Units

169

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 5c Glossary U.S. Residential Housing Site Page Last Revised: July 2009

170

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

171

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

172

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

casting technology. Energy Policy 31: 1339-1356. Martin,Energy Efficiency. Energy Policy, 33: 949-962. Worrell, E.and pulp industry. Energy Policy 25: 745-758. Flannery,

Worrell, Ernst

2009-01-01T23:59:59.000Z

173

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

174

International industrial sector energy efficiency policies  

SciTech Connect

Over 40 percent of the energy consumed globally is used in the industrial sector. In China, this sector consumes an even larger proportion, reaching nearly 70 percent in 1997. A variety of energy efficiency policies and programs have been instituted in both industrialized and developing countries in an effort to improve the energy efficiency of the industrial sector. There are very few comprehensive evaluations of these industrial sector energy efficiency policies; however a number of recent workshops and conferences have included a focus on these policies. Three important meetings were the International Energy Agency's Industrial Energy Efficiency: Policies and Programs Conference in 1994, Industrial Energy Efficiency Policies: Understanding Success and Failure - A Workshop Organized by the International Network for Energy Demand Analysis in the Industrial Sector in 1998, and the American Council for an Energy-Efficient Economy's 1999 Summer Study on Energy Efficiency in Industry. Man y articles from these meetings are included as attachments to this memo. This paper provides a brief description of each of seven categories of individual industrial energy efficiency policies and programs, discuss which industrial sectors or types of equipment they apply to, and provide references for articles and reports that discuss each policy or program in more detail. We begin with mandatory-type policies and move to more voluntary-type policies. We then provide a brief description of four integrated industrial energy efficiency policies and provide references for articles and reports that describe these policies in greater detail.

Price, Lynn; Worrell, Ernst

2000-01-01T23:59:59.000Z

175

Developing an energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

Workshop on Energy Efficiency Service Industry, Shanghai,Workshop on Energy Efficiency Service Industry, Shanghai,Workshop on Energy Efficiency Service Industry, Shanghai,

Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

2004-01-01T23:59:59.000Z

176

Industrial Biomass Energy Consumption and Electricity Net Generation...  

Open Energy Info (EERE)

Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 Biomass energy consumption and electricity net generation in the industrial...

177

Progress and Outlook on China Industrial Energy Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress and Outlook on China Industrial Energy Conservation Progress and Outlook on China Industrial Energy Conservation Progress and Outlook on China Industrial Energy...

178

Process Energy Audit for Large Industries  

E-Print Network (OSTI)

This paper discusses the author's approach to energy audits of large industries. Five large industrial segments, with energy intensive processes have been selected as examples. Items include: 1) the general methodology of conducting comprehensive industrial energy audit, 2) how one can identify energy efficiency opportunities, and 3) illustrate a few case study examples of energy conservation measures implemented in some of the industries, and 4) the importance of quality assurance/quality control in an energy audit. I will restrict this discussion to only electrical energy audit.

Chari, S.

1993-03-01T23:59:59.000Z

179

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

180

Energy Programs of the Texas Industrial Commission  

E-Print Network (OSTI)

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least 283.81 trillion BTU's of industrial energy in 1980. As the primary consumer of Texas' energy (54% of total, industry is a major focal point of the state's energy conservation effort. Although industry's overall record of energy conservation is good, such a large consumer must receive serious attention in any plan aimed at improving the overall efficiency of energy use in the state. The Texas Industrial Commission has been designated lead agency of the industrial conservation effort, and as such, created the Energy Utilization Department in the Fall of 1977. The multi-faceted department has established programs to accomplish its mission including: The Energy Search Center, an information access point for Texas manufacturers; a series of technical workshops and seminars; an annual Industrial Energy Technology Conference; the coordination of a university program for the training of industrial energy auditors; and organizational assistance in the establishment of regional energy conservation groups. Although manufacturers are encouraged to utilize the programs, they are designed primarily for small or medium-sized industries and low-technology operations where the employment of an energy specialist is economically impractical.

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industry Supply Chain Development (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) Industry Supply Chain Development (Ohio) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Solar Buying & Making Electricity Wind Program Info State Ohio Program Type Grant Program Industry Recruitment/Support Loan Program Provider Ohio Development Services Agency Supply Chain Development programs are focused on targeted industries that have significant growth opportunities for Ohio's existing manufacturing sector from emerging energy resources and technologies. The Office of Energy is currently working on developing the supply chains for the wind,

182

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

183

Transportation Energy Data Book: Edition 31  

DOE Data Explorer (OSTI)

The Transportation Energy Data Book: Edition 31 is a statistical compendium designed for use as a reference reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. [Roltek, Inc.

184

ENERGY STAR Challenge for Industry promotional posters | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge for Industry helpful tools and resources ENERGY STAR Challenge for Industry promotional posters Secondary menu About us Press room Contact Us Portfolio Manager Login...

185

Industrial energy efficiency policy in China  

SciTech Connect

Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-05-01T23:59:59.000Z

186

Industrial Energy Efficiency and Climate Change Mitigation  

Science Conference Proceedings (OSTI)

Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

2009-02-02T23:59:59.000Z

187

Transportation Energy Futures  

E-Print Network (OSTI)

solar or nuclear power(from fission or fusion reactors), andand nuclear energy (from breeder reactors or possibly fusion

Sperling, Daniel

1989-01-01T23:59:59.000Z

188

Short-Term Energy Outlook Supplement: Energy-weighted industrial...  

U.S. Energy Information Administration (EIA) Indexed Site

Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy...

189

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

190

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

191

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

192

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

Yang, Christopher

2011-01-01T23:59:59.000Z

193

Pulp & Paper Industry- A Strategic Energy Review  

E-Print Network (OSTI)

The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could greatly impact the energy purchases of U.S. firms. Depending on how energy suppliers react, this change could represent a threat or an opportunity.

Stapley, C. E.

1997-04-01T23:59:59.000Z

194

Energy Efficiency Improvement in the Petroleum RefiningIndustry  

Science Conference Proceedings (OSTI)

Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

Worrell, Ernst; Galitsky, Christina

2005-05-01T23:59:59.000Z

195

Industrial energy efficiency policy in China  

E-Print Network (OSTI)

Economic Indicators," Energy Policy 25(7'-9): 727-744. X u ,Best Practice Energy Policies in the Industrial Sector, Mayand Intensity Change," Energy Policy 22(3): Sinton, J.E.

Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

2001-01-01T23:59:59.000Z

196

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

energy supply system plans? The 1) describe quantitatively the California energy industryenergy supply and de~and, but first we describe some economic impacts of the existing energy industry.

Authors, Various

2010-01-01T23:59:59.000Z

197

Identifying Opportunities for Industrial Energy Conservation  

E-Print Network (OSTI)

The Energy Productivity Center of the Mellon Institute is engaged in a 2-year study to identify opportunities for improved U.S. industrial energy productivity. A distinguishing feature is the focus on energy services provided when fuels are consumed. The paper describes the Center's Least-Cost Energy Strategy, the Industrial Energy Productivity Project, and presents least-cost results for 1978 and for energy markets over the next two decades.

Hoffman, A. R.

1981-01-01T23:59:59.000Z

198

Wells Public Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Energy Efficiency Rebate Program Wells Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Eligibility Commercial Fed....

199

Empire District Electric - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Commercial and Industrial Energy Efficiency Rebates Empire District Electric - Commercial and Industrial Energy Efficiency Rebates < Back Eligibility...

200

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

202

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

203

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

204

Industrial Energy Efficient Technology Guide 2007  

Science Conference Proceedings (OSTI)

This report updates the Industrial Energy Efficient Technology Reference Guide, previously known as the Electrotechnology Reference Guide. The last version of the Electrotechnology Reference Guide was published in 1992. This 2007 edition specifically updates information on industrial-sector energy consumption and the status of energy efficient technologies.

2007-07-31T23:59:59.000Z

205

Policy modeling for industrial energy use  

E-Print Network (OSTI)

simple energy intensity is not a good indicator for energyEnergy Intensity in the Iron & Steel industry: A Comparison of Physical and Economic Indicators",energy efficiency in the Korean manufacturing sector, studies using economic energy efficiency indicators (energy intensity

2003-01-01T23:59:59.000Z

206

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

CA: Personal Computing Industry Center, working paper.flows in the wind energy industry. Peterson Institute, WPin the Global Wind Energy Industry Jason Dedrick, Syracuse

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

207

Industrial service and product providers | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify...

208

Energy and Environmental Challenges in Aluminium Industry  

Science Conference Proceedings (OSTI)

Presentation Title, Energy and Environmental Challenges in Aluminium Industry - A Review ... A projection based on the present global Alumina and Aluminium ...

209

Barron Electric Cooperative - Commercial and Industry Energy...  

Open Energy Info (EERE)

icon Barron Electric Cooperative - Commercial and Industry Energy Efficiency Lighting Rebates (Wisconsin) This is the approved revision of this page, as well as being the...

210

Nanotechnology for Energy, Environment, Electronics and Industry  

Science Conference Proceedings (OSTI)

The benefits can range from higher system properties and energy efficiency, to innovative healthcare solutions, to advanced industry products and solutions.

211

Nanotechnology for Energy, Environment, Healthcare and Industry  

Science Conference Proceedings (OSTI)

The benefits can range from higher system properties and energy efficiency, to innovative healthcare solutions, to advanced industry products and solutions.

212

XH Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name XH Industries Inc Place Ilwaco, Washington, DC Zip 98624-9046 Sector Wind energy Product Washington-based repairer of wind power...

213

Alten Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries Inc Place Baltimore, Maryland Zip 21218 Product Maryland-based integrated alternative energy development corporation dedicated to supporting a viable domestic...

214

Advanced Manufacturing Office: Industrial Distributed Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industry Classification System (NAICS) code, system size, technologyprime mover, fuel, thermal energy use, and year installed. Access the CHP Project Profiles database....

215

Jinlong Industrial Group | Open Energy Information  

Open Energy Info (EERE)

Solar Product Solar energy company based in Hebei province, engaged in manufacturing photovoltaic cell, crystal silicon and other key products. References Jinlong Industrial...

216

Energy Opportunities in the Aluminum Processing Industry  

Science Conference Proceedings (OSTI)

As carbon management has grown in importance and project payback becomes ... overall energy within a plant and within the aluminum processing industry.

217

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

218

ENERGY STAR Industrial Plant Certification: Instructions for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior care resources Small business resources State and local government resources ENERGY STAR Industrial Plant Certification: Instructions for applying This document...

219

Rotem Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

research, development, construction & consultation of major solar energy projects: solar power plants and solar powered desalination study. References Rotem Industries Ltd1...

220

Policy modeling for industrial energy use  

E-Print Network (OSTI)

natural gas transportation tax, special consumption tax, education tax, etc under process of restructuring of energy tax system Financial support and incentives

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solids transportation model of an industrial rotary dryer  

SciTech Connect

A complete simulation model has been developed for an industrial rotary dryer to account for the heat and mass exchange between the solids and the gas. This simulator is mainly composed of three models: solids transportation model, furnace model, and gas model. The solids transportation model is the modified Cholette-Cloutier model. It consists of a series of interactive reservoirs which are subdivided into an active and dead compartments to account for the characteristic extended tail of the residence time distribution (RTD) curves observed in industrial dryers. To expand the validity of the model, experiments have been performed in an industrial rotary dryer to obtain RTD curves under different mineral concentrate and gas flow rates. This paper describes these experiments and presents the variation of the average residence time and model parameters as function of solids and gas flow rates.

Renaud, M.; Thibault, J.; Trusiak, A.

2000-05-01T23:59:59.000Z

222

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

223

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

224

EIA - International Energy Outlook 2009-Industrial Sector Energy...  

Annual Energy Outlook 2012 (EIA)

and 2030 Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 Figure 66. OECD and Non-OECD Major Steel Producers, 2007 Figure 67....

225

Industry Professional | Open Energy Information  

Open Energy Info (EERE)

Industry Professional Jump to: navigation, search How to GET INVOLVED WITH OpenEI Get involved with OpenEI Programmer.jpg Industry Professional Do you have valuable information...

226

Energy Smart - Commercial and Industrial Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling...

227

Entity State Ownership Residential Commercial Industrial Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Pacific Gas & Electric Co Pacific Gas & Electric Co CA Investor Owned 38,657 306,699 232,366 2,843 580,565 San Diego Gas & Electric Co CA Investor Owned 1,019 62,400 84,143 0 147,563 Southern California Edison Co CA Investor Owned 6,706 456,007 69,193 . 531,906 Connecticut Light & Power Co CT Investor Owned 362,262 514,043 100,262 6,681 983,248 United Illuminating Co CT Investor Owned 145,914 170,830 33,167 0 349,911 Potomac Electric Power Co DC Investor Owned 9,594 280,753 2,929 9,856 303,132 Delmarva Power DE Investor Owned 5,937 37,312 9,617 . 52,867 Ameren Illinois Company IL Investor Owned 97,751 188,211 50,163 . 336,125 Commonwealth Edison Co IL Investor Owned 293,240 468,785 345,822 6,443 1,114,290 MidAmerican Energy Co IL Investor Owned . 39 . . 39 Fitchburg Gas & Elec Light Co MA Investor Owned 3,595 5,856 10,690 0 20,141 Massachusetts Electric Co

228

Electrofuels: Versatile Transportation Energy Solutions  

Science Conference Proceedings (OSTI)

Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

None

2010-07-01T23:59:59.000Z

229

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

230

Industrial energy management information center | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

energy management information center energy management information center Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

231

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network (OSTI)

E?ects of Transportation Energy policy on Tra?c Crashes .of international data. Energy Policy, 33(17), 2183–2190. O?e?ciency standards. Energy Policy, 33(3), 407–419. Blincoe,

Kim, Chun Kon

2008-01-01T23:59:59.000Z

232

Biomass energy conversion workshop for industrial executives  

DOE Green Energy (OSTI)

The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

None

1979-01-01T23:59:59.000Z

233

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

234

Fostering a Renewable Energy Technology Industry  

E-Print Network (OSTI)

LBNL-59116 Fostering a Renewable Energy Technology Industry: An International Comparison of Wind and Renewable Energy, Wind & Hydropower Technologies Program, of the U.S. Department of Energy under Contract No by the Assistant Secretary of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program

235

Developing a solar energy industry in Egypt  

E-Print Network (OSTI)

This paper assesses Egypt's current energy infrastructure and its problems, the available solar energy resource, and the technologies required to harness this resource. After this assessment, an industry based on high ...

AbdelMessih, Sherife (Sherife Mohsen)

2009-01-01T23:59:59.000Z

236

Energy Technical Assistance: Industrial Processes Program  

E-Print Network (OSTI)

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A&M University College of Engineering activities, is available through support of Texas Energy and Natural Resources Advisory Council. Engineers with industry and consulting experience are located in Arlington and Houston TEEX offices.

McClure, J. D.

1980-01-01T23:59:59.000Z

237

US Solar Energy Industries Association SEIA | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association SEIA Energy Industries Association SEIA Jump to: navigation, search Name US Solar Energy Industries Association (SEIA) Place Washington, Washington, DC Zip 20005 Sector Solar Product US national trade association of solar energy manufacturers, dealers, distributors, consultants, and marketers. References US Solar Energy Industries Association (SEIA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. US Solar Energy Industries Association (SEIA) is a company located in Washington, Washington, DC . References ↑ "US Solar Energy Industries Association (SEIA)" Retrieved from "http://en.openei.org/w/index.php?title=US_Solar_Energy_Industries_Association_SEIA&oldid=352621

238

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

239

Web-Based Industrial Energy Management Tool  

Science Conference Proceedings (OSTI)

This report describes continuing research on the Industrial Energy Management Tool (IEMT), a web-based software resource intended for the evaluation of industrial energy efficiency measures. The IEMT software development is ongoing, and this report covers the status of an alpha tool that has already been created and plans for moving forward with development of a beta product.

2008-03-31T23:59:59.000Z

240

Isospin Transport at Fermi Energies  

E-Print Network (OSTI)

In this paper we investigate isospin transport mechanisms in semi-peripheral collisions at Fermi energies. The effects of the formation of a low density region (neck) between the two reaction partners and of pre-equilibrium emission on the dynamics of isospin equilibration are carefully analyzed. We clearly identify two main contributions to the isospin transport: isospin diffusion due to the $N/Z$ ratio and isospin drift due to the density gradients. Both effects are sensitive to the symmetry part of the nuclear Equation of State (EOS), in particular to the value and slope around saturation density.

V. Baran; M. Colonna; M. Di Toro; M. Zielinska-Pfabe; H. H. Wolter

2005-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Greenline Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Place San Rafael, California Zip 94901 Product Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

242

DMI Industries | Open Energy Information  

Open Energy Info (EERE)

OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References DMI Industries1 LinkedIn Connections CrunchBase Profile No...

243

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

244

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

245

Rail transport. trends in energy efficiency  

Science Conference Proceedings (OSTI)

The increasing cost and insecure future supply of diesel fuel have led the U.S. railroad industry to continuously improve on its already efficient use of energy. Among such improvements that are planned or in progress are a fuel-efficient version of a mainline engine, which should save 13,200 gal/yr of fuel; and lightweight coal cars and freight-car trucks, which offer fuel-saving opportunities. The use of synthetic fuels such as methanol-from-coal or all-electric locomotive on a broad scale is unlikely within the next 20 yr, but an increased use of synthetic fuels in other large fuel-consuming transport modes, notably cars, would ease the rail industry's future diesel fuel supply problems. Other fuel-saving factors to consider, such as proper train-operating procedures and the use of the best routes; and the new design of rail cars are also discussed.

Eldridge, C.C.; Van Gorp, P.H.

1980-06-01T23:59:59.000Z

246

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

on Transportation, Energy and Policy convened in 1988. Oilon Transportation, Energy and Policy has been held at theon Transportation, Energy and Policy in July 2009 was the

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

247

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

Prepared for the California Energy Commission. December. [and F. Coito). 2002. California's Secret Energy Surplus; Theby key end use. Figure 1. California Energy Consumption by

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

248

Mulk Renewable Energy Aditya Solar Power Industries JV | Open Energy  

Open Energy Info (EERE)

Mulk Renewable Energy Aditya Solar Power Industries JV Mulk Renewable Energy Aditya Solar Power Industries JV Jump to: navigation, search Name Mulk Renewable Energy & Aditya Solar Power Industries JV Place United Arab Emirates Sector Solar Product UAE-based company that is developing a 200MW solar thermal plant in Sharjah. References Mulk Renewable Energy & Aditya Solar Power Industries JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Mulk Renewable Energy & Aditya Solar Power Industries JV is a company located in United Arab Emirates . References ↑ "Mulk Renewable Energy & Aditya Solar Power Industries JV" Retrieved from "http://en.openei.org/w/index.php?title=Mulk_Renewable_Energy_Aditya_Solar_Power_Industries_JV&oldid=348970"

249

State Level Analysis of Industrial Energy Use  

E-Print Network (OSTI)

Most analyses of industrial energy use have been conducted at the national level, in part because of the difficulties in dealing with state level data. Unfortunately, this provides a distorted view of the industrial sector for state and regional policymakers. ACEEE has completed analyses on eight states drawing upon data from a diverse set of sources to characterize the industries at a relatively high level of disaggregation. These analyses demonstrate how different state and regional mixes are from the national mix and the importance of a regionally specific approach to industrial energy policy. In addition, the data suggest that significant shifts are occurring in industry mix in some of these states that will have important ramifications on future industrial policies for these states. This paper will provide an overview of our analytical approach, the data sources that are available, and provide examples of the analysis results to demonstrate the regional diversity of industrial electricity use.

Elliott, R. N.; Shipley, A. M.; Brown, E.

2003-05-01T23:59:59.000Z

250

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange, goal setting and progress reporting are carried on through these Task Forces which are staffed with industrial volunteers and representatives from the major trade associations. Inter-industry liaison is accomplished via a Coordinating Committee comprised of the individual Task Force Chairmen and representatives of the federal government. While the program has been in existence only since 1976, impressive gains have already been made and targets have been set for 1980 and 1985. The strength of the program lies in its candid cooperation between industry and government. There has, to date, been no need or advantage to implementing a government mandated program for industrial energy conservation in Canada.

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

251

Progress and Outlook on China Industrial Energy Conservation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress and Outlook on China Industrial Energy Conservation Wang Wenyuan, Department of Energy Conservation and...

252

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

253

Financing the growth of energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

present experiences of energy service industrial developmentNational Association of Energy Service Companies (NAESCO),2004, “Developing an Energy Efficiency Service Industry in

Lin, Jiang; Gilligan, Donald; Zhao, Yinghua

2005-01-01T23:59:59.000Z

254

Developing an energy efficiency service industry in Shanghai  

E-Print Network (OSTI)

Japanese Association of Energy Service Companies (JAESCO),growth of a viable energy services industry should become anhealthy development of a local energy services industry, the

Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

2004-01-01T23:59:59.000Z

255

Estimating energy-augmenting technological change in developing country industries  

E-Print Network (OSTI)

trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

2006-01-01T23:59:59.000Z

256

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

257

Industrial Technologies - Energy Innovation Portal  

With the growing pressure placed on energy efficiency and reliance on fossil fuels, alternative sources of energy are increasingly important.

258

Energy Conservation in China North Industries Corporation  

E-Print Network (OSTI)

This paper describes an overview of the energy conservation in China North Industries Corporation. It shows how the corporation improves energy efficiencies and how it changes constitution of fuel--converting oil consumption to coal. Energy management organization, energy balance in plants and several specific techniques such as Heat pipe application, Coal oil mixture, Coal water slurry are also mentioned in this paper.

You, W. T.

1985-05-01T23:59:59.000Z

259

Fusion Energy An Industry-Led Initiative  

E-Print Network (OSTI)

;Energy Supply and Needs Global per capita energy usage Global Per Capita energy usage will increase even will continueto bethe dominant sources of energy inthe U.S. during the next thirty years - Coal for electrical power production - Oil for transportation - Natural gas for heating/electrical power - Nuclear fission

260

Nanocomposites for Energy Transport, Harvesting and Storage  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Nanocomposites: Nanocomposites for Energy Transport, Harvesting and Storage Sponsored by: The Minerals, Metals and Materials Society, ...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

262

The Texas Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would increase, and second, the impact on industry would curtail growth and expansion which would have a detrimental impact on both employment and the Texas economy. To combat this problem, the Energy Utilization Department of the Texas Industrial Commission was formed under funds provided by the U.S. Department of Energy with these funds administered by the Texas Energy and Natural Resources Advisory Council. This paper examines the program, its methodology, and the energy and financial benefits derived from its operation.

Waldrop, T.

1982-01-01T23:59:59.000Z

263

Energy, Transportation Ministers from Asia-Pacific Nations Pledge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific...

264

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 50% of the total project cost, or the individual utilities customer cap (varies per each utility). Incentives for Custom measure may not exceed 40% of the total project cost, or the individual utilities customer cap (varies per each utility). Program Info Expiration Date 12/31/2013 State Michigan

265

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Electric) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Appliances & Electronics Maximum Rebate Contact EEF Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Incentives Vary Widely Provider Connecticut Light and Power All Connecticut Utilities implement electric and gas efficiency rebate programs funded by Connecticut's public benefits charge through the Energy

266

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost

267

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

268

Solar Energy LLC Industrial Investors Group | Open Energy Information  

Open Energy Info (EERE)

LLC Industrial Investors Group LLC Industrial Investors Group Jump to: navigation, search Name Solar Energy LLC - Industrial Investors Group Place Moscow, Russian Federation Zip 119017 Sector Solar Product The company Solar Energy plans to use turnkey equipment from GT Solar and others to make silicon, ingots, wafers and cells in Russia. References Solar Energy LLC - Industrial Investors Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Energy LLC - Industrial Investors Group is a company located in Moscow, Russian Federation . References ↑ "Solar Energy LLC - Industrial Investors Group" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Energy_LLC_Industrial_Investors_Group&oldid=351271

269

Thermal Transport in Nanomaterials for Energy Applications  

Science Conference Proceedings (OSTI)

Symposium, Energy Nanomaterials. Presentation Title, Thermal Transport in Nanomaterials for Energy Applications. Author(s), Xinwei Wang. On-Site Speaker  ...

270

DOE Hydrogen Analysis Repository: Hawaii Transportation Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

future energy demand; analyze the possibility of satisfying a portion of the state's future transportation energy demand through alternative fuels; and recommend a program...

271

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network (OSTI)

IGATE-E is an industrial energy analysis tool. The tool is intended to be a decision support and planning tool to a wide spectrum of energy analysts, engineers, researchers, government organizations, private consultants, industry partners, and alike. The tool applies statistical modeling to multiple datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using information from DOE's Industrial Assessment Center database (IAC-DB) and DOE's Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool utilizes the DOE EIA-MECS energy survey data to validate bottom-up estimates and permits several statistical examinations.

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

272

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

from 1% to 5% of base usage for natural gas. The achievableUsage A key initial step in the analysis was to develop a baseline understanding of industrial electricity and natural gas

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

273

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Partnership Year 2008 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now Motech Industries is a company located in Bethlehem, Taiwan....

274

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Technologies and Systems Partnership Year 2002 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now Benteler Industries is a company located in...

275

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Petroleum Refineries: An ENERGY STAR Guide for Energy andGlass Industry: An ENERGY STAR Guide for Energy and PlantAssembly Industry: An ENERGY STAR Guide for Energy and Plant

Price, Lynn

2008-01-01T23:59:59.000Z

276

Equity Industrial Partners | Open Energy Information  

Open Energy Info (EERE)

Equity Industrial Partners Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Equity Industrial Turbines LLC Developer Equity Industrial Turbines LLC Energy Purchaser City of Gloucester Location Gloucester MA Coordinates 42.625864°, -70.65621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.625864,"lon":-70.65621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

278

Otter Tail Power Company - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating &...

279

Research and development opportunities for improved transportation energy usage. (REDOTEUS)  

SciTech Connect

The document is a draft of the final report of the Transportation Energy Panel (TEP) prepared for the Office of Science and Technology. The report attempts to assess the relevant technology for improving the usage by the transportation sector of the energy resources of the nation. In pursuit of its study, TEP sponsored several workshops, briefings, and coordination meetings which had personnel from a variety of Federal, academic, and industrial organizations. Emphasis was given both to transportation demands and to relevant technology assessment. (GRA)

1972-07-14T23:59:59.000Z

280

Transportation Analysis | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs Energy Efficiency Fund (Gas) - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate All Gas Programs: Contact utility Custom Retrofits: 40% Comprehensive Project: 50% of total cost Program Info Funding Source Connecticut Energy Efficiency Fund State Connecticut Program Type Utility Rebate Program Rebate Amount

282

Energy efficient industrialized housing research program  

SciTech Connect

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

283

Sanyo Chemical Industries | Open Energy Information  

Open Energy Info (EERE)

Chemical Industries Chemical Industries Jump to: navigation, search Name Sanyo Chemical Industries Place Tokyo, Japan Zip 103-0023 Product String representation "Sanyo is a petr ... uction process." is too long. References Sanyo Chemical Industries[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sanyo Chemical Industries is a company located in Tokyo, Japan . References ↑ "Sanyo Chemical Industries" Retrieved from "http://en.openei.org/w/index.php?title=Sanyo_Chemical_Industries&oldid=350614" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

284

Solar Power Industries SPI | Open Energy Information  

Open Energy Info (EERE)

Solar Power Industries SPI Solar Power Industries SPI Jump to: navigation, search Name Solar Power Industries (SPI) Place Belle Vernon, Pennsylvania Zip 15012 Product US-based manufacturer of mono and multicrystalline PV cells, modules and systems. References Solar Power Industries (SPI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Power Industries (SPI) is a company located in Belle Vernon, Pennsylvania . References ↑ "Solar Power Industries (SPI)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Power_Industries_SPI&oldid=351318" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

285

Careers in the Wind Industry | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Careers in the Wind Industry Jump to: navigation, search Two engineers working in the nacelle of a Siemens offshore wind turbine. Photo from Siemens AG, NREL 19687 Resources American Wind Energy Association. Careers in Wind. Accessed August 29, 2013. This page connects wind energy companies to people seeking jobs in the wind energy industry. Environmental Entrepreneurs. (August 2013). Clean Energy Works for Us: 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report. Accessed August 30, 2013 Environmental Entrepreneurs (e2) is a national community of business

286

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

287

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

288

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network (OSTI)

Tracking Industrial Energy Efficiency and CO2 Emissions: Aapplication of Energy Efficiency in Industry, Vienna,for Promoting Industrial Energy Efficiency in Developing

McKane, Aimee

2010-01-01T23:59:59.000Z

289

Despatch Industries | Open Energy Information  

Open Energy Info (EERE)

Despatch Industries Despatch Industries Jump to: navigation, search Name Despatch Industries Place Minneapolis, Minnesota Zip 55044 Sector Solar Product Manufacturer of infrared drying and firing furnaces used in solar cell manufacture, and other thermal processing equipment. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Reid Industries | Open Energy Information  

Open Energy Info (EERE)

Reid Industries Reid Industries Jump to: navigation, search Name Reid Industries Address PO Box 503 Place San Francisco, CA Zip 94104 Phone number 415-947-1050 Coordinates 37.7923058°, -122.4021273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7923058,"lon":-122.4021273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Jax Industries | Open Energy Information  

Open Energy Info (EERE)

Jax Industries Jax Industries Jump to: navigation, search Name Jax Industries Place Hillsboro, Oregon Product Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates 43.651735°, -90.341144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.651735,"lon":-90.341144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

293

Energy Department Partners with Industry to Train Federal Energy Managers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Partners with Industry to Train Federal Energy Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs November 10, 2005 - 2:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization representing energy utilities, municipal energy authorities, and equipment manufacturers and vendors, to train federal energy managers, natural gas utilities and manufacturers on energy-efficient gas fueled technologies. "This innovative public-private partnership will help federal agencies as well as private companies improve the efficiency of their operations,

294

Energy Department Partners with Industry to Train Federal Energy Managers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Partners with Industry to Train Federal Energy Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs Energy Department Partners with Industry to Train Federal Energy Managers and Reduce Energy Costs November 10, 2005 - 2:21pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a partnership with the Energy Solutions Center Inc. (ESC), a technology commercialization and market development organization representing energy utilities, municipal energy authorities, and equipment manufacturers and vendors, to train federal energy managers, natural gas utilities and manufacturers on energy-efficient gas fueled technologies. "This innovative public-private partnership will help federal agencies as well as private companies improve the efficiency of their operations,

295

Asia-Energy Efficiency Guide to Industry | Open Energy Information  

Open Energy Info (EERE)

Asia-Energy Efficiency Guide to Industry Asia-Energy Efficiency Guide to Industry Jump to: navigation, search Tool Summary Name: Asia-Energy Efficiency Guide to Industry Agency/Company /Organization: United Nations Environment Programme Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Finance, Technology characterizations Resource Type: Guide/manual, Lessons learned/best practices Website: energyefficiencyasia.org/tools/trainingmaterials/tools_financing_train UN Region: Central Asia, Eastern Asia, South-Eastern Asia Asia-Energy Efficiency Guide to Industry Screenshot References: Energy Efficient-Asia[1] "This Guide has been developed for Asian companies who want to improve energy efficiency through Cleaner Production and for stakeholders who want to help them. The Guide includes:

296

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Transportation and Air Quality Transportation Energy Policy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Appliance Energy...

297

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Fort Collins, Colorado Zip 80525 Sector Solar Product US-based manufacturer of power conversion and control systems for the semiconductor and solar industries. The company also...

298

VAWT Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Zip 89118 Sector Wind energy Product Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References VAWT Industries Inc1 LinkedIn...

299

Allegheny Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contact Utility Custom: 0.05kWh saved Provider SAIC FirstEnergy company Potomac Edison offers rebates to eligible commercial and industrial customers in Maryland service...

300

World Best Practice Energy Intensity Values for Selected Industrial Sectors  

E-Print Network (OSTI)

Energy Use in the Steel Industry. Brussels: IISI. Worrell,1998. Energy Use in the Steel Industry. Brussels: IISI. 2.2.1998. Energy Use in the Steel Industry. Brussels: IISI. Best

Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

302

1985 US energy industry yearbook  

Science Conference Proceedings (OSTI)

The annual yearbook directory designed to discuss the US petroleum industry is presented. The information is presented under the following topics: major intergrated oil companies, drilling and exploration companies, independent petroleum companies, petrochemical giants, engineering and construction companies, marketing and refining companies, and terminal companies.

Hoffman, C. (ed.)

1985-01-01T23:59:59.000Z

303

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

304

New York Industrial Energy Buyers, LLC | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon New York Industrial Energy Buyers, LLC Jump to: navigation, search Name New York...

305

Wind Energy In America: Ventower Industries | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Courthouse: Before and After Solar Industry At Work The World Renewable Energy Forum in Denver Solar Phoenix 2 Launch Event The Max Tech and Beyond Competition Leon...

306

The Transportation Energy Data Book (TEDB)  

E-Print Network (OSTI)

Ridge National Laboratory for the U.S. Department of Energy's Office of Energy Efficiency and Renewable: cta.ornl.gov Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DepartmentThe Transportation Energy Data Book (TEDB) The Transportation Energy Data Book (TEDB

307

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

308

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

309

ENERGY STAR industrial partnership | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

310

Industrial energy management information center | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

311

Improvements in industrial energy performance | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

my money go? Set and Save with ENERGY STAR Product Finder Rebate Finder Store Locator Energy Savings At Home Energy Savings At Home Improving your home's energy efficiency with...

312

ENERGY STAR Challenge for Industry | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

313

The Role of Thermal Energy Storage in Industrial Energy Conservation  

E-Print Network (OSTI)

Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems has been shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) have identified four especially; significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9 x 106 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through in-plant production of electricity from utilization of reject heat in the steel and cement industries.

Duscha, R. A.; Masica, W. J.

1979-01-01T23:59:59.000Z

314

Energy efficient industrialized housing research program  

Science Conference Proceedings (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

315

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

energy efficiency, energy-efficient industrial process technology, energy storage, fuel cells, renewable energy, distributed power generation, and system analysis and policy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

316

China and India Industrial Efficiency NREL Partnership | Open Energy  

Open Energy Info (EERE)

China and India Industrial Efficiency NREL Partnership China and India Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Energy Efficiency, Industry Topics Background analysis Country China Eastern Asia References NREL International Program Overview Abstract In support of the DOE Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program's (ITP) activities to promote industrial energy efficiency internationally, the NREL industrial communications team is developing a specialized portfolio of technical and outreach materials. "In support of the DOE Office of Energy Efficiency and Renewable Energy

317

Policies and Measures to Realise Industrial Energy Efficiency...  

Open Energy Info (EERE)

and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Name Policies and Measures to Realise Industrial Energy Efficiency and...

318

US Energy Service Company Industry: History and Business Models...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Business Models US Energy Service Company Industry: History and Business Models Information about the history of US Energy Service Company including industry history,...

319

Moorhead Public Service Utility - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate Program Moorhead Public Service Utility - Commercial and Industrial Energy Efficiency Rebate...

320

Energy Storage Solutions Industrial Symposium | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Solutions Industrial Symposium Sep 04 2013 09:00 AM - 05:30 PM Energy Storage Solutions Industrial Symposium - Wednesday September 4, 2013 CONTACT : Email: Phone:...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Government and Industry A Force for Collaboration at the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

322

Analysis of Energy-Efficiency Opportunities for the Cement Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China Title Analysis of Energy-Efficiency Opportunities for the Cement Industry in...

323

Analysis of the Energy Intensity of Industries in California  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Energy Intensity of Industries in California Title Analysis of the Energy Intensity of Industries in California Publication Type Conference Proceedings Year of Publication...

324

Loveland Water & Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here Home Savings Loveland Water & Power - Commercial and Industrial Energy Efficiency Rebate Program Loveland Water & Power - Commercial and Industrial Energy...

325

Assumptions to the Annual Energy Outlook 1999 - Industrial Demand...  

Gasoline and Diesel Fuel Update (EIA)

industrial.gif (5205 bytes) The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing...

326

About ENERGY STAR for commercial and industrial buildings | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR for commercial and industrial buildings ENERGY STAR for commercial and industrial buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings

327

ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY  

E-Print Network (OSTI)

Efficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial TechnologiesEfficiency and Renewable Energy, Industrial Technologies

Kramer, Klaas Jan

2010-01-01T23:59:59.000Z

328

Energy Transport in the Vaidya System  

E-Print Network (OSTI)

Energy transport mechanisms can be generated by imposing relations between null tetrad Ricci components. Several kinds of mass and density transport generated by these relations are studied for the generalized Vaidya system.

J. P. Krisch; E. N. Glass

2005-03-21T23:59:59.000Z

329

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy...

330

Geothermal energy for industrial application  

DOE Green Energy (OSTI)

The types of geothermal resources are reviewed briefly. The uses of geothermal energy are covered under electrical generation and non-electric direct uses. (MHR)

Fulton, R.L.

1979-03-01T23:59:59.000Z

331

ENERGY STAR Challenge for Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June...

332

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

X. , 2002. Cost Competitive Incentives for Wind EnergyWind Energy Association estimated that transport costs for

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

333

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

22 nd National Industrial Energy Technology Conference18 th National Industrial Energy Technology Conferenceof Demonstrated Energy Technologies (CADDET). (1993).

Galitsky, Christina

2008-01-01T23:59:59.000Z

334

Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

Demonstrated Energy Technologies (CADDET), The Netherlands.second National Industrial Energy Technology ConferenceNational Industrial Energy Technology Conference. Houston,

Worrell, Ernst

2008-01-01T23:59:59.000Z

335

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial/Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Commercial Weatherization Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate 50% of cost in many cases Commercial and Industrial: $50,000/facility per year Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom Incentives: 50% T8/T5 Fluorescent Fixtures: $3-$20 T5/T8 Fluorescent High Bay Fixtures: $55-$175 CFL High Bay Fixtures: $75

336

Industry insight Energy and utilities In a nutshell  

E-Print Network (OSTI)

in highly specific areas within the oil and gas, waste management, recycling and renewable energies sectors1 Industry insight ­ Energy and utilities In a nutshell The UK's energy and utilities industry management; renewable energy industries; energy conservation organisations. The industry employs around 530

Martin, Ralph R.

337

Industrial Development (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Indiana) (Indiana) Industrial Development (Indiana) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1981 State Indiana Program Type Corporate Tax Incentive Enterprise Zone Provider Indiana Economic Development Corporation An economically distressed county can apply for designation as a community

338

Industrial Energy Use and Energy Efficiency in Developing Countries  

E-Print Network (OSTI)

The industrial sector accounts for over 50% of energy used in developing countries. Growth in this sector has been over 4.5% per year since 1980. Energy intensity trends for four energy-intensive sub-sectors (iron and steel, chemicals, building materials, and pulp and paper) are reviewed. Scenarios of future industrial sector energy use in developing countries show that this region will dominate world industrial energy use in 2020. Growth is expected to be about 3.0% per year in a business-as-usual case, but can be reduced using state-of-the art or advanced technologies. Polices to encourage adoption of these technologies are briefly discussed.

Price, L.; Martin, N.; Levine, M. D.; Worrell, E.

1996-04-01T23:59:59.000Z

339

Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

cost savings and reduced carbon dioxide emissions. Understanding how energy is used and wasted-or energy use and loss footprints-can help plants pinpoint areas of energy...

340

Industrial Energy Audit Training for Engineers  

E-Print Network (OSTI)

The field of engineering energy conservation has witnessed an explosion of concern and activity during the last three years throughout the United States. In Texas, such activities have been enhanced by comprehensive industrial energy auditor training programs that were conceived and initiated under the guidance of the Texas Industrial Commission. One such program, begun with Texas A&M and expanded throughout the state, has continued to provide a high level of engineering and scientific training in the field of energy conservation to practicing personnel in the field. Attendees in the past have included consultants, engineers in industry, plant managers, utility engineering service representatives, and government representatives concerned with energy conservation. Numerous energy programs are conducted throughout Texas and the United States by a variety of organizations. This paper presents the activities and feedback obtained from a 45-hour industrial auditor training program that follows the guidelines originally developed by a statewide advisory board under the auspices of the Texas Industrial Commission. This 5-day intensive engineering level training program has been conducted regularly since its beginning in 1978. The program has been conducted by the Texas Society of Energy Auditors for a number of years and has resulted in positive feedback from the attendees.

Russell, B. D.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial and Industrial Energy-Efficiency Program Progress Energy Carolinas - Commercial and Industrial Energy-Efficiency Program < Back Eligibility Commercial Construction Industrial Multi-Family Residential Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Projects: 75% of the incremental measure costs Technical Efficiency Studies: 50% of cost up to $10,000-$20,000 Design Incentive (New Construction): $50,000 Program Info Expiration Date 1/1/2013 State North Carolina Program Type Utility Rebate Program Rebate Amount Custom: $0.08 per kW hour saved annually

342

Tips: Transportation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Tips: Transportation July 5, 2012 - 5:19pm Addthis Tips: Transportation In 2010, Americans traveled a total of 3 trillion miles -- the equivalent of 6.5 million...

343

Energy Industries of Ohio | Open Energy Information  

Open Energy Info (EERE)

yIndustriesofOhio&oldid367631" Categories: Energy Distribution Organizations Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special...

344

Industrial Compressed Air System Energy Efficiency Guidebook.  

DOE Green Energy (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

345

Industry Information | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Under-Represented Communities When small businesses first approach the Department of Energy, there's a lot to learn about the types of products that we buy and the locations that...

346

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

347

Sector Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

348

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

of future contributions from various emerging transportation fuels and technologies is unknown. PotentiallyCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

349

Missourian Finds New Opportunity in Energy Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missourian Finds New Opportunity in Energy Industry Missourian Finds New Opportunity in Energy Industry Missourian Finds New Opportunity in Energy Industry July 1, 2010 - 4:15pm Addthis David Pollack didn't want to settle. After graduating from college in May 2008 with a bachelor's degree in mechanical engineering, David Pollack became frustrated by the scarcity of quality job opportunities. He wanted something that would challenge him professionally. He took action and launched Cornerstone Energy Solutions, a company that improves energy efficiency in residential, commercial and industrial settings. The inspiration for the company came from his father, a retired history teacher, who often talked about the energy crisis he believed America was facing. "For a long time, I listened to my father talk about the energy

350

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

351

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

352

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

353

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

354

Energy-Efficiency Improvement Opportunities for the Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

3970E Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division...

355

Transportation Energy Model of the World Energy Projection System ...  

U.S. Energy Information Administration (EIA)

The WEPS Transportation Energy Model is a structural accounting model for road, rail, air, domestic shipping, international shipping, and pipeline energy use.

356

Promoting Energy Efficiency in Cement Making: The ENERGY STAR(R) for Industry Program  

E-Print Network (OSTI)

industry. For information Energy Guide for Cement Making,eworrellt@lbl.gov. End Notes Energy Efficiency Improvementthe Cement Industry: An ENERGY STAR® Guide for Energy and

Masanet, Eric; Worrell, Ernst

2007-01-01T23:59:59.000Z

357

Energy Management in a Multi-Industry Organization  

E-Print Network (OSTI)

Tenneco operates in seven of the nation's ten most energy intensive industries: Petroleum Refining, Chemicals Manufacturing, Pulp and Paper, Transportation Equipment, Primary Metals, Food Processing, and Machinery. This diversification of manufacturing operations and products, coupled with decentralization of management decision making present special challenges to the planning and coordination of an effective corporate level energy program. These challenges include accommodating different management styles and attitudes, different manufacturing operations, different energy intensities, different businesses, and different degrees of government regulation. Tenneco's energy program has steadily expanded to include all segments of the companies' various operations, even the least energy intensive, and has provided a steady stream of economic benefits in the form of avoided energy costs.

Lawrence, J.

1981-01-01T23:59:59.000Z

358

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

359

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

360

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

362

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

363

Non-ferrous Metals Industry Energy Management System Certification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-ferrous Metals Industry Energy Management System Certification Details about China Quality Certification Center and Energy Management System certifications....

364

Industrial Energy Efficiency Cooperative Partnership (Chinese/English)  

SciTech Connect

Chinese/English brochure on the Save Energy Now process for DOE Industrial Energy Efficiency Partnership with China.

2008-01-01T23:59:59.000Z

365

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

366

Talking energy with R. J. Reynolds industries  

SciTech Connect

Energy management takes a high priority among the various companies making up R.J. Reynolds (RJR) Industries, whose corporate energy program could serve as a model for other large, diversified organizations. Placing energy as a part of corporate business planning helps to integrate it into capital and business development programs. Each company prepares an annual five-year plan for energy strategy. The company provides technical seminars for professional training for both the domestic and international staff. Summaries of energy-management activities at individual companies cover RJR Tobacco International, R.J. Reynolds Tobacco Co., R.J. Reynolds Archers, Sea-Land Services, and Del Monte Corporation. (DCK)

Glorioso, J.

1982-06-01T23:59:59.000Z

367

Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duke Energy - Small Commercial and Industrial Energy Efficiency Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate Program Duke Energy - Small Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Combined maximum of $50,000/facility/year Program Info State Indiana Program Type Utility Rebate Program Rebate Amount CFL Screw-In: $2 Hardwired, Pin Based CFL Fixtures (Replacing Incandescent): $22 T8 Fluorescent Fixtures (Replacing T8/T12): $3-$30 T5 Fluorescent Fixtures (Replacing T12): $5-$13 T8 High Bay Fixtures (Replacing HID): $30-$60 T5 High Bay Fixtures (Replacing HID): $30-$75

368

Emerging energy-efficient industrial technologies  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

369

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

U.S. industry consumes approximately 37% of the nation's energy to produce 24% of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

2001-05-01T23:59:59.000Z

370

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

371

ENERGY STAR Challenge for Industry: Statement of Energy Improvement |  

NLE Websites -- All DOE Office Websites (Extended Search)

Statement of Energy Statement of Energy Improvement Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

372

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

373

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and guidance service. Energy audits and analysis of specificfree comprehensive energy audits or industrial assessments.as a part of the Enterprise Energy Audit Programme (EEAP) of

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

374

Energy study of railroad freight transportation. Volume 1. Executive summary  

SciTech Connect

The railroad industry plays a vital role in transporting goods, raw materials, and food necessary to the well being of the population and necessary to facilitate the operations of our industrial economy. Because of the vital part that the railroad industry plays in the economy and because of its ability to move goods with relatively small amounts of fuel, the US ERDA embarked on a study to determine the role of the Federal government in promoting conservation in the industry and in freight movements in general. Toward this final objective, the study compiled a description of the railroad industry, its structure, equipment, facilities, economics, and energy consumption; compiled a description of the regulation of the industry and considered ways in which the regulation has affected fuel consumption by the railroads; and analyzed candidates for fuel efficiency improvement and evaluated them on the basis of economics and the likelihood of their adoption by industry. A description of the industry, an analysis of energy consumption by the industry, a discussion of mechanisms for evaluating efficiency improvement proposals, a description and evaluation of conservation efficiency improvement proposals, a description and evaluation of conservation opportunities, and a discussion of recommended activities are included.

1979-08-01T23:59:59.000Z

375

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Second Quarter Clean EnergyClean Transportation Jobs Report 2013 Second Quarter Clean EnergyClean Transportation Jobs Report Enivronmental Entrepreneurs (E2) Clean Energy...

376

Energy Policy Act Transportation Rate Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

ii Energy Information Administration/ Energy Policy Act Transportation Rate Study: Interim Report on Coal Transportation Contacts This report, Energy Policy Act ...

377

Energy Conservation in Army Industrial Facilities  

E-Print Network (OSTI)

The United States Army Materiel Development and Readiness Command (DARCOM) is responsible for the life cycle functions for all assigned materiel systems of the United States Army and Department of Defense agencies. DARCOM installations account for approximately 19 percent of the Army's total energy consumption (approximately 44 million barrels of oil equivalent) and have reduced energy consumption approximately 26 percent below FY 75 levels. Highlights of the program include a comprehensive energy audit program, process energy studies, several different energy capital investment programs, and an aggressive energy awareness program. This paper describes the program with particular emphasis on the ongoing effort to establish relationships between key production parameters and energy consumption throughout the command. This will enable DARCOM to forecast future energy requirements and to determine the effectiveness of the conservation program in a dynamic industrial environment.

Aveta, G. A.; Sliwinski, B. J.

1984-01-01T23:59:59.000Z

378

Transportation Energy Data Book, Edition 19  

SciTech Connect

The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

Davis, S.C.

1999-09-01T23:59:59.000Z

379

Market analysis of the solar energy industry  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-01T23:59:59.000Z

380

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Industrial Gas Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Gas Turbines Industrial Gas Turbines Industrial Gas Turbines November 1, 2013 - 11:40am Addthis A gas turbine is a heat engine that uses high-temperature, high-pressure gas as the working fluid. Part of the heat supplied by the gas is converted directly into mechanical work. High-temperature, high-pressure gas rushes out of the combustor and pushes against the turbine blades, causing them to rotate. In most cases, hot gas is produced by burning a fuel in air. This is why gas turbines are often referred to as "combustion" turbines. Because gas turbines are compact, lightweight, quick-starting, and simple to operate, they are used widely in industry, universities and colleges, hospitals, and commercial buildings. Simple-cycle gas turbines convert a portion of input energy from the fuel

382

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

383

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

384

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

385

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

386

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

387

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Transport Corridors: West-wide energy corridor Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the environmental impacts from the proposed action and the range of reasonable alternatives. The proposed action calls for designating more than 6,000 miles of energy transport corridors across the West. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. More Documents & Publications

388

Industrial Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

steam, natural gas, coal, and other fuels supplied to a manufacturing plant from off-site power plants, gas companies, and fuel distributors. Energy then flows to either a central...

389

Progress Energy Carolinas - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study (Retrofit Only): 50% of cost Design Incentive (New Construction Only): 0.05kWh projected first-year savings Building Energy Modeling (New Construction Only): Up to...

390

Department of Energy Launches Initiative with Industry to Better...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Initiative with Industry to Better Protect the Nation's Electric Grid from Cyber Threats Department of Energy Launches Initiative with Industry to Better Protect the...

391

ENERGY STAR Challenge for Industry: Poster, "Rise to the Challenge...  

NLE Websites -- All DOE Office Websites (Extended Search)

business resources State and local government resources ENERGY STAR Challenge for Industry: Poster, "Rise to the Challenge" (Version 3) This poster (V.3) is for industrial...

392

Energy Department Develops Tool with Industry to Help Utilities...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities Strengthen Their...

393

Energy Efficiency Program for Certain Commercial and Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Program for Certain Commercial and Industrial Equipment Energy Efficiency Program for Certain Commercial and Industrial Equipment The purpose of this memorandum is to...

394

Setting the Standard for Industrial Energy Efficiency  

SciTech Connect

Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement, documentation, and continuousimprovement.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2007-06-01T23:59:59.000Z

395

Arizona Solar Energy Industries Association | Open Energy Information  

Open Energy Info (EERE)

Energy Industries Association Energy Industries Association Jump to: navigation, search Logo: Arizona Solar Energy Industries Association Name Arizona Solar Energy Industries Association Place Arizona Website http://www.arizonasolarindustr Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

New Industrial Park Energy Supply for Economical Energy Conservation  

E-Print Network (OSTI)

The new industrial park energy supply (NIPES) concept is an attractive approach for providing a stable, long-term domestic energy source for industrial plants at reasonable cost and reasonable financial risk. The NIPES concept consists of a system of energy supply stations and steam transmission lines that supply process heat and electricity to multiple users in an industrial park(s) setting. The energy supply stations grow along with the industrial park(s) as new industries are attracted by a reliable, reasonably priced energy source. This paper describes the generic NIPES concept and summarizes the results of the evaluation of a specific NIPES system for the Lake Charles, Louisiana, area. The economics of the specific NIPES system is compared to that of individual user-owned coal-fired facilities for new industrial plants and of individual user-owned oil-fired facilities for existing industrial plants. The results indicate substantial savings associated with the NIPES system for both new and existing users and/or a potential for high return on investment by third-party investors.

Scott, D.; Marda, R. S.; Hodson, J. S.; Williams, M.

1982-01-01T23:59:59.000Z

397

Next generation solutions for the energy services industry  

E-Print Network (OSTI)

Solutions for the Energy Services Industry Satish Kumar,Steve Kromer, Enron Energy Services ABSTRACT Internetare reshaping the energy services landscape and the pivotal

Kumar, Satish; Kromer, Steve

2006-01-01T23:59:59.000Z

398

Energy Efficiency Improvement Opportunities for the Cement Industry  

E-Print Network (OSTI)

Lime Institute. 2001. Energy Efficiency Opportunity Guide inIndustry, Office of Energy Efficiency, Natural Resourcesof a Cement Kiln, Energy Efficiency Demonstration Scheme,

Worrell, Ernst

2008-01-01T23:59:59.000Z

399

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

400

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

Industry (CII), 2007. ?Energy Saving in After TreatmentTechnologies for Energy Savings/GHG Emissions Reduction (Practice Case Study 300: Energy Savings by Reducing the Size

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

P. , 2002. SITRA Energy Audit – Implementation Strategy inof Indian Industry (CII), 2006. Energy Bulletin onFinishing Stenters, ADB Energy-efficiency Support Project.

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

402

Value Capture in the Global Wind Energy Industry  

E-Print Network (OSTI)

investigations/wind-energy-funds-going-overseas/ Dedrick,America. GWEC (Global Wind Energy Council) (2010). Globaland investment flows in the wind energy industry. Peterson

Dedrick, Jason; Kraemer, Kenneth L.

2011-01-01T23:59:59.000Z

403

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

404

Effective Potential Energy Expression for Membrane Transport  

E-Print Network (OSTI)

All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.

Robert W. Finkel

2007-02-11T23:59:59.000Z

405

Linking Energy Efficiency and ISO: Creating a Framework for Sustainable Industrial Energy Efficiency  

E-Print Network (OSTI)

application of energy efficiency standards in China andfor Sustainable Industrial Energy Efficiency in China. ”Model for Industrial Energy Efficiency”, In Proceedings of

McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams, Robert

2005-01-01T23:59:59.000Z

406

Screening study on high temperature energy transport systems  

SciTech Connect

The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

Graves, R.L.

1980-10-01T23:59:59.000Z

407

Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

in the Metal Fabrication Industry. 18 th National Industrial40-51. Pharmaceutical Industry Association of Puerto Rico (on Energy Efficiency in Industry. American Council for an

Galitsky, Christina

2008-01-01T23:59:59.000Z

408

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

409

Transportation energy data book: edition 16  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

410

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

411

Energy Flow Models for the Steel Industry  

E-Print Network (OSTI)

Energy patterns in the U. S. steel industry are examined using several models. First is an end-use model based on data in the 1994 Manufacturing Energy Consumption Survey (MECS). Then a seven-step process model is presented and material flow through each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated against both our energy end use and material flow models. These models can serve as the base case for simulating changes in energy utilization and waste streams for steelmaking spurred by economic or regulatory conditions or technology innovations.

Hyman, B.; Andersen, J. P.

1998-04-01T23:59:59.000Z

412

ENERGY STAR Challenge for Industry: Registration Form | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Registration Form Registration Form Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

413

ENERGY STAR Challenge for Industry: Participant Handbook | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Participant Handbook Participant Handbook Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

414

ENERGY STAR Challenge for Industry: Recognition Application Form | ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

Recognition Application Form Recognition Application Form Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

415

Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness  

E-Print Network (OSTI)

This paper describes the Department of Energy's industrial energy auditing program, its achievements to date, and future plans. The Energy Analysis and Diagnostic Center (EADC) Program provides no-cost energy audits to small and medium size manufacturers, and recommends ways to cut plant energy use. The program is conducted by universities for the DOE, and has performed over 3600 audits since 1976. Approximately 55 percent of the recommendations made through the EADC program are implemented by industry. Since program inception, audit recommendations have produced a cumulative national energy savings of about 67 trillion Btus, valued at $365 million. The National Energy Strategy (NES) has identified industrial energy audits as a cost-effective means to reduce energy consumption in industry. In support of the NES, the EADC program is expanding, and plans to have 40 operational EADCs by the year 2000. Through outreach activities, EADCs will also encourage similar private-sector programs, e.g. utility-conducted industrial audits performed for demand-side management programs.

Glaser, C.

1992-04-01T23:59:59.000Z

416

New trends in industrial energy efficiency in the Mexico iron and steel industry  

E-Print Network (OSTI)

de Ingeniería, U N A M . , Mexico Energy Analysis Program atIndustrial Energy Efficiency in the Mexico: Iron and Steelenergy consumption of the iron and steel industry is the feedstock. In Mexico,

Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

1999-01-01T23:59:59.000Z

417

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

418

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and Renewable Energy (EERE) [2] Office of Industrialthat participate in EERE’s Industries of the Future Program.

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

419

Shermco Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Shermco Industries Inc Shermco Industries Inc Jump to: navigation, search Name Shermco Industries, Inc. Place Irving, Texas Zip 75061 Sector Wind energy Product Irving-based electrical power maintenance and analysis company. Their specialized wind power division, provides on-site and up-tower generator maintenance and repair work. Coordinates 32.813516°, -96.955506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.813516,"lon":-96.955506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Magnetech Industrial Services | Open Energy Information  

Open Energy Info (EERE)

Magnetech Industrial Services Magnetech Industrial Services Jump to: navigation, search Name Magnetech Industrial Services Address 800 Nave Rd SE Place Massillon, Ohio Zip 44646 Sector Carbon, Hydro, Wind energy Product Maintenance and repair Phone number 330-830-3500 Website http://www.magnetech.com Coordinates 40.7630029°, -81.5142436° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7630029,"lon":-81.5142436,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alaskan Wind Industries | Open Energy Information  

Open Energy Info (EERE)

Alaskan Wind Industries Alaskan Wind Industries Jump to: navigation, search Name Alaskan Wind Industries Address 51235 Kenai Spur Highway Place Nikiski, Alaska Zip 99635 Sector Wind energy Product Wind Turbines & Solar Products. Installation and Procurement Website http://www.akwindindustries.co Coordinates 60.722798°, -151.325844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.722798,"lon":-151.325844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

THE DEVELOPMENT OF A 1990 INDUSTRIAL ENERGY USE BASELINE  

E-Print Network (OSTI)

to determine total energy consumption for that industry. However, if specific energy intensities per unit consumption, and emissions generated by energy consumption, a comprehensive, baseline data set of industrial branches of Canadian industry, forms the goal of this report. An adequate baseline energy consumption

423

TRANSPORTATION ENERGY DATA BOOK: EDITION 20  

NLE Websites -- All DOE Office Websites (Extended Search)

59 59 (Edition 20 of ORNL-5 198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 20 Stacy C. Davis Oak Ridge National Laboratory October 2000 Prepared for Office of Transportation Technologies U.S. Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 3783 l-6073 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-OOOR22725 Users of the Transportation Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Ms. Stacy Davis, Oak Ridge National Laboratory.

424

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

425

USDA, Departments of Energy and Navy Seek Input from Industry to Advance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USDA, Departments of Energy and Navy Seek Input from Industry to USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation USDA, Departments of Energy and Navy Seek Input from Industry to Advance Biofuels for Military and Commercial Transportation August 30, 2011 - 12:23pm Addthis WASHINGTON, Aug. 30, 2011 -Secretary of Agriculture Tom Vilsack, Secretary of Energy Steven Chu, and Secretary of the Navy Ray Mabus today announced the next step in the creation of a public-private partnership to develop drop-in advanced biofuels. The Secretaries issued a Request for Information (RFI) laying out the Administration's goals, assumptions, and tools and requesting from industry specific ideas for how to leverage private capital markets to establish a commercially viable drop-in biofuels

426

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

427

Transportation energy data book: Edition 13  

SciTech Connect

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

428

Transportation energy data book: Edition 12  

SciTech Connect

The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Morris, M.D.

1992-03-01T23:59:59.000Z

429

Transportation energy data book: Edition 13  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

430

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Element One, Inc. Element One, Inc. National Renewable Energy Laboratory 191524 likes Element One, based in Boulder, Colorado, has created the only available coatings that change color when detecting hydrogen and other hazardous gas leaks, either reversibly or non-reversibly, to provide both current and historical information about leaks. Element One's patented gas indicators and sensors use catalyzed thin films or nanoparticles of a transition metal oxide to create very low cost sensors for use in industrial and consumer environments, greatly reducing the potential for undetected leaks and their cost and safety implications. This technology is also being integrated for use in refineries, industry gas and fuel cells systems and was developed using technology from the National Renewable Energy Laboratory.

431

Industry Recruitment/Support | Open Energy Information  

Open Energy Info (EERE)

Recruitment/Support Recruitment/Support Jump to: navigation, search To promote economic development and the creation of jobs, some states offer financial incentives to recruit or cultivate the manufacturing and development of renewable energy systems and equipment. These incentives commonly take the form of tax credits, tax exemptions and grants. In some cases, the amount of the incentive depends on the amount of eligible equipment that a company manufactures. Most of these incentives apply to several renewable energy technologies, but a few states target specific technologies, such as wind or solar. These incentives are usually designed as temporary measures to support industries in their early years, and they commonly include a sunset provision to encourage the industries to become

432

Energy-Efficiency Improvement Opportunities for the Textile Industry  

E-Print Network (OSTI)

for cement making. An ENERGY STAR Guide for Energy and PlantSteel Industry. An ENERGY STAR? Guide for Energy and Plant1997. Cutting your energy costs-A guide for the textile

Hasanbeigi, Ali

2010-01-01T23:59:59.000Z

433

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

434

Residential and Transport Energy Use in India: Past Trend and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Transport Energy Use in India: Past Trend and Future Outlook Title Residential and Transport Energy Use in India: Past Trend and Future Outlook Publication Type...

435

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and ENERGY STAR’ S Energy Guides for entire industries,as a part of their Energy Guides for “focus” partners.savings manual, an energy management guide, an interactive

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

436

Energy Crossroads: Transportation | Environmental Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide...

437

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network (OSTI)

Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash a wide range of topics associated with power sources for hybrid electric cars. Major emphasis

Azad, Abdul-Majeed

438

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

439

Transportation energy data book: Edition 15  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

440

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. ” M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

442

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

443

Industrial Energy Efficiency and Climate Change Mitigation  

E-Print Network (OSTI)

and Paper n Other Industries, Electricity Conservation s65% of electricity consumed by industry is used by motorof the main industries include electricity savings. q

Worrell, Ernst

2009-01-01T23:59:59.000Z

444

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

445

Workshop Proceedings of the Industrial Building Energy Use  

E-Print Network (OSTI)

Industrial Data Base? PURCHASED, SITE, IDENTIFIED ENERGY END USES PG&EEUA DATABASE ELECTRICITY LIGHTING AIR CONDITIONING REFRIGERATION

Akbari, H.

2008-01-01T23:59:59.000Z

446

Carbon Emissions: Chemicals Industry - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... is sequestered in chemical industry products, such as plastics and fertilizers, rather than emitted through combustion. [Energy ...

447

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

448

Lincoln Electric System (Commercial and Industrial) - Sustainable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial) - Sustainable Commercial and Industrial) - Sustainable Energy Program Lincoln Electric System (Commercial and Industrial) - Sustainable Energy Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate '''General Incentive Limits''' Commercial Industrial Lighting Retrofit: $100,000 per program year Commercial and Industrial Energy Efficiency: $100,000 per program year Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Commercial Industrial Lighting Retrofit Lighting Retrofit: $500/kW of peak-demand reduction

449

Transportation: Environment, energy and the economy  

DOE Green Energy (OSTI)

In the US, the transportation sector consumes over one quarter of the entire energy used, almost in its entirety as petroleum products, and in quantities greater than the total US domestic oil production. The transportation sector is responsible for a significant fraction of all emissions that either prevent US cities from achieving compliance with EPA air quality standards or have serious global change implications. Finally, the GDP (Gross Domestic Product) and employment due to the sector are low and incommensurate with the high fraction of energy that the transportation sector consumes. We examine below this situation in some detail and make recommendations for improvements.

Petrakis, L.

1993-01-11T23:59:59.000Z

450

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

451

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

452

Secretary Chu Announces More than $155 Million for Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Announces More than $155 Million for Industrial Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S.

453

Secretary Chu Announces More than $155 Million for Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than $155 Million for Industrial More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S. carbon emissions.

454

DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Industrial Efficiency Leaders Midwest Industrial Efficiency Leaders DOE Recognizes Midwest Industrial Efficiency Leaders September 10, 2009 - 12:00am Addthis DETROIT, MI - The U.S. Department of Energy and Michigan Governor Jennifer M. Granholm joined with over 300 industry, state, and federal leaders to recognize industrial efficiency leaders and plot a course to accelerate industrial energy efficiency in the Midwest. As part of the Midwest Industrial Energy Efficiency Exchange that began last night and continued today, Governor Granholm and DOE announced 11 Save Energy Now awards recognizing industry leaders for their exemplary energy saving accomplishments. Attendees at the Energy Efficiency Exchange also had an opportunity to learn about new energy saving technologies and ways to

455

JUGENHEIMER INDUSTRIAL SUPPLIES INC | Open Energy Information  

Open Energy Info (EERE)

JUGENHEIMER INDUSTRIAL SUPPLIES INC JUGENHEIMER INDUSTRIAL SUPPLIES INC Jump to: navigation, search Name JUGENHEIMER INDUSTRIAL SUPPLIES INC Address 6863 COMMERCE DR Place Hubbard, Ohio Zip 44425 Sector Services Product Energy provider: energy transmission and distribution; Engineering/architectural/design;Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone number 800-533-8171 Website http://WWW.JUGENHEIMERSUPPLIES Coordinates 41.179321°, -80.570193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.179321,"lon":-80.570193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

457

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

458

Amrit Bio Energy Industries Ltd | Open Energy Information  

Open Energy Info (EERE)

Amrit Bio Energy Industries Ltd Amrit Bio Energy Industries Ltd Jump to: navigation, search Name Amrit Bio Energy & Industries Ltd. Place Kolkata, West Bengal, India Zip 700017 Sector Biomass Product Kolkata-based biomass project developer. Subsidiary of Amrit Projects Ltd. (APL). Coordinates 22.52667°, 88.34616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.52667,"lon":88.34616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Industries in focus | ENERGY STAR Buildings & Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants ENERGY STAR Energy Performance Indicators for plants » Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance

460

UN Alcohol Energy Data: Consumption by other industries and constructi...  

Open Energy Info (EERE)

other industries and construction The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbon Emissions: Paper Industry - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for Selected Paper Industries, 1994. Paper and paperboard mills emit over 80 percent of the energy-related carbon in ...

462

Award Recipient of the ENERGY STAR Challenge for Industry Gustine...  

NLE Websites -- All DOE Office Websites (Extended Search)

the ENERGY STAR Challenge for Industry in 2010. This plant reached 12% reduction in energy intensity within two years of its baseline. The Gustine Plant achieved the...

463

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

464

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

465

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

466

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

467

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

468

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

469

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

470

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

471

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

472

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

473

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

474

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

475

ENERGY STAR Challenge for Industry: Poster, "Our Actions Made...  

NLE Websites -- All DOE Office Websites (Extended Search)

business resources State and local government resources ENERGY STAR Challenge for Industry: Poster, "Our Actions Made a Difference" This co-brandable poster is for ENERGY STAR...

476

Award Recipient of the ENERGY STAR Challenge for Industry Bainbridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 47 million inshell pounds of peanuts. The Bainbridge facility achieved the ENERGY STAR Challenge for Industry in 2010. This plant reached 16% reduction in energy...

477

Trends in Industrial Energy Efficiency: The Role of Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Industrial Energy Efficiency: The Role of Standards, Certification, and Energy Management in Climate Change Mitigation Speaker(s): Aimee McKane Date: March 18, 2008 -...

478

CANCELED: Trends in Industrial Energy Efficiency - the Role of...  

NLE Websites -- All DOE Office Websites (Extended Search)

CANCELED: Trends in Industrial Energy Efficiency - the Role of Standards, Certification, and Energy Management in Climate Change Mitigation Speaker(s): Aimee McKane Date: January...

479

Energy Management in the Materials Industry: Home Page  

Science Conference Proceedings (OSTI)

This course is directed toward energy managers, engineers, supervisors, and managers working in the materials industry who want to reduce their energy usage ...

480

2013 Summer Study on Energy Efficiency in Industry | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Development Adoption Compliance Regulations Resource Center 2013 Summer Study on Energy Efficiency in Industry American Council for an Energy-Efficient Economy (ACEEE)...

Note: This page contains sample records for the topic "industrial transportation energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

482

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network (OSTI)

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management's control of energy through accurate measurement of energy usage and costs by plant burden centers. The concept of responsibility accounting involves the continuous flow of information through, out an organization for the purposes of planning and cost control. In the past, responsibility accounting has been used primarily to control labor costs, to reduce material waste, and to contain the cost of supplies. ERA extends factory responsibility accounting systems to include energy. With ERA, management will know who is making an effort to conserve energy, how a new process affects energy usage, where additional emphasis on conservation may be needed and how much energy is being saved.

Kelly, R. L.

1980-01-01T23:59:59.000Z

483

Advanced Energy Industries, Inc. SEGIS developments.  

DOE Green Energy (OSTI)

The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

Scharf, Mesa P. (Advanced Energy Industries, Inc., Bend, OR); Bower, Ward Isaac; Mills-Price, Michael A. (Advanced Energy Industries, Inc., Bend, OR); Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

2012-03-01T23:59:59.000Z

484

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

485

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate  

Open Energy Info (EERE)

Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Industry Topics: GHG inventory, Low emission development planning, Policies/deployment programs Resource Type: Publications Website: www.unido.org/fileadmin/user_media/Publications/Pub_free/UNEnergy2009P Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change Screenshot References: Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change[1]

486

DOE Announces First Companies to Receive Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Companies to Receive Industrial Energy First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today announced the first industrial plants in the country to be certified under the Superior Energy Performance program -- a new, market-based industrial energy efficiency program. The energy management certification program is accredited by the American National Standards Institute (ANSI) and will serve as a roadmap for industrial facilities to help continually improve their efficiency and maintain market competitiveness. The industrial and manufacturing sectors, which account for roughly one-third of energy use in the United

487

Energy Policy Act Transportation Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Preface This report, ...

488

Table 24. Refining Industry Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

- Corrections to Tables 24 to 32 - Corrections to Tables 24 to 32 Table 24. Refining Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 4/ (million metric tons) 190.4 185.7 188.0 191.3 207.3 215.6 220.0 222.8 225.1 226.3 228.0 230.7 234.1 237.5 238.5 239.4 239.4 238.6 240.6 240.5 242.2 244.2 245.9 246.3 246.6 1.2% Table 25. Food Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2002- 2025 Carbon Dioxide Emissions 3/ (million metric tons) 87.8 89.4 87.5 87.8 89.2 90.2 90.9 91.4 92.2 93.5 94.5 95.7 96.7 97.7 98.6 99.6 100.8 101.9 102.9 104.1 105.4 107.0 108.7 110.3 112.1 1.0% Table 26. Paper Industry Energy Consumption 2001 2002 2003 2004 2005 2006 2007

489

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

490

Storing and transporting energy - Energy Innovation Portal  

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a ...

491

Transportation Energy Data Book: Edition 14  

Science Conference Proceedings (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

492

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

4B9B-8A3C0EC058CE647C 17. Energy Efficiency Best Practicedatabase (linked to energy efficiency measures in motors) •in 1980, funds for energy efficiency investments in industry

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

493

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

494

IPS- Industrial Power Systems | Open Energy Information  

Open Energy Info (EERE)

IPS- Industrial Power Systems IPS- Industrial Power Systems Jump to: navigation, search Name IPS- Industrial Power Systems Address 1650 Indianwood Circle Place Maumee, Ohio Zip 43537 Sector Biofuels, Biomass, Buildings, Carbon, Efficiency, Hydro, Solar, Vehicles, Wind energy Product Engineering/architectural/design;Installation; Maintenance and repair; Other:Construction Phone number 419-531-3121 Website http://www.IPSContractor.com Coordinates 41.5867081°, -83.6797736° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontabl