Powered by Deep Web Technologies
Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EERE-Industrial Technologies Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE-Industrial Technologies Program EERE-Industrial Technologies Program EERE-Industrial Technologies Program EERE-Industrial Technologies Program More Documents & Publications...

2

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

3

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

4

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

5

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

6

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

7

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

8

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

9

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

10

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

11

Office of Industrial Technologies: Summary of program results  

Science Conference Proceedings (OSTI)

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

12

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

13

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 3: Historical ITP Technology Successes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

157 DOE Industrial Technologies Program 157 DOE Industrial Technologies Program Appendix 3: Historical ITP Technology Successes u Absorption Heat Pump/Refrigeration Unit ........................................................................................................................................160 u Advanced Turbine System..................................................................................................................................................................160 u Aerocylinder Replacement for Single-Action Cylinders....................................................................................................................160 u Aluminum Roofing System................................................................................................................................................................160

14

Improve Compressed Air System Performance with AIRMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program AIRMaster+ software tool can help industrial plants optimize compressed air system efficiency.

2008-12-01T23:59:59.000Z

15

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

16

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American

17

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Introduction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACTS IMPACTS Industrial Technologies Program: Summary of Program Results for CY 2009 Boosting the Productivity and Competitiveness of U.S. Industry Foreword Foreword A robust U.S. industrial sector relies on a secure and affordable energy supply. While all Americans are feeling the pinch of volatile energy prices, project financial-constriction impacts on industry are especially acute. Uncertainty over energy prices, emission regulations, and sources of financing not only hurt industrial competitiveness - together they have the potential to push U.S. manufacturing operations offshore, eliminate jobs that are the lifeline for many American families, and weaken a sector of the economy that serves as the backbone of U.S. gross domestic product. The Industrial Technologies Program (ITP) is actively

18

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

19

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

Not Available

2008-12-01T23:59:59.000Z

20

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 7: Methodology for Technology Tracking and Assessment of Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

191 DOE Industrial Technologies Program 191 DOE Industrial Technologies Program Appendix 7: Methodology for Technology Tracking and Assessment of Benefits u Technology Tracking............................................................................................................................................ 192 u Methods of Estimating Benefits.............................................................................................................................. 192 u Deriving the ITP Cost/Benefit Curve ...................................................................................................................... 193 Methodology for Technology Tracking and Assessment of Benefits

22

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

23

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

2008-12-01T23:59:59.000Z

24

Program on Technology Innovation: Industrial Electrotechnology Development Opportunities  

Science Conference Proceedings (OSTI)

With the industrial sector accounting for about one-third of all energy consumed, continued development of new electrotechnologies will result in improved energy utilization, gross domestic product (GDP) growth, and job creation in this sector. Customers need to be made aware of the operational benefits of energy-efficient technologies, including improved process throughput and quality, reduced energy costs, ease of environmental compliance, enhanced productivity, and greater profits. Utilities can help ...

2009-07-09T23:59:59.000Z

25

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

26

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

27

Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development  

E-Print Network (OSTI)

The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum implementation of existing and new energy conservation technologies; substitute, where possible, abundant fuels for scarce fuels; and minimize energy loss in waste streams. The basic strategy is cost-shared research, development, and demonstration leading to commercialization of energy-efficient technology. Considerations for project selection are: energy savings, acceleration of implementation, level of private effort, benefits to industry, cost-sharing, and degree of risk. Projected industry savings of the current program are 1.5 Quads by 1985 and 5.5 Quads by 2000.

Massey, R. G.

1980-01-01T23:59:59.000Z

28

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

DOE Green Energy (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

29

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

DOE Green Energy (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

30

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 1617, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

31

Program on Technology Innovation: Carbon Nanotube Technology for the Electric Power Industry  

Science Conference Proceedings (OSTI)

A couple decades ago, a new molecular form of carbon exhibiting extraordinary properties was discovered. This resulted in a frenzy of basic and applied research, and tremendous strides have been made. The technology that ensued is still relatively immature, but there is the prospect that the technology may be used in the future for a wide range of applications in the electric power industry. In fact, the three new materials discussed in this report (fullerenes, nanotubes, and graphene) have the potential...

2011-11-22T23:59:59.000Z

32

Program on Technology Innovation: Technology R&D Strategy for the Electric Power Industry: "Wild Cards"  

Science Conference Proceedings (OSTI)

To address the many challenges facing the electric power industry during the next 20 years, an effective process of technology R&D planning is needed. To augment recently completed scenario-based planning, this report identifies the technology and R&D needs that result from 21 additional institutional, political, financial, technical, or social changes ("wild cards") not addressed in the prior scenarios project (see EPRI Report 1014385). This report also identifies key R&D priorities that occur in multip...

2008-03-14T23:59:59.000Z

33

U.S. Department of Energy's Industrial Technologies Program and Its Impacts  

E-Print Network (OSTI)

The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL's most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP's research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

Weakley, S. A.; Brown, S. A.

2011-01-01T23:59:59.000Z

34

U.S. Department of Energy's Industrial Technology Program and Its Impacts  

E-Print Network (OSTI)

The U.S. Department of Energys Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNLs most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITPs research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.

Weakley, S. A.; Roop, J. M.

2009-05-01T23:59:59.000Z

35

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

2008-12-01T23:59:59.000Z

36

Industrial - Program Areas - Energy Efficiency & Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Animation The ORNL Industrial Technologies Program has made technological advances in industry that contribute to improved efficiency through decreased energy consumption, improved...

37

CUSTOMER RESPONSE TO BESTPRACTICES TRAINING AND SOFTWARE TOOLS PROVIDED BY DOE'S INDUSTRIAL TECHNOLOGIES PROGRAM  

Science Conference Proceedings (OSTI)

The BestPractices program area, which has evolved into the Save Energy Now (SEN) Initiative, is a component of the U.S. Department of Energy's (DOE's) Industrial Technologies Program (ITP) that provides technical assistance and disseminates information on energy-efficient technologies and practices to U.S. industrial firms. The BestPractices approach to information dissemination includes conducting training sessions which address energy-intensive systems (compressed air, steam, process heat, pumps, motors, and fans) and distributing DOE software tools on those same topics. The current report documents a recent Oak Ridge National Laboratory (ORNL) study undertaken to determine the implementation rate, attribution rate, and reduction factor for industrial end-users who received BestPractices training and registered software in FY 2006. The implementation rate is the proportion of service recipients taking energy-saving actions as a result of the service received. The attribution rate applies to those individuals taking energy-saving actions as a result of the services received and represents the portion of the savings achieved through those actions that is due to the service. The reduction factor is the saving that is realized from program-induced measures as a proportion of the potential savings that could be achieved if all service recipients took action. In addition to examining those factors, the ORNL study collected information on selected characteristics of service recipients, the perceived value of the services provided, and the potential energy savings that can be achieved through implementation of measures identified from the training or software. Because the provision of training is distinctly different from the provision of software tools, the two efforts were examined independently and the findings for each are reported separately.

Schweitzer, Martin [ORNL; Martin, Michaela A [ORNL; Schmoyer, Richard L [ORNL

2008-03-01T23:59:59.000Z

38

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

39

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

40

Program on Technology Innovation: An Energy/Water Sustainability Research Program for the Electric Power Industry  

Science Conference Proceedings (OSTI)

This report presents a research plan, based on business and economic as well as technical considerations, that would create and test new technology and science to overcome present and future constraints on thermoelectric generation resulting from limited freshwater availability. The report will be of value to power company strategic planners, environmental managers, and generation managers as well as regulators, water resource managers, and environmentalists.

2007-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

INDUSTRIAL ASSESSMENT CENTER PROGRAM  

Science Conference Proceedings (OSTI)

Since its establishment in 1990, San Diego State Universitys Industrial Assessment Center (IAC) has served close to 400 small and medium-sized manufacturing plants in Southern California. SDSU/IACs efforts to transfer state-of-the-art technologies to industry have increased revenues, cultivated creativity, improved efficiencies, and benefited the environment. A substantial benefit from the program has been the ongoing training of engineering faculty and students. During this funding cycle, SDSU/IAC has trained 31 students, 7 of the graduate. A total of 92 assessments and 108 assessment days were completed, resulting in 638 assessment recommendations.

ASFAW BEYENE

2008-09-29T23:59:59.000Z

42

Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20 years, an effective process of technology R&D planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report presents a comprehensive technology R&D strategy for the next two decades that spans the breadth and depth of challenges and opportunities facing the North American electric utility industry.

2006-12-14T23:59:59.000Z

43

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

| Industrial Program Coordinator | Publications Courtesy of The New York Times, Noah Berger The overall goal of the plan to enhance the NSLS facility's Industrial Users'...

44

Technology Innovation Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofermentation System Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial readiness. TIP projects are proposed by ORNL scientists and engineers and selected competitively based on their potential for near-term societal or economic impact. TIP technologies are advanced through research and development and outreach to industry. TIP is funded by UT-Battelle licensing royalties. When a technology enters the TIP process, it is initially made unavailable

45

SHARED TECHNOLOGY TRANSFER PROGRAM  

DOE Green Energy (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

46

Technology Assistance Program | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Assistance Program Technology Assistance Program Licensing Staff Search For Technologies Available Technologies Licensing Opportunity Announcements Partnerships Home | Connect with ORNL | For Industry | Partnerships | Technology Licensing | Technology Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise and capabilities to accelerate the commercialization of licensed technologies. The Technology Assistance Program (TAP) provides funds for ORNL science & technology staff members to consult with licensees, performing work on the company's behalf that may include such activities as the following. Production of sample materials for evaluation

47

Industrial cogeneration optimization program  

SciTech Connect

The purpose of this program was to identify up to 10 good near-term opportunities for cogeneration in 5 major energy-consuming industries which produce food, textiles, paper, chemicals, and refined petroleum; select, characterize, and optimize cogeneration systems for these identified opportunities to achieve maximum energy savings for minimum investment using currently available components of cogenerating systems; and to identify technical, institutional, and regulatory obstacles hindering the use of industrial cogeneration systems. The analysis methods used and results obtained are described. Plants with fuel demands from 100,000 Btu/h to 3 x 10/sup 6/ Btu/h were considered. It was concluded that the major impediments to industrial cogeneration are financial, e.g., high capital investment and high charges by electric utilities during short-term cogeneration facility outages. In the plants considered an average energy savings from cogeneration of 15 to 18% compared to separate generation of process steam and electric power was calculated. On a national basis for the 5 industries considered, this extrapolates to saving 1.3 to 1.6 quads per yr or between 630,000 to 750,000 bbl/d of oil. Properly applied, federal activity can do much to realize a substantial fraction of this potential by lowering the barriers to cogeneration and by stimulating wider implementation of this technology. (LCL)

1980-01-01T23:59:59.000Z

48

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

49

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

50

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

51

Fostering a Renewable Energy Technology Industry  

E-Print Network (OSTI)

LBNL-59116 Fostering a Renewable Energy Technology Industry: An International Comparison of Wind and Renewable Energy, Wind & Hydropower Technologies Program, of the U.S. Department of Energy under Contract No by the Assistant Secretary of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program

52

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

53

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

54

Adjustable Speed Pumping Applications: Industrial Technologies Program (ITP) Pumping Systems Tip Sheet #11  

SciTech Connect

This two-page tip sheet provides practical tips on application of Adjustable Speed Drives in industrial settings.

2007-01-01T23:59:59.000Z

55

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

56

Program on Technology Innovation: Controlled Recycling of Contaminated Materials for Nuclear Industry Uses  

Science Conference Proceedings (OSTI)

This report addresses opportunities to recycle materials in radioactive waste by decontamination and fabrication into new components for use in the nuclear industry. In particular, a novel approach called "controlled recycling" involves a procedure that controls the material during decontamination, metal processing and remanufacture into components for reuse in the nuclear industry.

2006-11-09T23:59:59.000Z

57

Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report  

Science Conference Proceedings (OSTI)

Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

Azimi, S.A.; Conrad, J.L.; Reed, J.E.

1985-03-01T23:59:59.000Z

58

ERDA LWR plant technology program: role of government/industry in improving LWR performance  

SciTech Connect

Information is presented under the following chapter headings: executive summary; LWR plant outages; LWR plant construction delays and cancellations; programs addressing plant outages, construction delays, and cancellations; need for additional programs to remedy continuing problems; criteria for government role in LWR commercialization; and the proposed government program.

1975-10-07T23:59:59.000Z

59

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

60

The Office of Industrial Technologies technical reports  

SciTech Connect

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Program on Technology Innovation: Chloride Attack-Induced Aging of Concrete Structures in the Energy Industry  

Science Conference Proceedings (OSTI)

Corrosion of embedded steel elements (reinforcement, liner, pre- or post-tensioning device) is a major cause of structure dysfunction resulting in large maintenance and repair costs worldwide. This report focuses on chloride attackinduced aging of concrete structures in the energy industry. Chloride attack is a common aging issue caused by marine environment, the extensive ...

2012-11-30T23:59:59.000Z

62

Program on Technology Innovation: Assessment of Needs for Concrete Research in the Energy Industry  

Science Conference Proceedings (OSTI)

The objective of this report is to compile information on issues pertaining to the degradation of concrete structures in the energy industry and to provide guidance in areas where research and development efforts might be needed. The state of these structures, known as concrete degradation, the life management approach, and challenges with new structures are discussed. In each case, a set of suggestions for further research is proposed. Finally, a set of recommendations for the overall needs of short-, m...

2010-12-20T23:59:59.000Z

63

AVLIS industrial access program  

Science Conference Proceedings (OSTI)

This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

Not Available

1984-11-15T23:59:59.000Z

64

Hydropower Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

65

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

66

Emerging Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps *...

67

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

68

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

69

Technologies - Industrial Partnerships Office  

Energy, Utilities, & Power Systems. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

70

Program on Technology Innovation: Decision-Centered Guidelines for the Design of Human System Interfaces for Electric Power Industry Applications  

Science Conference Proceedings (OSTI)

Decision-centered guidelines support improved user decision making across a broad range of electric power industry application areas. The guidelines will aid in the design of user-centered human-system interfaces (HSIs), while increasing the beneficial uses of new technologies for electric power generation, transmission, and distribution (GTD) systems. Decision-centered guidelines are applicable to system designs involving new technology that will transform current user tasks, responsibilities, ...

2012-09-24T23:59:59.000Z

71

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. Emerging Energy-Efficient Industrial Technologies,

2005-01-01T23:59:59.000Z

72

Industrial Technology Program - Energy  

energy and eliminating oxide byproducts ... such as copper-indium- ... Goal is to approach solar cell performance observed at lab-scale

73

Technologies - Industrial Partnerships Office  

Jupiter Laser Facility. National Atmospheric Release Advisory Center. Program for Climate Model Diagnosis & Intercomparison. Site 300. Terascale Simulation Facility.

74

Technologies - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

75

Energy Programs of the Texas Industrial Commission  

E-Print Network (OSTI)

The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least 283.81 trillion BTU's of industrial energy in 1980. As the primary consumer of Texas' energy (54% of total, industry is a major focal point of the state's energy conservation effort. Although industry's overall record of energy conservation is good, such a large consumer must receive serious attention in any plan aimed at improving the overall efficiency of energy use in the state. The Texas Industrial Commission has been designated lead agency of the industrial conservation effort, and as such, created the Energy Utilization Department in the Fall of 1977. The multi-faceted department has established programs to accomplish its mission including: The Energy Search Center, an information access point for Texas manufacturers; a series of technical workshops and seminars; an annual Industrial Energy Technology Conference; the coordination of a university program for the training of industrial energy auditors; and organizational assistance in the establishment of regional energy conservation groups. Although manufacturers are encouraged to utilize the programs, they are designed primarily for small or medium-sized industries and low-technology operations where the employment of an energy specialist is economically impractical.

Heare, J.; dePlante, L. E.

1979-01-01T23:59:59.000Z

76

Emerging Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies Program Emerging Technologies Program Pat Phelan Program Manager patrick.phelan@ee.doe.gov (202)287-1906 April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov How ET Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings ET Mission: Accelerate the research, development and commercialization of emerging, high impact building technologies that are five years or less to market ready. 3 | Building Technologies Office eere.energy.gov

77

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

78

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

79

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

80

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

NSLS Industrial Users' Program Industry Home | Synchrotron Techniques | Battery Lab | Science Highlights | Industrial Program Coordinator | Publications Battery Lab NSLS users are...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Industrial Technologies Available for Licensing - Energy ...  

Industrial Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have technologies ...

82

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

83

Technology Commercialization Program 1991  

Science Conference Proceedings (OSTI)

This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

Not Available

1991-11-01T23:59:59.000Z

84

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for2000. Emerging Energy-Efficient Industrial Technologies,of cleaner, more energy- efficient technologies can play a

2004-01-01T23:59:59.000Z

85

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for2000. Emerging Energy-Efficient Industrial Technologies,of cleaner, more energy- efficient technologies can play a

2001-01-01T23:59:59.000Z

86

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies, Lawrenceinformation about energy efficiency technologies, their

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

87

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

88

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout the country. The average small to medium sized company has yet to undertake a dedicated program. The reasons are numerous, but often it is simply because of a lack of knowledge of techniques or the amount of savings possible. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future. The program offerings basically include: 1. A series of tuition free Industrial Energy Management Conferences (over 20 given to date involving many Oklahoma industries). 2. A free energy newsletter entitled "Energy Channel" mailed to all participating Oklahoma industries. 3. A series of Energy Audit booklets including instructions and forms. 4. Technical aid on a limited basis. 5. A series of laboratory type experiments involving power factor, solar energy, boiler combustion improvement and other energy related projects. 6. Fact sheet publication as the need develops. Plans for the future include expansion of the program to small businesses in general through the Energy Extension Service and more technical aid to participating industries, The basic plan involving the services above shall remain intact. The program has been very successful to date. The results are directly transferable to other states and the program directors are willing to share information.

Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

1979-01-01T23:59:59.000Z

89

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

Each and every citizen has been affected by the energy crisis by now. Business and industry have especially been hurt as the rising cost of energy and its dwindling supplies are the twin jaws of a vise rapidly closing in on profits. Much work is being done in large companies; but most small to medium companies have yet to undertake a substantial energy management program. The reasons are many but often they simply I do not understand the savings possible or the techniques available. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future.

Estes, C. B.; Turner, W. C.

1980-01-01T23:59:59.000Z

90

Solar Energy Technologies Program Technology Overview  

Science Conference Proceedings (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

91

Technology Commercialization Showcase - EERE Commercialization Office  

Geothermal Energy Program; Hydrogen, Fuel Cells and Infrastructure Technologies Program; Industrial Technology Program; Vehicle Technologies Program;

92

Biopower Program Technology Overview  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) works with industry and other partners through the Biopower Program to develop and validate renewable, biomass-based electrical generation systems.

Not Available

2001-10-01T23:59:59.000Z

93

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

94

Building Technologies Program: Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Peer Review on Twitter Bookmark Building Technologies Program: Peer Review on Google Bookmark Building Technologies Program: Peer Review on Delicious Rank Building...

95

Vehicle Technologies Office: DOE & Industry Partners Unveil ...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE & Industry Partners Unveil 'More Electric Truck' at Trucking Show to someone by E-mail Share Vehicle Technologies Office: DOE & Industry Partners Unveil 'More Electric Truck'...

96

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

97

Possible Savings Achievable by Recipients of Training and Software Provided by the U.S Department of Energys Industrial Technologies Program  

E-Print Network (OSTI)

Through its Save Energy Now (SEN) Initiative, the U.S. Department of Energys (DOEs) Industrial Technologies Program (ITP) disseminates information on energy efficient technologies and practices to U.S. industrial firms to improve the energy efficiency of their operations. Among other things, Save Energy Now conducts training sessions on a variety of energy systems that are important to industry (i.e., compressed air, steam, process heat, pumps, motors, and fans) and distributes software tools on those same topics. A recent Oak Ridge National Laboratory (ORNL) study collected information from recipients of SEN training and software regarding how much their total annual plant energy costs could be reduced by implementing the measures that they identified since receiving SEN services. Those same individuals were also queried regarding the portion of potential savings that were actually achieved. The responses revealed both similarities and differences between training and software recipients as well as substantial variation in the savings associated with the diverse energy systems addressed.

Schweitzer, M.; Martin, M. A.; Schmoyer, R. L.

2008-01-01T23:59:59.000Z

98

Building Technologies Program Planning Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program Planning Summary Building Technologies Program Planning Summary Introduction The U.S. Department of Energy's (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. Such buildings are extremely energy efficient, ideally producing as much energy as they use over the course of a year. BTP also works with stakeholders and federal partners to meet any remaining energy needs for their buildings through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy consumption in buildings to more than 50 quadrillion Btu (quads)

99

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

in the U.S. iron and steel industry. Although the technologyUnited States iron and steel industry, expressed as share ofnet shape casting in the steel industry . Near net shape

2004-01-01T23:59:59.000Z

100

Research and Technology - Industrial Partnerships Office  

Lawrence Livermore National Laboratory (LLNL) is participating in six industry projects for the advancement of energy technologies using high ...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

102

PNNL: Available Technologies: Communications & Media Industry  

Industry: Communications & Media. Click on the portfolios below to view the technologies that may have potential applications in the ...

103

Science & Technology Principal Directo rate Industrial ...  

Erik Stenehjem Science & Technology Principal Directo rate Industrial Partnerships Office Erik Stenehjem Director----Roger Werne Deputy Director

104

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

TURBINES U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States...

105

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SEPTEMBER 2013 CARBON STORAGE U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the...

106

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United...

107

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

108

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

109

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

110

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

111

U.S. Industrial Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second U.S.-China Second U.S.-China Energy Efficiency Forum May 6, 2011 James Quinn Energy Efficiency & Renewable Energy U.S. Department of Energy U.S. Industrial Energy Efficiency Programs 2 | Industrial Energy Efficiency eere.energy.gov Global Energy Challenges Energy efficiency and renewable energy provide solutions to global energy challenges. Security Environment Economy Clean Energy Solutions Overarching Challenges: * Carbon reduction * Market delivery of clean energy technologies * Research and development needs * Economic growth * Workforce development 3 | Industrial Energy Efficiency eere.energy.gov U.S. industry accounts for about one-third of all U.S. energy consumption. Petroleum Natural Gas Electricity* Coal and Coke Renewable Energy Residential 21.8% Industry 31.4% Commercial

112

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network (OSTI)

Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone. This program, sponsored by the Office of Industrial Programs of DOE, defines technology needs from an industry viewpoint, so that recommended projects will complement industry's efforts and result in technologies for which there are clearly identifiable markets. The search for RD&D projects is currently focusing in the following technology categories: (i) reduction of fouling in cooling water systems, (ii) alternatives to conventional distillation and separation, (iii) low level waste heat recovery, (iv) advanced concepts in furnaces and boilers, (v) coal utilization, and (vi) advanced concepts in conversion and processing. The future direction of the program will continue to be dictated largely by industry needs.

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

113

Science and technology for industrial ecology  

SciTech Connect

Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

114

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

115

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

22nd Industry Growth Forum Presentations. ... Technology: Energy storage ... Technology Transfer Home; About Technology Transfer;

116

Geothermal Energy Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

117

Building Technologies Program: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

118

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Sustainable Industries Organization Sustainable Industries Organization Jump to: navigation, search Name Clean Technology & Sustainable Industries Organization Place Royal Oak, Michigan Zip 48073 Product A non-profit membership industry organization formed to advance the global development and deployment of clean and sustainable technologies References Clean Technology & Sustainable Industries Organization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clean Technology & Sustainable Industries Organization is a company located in Royal Oak, Michigan . References ↑ "Clean Technology & Sustainable Industries Organization" Retrieved from "http://en.openei.org/w/index.php?title=Clean_Technology_Sustainable_Industries_Organization&oldid=343669"

119

Geothermal Well Technology Program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. An overview of the program is presented. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies encountered when current rotary drilling techniques are used for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.

1978-01-01T23:59:59.000Z

120

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Technology Programs: program summaries for 1979  

DOE Green Energy (OSTI)

The Energy Technology Programs in the BNL Department of Energy and Environment cover a broad range of activities, namely: electrochemical research, chemical energy storage, chemical heat pumps, solar technology, fossil technology, catalytic systems development, space-conditioning technology, and technical support/program management. Summaries of the individual tasks associated with these activities along with publications, significant accomplishments, and program funding levels are presented.

Not Available

1979-12-01T23:59:59.000Z

122

Annual highlights of the energy technology programs  

DOE Green Energy (OSTI)

This report presents an overview of the programs in the energy technology area during 1977. The objective, scope, significent accomplishments in 1977, principal activities planned for 1978, and publications are presented for each program. The Energy Storage and Conversion Division programs are in two broad areas: electrolysis-based hydrogen energy storage systems and related technologies and conservation in buildings and community systems. The Engineering Division programs include work in solar energy, fossil energy, and combustion technology areas. The Conservation Program Management Group has responsibilities of national scope involving R and D projects carried out in coordination with industry and universities. (MCW)

None

1977-12-01T23:59:59.000Z

123

Geothermal Technologies Program Strategic Plan  

SciTech Connect

This DOE/EERE program strategic plan builds upon previous program plans and R&D direction reviews with industry representatives and other stakeholders.

2004-08-01T23:59:59.000Z

124

The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

Hughes, K.R.; Moore, N.L.

1994-09-01T23:59:59.000Z

125

Training For Industry Program (TIP) (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training For Industry Program (TIP) (Oklahoma) Training For Industry Program (TIP) (Oklahoma) Training For Industry Program (TIP) (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1968 State Oklahoma Program Type Training/Technical Assistance Provider Oklahoma Department of Career and Technology Education The Oklahoma Department of Career and Technology Education runs the Training For Industry Program (TIP) is a no-cost/low-cost way for new or

126

Industrial Advanced Turbine Systems Program overview  

DOE Green Energy (OSTI)

DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

Esbeck, D.W.

1995-12-31T23:59:59.000Z

127

Ontario's Industrial Energy Services Program  

E-Print Network (OSTI)

The Ontario Ministry of Energy began offering its new Industrial Energy Services Program (IESP) in early 1987. This 3-year, $5-million program, while not new in concept, is thought to be unique for its depth of service and method of delivery. It provides Ontario's manufacturers with advice and funding assistance for the identification and definition of industrial energy efficiency opportunities. The first phase provides for a free comprehensive site energy audit/analysis, conducted over one to five days, by teams of private sector consultants, selected to match expertise with manufacturer's needs. The emphasis is on process and equipment improvements, but site services and buildings are also examined. The final report includes detailed descriptions of major opportunities, along with estimated costs, savings, and paybacks. The next phases provide for sharing the detailed feasibility study costs and project engineering costs for those energy projects that move to implementation. In this paper, the author briefly describes the novel administrative structure of the program, presents the results of the activities to date, and describes, in some detail, several case studies from different industrial sectors.

Ploeger, L. K.

1987-09-01T23:59:59.000Z

128

Advanced Industrial Materials Program. Annual progress report, FY 1993  

SciTech Connect

Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

Stooksbury, F. [comp.

1994-06-01T23:59:59.000Z

129

Industrial Energy Efficiency Programs: Development and Trends  

E-Print Network (OSTI)

As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement those savings. Historically, industrial energy efficiency programs have not been completely effective at finding those savings, in large part because the programs have not been flexible enough to accommodate the heterogeneous needs and unique characteristics of the industrial sector. This paper will discuss the state of industrial energy efficiency programs today. Relying on an ACEEE-administered survey of 35 industrial energy efficiency programs, we will determine current trends and challenges, address emerging needs, and identify best practices in the administration of today's industrial efficiency programs. The paper will serve as an update on industrial energy efficiency program activities and discuss the ways in which today's programs are trying to serve their industrial clients better.

Chittum, A.; Kaufman, N.; Elliot, N.

2010-01-01T23:59:59.000Z

130

The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships  

Science Conference Proceedings (OSTI)

A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

NONE

1997-09-01T23:59:59.000Z

131

Vehicle Technologies Office: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Plans, Implementation, and Results Program Plans, Implementation, and Results The U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP) accelerates the deployment of advanced vehicle technologies and renewable fuels to strengthen the U.S. economy by creating jobs, while reducing petroleum consumption, air pollution, and greenhouse gas emissions. To accomplish these goals, VTP works with industry leaders, national laboratories, universities, and state and local governments in five strategic program areas. Program Overview Program Plans Program Implementation Program Results Program Overview Summary Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments, Dec. 2010 Key Program Overview Documents Program Fact Sheet Program Deep Dive Briefing Program Overview Legislative and Executive Guidance

132

Office of Industrial Technologies research in progress  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

133

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

134

Building Technologies Program: About Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

About Standards to About Standards to someone by E-mail Share Building Technologies Program: About Standards on Facebook Tweet about Building Technologies Program: About Standards on Twitter Bookmark Building Technologies Program: About Standards on Google Bookmark Building Technologies Program: About Standards on Delicious Rank Building Technologies Program: About Standards on Digg Find More places to share Building Technologies Program: About Standards on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More.

135

The Advanced Technology Program: Reform with a Purpose  

Science Conference Proceedings (OSTI)

... In fact, Dr. Steven Price, Director of University-Industry Relations at the ... For example, Department of Energy's Clean Coal Technology Program has ...

2011-10-19T23:59:59.000Z

136

Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

NONE

1996-04-01T23:59:59.000Z

137

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand response-enabling technologies, which can help an industrial plant effectively address demand response needs. Finally, the paper is concluded with a discussion of case study projects that illustrate application of some of these demand response enabling technologies for process operations. These case studies, illustrating some key projects from the NYSERDA Peak Load Reduction program, will describe the technologies and approaches deployed to achieve the demand reduction at the site, the quantitative impact of the project, and a discussion of the overall successes at each site.

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

138

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Technologies to someone by E-mail Share Federal Energy Management...

139

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

140

ABC Technology Development Program  

Science Conference Proceedings (OSTI)

The Accelerator-Based Conversion (ABC) facility will be designed to accomplish the following mission: `Provide a weapon`s grade plutonium disposition capability in a safe, economical, and environmentally sound manner on a prudent schedule for [50] tons of weapon`s grade plutonium to be disposed on in [20] years.` This mission is supported by four major objectives: provide a reliable plutonium disposition capability within the next [15] years; provide a level of safety and of safety assurance that meets or exceeds that afforded to the public by modern commercial nuclear power plants; meet or exceed all applicable federal, state, and local regulations or standards for environmental compliance; manage the program in a cost effective manner. The ABC Technology Development Program defines the technology development activities that are required to accomplish this mission. The technology development tasks are related to the following topics: blanket system; vessel systems; reactivity control systems; heat transport system components; energy conversion systems; shutdown heat transport systems components; auxiliary systems; technology demonstrations - large scale experiments.

NONE

1994-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Nuclear Technology Programs  

SciTech Connect

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

142

Industrial Energy Efficient Technology Guide 2007  

Science Conference Proceedings (OSTI)

This report updates the Industrial Energy Efficient Technology Reference Guide, previously known as the Electrotechnology Reference Guide. The last version of the Electrotechnology Reference Guide was published in 1992. This 2007 edition specifically updates information on industrial-sector energy consumption and the status of energy efficient technologies.

2007-07-31T23:59:59.000Z

143

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

144

The LBL geothermal reservoir technology program  

DOE Green Energy (OSTI)

The main objective of the DOE/GD-funded Geothermal Reservoir Technology Program at Lawrence Berkeley Laboratory is the development and testing of new and improved methods and tools needed by industry in its effort to delineate, characterize, evaluate, and exploit hydrothermal systems for geothermal energy. This paper summarizes the recent and ongoing field, laboratory, and theoretical research activities being conducted as part of the Geothermal Reservoir Technology Program. 28 refs., 4 figs.

Lippmann, M.J.

1991-03-01T23:59:59.000Z

145

Technology Commercialization Showcase 2008: Industrial ...  

Source: McKinsey & Company, 2007. Industry represents 38% of the total global opportunity to reduce energy demand: 6 Agenda Market Overview ...

146

Massachusetts Municipal Commercial Industrial Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program Massachusetts Municipal Commercial Industrial Incentive Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Varies depending on utility Program Info Start Date Varies Expiration Date Varies State Massachusetts Program Type Utility Rebate Program Rebate Amount Varies depending on utility Provider Massachusetts Municipal Wholesale Electric Company Certain municipal utilities in Massachusetts, in cooperation with

147

The Clean Coal Technology Program: Lessons learned  

Science Conference Proceedings (OSTI)

The Clean Coal Technology (CCT) Program is a unique partnership between the federal government and industry that has as its primary goal the successful introduction of new clean coal utilization technologies into the energy marketplace. Clean coal technologies being demonstrated under the CCT Program are establishing a technology base that will enable the nation to meet more stringent energy and environmental goals. Most of the, demonstrations are being conducted at commercial scale, in actual user environments, and under circumstances typical of commercial operations. These features allow the potential of the technologies to be evaluated in their intended commercial applications. Each application addresses one of the following four market sectors: advanced electric power generation; environmental control devices; coal processing for clean fuels; and industrial applications. The purpose of this report is fourfold: Explain the CCT program as a model for successful joint government industry partnership for selecting and demonstrating technologies that have promise for adaptation to the energy marketplace; set forth the process by which the process has been implemented and the changes that have been made to improve that process; outline efforts employed to inform potential users and other interested parties about the technologies being developed; and examine some of the questions which must be considered in determining if the CCT Program model can be applied to other programs.

Not Available

1994-07-01T23:59:59.000Z

148

Tuesday Webcast for Industry: Regional Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast for Webcast for Industry: Regional Energy Efficiency Programs December 13, 2011 MEEA's Midwest Industrial Initiative Stacey Paradis Deputy Director Midwest Energy Efficiency Alliance Mission MEEA is a collaborative network whose purpose is to advance energy efficiency to support sustainable economic development and environmental preservation. MEEA's Role in the Midwest * Designing and Evaluating Programs & RFPs * Administering Programs * Delivering Training & Workshops * Developing Marketing and Outreach * Advancing Energy Efficiency Policy * Coordinating Utility Program Efforts * Regional Voice for DOE/EPA & ENERGY STAR * Evaluating & Promoting Emerging Technologies Need for Industrial EE in the Midwest

149

Clean Coal Technology Demonstration Program. Program update 1994  

SciTech Connect

The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

NONE

1995-04-01T23:59:59.000Z

150

NREL: Technology Transfer - 23rd Industry Growth Forum  

Discover future opportunities for the clean energy industry. Panel Discussions. Explore current technology, ... Technology Transfer Home; About Technology ...

151

Advanced Industrial Materials (AIM) Program annual progress report, FY 1997  

SciTech Connect

The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

NONE

1998-05-01T23:59:59.000Z

152

PNNL: Available Technologies: Security Industry  

Current Control Technology for Quantum Cascade Laser and Other Applications; Identifying Operator Distraction When Driving or Operating Equipment;

153

Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor  

E-Print Network (OSTI)

The Department of Energys Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R&D, incorporating projects with such risk that the private sector will not pursue them independently. This paper describes the Offices major activities, operating premises and research areas. Policy considerations affecting the programs content are identified and criteria applied in project selection are discussed. Achievement of constructive industry involvement in program development and review is viewed as vital to success. This goal, and the means by which it is being pursued, are emphasized.

Gross, T. J.

1986-06-01T23:59:59.000Z

154

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

155

Building Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

hVac controls guide hVac controls guide for Plans examiners and Building inspectors September 2011 authors: Eric Makela, PNNL James Russell, PECI Sarah Fujita, PECI Cindy Strecker, PECI Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Technologies Program 2 contents introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 how to use the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 code requirements and compliance checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Performance Path 10 Control Requirements for All Systems 11 Thermostatic Control of Heating and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply Fan Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156

Comparison of National Programs for Industrial Energy Efficiency: Industry Brief  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to help industrial facilities find the right fit for their own ...

2013-02-25T23:59:59.000Z

157

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

158

SECA Core Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

January 27 - January 27 - 28, 2005 Workshop Peer Review Rating Results Summary Donald Collins SECA Core January 2005 Workshop Peer Review Summary - DWC,PM-30,3-10-05 2 of 21 Review Process Summary * Core Technology Project Presentations - Project Objectives & Results - Non-proprietary Information - Industry, National Lab & University Participation * Verbal & Written Constructive Comments - Written Comments on Peer Review Forms - Industry Verbal Feedback at Workshop * Core Participant Review & Reply to Comments - Reply to Comment Issues * DOE NETL Redirect Projects as Needed M a t e r i a l s C o n t r o l s & D i a g n o s t i c s P o w e r E le c t r o n ic s F u e l P r o c e s s i n g Manufacturing M o d e li n g & S im u la ti o n SECA Core January 2005 Workshop Peer Review Summary - DWC,PM-30,3-10-05 3 of 21 Peer Review Questions

159

SECA Core Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

May 12 - May 12 - 13, 2004 Workshop Peer Review Rating Results Summary Donald Collins SECA Core May 2004 Workshop Peer Review Summary - DWC,PM-30,5-21-04 2 of 16 Review Process Summary * Core Technology Project Presentations - Project Objectives & Results - Non-proprietary Information - Industry, National Lab & University Participation * Verbal & Written Constructive Comments - Written Comments on Peer Review Forms - Industry Verbal Feedback at Workshop * Core Participant Review & Reply to Comments - Reply to Comment Issues * DOE NETL Redirect Projects as Needed M a t e r i a l s C o n t r o l s & D i a g n o s t i c s P o w e r E le c t r o n ic s F u e l P r o c e s s i n g Manufacturing M o d e li n g & S im u la ti o n SECA Core May 2004 Workshop Peer Review Summary - DWC,PM-30,5-21-04 3 of 16 Peer Review Questions

160

Technology Transfer: For Industry:SBIR Opportunities  

Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs. FY2013 Phase 1 Release 1. During the FOA open period August 13 - October 16, 2012,

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technology acquisition: sourcing technology from industry partners  

E-Print Network (OSTI)

chemicals, oil and gas and biofuels. The research adopts the perspective of an acquiring firm, which is interested in incorporating a new technology into its operations in order to meet a particular business need. Such a business need can be, for example...

Ortiz-Gallardo, Victor Gerardo

2013-07-09T23:59:59.000Z

162

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

163

Technology innovation in financial services industry  

E-Print Network (OSTI)

Over the last few decades, we have seen an enormous evolution in the financial services industry driven by technology innovations. Indeed, we cannot imagine the current financial system without electronic fund transfers, ...

Roxo da Fonseca, Gustavo J. C. (Gustavo Jos Costa), 1967-

2004-01-01T23:59:59.000Z

164

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

165

Emerging energy-efficient industrial technologies  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

166

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

U.S. industry consumes approximately 37% of the nation's energy to produce 24% of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

2001-05-01T23:59:59.000Z

167

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

168

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION SYSTEMS COMBUSTION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

169

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SEPTEMBER 2013 SEPTEMBER 2013 CARBON STORAGE U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

170

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLID OXIDE FUEL CELLS SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

171

Canada's Voluntary Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange, goal setting and progress reporting are carried on through these Task Forces which are staffed with industrial volunteers and representatives from the major trade associations. Inter-industry liaison is accomplished via a Coordinating Committee comprised of the individual Task Force Chairmen and representatives of the federal government. While the program has been in existence only since 1976, impressive gains have already been made and targets have been set for 1980 and 1985. The strength of the program lies in its candid cooperation between industry and government. There has, to date, been no need or advantage to implementing a government mandated program for industrial energy conservation in Canada.

Wolf, C. A., Jr.

1980-01-01T23:59:59.000Z

172

Clean Coal Technology Programs: Program Update 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

514 514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y DOE/FE-0514 Clean Coal Technology Programs: Program Update 2007 Includes Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI) Projects As of September 2007 U.S. Department of Energy Assistant Secretary for Fossil Energy Washington, DC 20585 January 2008 T E C H N O L O G Y This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Offi

173

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

To assess the stimulation technology developed in the oil and gas industry as to its applicability to the problems of geothermal well stimulation, a literature search was performed through on-line computer systems. Also, field records of well stimulation programs that have worked successfully were obtained from oil and gas operators and service companies. The results of these surveys are presented. (MHR)

Not Available

1980-05-01T23:59:59.000Z

174

Heavy Vehicle Technologies Program Retrospective and Outlook  

DOE Green Energy (OSTI)

OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions.

James J. Eberhardt

1999-04-10T23:59:59.000Z

175

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov

176

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

: 530-752-9603 Technology Transfer Program www.techtransfer.berkeley.edu UC Berkeley Institute-665-3454 Email: techtransfer@berkeley.edu The contents of this document reflect the views of the authors, who

California at Berkeley, University of

177

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

-665-3562 Technology Transfer Program www.techtransfer.berkeley.edu UC Berkeley Institute of Transportation Studies: techtransfer@berkeley.edu The contents of this document reflect the views of the authors, who are responsible

California at Berkeley, University of

178

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

179

Clean Coal Technology Programs: Program Update 2009  

Science Conference Proceedings (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

180

Centers for manufacturing technology: Industrial Advisory Committee Review  

Science Conference Proceedings (OSTI)

An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Purdue Hydrogen Technology Program (Presentation)  

DOE Green Energy (OSTI)

Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

Gore, J.; Ramachandran, P. V.; Zheng, Y.; Kramer, R.; Varma, A.; Fisher, T.; Patterson, J.; Maness, P.; Ting, B. E.; Pelter, L.; Shafirovich, E.; Diakov, V.

2006-05-01T23:59:59.000Z

182

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

183

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

184

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary  

SciTech Connect

This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

NONE

1995-04-01T23:59:59.000Z

185

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

186

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

187

NYSEG (Electric) - Commercial and Industrial Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Electric) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount Lighting, HVAC: Prescriptive incentives vary A/C or Heat Pump A/C or Heat Pump > 63 tons: $25/ton + $5/ton for each 0.1 EER above 9.7 Water Cooled Chillers: $6/ton or $15/ton + $2-$8/ton for each 0.01 kW/ton

188

Industry Structure Dynamics and the Nature of Technology in The Hearing Instrument Industry  

E-Print Network (OSTI)

Patterns of innovation in industry. Technology Review. Vol.alignment equipment industry. RAND Journal of Economics,in the hearing instrument industry. CISTEMA Working Paper,

Lotz, Peter

1998-01-01T23:59:59.000Z

189

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

190

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Technologies for the oil and gas industry  

DOE Green Energy (OSTI)

This is the final report of a five-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors performed a preliminary design study to explore the plausibility of using pulse-tube refrigeration to cool instruments in a hot down-hole environment for the oil and gas industry or geothermal industry. They prepared and distributed a report showing that this appears to be a viable technology.

Goff, S.J.; Swift, G.W.; Gardner, D.L.

1998-12-31T23:59:59.000Z

192

Technology Adoption and Commercialization Program (New Brunswick, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adoption and Commercialization Program (New Brunswick, Adoption and Commercialization Program (New Brunswick, Canada) Technology Adoption and Commercialization Program (New Brunswick, Canada) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $15,000 (Canadian) Program Info State New Jersey Program Type Grant Program Loan Program Provider New Brunswick Economic Development The Technology Adoption and Commercialization Program (TAC) is intended to encourage the adoption of improved technologies and processes by offsetting

193

CCEF - Commercial, Industrial, Institutional PV Grant Program...  

Open Energy Info (EERE)

Institutional Eligible Technologies Photovoltaics Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount 5 Watt; 5.75...

194

Commercial, Industrial and Institutional Solar Electric Program...  

Open Energy Info (EERE)

Institutional Eligible Technologies Photovoltaics Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Non-profits:...

195

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

196

Solar technology and the insurance industry: Issues and applications  

DOE Green Energy (OSTI)

Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. Solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. This report will address the above issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses and offer suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers.

Deering, A.; Thornton, J. P.

1999-07-01T23:59:59.000Z

197

IMPACTS: Industrial Technologies Program, Summary of Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Office of Legacy Management FY 2010 Consolidated Energy Data Report (CEDR) Site Sustainability Plan (SSP) 2010 Office of Legacy Management FY 2009 Energy...

198

IMPACTS: Industrial Technologies Program, Summary of Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Office of Legacy Management FY 2010 Consolidated Energy Data Report (CEDR) O:A76647b Report647B Report FY 2006647bLetter.pdf.prn.pdf Climate VISION Progress...

199

IMPACTS: Industrial Technologies Program, Summary of Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

savings are 245 TBtu and the cumulative energy savings through 2009 are 2,202 TBtu. Energy cost savings, carbon reduction, and other benefits are related to energy savings by...

200

Commercial & Industrial Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NREL: Technology Transfer - Commercialization Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

202

ORNL fusion programs in industry  

SciTech Connect

A brief review of ORNL's research program on the large coil project, EBT, ISX, and the FED is given. Their subcontracting practices are also mentioned. (MOW)

Rosenthal, M.W.

1980-01-01T23:59:59.000Z

203

Designing Industrial DSM Programs that Work  

E-Print Network (OSTI)

There are many reasons why industrial customers do not implement all cost-effective efficiency measures on their own. Utility demand side management (DSM) programs can help overcome some of these barriers. DSM programs provide an opportunity for utilities to reduce the cost of providing energy services while helping customers to reduce their energy bills and thereby increase profit margins and competitiveness. A review of utility experience with industrial DSM programs shows that some types of programs work much better than other types. Successful efforts include both custom and prescriptive components that show an understanding of the customers perspective, use marketing that is personal and user-friendly, provide flexibility, and include financial incentives. Among the less successful programs are programs that do not address customer needs, including information-only, loan, and shared savings programs. A number of other program approaches are largely untested and merit further experimentation. Based on these findings, we recommend that utilities and industrial customers work together to design DSM programs that serve the needs of industrial customers.

Nadel, S. M.; Jordan, J. A.

1994-04-01T23:59:59.000Z

204

Geothermal Technologies Program: Direct Use  

DOE Green Energy (OSTI)

This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

Not Available

2004-08-01T23:59:59.000Z

205

Photovoltaic industry manufacturing technology. Final report  

DOE Green Energy (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

206

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

1997-10-01T23:59:59.000Z

207

Building Technologies Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

208

Introduction of New Technologies to Competing Industrial Customers  

Science Conference Proceedings (OSTI)

Motivated by several examples from industry, such as the introduction of a biotechnology-based process innovation in nylon manufacturing, we consider a technology provider that develops and introduces innovations to a market of industrial customers---original ... Keywords: business-to-business, game theory, industrial customers, industrial markets, multistage game, technology adoption, technology introduction

Sanjiv Erat; Stylianos Kavadias

2006-11-01T23:59:59.000Z

209

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

210

Robotics Technology Crosscutting Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a needs-driven effort. A length series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the resulting robotics needs assessment revealed several common threads running through the sites: Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination and Dismantlement (D and D). The RTDP Group also realized that some of the technology development in these four areas had common (Cross Cutting-CC) needs, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT and E) process urged an additional organizational breakdown between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). These factors lead to the formation of the fifth application area for Crosscutting and Advanced Technology (CC and AT) development. The RTDP is thus organized around these application areas -- TWR, CAA, MWO, D and D, and CC and AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

NONE

1995-06-01T23:59:59.000Z

211

Energy Efficiency Program for Certain Commercial and Industrial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Program for Certain Commercial and Industrial Equipment Energy Efficiency Program for Certain Commercial and Industrial Equipment The purpose of this memorandum is to...

212

Energy efficient industrialized housing research program  

Science Conference Proceedings (OSTI)

This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-12-01T23:59:59.000Z

213

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

214

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

215

Profile of the chemicals industry in California: California industries of the future program  

E-Print Network (OSTI)

of the U.S. Chemical Industry. Berkeley, CA: Lawrence2004. Profile of the Petroleum Refining Industry inCalifornia - California Industries of the Future Program.

Galitsky, Christina; Worrell, Ernst

2004-01-01T23:59:59.000Z

216

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

NREL: Technology Transfer - 21st Industry Growth Forum Photos  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Photos. From NREL's 21st Industry Growth Forum on Oct. 28-30, 2008, in Denver ...

218

NREL: Technology Transfer - 21st Industry Growth Forum ...  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Presentations. Here you'll find presentations from NREL's 21 st Industry Growth ...

219

Greenhouse Gas Programs, Energy Efficiency, and the Industrial Sector  

E-Print Network (OSTI)

The United States has made significant progress in reducing total energy use through energy efficiency improvements over the past decade, yet the United States still ranks as the highest absolute greenhouse gas (GHG) emitter in the world with 23.6 metric tons of carbon dioxide equivalent per capita in 2006. The industrial sector (agriculture is excluded) is responsible for 28.7 percent of the GHG emissions in the U.S. However, the U.S. industrial sector has numerous economically viable opportunities to reduce energy use and GHG emissions. Energy efficiency, including new clean technologies, plays a significant role in increasing productivity and reducing energy intensity, and thus emissions. Increasing energy efficiency in industrial processes is central to addressing climate change issues in the industrial sector. This paper describes the energy-efficiency programs, methodologies, and technologies that can economically lead to significant GHG reductions in the industrial sector. The paper also discusses the impacts of climate change policies and programs to the application of advanced low-carbon industrial technologies.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

220

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Distributed Energy Resources Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

222

NETL: Clean Coal Technology Demonstration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

CCTDP Major Demonstrations Clean Coal Technology Demonstration Program (CCTDP) The Clean Coal Technology Demonstration Program (CCTDP) was launched in 1986 as a multibillion dollar...

223

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

224

Federal Energy Management Program: Predictive Maintenance Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies to someone by E-mail Share Federal Energy Management Program: Predictive Maintenance Technologies on Facebook Tweet about Federal Energy Management Program: Predictive...

225

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

DOE Green Energy (OSTI)

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

226

Robotics Technology Development Program. Technology summary  

SciTech Connect

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

227

NREL: Technology Transfer - Commercialization Assistance Program  

National Renewable Energy Laboratory Technology Transfer Commercialization Assistance Program. The NREL Commercialization Assistance Program (NCAP) helps emerging ...

228

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

DOE Green Energy (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

229

Technology Utilization Program (Newfoundland and Labrador, Canada...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilization Program (Newfoundland and Labrador, Canada) Technology Utilization Program (Newfoundland and Labrador, Canada) Eligibility Agricultural Commercial Construction Fuel...

230

Influence of Industry Characteristics on Information Technology Outsourcing  

Science Conference Proceedings (OSTI)

Despite the extensive research on information technology (IT) outsourcing, our knowledge and understanding of how industry characteristics impact the use of IT outsourcing remain limited. Drawing upon theories from organization behavior and industrial ... Keywords: Capital Intensity, Industry Concentration, Industry Dynamism, Industry Environments, Industry Munificence, It Outsourcing

Wen Qu; Alain Pinsoneault; Wonseok Oh

2011-04-01T23:59:59.000Z

231

Energy Technical Assistance: Industrial Processes Program  

E-Print Network (OSTI)

The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A&M University College of Engineering activities, is available through support of Texas Energy and Natural Resources Advisory Council. Engineers with industry and consulting experience are located in Arlington and Houston TEEX offices.

McClure, J. D.

1980-01-01T23:59:59.000Z

232

Industrial energy-efficiency-improvement program  

SciTech Connect

Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

1980-12-01T23:59:59.000Z

233

Robotics crosscutting program: Technology summary  

SciTech Connect

The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies became evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.

NONE

1996-08-01T23:59:59.000Z

234

Frying Technology and PracticesChapter 1 The Frying Industry  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 1 The Frying Industry Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter

235

GAS INDUSTRY GROUNDWATER RESEARCH PROGRAM  

SciTech Connect

The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate the biodegradability of TEG and DEG under conditions relevant to subsurface environments and representative of natural attenuation processes, and (3) examine the possibility that high concentrations of glycol may act as a cosolvent for BTEX compounds, thereby enhancing their subsurface mobility. To encompass a wide variety of potential wastes representative of different natural gas streams and dehydration processes, raw, rich, and lean glycol solutions were collected from 12 dehydration units at eight different gas-processing facilities located at sites in Texas, Louisiana, New Mexico, Oklahoma, and Alberta. To generate widely applicable environmental fate data, biodegradation and mobility experiments were performed using four distinctly different soils: three obtained from three gas-producing areas of North America (New Mexico, Louisiana, and Alberta), and one obtained from a North Dakota wetland to represent a soil with high organic matter content.

James A. Sorensen; John R. Gallagher; Steven B. Hawthorne; Ted R. Aulich

2000-10-01T23:59:59.000Z

236

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Institutional Research & Development > University Program in Advanced...

237

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Efficiency and Clean Energy Technologies, 2000. ScenariosProgram, 2007. Energy Technology Solutions: Public-PrivatePrice Environmental Energy Technologies Division March 2008

Price, Lynn

2008-01-01T23:59:59.000Z

238

Welcome - Energy Efficiency & Electricity Technologies Program - EESD  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome ORNL delivers key support to DOE's Office of Energy Efficiency and Renewable Energy (EERE) programs through three broad areas of research and development. Sustainable electricity is aligned under the Energy Efficiency and Electricity Technologies Program. ORNL's sustainable electricity program develops technologies to create a cleaner environment. This program addresses challenges in renewable generation, electricity distribution and end-use in buildings to ensure our nation's energy security through cost effective solutions while mitigating and reducing environmental impacts. Sustainable manufacturing is aligned under ORNL's Office of Energy Materials, which manages the EERE Industrial Technologies Program at ORNL. Sustainable manufacturing draws on the laboratory's world-class

239

Argentina-UNEP Risoe Technology Needs Assessment Program | Open Energy  

Open Energy Info (EERE)

Argentina-UNEP Risoe Technology Needs Assessment Program Argentina-UNEP Risoe Technology Needs Assessment Program Jump to: navigation, search Name Argentina-UNEP Risoe-Technology Needs Assessment Program Agency/Company /Organization UNEP-Risoe Centre Sector Climate, Energy, Land, Water Focus Area Renewable Energy, Non-renewable Energy, Agriculture, Biomass, - Waste to Energy, Industry, - Industrial Processes, Transportation Topics Adaptation, Background analysis, Low emission development planning, -Roadmap, Pathways analysis Website http://tech-action.org/index.p Program Start 2009 Program End 2013 Country Argentina South America References UNEP Risoe-Technology Needs Assessment Program[1] Abstract UNEP DTIE in collaboration with the UNEP Risoe Centre will provide targeted financial, technical and methodological support to assist a total of 35 to 45 countries to conduct TNA projects

240

New techniques and products solve industry problems. [New technology available for the natural gas pipeline industry  

SciTech Connect

Recently introduced technology advances in data handling, manipulation and delivery; new gas and storage marketing products; a nonintrusive pipe-crack arrester; and responsive pipe-coating mill construction show promise for cutting industry costs by increasing efficiency in pipe line construction, repair, rehabilitation, and operations. The products, services and methods described in this new technology survey include: a PC-compatible dataserver that requires no user programming; flexible, responsive gas transportation scheme; evaluation of possible further uses on brittle transmission lines for fiberglass-reinforced resin composite; new multilayer epoxy PE coating mill in Corinth, Greece, near areas where large pipe line construction and rehabilitation projects are contemplated.

Bullion, L.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

242

High Efficiency Engine Technologies Program  

Science Conference Proceedings (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

243

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

244

DOE Solar Energy Technologies Program 2007 Annual Report  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2008-07-01T23:59:59.000Z

245

DOE Solar Energy Technologies Program FY 2006 Annual Report  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

246

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

247

The Texas Industrial Energy Conservation Program  

E-Print Network (OSTI)

Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would increase, and second, the impact on industry would curtail growth and expansion which would have a detrimental impact on both employment and the Texas economy. To combat this problem, the Energy Utilization Department of the Texas Industrial Commission was formed under funds provided by the U.S. Department of Energy with these funds administered by the Texas Energy and Natural Resources Advisory Council. This paper examines the program, its methodology, and the energy and financial benefits derived from its operation.

Waldrop, T.

1982-01-01T23:59:59.000Z

248

Building technologies program. 1995 annual report  

SciTech Connect

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

249

Industrial pollution prevention programs in selected developing Asian countries  

SciTech Connect

This paper presents the information on current activities to promote industrial pollution prevention (P2) in five selected Asian economies including Hong Kong, Republic of Korea, the Philippines, ROC in Taiwan, and Thailand. These activities, generally initiated in the last 5 years, are classified into 6 categories: awareness promotion, education and training, information transfer, technology development an demonstration, technical assistance, and financial incentives. Although participation is voluntary, these programs are all important at the early stages of P2 promotion and should be useful in informing industries of the benefit of P2 and helping them identify specific P2 measures as viable environmental management alternatives.

Chiu, Shen-yann [Argonne National Lab., IL (United States)]|[East-West Center, Honolulu, HI (United States)

1995-12-31T23:59:59.000Z

250

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

251

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

252

NREL: Energy Analysis - Technology and Program Market Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology and Program Market Data Technology and Program Market Data This Web page provides market data for renewable energy technologies and programs. The data, presented in individual reports for each area, include data regarding market penetration; industry trends; cost, price, and performance trends; and policy and market drivers. Most of the reports include an outlook for the future. NREL led an effort that was initiated by the Strategic Planning and Analysis group of the Office of Energy Efficiency and Renewable Energy (EERE) to produce these reports for each of the energy areas managed by EERE. The last report was published in June 2011. Biomass/Ethanol Current State of the U.S. Ethanol Industry 2007 Year in Review: U.S. Ethanol Industry, the Next Inflection Point Building Technologies

253

Solar synthesis of advanced materials: A solar industrial program initiative  

SciTech Connect

This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

Lewandowski, A.

1992-06-01T23:59:59.000Z

254

Federal Energy Management Program: Technology Deployment List  

NLE Websites -- All DOE Office Websites (Extended Search)

List to someone by E-mail List to someone by E-mail Share Federal Energy Management Program: Technology Deployment List on Facebook Tweet about Federal Energy Management Program: Technology Deployment List on Twitter Bookmark Federal Energy Management Program: Technology Deployment List on Google Bookmark Federal Energy Management Program: Technology Deployment List on Delicious Rank Federal Energy Management Program: Technology Deployment List on Digg Find More places to share Federal Energy Management Program: Technology Deployment List on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting Working Group Renewable Energy Technology Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by:

255

AEP Ohio - Renewable Energy Technology Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio - Renewable Energy Technology Program AEP Ohio - Renewable Energy Technology Program AEP Ohio - Renewable Energy Technology Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Residential Solar: 50% or $12,000 Non-Residential Solar: 50% or $75,000 Residential Wind: 50% or $7,500 Non-Residential Wind: 40% or $12,000 Program Info Start Date 07/01/2011 Expiration Date 06/30/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Solar: $1.50/watt Wind: $0.275/kWh (estimated annual performance) Provider AEP Ohio As part of the Renewable Energy Technology (RET) Program, AEP Ohio offers incentives to customers that commit their Renewable Energy Credits (RECs)

256

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

257

Thompson Technology Industries TTI | Open Energy Information  

Open Energy Info (EERE)

TTI TTI Jump to: navigation, search Name Thompson Technology Industries (TTI) Place Novato, California Zip 94949 Sector Solar Product Designer and manufacturer of solar tracking and roof mounting systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Profile of the chemicals industry in California: California industries of the future program  

E-Print Network (OSTI)

Profile of the Petroleum Refining Industry in California -California Industries of the Future Program. Berkeley, CA:reflect those of the California Energy Commission, the U.S.

Galitsky, Christina; Worrell, Ernst

2004-01-01T23:59:59.000Z

259

Federal Energy Management Program: Technology Deployment Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Resources to someone by E-mail Share Federal Energy Management Program: Technology Deployment Resources on Facebook Tweet about Federal Energy Management...

260

Federal Energy Management Program: Technology Deployment Goals...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Goals and Initiatives to someone by E-mail Share Federal Energy Management Program: Technology Deployment Goals and Initiatives on Facebook Tweet about...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SECA Core Technology Program Seal Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

SECA Core Technology Program (SECA CTP) led workshop on the topical area titled "SOFC seal: Technology, Challenges and Future Directions" was held on August 10, 2007 at...

262

Clean Coal Technology Demonstration Program. Program update 1995  

Science Conference Proceedings (OSTI)

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

263

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

264

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

265

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an average industrial electricity price of $0.039/kWh waskWh (the average industrial electricity price in 1996), withprojected 2015 industrial price for electricity in the AEO

2000-01-01T23:59:59.000Z

266

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Shape Casting in the Steel Industry. Near net shape casting/in the U.S. iron and steel industry. Although the technologythe United States Iron and Steel Industry, as Share of Steel

2005-01-01T23:59:59.000Z

267

Analysis of industrial pollution prevention programs in selected Asian countries  

SciTech Connect

Industrialization in developing countries is causing increasing environmental damage. Pollution prevention (P2) is an emerging environmental concept that could help developing countries achieve leapfrog goals, bypassing old and pollutive technologies and minimizing traditional control practices. The current P2 promotion activities in Hong Kong, the Republic of Korea, the Philippines, Singapore, Taiwan, and Thailand are discussed. These programs, generally initiated in the last 5 years, are classified into five categories: awareness promotion, education and training, information transfer, technical assistance, and financial incentives. All important at the early stages of P2 promotion, these programs should inform industries of the benefits of P2 and help them identify applicable P2 measures. Participation in these programs is voluntary. The limited data indicate that adoption of P2 measures in these countries is not yet widespread. Recommendations for expanding P2 promotion activities include (1) strengthening the design and enforcement of environmental regulations; (2) providing P2 training and education to government workers, nongovernmental organizations and labor unions officials, university faculties, and news media; (3) tracking the progress of P2 programs; (4) implementing selected P2 mandatory measures; (5) identifying cleaner production technologies for use in new facilities; (6) implementing special programs for small and medium enterprises; and (7) expanding P2 promotion to other sectors, such as agriculture and transportation, and encouraging green design and green consumerism.

Chiu, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.]|[East-West Center, Honolulu, HI (United States)

1995-05-01T23:59:59.000Z

268

Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

NONE

1997-04-01T23:59:59.000Z

269

Building Technologies Office: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Plans, Implementation, and Results Program Plans, Implementation, and Results The Building Technologies Office (BTO) carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that guide, support, and document the program management process and associated results and public benefits. Program Overview Program Plans Program Implementation Program Results Relevant Laws Program Overview Documents Better Buildings, Brighter Future: an overview of BTO activities. Program Presentation: outlines the program's priorities and goals for improving the energy efficiency of buildings. Building Energy Codes Overview Energy Efficiency Trends in Residential and Commercial Buildings report: provides an overview of trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption.

270

Program on Technology Innovation: Power Generation and Water Sustainability  

Science Conference Proceedings (OSTI)

This brochure summarizes the Electric Power Research Institute (EPRI) Report 1015371, Program on Technology Innovation: An Energy/Water Sustainability Program for the Electric Power Industry. It presents a research planbased on business, economic, and technical considerationsthat would create and test new technology and science to overcome present and future constraints on thermoelectric and hydroelectric generation resulting from limited fresh water availability. The 10 year plan has an overall budget o...

2007-09-10T23:59:59.000Z

271

An NSF Industry/University Cooperative Research Program CCMC PROSPECTUS  

E-Print Network (OSTI)

An NSF Industry/University Cooperative Research Program CCMC PROSPECTUS May 2005 CERAMIC ........................................................................................21 #12;PROSPECTUS, MAY 2005 3 EXECUTIVE SUMMARY Ceramic and Composite Materials Center NSF Industry...................................................................................................................8 Industrial Advisory Board

272

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Inc. (Alum-1) [ETSU] Energy Technology Support Unit. 1994.In Encyclopedia of Energy Technology and the Environment.Environmental Energy Technologies Division. (Paper-1) (

2000-01-01T23:59:59.000Z

273

Commercial and Industrial Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Rebate Program Commercial and Industrial Rebate Program Commercial and Industrial Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate $1000/kW Program Info Funding Source Connecticut Ratepayers Federally-Mandated Congestion Charges State Connecticut Program Type State Rebate Program Rebate Amount Up to 100% of project cost Provider Ameresco Note: Contact the program administrator before making investment decisions; this program requires pre-approval. Connecticut electricity customers that install energy efficiency equipment

274

EIS-0045: Coal Conversion Program, Continental Forest Industries...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

45: Coal Conversion Program, Continental Forest Industries, Combustors 1,2, and 3, Port Wentworth, Chatham County, Georgia EIS-0045: Coal Conversion Program, Continental Forest...

275

Otter Tail Power Company- Commercial & Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Otter Tail Power Company Rebate Program offers rebates to qualifying commercial, industrial, and agricultural customers for the installation of high-efficiency equipment upgrades. See the program...

276

Building Technologies Office: Innovative Retrofit Programs and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next...

277

NIST AMTech Program Announces Grants for Industry-led ...  

Science Conference Proceedings (OSTI)

NIST AMTech Program Announces Grants for Industry-led Consortia to Explore Issues Hampering Advanced Manufacturing in US. ...

2013-08-06T23:59:59.000Z

278

Energy Technology Program Director: Ashley Preston  

E-Print Network (OSTI)

Energy Technology Program Director: Ashley Preston Phone: 406.243.7915 Email: Ashley.Preston@UMontana.edu ace.cte.umt.edu/energy The Energy Technology Program is an online program that introduces students to the full suite of energy technologies--traditional, emerging, renewable, and alternative--and prepares them

Crone, Elizabeth

279

Financial Assistance to Industry Program (New Brunswick, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financial Assistance to Industry Program (New Brunswick, Canada) Financial Assistance to Industry Program (New Brunswick, Canada) Financial Assistance to Industry Program (New Brunswick, Canada) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Loan Program Provider New Brunswick Economic Development The purpose of the assistance is to provide adequate funding for capital expenditures and working capital to enable the establishment, expansion, or maintenance of eligible industries. The assistance may be provided in the

280

Ministry of Industry and Information Technology | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ministry of Industry and Information Technology Jump to: navigation, search This article is a stub. You...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

282

The Department of Energy`s Solar Industrial Program: 1994 review  

DOE Green Energy (OSTI)

This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

NONE

1995-03-01T23:59:59.000Z

283

Technology Transfer Ombudsman Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer issues such as infringement, intellectual property rights, royalties and licensing, etc. The Director, Office of Conflict Prevention and Resolution, coordinates this program and compiles data for quarterly reports. See the Department of Energy Technology Transfer Ombuds (PDF).

284

U.S. Department of Energy Industrial Programs and Their Impacts  

E-Print Network (OSTI)

The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environmental performance, product quality, and productivity. To help ITP determine the impacts of its programs, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP program benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commercialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technologies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL's most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP's research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

Weakley, S. A.; Roop, J. M.

2010-01-01T23:59:59.000Z

285

The Department of Energy's Solar Industrial Program: New ideas for American industry  

DOE Green Energy (OSTI)

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

286

The Department of Energy's Solar Industrial Program: New ideas for American industry  

SciTech Connect

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

287

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

and Renewable Energy (EERE) [2] Office of Industrialthat participate in EEREs Industries of the Future Program.

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

288

Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995  

Science Conference Proceedings (OSTI)

In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

NONE

1996-04-01T23:59:59.000Z

289

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network (OSTI)

The discussion surrounding industrial efficiency gains typically focuses on industrys own use of energy and the set of technologies that might cost-effectively reduce that consumption. Often overlooked is industrys role as a primary developer of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, on demand manufacturing capabilities, or new plastics that double as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand the role of innovation. It highlights a number of emerging technologies that may foster an even greater energy savings than might be apparent from looking at industrys own energy use patterns alone.

Laitner, J. A.

2007-01-01T23:59:59.000Z

290

PEPCO - Commercial and Industrial Energy Efficiency Incentives Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PEPCO - Commercial and Industrial Energy Efficiency Incentives PEPCO - Commercial and Industrial Energy Efficiency Incentives Program PEPCO - Commercial and Industrial Energy Efficiency Incentives Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate All Incentives: 50% of the total installed project cost Custom Incentive Program: 50% and $250,000/electric account (including all incentive applications in a program year) Program Info Start Date 3/1/2011 State Maryland Program Type Utility Rebate Program Rebate Amount Custom Incentives: $0.16/annual kWh saved

291

Clean Coal Technology Demonstration Program: Program Update 1998  

SciTech Connect

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

1999-03-01T23:59:59.000Z

292

Clean Coal Technology Demonstration Program: Program Update 2001  

Science Conference Proceedings (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30T23:59:59.000Z

293

Enforcement Letter, Amer Industrial Technologies - April 13, 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amer Industrial Technologies - April 13, 2010 Amer Industrial Technologies - April 13, 2010 Enforcement Letter, Amer Industrial Technologies - April 13, 2010 April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in safety significant drain pipe fabricated by Amer Industrial Technologies, Inc. (AIT) as a supplier to Parsons Infrastructure & Technology Group, Inc. (Parsons) for the Salt Waste Processing Facility (SWPF) construction project at the Department of Energy (DOE) Savanuah River Site. The contract between Parsons and AIT was

294

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

295

Program on Technology Innovation: EPRI State of RoboticsAssessment and Proposed Strategic Program  

Science Conference Proceedings (OSTI)

Robotics technology is widely used throughout many industries and dates back almost 60 years. Although the power industry uses some robotics, much potential remains untapped. This report explains the current level of engagement within the Electric Power Research Institutes (EPRIs) robotics technology projects, assesses the need for engagement by sector, identifies technical gaps, and proposes a model for the inception of a strategic program initiative for robotics ...

2013-09-16T23:59:59.000Z

296

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

297

Entergy New Orleans - Small Commercial and Industrial Solutions Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy New Orleans - Small Commercial and Industrial Solutions Entergy New Orleans - Small Commercial and Industrial Solutions Program Entergy New Orleans - Small Commercial and Industrial Solutions Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate $50,000 or full cost of upgrade Program Info Funding Source New Orleans City Council State Louisiana Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Small Commercial Solutions Efficiency Improvements: $0.125 per kWh saved Large Commercial and Industrial Solutions Lighting Improvements: $0.10 per

298

Single-Issue Industrial Revenue Bond Program (Missouri) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) Single-Issue Industrial Revenue Bond Program (Missouri) < Back Eligibility Commercial Construction Industrial Retail Supplier Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Program Info State Missouri Program Type Bond Program Provider Missouri Development Finance Board The Missouri Development Finance Board administers a Single-Issue Tax-Exempt Industrial Revenue Bond Program as well as a Taxable Industrial Revenue Bond Program. The Tax-Exempt Program finances (i) the acquisition, construction and equipping of qualified manufacturing production facilities and/or equipment, and (ii) refinances outstanding tax-exempt bonds. It

299

Clean Coal Technology Demonstration Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology Demonstration Program Clean Coal Technology Demonstration Program The Office of Fossil Energy's Clean Coal Technology Demonstration Program (1986-1993) laid...

300

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy technologies advancement program underway  

SciTech Connect

The State of California is reducing the risk of developing new, innovative energy technologies under its Energy Technologies Advancement Program (ETAP), which is administered by the California Energy Commission (CEC). In the first funding round, 38 applications were received, and the Energy Commission's Research, Development, and Demonstration Committee has recommended six projects from private companies for initial funding. They are: ARCO Solar Inc. - research for $925,000 to develop thin film photovoltaic modules that capture the sun's rays and convert them into electricity; Alternative Energy Institute - research for $135,000 to collect and concentrate sunlight via a series of tracking parabolic dishes (heliostats), and transfer collected light into the interior of a commercial building; Solar Turbines Inc. - research for $52,500 to test a liquid fuel injection system that results in a reduction of oxides of nitrogen in cogeneration gas turbines; Pacific Gas and Electric Company - research for $500,000 to establish a program for field testing and evaluating emerging new photovoltaic technologies; San Diego Gas and Electric Company - research contract to test and evaluate the largest geothermal power plant in the world using an organic rankine cycle steam turbine, which uses a fluid with a lower-than-normal boiling point, thereby potentially generating electricity with lower temperature heat; and Fayette Manufacturing Corporation - loan contract for $1,250,000 to demonstrate the technical and economic feasibility of a new heat cycle process called the Kalina Cycle. The CEC will soon be releasing a Request for Proposals (RFP) for both private and public organizations for the second-round ETAP solicitation.

1986-01-01T23:59:59.000Z

302

The Department of Energy`s Solar Industrial Program: 1995 review  

DOE Green Energy (OSTI)

During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

NONE

1996-04-01T23:59:59.000Z

303

Profile of the chemicals industry in California: Californiaindustries of the future program  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in Califor

Galitsky, Christina; Worrell, Ernst

2004-06-01T23:59:59.000Z

304

Unitil - Commercial and Industrial Energy Efficiency Programs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unitil - Commercial and Industrial Energy Efficiency Programs Unitil - Commercial and Industrial Energy Efficiency Programs Unitil - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Commercial Construction Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Appliances & Electronics Commercial Lighting Lighting Maximum Rebate New Construction: 75% of incremental cost Retro-fit: 35% of installed cost Custom: 1 year payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Small Business and Multifamily: free technical assessment and % of installed cost for recommended measures Custom: 35% of cost Fluorescent Fixtures: $25 Lighting Sensors: $25-$50 LED Traffic Light: $60-$80 Motor Retrofits: $75-$3295

305

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

developed a CA management training program that is availabletraining programs similar to those developed by DOE for the compressed air system management.training programs similar to those developed by the DOE for the compressed air system management (

2000-01-01T23:59:59.000Z

306

A framework for evaluation of technology transfer programs. Volume 2  

Science Conference Proceedings (OSTI)

The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

Not Available

1993-07-01T23:59:59.000Z

307

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2005-01-01T23:59:59.000Z

308

EPUD - Commercial and Industrial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPUD - Commercial and Industrial Energy Efficiency Rebate Program EPUD - Commercial and Industrial Energy Efficiency Rebate Program EPUD - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom Industrial Project: 70% of incremental project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Commercial Clothes Washer: $75 - $180 Lighting: Varies, see program worksheet on web site Custom Industrial Projects: $0.25/kWh of verified energy savings Energy Smart Grocer Program Auto-Closers: $25 - $170 Gaskets: $35 - $70 Cases: $30 - $173.25 +Case Lighting: $12.75 - $22.50/lamp or $5 - $25/ln ft Motion Sensors: $2/ln ft Refrigerators/Freezers: $100 - $700

309

Technology Transfer: For Industry:SBIR Opportunities  

... our lab is not specialized in solar cell fabrication and hence, our solar cell fabrication tools do not meet industrial standards. For instance, ...

310

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2001-01-01T23:59:59.000Z

311

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2004-01-01T23:59:59.000Z

312

Proceedings of the vertical axis wind turbine (VAWT) design technology seminar for industry  

Science Conference Proceedings (OSTI)

The objective of the Vertical Axis Wind Turbine (VAWT) Program at Sandia National Laboratories is to develop technology that results in economical, industry-produced, and commercially marketable wind energy systems. The purpose of the VAWT Design Technology Seminar or Industry was to provide for the exchange of the current state-of-the-art and predictions for future VAWT technology. Emphasis was placed on technology transfer on Sandia's technical developments and on defining the available analytic and design tools. Separate abstracts are included for presented papers.

Johnston, S.F. Jr. (ed.)

1980-08-01T23:59:59.000Z

313

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

IECC IECC BUILDING TECHNOLOGIES PROGRAM CODE NOTES 1 The intent of the pipe insulation requirements is to reduce temperature changes while fluids are being transported through piping associated with heating, cooling or service hot water (SHW) systems, thereby saving energy and reducing operating costs. Uninsulated piping systems that transport fluids can create water temperature irregularities, which ultimately requires additional heating or cooling and associated energy costs to bring the water to operating temperature. Any piping that carries heated or cooled water, including piping systems with external heating (e.g., heat trace or impedance heating), should be thermally insulated to reduce heat loss or gain, allowing the fluid to be delivered at the intended temperature.

314

Clean Coal Technology Programs: Program Update 2003 (Volume 1)  

Science Conference Proceedings (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

315

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lightingSavings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2000-01-01T23:59:59.000Z

316

Two Stage Engine Technology - Industrial Partnerships Office  

... there is an increased need for new engine technologies which can increase fuel efficiency and meet strict pollution standards. Description ...

317

NREL: Technology Transfer - NREL's Industry Growth Forum  

... to 7AC Technologies, Inc., a Massachusetts company that is commercializing a novel membrane-based liquid desiccant HVAC system.

318

Building Technologies Office: 2013 DOE Building Technologies Office Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review The 2013 Department of Energy (DOE) Building Technologies Office Program Review was held April 2-4, 2013 in Washington, DC. This inaugural review encompassed active work done by the Building Technologies Office (BTO), with a total of 59 individual activities reviewed. Sixty independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the management of existing efforts, gauge the effectiveness of projects, and design future programs. The meeting also provided an opportunity to promote collaborations, partnerships, and technology transfers. 2013 Program Peer Review Report | 2013 Program Peer Review Presentations

319

THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM  

Science Conference Proceedings (OSTI)

The Environmental Technologies Acceptance (ETA) Program at the Energy and Environmental Research Center (EERC) is intended to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As shown in Table 1, this cooperative agreement funded by the National Energy Technology Laboratory (NETL) consists of three tasks: Technology Selection, Technology Development, and Technology Verification. As currently conceived, the ETA will address the needs of as many technologies as appropriate under its current 3-year term. This report covers activities during the first 6 months of the 3-year ETA program.

Christina B. Behr-Andres

2001-04-01T23:59:59.000Z

320

Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Industrial Sites Reinvestment Tax Credit Program and Industrial Sites Reinvestment Tax Credit Program (Connecticut) Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Corporate Tax Incentive Provider Department of Economic and Community Development

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Electric) - Commercial and Industrial Energy Efficiency DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program DTE Energy (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Manufacturing Other Construction Heat Pumps Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $200,000 Customer: $750,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $0.08/kWh first year energy savings Lighting: Varies ECM Motors/Controls: Varies

322

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy (Gas) - Commercial and Industrial Energy Efficiency DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program DTE Energy (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Local Government State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Other Construction Manufacturing Insulation Design & Remodeling Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Facility: $200,000 Project: $100,000 Customer: $200,000 Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom Measures: $4/MCF of first year energy savings Whole Building Design Incentive: 50% of cost up to $3,000 Steam Trap Repair/Replacement: $100

323

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs Tacoma Power - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Retail Supplier Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Retrofit: 70% of project cost Compressed Air: 70% of project cost Lighting: 70% of the project cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Custom Retrofit: $0.23/annual kWh saved

324

Dr. Gary L. Scott to Lead New Border Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Dr. Gary L. Scott to Lead New Border Technology Program Dr. Gary L. Scott to Lead New Border Technology Program CARLSBAD, N.M., June 27, 2001 - Dr. Gary L. Scott has been named Director of the newly established National Border Technology Partnership Program at the U.S. Department of Energy's (DOE) Carlsbad Field Office (CBFO). Before accepting this position, Dr. Scott was the Assistant Manager for Program Support for the Carlsbad Field Office. He has worked at the field office as a senior manager for more than three years. Dr. Scott served the nation's interest for more than 27 years in various senior positions within private industry and government. He began work to develop this program in the early 1990s and moved to Carlsbad in 1998 to implement CBFO's border initiative. He holds a bachelor of science in electrical engineering from Point Park College in

325

Division of Environmental Control Technology program, 1977  

DOE Green Energy (OSTI)

Environmental engineering programs are reviewed for the following technologies; coal; petroleum and gas; oil shale; solar; geothermal and energy conservation; nuclear energy; and decontamination and decommissioning. Separate abstracts were prepared for each technology. (MHR)

None

1978-06-01T23:59:59.000Z

326

Using federal technology policy to strength the US microelectronics industry  

Science Conference Proceedings (OSTI)

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

327

Industrial electronics [Technology 2000 analysis and forecast  

Science Conference Proceedings (OSTI)

Energy savings and higher intelligence are hallmarks of today's highly competitive world of industrial automation. While power electronics devices and systems deliver ever more watts, they also contribute to electromagnetic interference (EMI), and users ...

G. Kaplan

2000-01-01T23:59:59.000Z

328

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Nathan Martin regarding SOFC Fuel Cells. June. (Utilities-3)MCFC), and solid oxide (SOFC). For industrial sectorare the PAFC, MCFC, and the SOFC. Of these, the PAFC is the

2000-01-01T23:59:59.000Z

329

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

within the EERE Fuel Cell Technologies Office and the DOE offices of Nuclear Energy, Fossil Energy, and Science. It describes the Program's activities, the specific obstacles...

330

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and...

331

SECA Core Technology Program - SOFC Interconnect Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Technology Program - SOFC Interconnect Meeting July 28-29, 2004 Table of Contents Disclaimer Participants PDF-17KB Presentations Products Disclaimer This report was prepared...

332

University Program in Advanced Technology | National Nuclear...  

National Nuclear Security Administration (NNSA)

University Program in Advanced Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

333

Federal Energy Management Program: Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources. The FEMP Low Standby Product List is also available. Technology Deployment: Developing, measuring, and implementing new and underutilized technologies for energy...

334

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program Peoples Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Prescriptive Incentives: 50,000/project; 100,000/customer per year Commercial Custom Incentives: 100,000/project; 250,000/customer per year Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200

335

Advanced Turbine Systems Program industrial system concept development  

DOE Green Energy (OSTI)

Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

Gates, S.

1995-12-31T23:59:59.000Z

336

Technologies for the Warfighter and Industry  

Science Conference Proceedings (OSTI)

... Engineering Animation grew their company from 20 employees to over 400 after they developed a new set of computer-based technologies for ...

2010-10-05T23:59:59.000Z

337

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

338

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2004-01-01T23:59:59.000Z

339

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2005-01-01T23:59:59.000Z

340

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PNNL: Available Technologies: Aerospace & Defense Industry  

Other. Improved Materials for Sampling of Surfaces for Measurement of Explosives and Other Chemicals of Interest; Improved Sensor Technology using Qua ...

342

Information Technology Solutions - Industrial Partnerships Office  

Information Technology Solutions Development and IP Status A patent application, US2006/0115427 Diagno-sis and assessment of skeletal related disease

343

Energy efficiency programs and policies in the industrial sector in industrialized countries  

E-Print Network (OSTI)

energy efficiency, energy-efficient industrial process technology, energy storage, fuel cells, renewable energy, distributed power generation, and system analysis and policy

Galitsky, Christina; Price, Lynn; Worrell, Ernst

2004-01-01T23:59:59.000Z

344

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

345

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

346

PNNL EERE Program: Building Technologies Program (Overview)  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory, Energy Efficiency and Renewable Energy Program Laboratory, Energy Efficiency and Renewable Energy Program Home Program Areas Contacts Related Sites Energy Directorate PNNL Home Security & Privacy PNNL Buildings Program Overview PNNL Buildings Portfolio Science Foundation EE & Demand Response High-Performance Sustainable Design Codes and Standards Overcoming Market Barriers Analysis and Planning Key Buildings Projects Contacts Publications & Presentations PNNL Buildings Program Buildings account for about 40 percent of our nation's energy use. That's 72 percent of U.S. electricity and 55 percent of natural gas, resulting in 39 percent of U.S. carbon dioxide emissions and a range of other negative environmental impacts. The buildings sciences team at Pacific Northwest National Laboratory (PNNL) is committed to dramatically improving the

347

Transmission and distribution technologies: Program overview, FY 1993--FY 1994  

SciTech Connect

Electricity is the lifeblood of our Nation`s economy and a critical contributor to our standard of living. For decades, increases in the gross domestic product (GDP) have been accompanied by increases in electricity use. This overview provides the reader with an introduction to the US Department of Energy`s (DOE`s) T&D Technologies Program. It shows how the program is meeting the challenges being imposed on the T&D infrastructure by the changing electric power industry and how the Nation will benefit from its efforts. The overview describes the program`s ongoing projects and discusses the new projects being initiated in fiscal year (FY) 1995.

1995-06-01T23:59:59.000Z

348

Building Technologies Program - Funding Profile by Subprogram  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Renewable Energy/ Efficiency and Renewable Energy/ Building Technologies FY 2013 Congressional Budget Building Technologies Program Funding Profile by Subprogram Non-Comparable Structure (Dollars in Thousands) FY 2011 Current a FY 2012 Enacted FY 2013 Request Building Technologies Program Commercial Buildings Integration 37,308 31,913 61,079 Emerging Technologies 75,694 84,694 108,344 Equipment and Buildings Standards 35,000 58,302 98,250 Residential Buildings Integration 37,308 31,282 35,872 Technology Validation and Market Introduction 22,000 8,500 0 SBIR/STTR 0 4,513 6,455 Total, Building Technologies Program 207,310 219,204 310,000 Comparable Structure (Dollars in Thousands) FY 2011 Current a FY 2012 Enacted FY 2013 Request Building Technologies Program

349

Student technology fellows program: teaching teachers the technology  

Science Conference Proceedings (OSTI)

Universities are facing a dearth of technology-trained persons to assist with the increased use of technology in the classroom or for course delivery. Several programs have been tried in South Dakota to alleviate this pending crisis. There have been ... Keywords: faculty development, student management, teaching, technology

Allan R. Jones

2002-11-01T23:59:59.000Z

350

The 1986-93 Clean Coal Technology Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1986-93 Clean Coal Technology Program 1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant coal resources. "The U.S. Clean Coal Technology Demonstration Program is the envy of the world." Robert W. Smock Editorial Director, Power Engineering The program's goal: to demonstrate the best, most innovative technology emerging from the world's engineering laboratories at a scale large enough so that industry could determine whether the new processes had commercial merit. Originally, the Clean Coal Technology Demonstration Program was a response to concerns over acid rain, which is formed by sulfur and nitrogen

351

2008 Industrial Technologies Market Report, July 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE). Market analysis is a critical component of EERE's planning and analysis...

352

" Generation, by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity" Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity" " Generation, by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 2" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row" "Code(a)"," Industry Group and Industry","Program(b)","Sponsorship","Involvement","Involvement","Involvement","Involvement","Factors"

353

Coldwater Board of Public Utilities- Commercial & Industrial Lighting Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

354

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and cooling equipment, motors, insulation,...

355

Midstate Electric Cooperative- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Midstate Electric Cooperative (MEC) encourages energy efficiency in the commercial and industrial sectors by giving customers a choice of several different financial incentive programs. First, ...

356

Otter Tail Power Company- Commercial & Industrial Energy Efficiency Grant Program  

Energy.gov (U.S. Department of Energy (DOE))

Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

357

Delmarva Power - Commercial and Industrial Energy Savings Program...  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon Delmarva Power - Commercial and Industrial Energy Savings Program (Maryland) This is the approved revision of this page, as well as...

358

Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

359

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

360

Elizondo 'marries' Laboratory technologies to U.S. industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Elizondo 'marries' Laboratory technologies to U.S. industry Stephen P Wampler, LLNL, (925) 423-3107, wampler1@llnl.gov High Resolution Image Catherine Elizondo is a...

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Commercial and Industrial Energy Efficiency Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate Feasibility Study: 25% of cost Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Small Business Energy Solutions (under 100kW): $0.21 - $0.50/kwh first year savings Large Commercial/Industrial (Prescriptive): $0.09/kwh first year savings Large Commercial/Industrial (Custom): $0.07 - $0.15/kwh first year savings

362

Science and technology for industrial ecology  

SciTech Connect

This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

363

EPUD - Commercial and Industrial Energy Efficiency Rebate Program...  

Open Energy Info (EERE)

see program worksheet on web site Custom Industrial Projects: 0.25kWh of verified energy savings Energy Smart Grocer Program Auto-Closers: 25 - 170 Gaskets: 35 - 70...

364

Current developments of microfiltration technology in the dairy industry  

E-Print Network (OSTI)

Review Current developments of microfiltration technology in the dairy industry Luciana V. SABOYAa of them just patented, in the dairy industry. Combination of the use of uniform trans- membrane hydraulic porosity gradient and of new ceramic membrane materials allows nowa- days to get a differential separation

Recanati, Catherine

365

Large Industrial Renewable Energy Purchase Program (New Brunswick) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Industrial Renewable Energy Purchase Program (New Brunswick) Large Industrial Renewable Energy Purchase Program (New Brunswick) Large Industrial Renewable Energy Purchase Program (New Brunswick) < Back Eligibility Agricultural Commercial Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New Jersey Program Type Performance-Based Incentive Provider New Brunswick Energy and Mines Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This renewable energy will count towards meeting the Province's renewable energy targets at a purchase

366

DOE and Industry Showcase New Control Systems Security Technologies at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Energy Delivery Systems Technology Development » Energy Delivery Systems Cybersecurity » Control Systems Security News Archive » DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DistribuTECH Conference Tuesday-Thursday, March 23-25, 2010 Tampa Convention Center Booth #231 Tampa, FL Join the Department of Energy and its industry partners as they showcase six new products and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth #231 at the DistribuTECH 2010 Conference & Exhibition in Tampa, FL, to see first-hand demonstrations of several newly commercialized control systems security products-each developed through a

367

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

368

Cast Metals Coalition Technology Transfer and Program Management Final Report  

Science Conference Proceedings (OSTI)

The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

Gwyn, Mike

2009-03-31T23:59:59.000Z

369

Environmental technologies program, Fiscal year 1994  

SciTech Connect

This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

1994-12-31T23:59:59.000Z

370

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

371

NREL: Technology Transfer - Commercialization Programs  

The program specifically helps renewable energy and energy efficiency companies by providing free assistance or information ... energy businesses develop market ...

372

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Smart - Commercial and Industrial Energy Efficiency Rebate Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) Energy Smart - Commercial and Industrial Energy Efficiency Rebate Program (20 Municipalities) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Incentives for Prescriptive measures may not exceed 50% of the total project cost, or the individual utilities customer cap (varies per each utility). Incentives for Custom measure may not exceed 40% of the total project cost, or the individual utilities customer cap (varies per each utility). Program Info Expiration Date 12/31/2013 State Michigan

373

Clean Technology Evaluation & Workforce Development Program  

Science Conference Proceedings (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

374

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

375

EERE Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Results will be documented in a report by Pacific Northwest National Lab: "Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and...

376

The Accelerated Site Technology Deployment Program/Segmented Gate System Project  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. Funding is provided through the ASTD Program to assist participating site managers in implementing innovative technologies. The program provides technical assistance to the participating DOE sites by coordinating DOE, industry, and regulatory participation in each project; providing finds for optimizing full-scale operating parameters; coordinating technology performance monitoring; and by developing cost and performance reports on the technology applications.

PATTESON,RAYMOND

2000-09-18T23:59:59.000Z

377

North Shore Gas - Commercial and Industrial Prescriptive Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Shore Gas - Commercial and Industrial Prescriptive Rebate North Shore Gas - Commercial and Industrial Prescriptive Rebate Program North Shore Gas - Commercial and Industrial Prescriptive Rebate Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Contact North Shore Gas Program Info Expiration Date 05/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Steam Traps (Low Pressure): $60/unit Steam Traps (High Pressure): $150/unit Industrial/Process Steam Trap (Low Pressure): $150 Industrial/Process Steam Trap (High Pressure): $200 HVAC Steam Trap Test: $5/unit surveyed Condensing Unit Heater: $2/MBH Boilers: $2 - $6.67/MBH Boiler Cutout/Reset Control: $250

378

Energy efficient industrialized housing research program  

SciTech Connect

This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

1989-01-01T23:59:59.000Z

379

The Industry Coupled Case Study Program final report  

DOE Green Energy (OSTI)

The Industry Coupled Case Study Program was conceived as a short-term cooperative program between the Federal government and private industry. Federal funds were committed to stimulate geothermal exploration and development between 1977 and 1979, although some work under the program continues into 1982. Federal funding has been phased out and the remaining information developed during the program is being disseminated and reported. This report presents an overview of the program and documents the technical results and open-file data base resulting from the program.

Stringfellow, J. [ed.

1982-10-01T23:59:59.000Z

380

Efficient Electric Technologies for Industrial Heating: Emerging Activities  

Science Conference Proceedings (OSTI)

Industrial process heating is typically accomplished with fossil- and by-product fuels. However, new high-efficiency electric technologies for process heating applications are under development and commercially available, including three efficient electric process heating technologies covered in this Brief: Induction heating and melting Microwave (MW) heating, drying and curing Radio frequency (RF) heating, drying, and curing These technologies were selected for three reasons. First, in each case there a...

2007-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Kenergy- Commercial and Industrial Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

382

Environmental technology development through industry partnership  

Science Conference Proceedings (OSTI)

The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system. The precision measurement capability of the coherent laser radar (CLR) technology has already been demonstrated in the form of the CLR 3D Mapper, of which several copies have been delivered or are under order. The CLVS system, in contrast to the CLR 3D Mapper, will have substantially greater imaging speed with a compact no-moving parts scanner, more suitable for real-time robotic operations.

Sebastion, R.L.

1995-12-31T23:59:59.000Z

383

Photovoltaic energy program overview, fiscal year 1991. Programs in utility technologies  

SciTech Connect

The Photovoltaics Program Plan, FY 1991--FY 1995 builds on the accomplishments of the past 5 years and broadens the scope of program activities for the future. The previous plan emphasized materials and PV cell research. Under the balanced new plan, the PV Program continues its commitment to strategic research and development (R&D) into PV materials and processes, while also beginning work on PV systems and helping the PV industry encourage new markets for photovoltaics. A major challenge for the program is to assist the US PV industry in laying the foundation for at least 1000 MW of installed PV capacity in the United States and 500 MW internationally by 2000. As part of the new plan, the program expanded the scope of its activities in 1991. The PV Program is now addressing many new aspects of developing and commercializing photovoltaics. It is expanding activities with the US PV industry through the PV Manufacturing Technology (PVMaT) project, designed to address US manufacturers` immediate problems; providing technical assistance to potential end users such as electric utilities; and the program is turning its attention to encouraging new markets for PV. In 1991, for example, the PV Program initiated a new project with the PV industry to encourage a domestic market for PV applications in buildings and began cooperative ventures to support other countries such as Mexico to use PV in their rural electrification programs. This report reviews some of the development, fabrication and manufacturing advances in photovoltaics this year.

1992-02-01T23:59:59.000Z

384

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program ConEd (Gas) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Manufacturing Other Appliances & Electronics Water Heating Maximum Rebate Large Commercial Energy Study: 50,000 (gas); 67,000 (combined with electric) VFD: 12,000 Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Energy Study: 50% of the cost Custom: $1/therm at less than 20% savings; $2/therm at greater than 20% savings Control/Automation Systems: $2/therm saved, up to 50% of cost

385

NYSEG (Gas) - Commercial and Industrial Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Efficiency Program Commercial and Industrial Efficiency Program NYSEG (Gas) - Commercial and Industrial Efficiency Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Maximum Rebate No maximum per customer rebate; however, NYSEG/RG&E reserve the right to cap the rebate to any one customer. Program Info State New York Program Type Utility Rebate Program Rebate Amount HVAC: Prescriptive incentives vary Condensing Boilers: $1000-$6000 Hydronic Boilers: $500-$4000 Steam Boilers: $200 Furnaces: $100 Programmable Thermostats: $25 Boiler Reset Controls: $150 Provider NYSEG/RGE NYSEG and RG&E offer rebates to non-residential customers installing energy

386

Indiana Michigan Power - Commercial and Industrial Rebates Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indiana Michigan Power - Commercial and Industrial Rebates Program Indiana Michigan Power - Commercial and Industrial Rebates Program Indiana Michigan Power - Commercial and Industrial Rebates Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom: $20,000 per customer account per 12 month period Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Custom: 100% of calculated incentives ($10,000 or less), 50% of calculated incentives ($10,000 - $30,000) T8's with Electronic Ballast: $4-$75/fixture T5's with Electronic Ballast: $2-$213/fixture T5 Fluorescent Lighting: $30-$75/fixture CFL's: $2 - $5 LED Signals: $30 - 50/signal Sensor: $30 T12 Delamping: $8

387

Commercial and Industrial Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program Commercial and Industrial Solar Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate The lesser of 25% of the total cost or $50,000 Program Info Funding Source RPS alternative compliance payments Start Date 11/1/2010 State New Hampshire Program Type State Rebate Program Rebate Amount PV: $0.80/W (DC) for new systems; $0.50/W (DC) for additions to existing systems Solar Thermal: $0.12/rated or modeled kBtu/year for new systems with 15 or fewer collectors; $0.07/rated or modeled kBtu/year for new systems with

388

AEP Appalachian Power - Commercial and Industrial Rebate Programs (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Commercial and Industrial Rebate Programs AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $150,000/account/year Program Info Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount Custom: 50% Unitary/Split AC/Air Source Heat Pumps: $40/ton Packaged Terminal A/C: $30/ton Water/Air Cooled Chillers: $30/ton Ground Source Heat Pump: $50/ton VFDs: $40/HP Programmable Thermostat: $25/unit T8 and T5 Fluorescent Retrofits: $2-$21/fixture T8 and T5 High Bay Fixtures: $28-$209/fixture

389

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Maximum Rebate 20% of the annual C&I Standard Offer Program budget Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Air Compressors: $194.50/kW and $0.0750/kWh saved Duct Sealing: $188.40/kW and $0.0471 Air Infiltration: $143.20/kW and $0.0358/kWh saved

390

MMPA - Commercial and Industrial Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MMPA - Commercial and Industrial Energy Efficiency Program MMPA - Commercial and Industrial Energy Efficiency Program MMPA - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate In no case will rebates exceed the purchase price of equipment; maximum rebates are set by participating cities Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Motor (Upgrade): $20 - $22/HP Variable Frequency Drive: $35/HP Vending Machine Controller: $50 Lighting Retrofit Fluorescent T5-T8 Lamps (Electronic Ballast): $1 - $26 High Bay Fluorescent Fixtures (Electronic Ballast): $85 - $160 Compact Fluorescent Fixtures: $2 - $26 High Pressure Sodium Fixtures: $30 - $50 Ceramic Metal Halide Fixtures: $20 - $100

391

Program on Technology Innovation: Impact of Wireless Power Transfer Technology  

Science Conference Proceedings (OSTI)

This report presents an overview and analysis of wireless power transmission, also called wireless power transfer (WPT), a means of delivering power from a source to an end-use device without wires or contacts. The recent explosive growth in wireless data applications and the surge in the use of portable electronic devices has dramatically increased the market potential for wireless energy-transfer technologies. Industries are investigating the latest wireless power technologies to improve versatility, r...

2009-12-22T23:59:59.000Z

392

NSLS Industrial User Enhancement Plan The overall goal of this plan for enhancing the NSLS Industrial Users' Program is to encourage greater  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial User Enhancement Plan Industrial User Enhancement Plan The overall goal of this plan for enhancing the NSLS Industrial Users' Program is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers, and facilitate research collaborations between industrial researchers and NSLS staff, as well as researchers from university and government laboratories. The implementation of this plan will also involve modifications of the existing user access policy. The plan includes the following major elements: Improve the NSLS proposal review system:  Proposal rating review criteria has been modified to reflect the importance of technology

393

DOE/Industry Matching Grant Program  

SciTech Connect

For the academic year 2001-2002, the Department of Nuclear Engineering and Radiological Sciences received $50,000 of industrial contributions, matched by a DOE grant of $35,000. We used the combined DOE/Industry Matching Grant of $85,000 toward (a) undergraduate merit scholarships and research support, (b) graduate student support, and (c) partial support of a research scientist.

John C. Lee

2003-09-30T23:59:59.000Z

394

SECA Core Technology Program Seal Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

SECA Core Technology Program Seal Workshop Workshop held at Hyatt Regency, San Antonio August 10, 2007 Workshop organized by: Dr. Ayyakkannu Manivannan, National Energy technology Laboratory Morgantown, WV Dr. Prabhakar Singh Pacific Northwest National Laboratory Richland, WA 1 2 Table of Content * Executive Summary * Meeting Agenda * Presentations * List of Attendees 3 Executive Summary SECA Core Technology Program (SECA CTP) led workshop on the topical area titled "SOFC seal: Technology, Challenges and Future Directions" was held on August 10, 2007 at Hyatt Regency, San Antonio, TX. The workshop was attended by scientists and engineers presently involved in the development, engineering, fabrication, and testing of

395

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

396

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

397

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

398

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Christy Cooper Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells, and Infrastructure Technologies Program FORS 5G-064 (202) 586-1885 christy.cooper@ee.doe.gov Education...

399

Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

400

Vehicle Technologies Program High-temperaturestrengthinthe  

E-Print Network (OSTI)

and Renewable Energy Vehicle Technologies Program For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov/informationcenter/ Solar Turbines'4.6 megawatt Mercury 50

Pennycook, Steve

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

402

Oncor Electric Delivery - Large Commercial and Industrial Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oncor Electric Delivery - Large Commercial and Industrial Rebate Oncor Electric Delivery - Large Commercial and Industrial Rebate Program Oncor Electric Delivery - Large Commercial and Industrial Rebate Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Insulation Design & Remodeling Windows, Doors, & Skylights Solar Buying & Making Electricity Water Heating Wind Maximum Rebate General: 20% of the incentive budget in a given budget year Contact Oncor for additional details Program Info State Texas Program Type Utility Rebate Program Rebate Amount DX Air Conditioning: $285.30/kW; $0.09/kWh

403

ConEd (Electric) - Commercial and Industrial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ConEd (Electric) - Commercial and Industrial Energy Efficiency ConEd (Electric) - Commercial and Industrial Energy Efficiency Program ConEd (Electric) - Commercial and Industrial Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Large Commercial Energy Study: $50,000 (electric); $67,000 (combined with gas) Program Info Expiration Date 12/31/2015 State New York Program Type Utility Rebate Program Rebate Amount Lighting: Varies widely by type Small Business Energy Surveys: Free Small Business Equipment Upgrades: up to 70% of cost Large Commercial Energy Study: 50% of the cost

404

CenterPoint Energy - Commercial and Industrial Standard Offer Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CenterPoint Energy - Commercial and Industrial Standard Offer CenterPoint Energy - Commercial and Industrial Standard Offer Program CenterPoint Energy - Commercial and Industrial Standard Offer Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Home Weatherization Insulation Design & Remodeling Maximum Rebate Standard Offer: 20% of the annual incentive budget. Retro-Commissioning: up to $10,000 with matching customer contribution with simple payback in three years. Program Info State Texas Program Type Utility Rebate Program Rebate Amount Standard Offer Lighting (Fluorescent, HID, CFL): $120/kW; $0.04/kWh

405

Food Industry 2000: Food Processing Opportunities, Challenges, New Technology Applications  

Science Conference Proceedings (OSTI)

This report presents a summary of some of the major factors affecting the food processing industry, i. e., economic pressures, consumer concerns and pressures, regulatory restrictions, and general conservatism. The food industry must be responsive to the growing consumer interest in the relationship between diet and general health, to the changes in consumer demographics and desires, and to the opportunities offered by new technology, especially electrotechnologies.

2000-09-18T23:59:59.000Z

406

Program on Technology Innovation: Electricity Use in the Electric Sector  

Science Conference Proceedings (OSTI)

While many utilities are encouraged by regulators to engage in end-use energy efficiency programs, few consider options to reduce energy losses along the electricity value chain, even though the electricity sector is the second largest electricity-consuming industry in the United States. Electricity used to facilitate power production, transmission, and distribution alone consumes approximately 11% of generated electricity. A number of technologies can be applied to reduce this electricity use. This repo...

2011-11-04T23:59:59.000Z

407

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network (OSTI)

bio-oil, crude distillation, chalcogenide nanoparticles, nanoparticle inks and photovoltaic printing are highlighted -- frying foods with minimal oil and rapidly cooling eggs. Purdue has been a leader in computing and conducting polymer electronic devices us- ing well-established, solution-based (e.g., inkjet printing

Pittendrigh, Barry

408

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network (OSTI)

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical assistance program on steam efficiency. In 1997, the Steam Partnership began to define the appropriate activities, tools, and services of a public-private program on steam. Modeled after the successful Motor Challenge program and the newly launched Compressed Air Challenge program, "Steam Challenge" will highlight the importance of steam system efficiency and provide information and technical assistance on technologies for today's industrial steam systems. This paper will introduce Steam Challenge, describe what has been accomplished over the last year, and describe the program's future goals and activities.

Jones, T.; Hart, F.

1998-04-01T23:59:59.000Z

409

Characterization monitoring & sensor technology crosscutting program  

Science Conference Proceedings (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

NONE

1996-08-01T23:59:59.000Z

410

Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979  

SciTech Connect

The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

1980-12-01T23:59:59.000Z

411

Energy Financing Industrial Development Bond Program (California...  

Open Energy Info (EERE)

include photovoltaics, solar thermal electric, fuel cells, small and large wind turbines, biogas, landfill gas, biomass, and geothermal electric technologies. Funding for...

412

Advanced Thermionic Technology Program: summary report. Volume 3. Final report  

DOE Green Energy (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. As a general rule of thumb, cogeneration technologies are most attractive to industries when those technologies naturally produce a ration of electrical to thermal output which closely matches the demand within the industrial facilities themselves. Several of the industries which consume the largest amounts of energy have an electrical-to-thermal ratio of about ten percent, as can be seen in Exhibit D-1.1. This closely matches the electrical efficiency of thermionic converters. Thermionic cogeneration has several other unique advantages relative to alternative technologies for cogeneration which should lead to a much broader application of cogeneration in industry. These advantages accrue from the much higher temperatures at which thermionic energy conversion takes place, its suitability for very small as well as large process heaters, and, of course, its production of direct heat rather than process steam. In fact, thermionics can even be coupled to more conventional cogeneration technologies (e.g., steam turbines) to extend their applicability to processes requiring a greater electrical-to-thermal ratio than either cogeneration technology alone can provide. Several examples of thermionic cogeneration are presented in greater detail: copper refining by the Noranda process; thermionic topping cycles for gas turbine; and combined cycle and fossil-fuel steam power plants. 13 refs., 71 figs.

Not Available

1984-10-01T23:59:59.000Z

413

Commercial & Industrial Solar Rebate Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

state's renewable portfolio standard (RPS), this program supports photovoltaic (PV) and solar-thermal installations. Installations must be located in the state of New Hampshire,...

414

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

415

Industrial Wastewater Minimization in the Chemicals and Petroleum Industries Industry Technology Commentary  

Science Conference Proceedings (OSTI)

Although water is employed in all major industries, the chemicals and petroleum industries stand out as relying on a vast amount of water for their production needs. In the petroleum industry, more than half of the water is used for cooling, followed by boiler feed (roughly one-third), and then process and other uses. In the chemicals industry, the majority of water is used for cooling, followed by process applications, and then boiler and other uses. Both of these market segments have made great strides...

2011-03-31T23:59:59.000Z

416

ENERGY U.S. DEPARTMENT OF Carbon Sequestration Program: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Development from Lab- to Large-Field Scale DOENETL-20111464 February 2011 National Energy Technology Laboratory www.netl.doe.gov Carbon Sequestration Program Technology Program...

417

Recovery Act - Geothermal Technologies Program:Ground Source...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

418

Xcel Energy- Commercial and Industrial Standard Offer Program  

Energy.gov (U.S. Department of Energy (DOE))

Xcel Energy Large Commercial and Industrial Standard Offer Program (SOP) pays incentives to businesses for retrofit and new construction projects that save energy in peak summer demand periods and...

419

Southern California Edison's (SCE) Research Program for Industrial Volatile Organic Compound (VOC) Emissions Control  

E-Print Network (OSTI)

SCE has developed and implemented a research program for customer retention through VOC emission control. Following characterization of problematic emission sources, SCE has identified and evaluated a number of alternative solutions and is currently implementing four demonstrations for promising technologies. The SCE program focuses on three major strategies: (1) reformulation, (2) application improvements, and (3) add-on controls. Vendors were identified, contacted, and evaluated for system performance. Industrial targets were selected based on need for assistance, magnitude of emissions, and number of facilities affected. Many facility operators were approached, interviewed, and analyzed. Three technologies were selected for installation at four host sites, with continuous monitoring of inlet and outlet VOC quantities. SCE intends to continue this demonstration project and to develop an effective technology transfer program to our industrial and commercial customers.

Sung, R. D.; Cascone, R.; Reese, J.

1990-06-01T23:59:59.000Z

420

Clean Technology & Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Technology & Sustainable Industries Organization Technology & Sustainable Industries Organization Jump to: navigation, search Logo: Clean Technology & Sustainable Industries Organization Name Clean Technology & Sustainable Industries Organization Address 4255 Coolidge Hwy Place Royal Oak, Michigan Zip 48073 Number of employees 1-10 Year founded 2007 Phone number 512.692.7267 Website http://www.ct-si.org/ Coordinates 42.5261046°, -83.1842756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5261046,"lon":-83.1842756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Industrial Revenue Bond Program (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

422

NSLS Industrial User Program | Synchrotron Techniques  

NLE Websites -- All DOE Office Websites (Extended Search)

Synchrotron X-ray Techniques for Industrial Research Synchrotron X-ray Techniques for Industrial Research Techniques http://www.sc.doe.gov/bes/synchrotron_techniques/ Spectroscopy Spectroscopy is used to study the energies of particles emitted or absorbed by samples that are exposed to beam to determine the characteristics of chemical bonding and electron energy band structure. Extended X-Ray Absorption Fine Structure Spectroscopy (EXAFS) X-Ray Absorption Near Edge Spectroscopy (XANES) Hard X-ray Photoelectron Spectroscopy (HAXPES) Scanning X-Ray Microscopy: Micro-XRF, -XAFS, -XRD Soft X-Ray Absorption and Scattering Infrared Vibrational Microspectroscopy Photoemission Electron Microscopy / Low-Energy Electron Microscopy (PEEM/LEEM) Scattering/Diffraction Scattering/diffraction makes use of the patterns of scattered x-rays when

423

Alternatives to Industrial Cogeneration: A Pinch Technology Perspective  

E-Print Network (OSTI)

Pinch Technology studies across a broad spectrum of processes confirm that existing plants typically consume 15-40% more thermal energy than they should. Consequently, many cogeneration schemes have been based on thermal requirements and characteristics that are inconsistent with a properly designed and integrated process. Pinch Technology studies also frequently identify projects, based on conventional technology, that require lower capital outlays, achieve more rapid paybacks, and entail less risk than those associated with proposed cogeneration projects. Cogeneration schemes that survive the scrutiny of Pinch Technology are often smaller -- but invariably more cost-effective -- than those being contemplated or now being operated. Most importantly, only the results of such a study truly enable the process operator to evaluate the relative merits of cogeneration and other options for reducing operating costs. Recognizing that cogeneration will, at times, be an appropriate part of an industrial process, utilities have an opportunity to work with their industrial customers using Pinch Technology to insure that the alternatives are properly defined and well understood. Recent case study results show that such cooperation can often yield sounder capital investment decisions and lower operating costs for the industrial operator and load-building and load-retention opportunities for the utility.

Karp, A.

1988-09-01T23:59:59.000Z

424

Characterization, monitoring, and sensor technology crosscutting program: Technology summary  

Science Conference Proceedings (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

NONE

1995-06-01T23:59:59.000Z

425

Heat Pipe Technology for Energy Conservation in the Process Industry  

E-Print Network (OSTI)

Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems range from residential and commercial air-to-air heat exchangers to giant air preheaters for the process and utility industries. The heat pipe offers a unique, efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our expertise in engineering heat recovery products for the process industry. This paper discusses two such products, the heat pipe air preheater and waste heat recovery boiler. These heat pipe products have been used in many successful installations all over the world and some important, distinctive features of these systems will be presented.

Price, B. L. Jr.

1985-05-01T23:59:59.000Z

426

Federal Energy Management Program: Photovoltaic Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Photovoltaic Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Photovoltaic Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Photovoltaic Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Google Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Delicious Rank Federal Energy Management Program: Photovoltaic Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Photovoltaic Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

427

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

428

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

429

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

430

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

431

(Technical and engineering support for the Office of Industrial Programs)  

DOE Green Energy (OSTI)

As of April 19, 1991, technical, operational and analytic support and assistance to the offices and divisions of the Office of Renewable Energy, under contract DE-AC01-86CE30844 was completed. The overall work effort, initiated February 20, 1986, was characterized by timely, comprehensive, high quality, professional responsiveness to a broad range of renewable energy program operational support requirements. These are no instances of failure to respond, nor unacceptable response, during the five-year period. The technology program areas covered are Solar Buildings Technology, Wind Energy Technology, Photovoltaic Energy Technology, Geothermal Energy Technology, Biofuels and Municipal Waste Technology, Solar Thermal Technology, Hydropower Energy Technology, Ocean Energy Technology, and Electric Energy Systems and Energy Storage. The analytical and managerial support provided to the office and staff of the Deputy Assistant Secretary for Renewable Energy enabled a comprehensive evaluation of program and policy alternatives, and the selection and execution of appropriate courses of action from amongst those alternatives. Largely through these means the Office has been able to maintain continuity and a meaningful program thrust through the vacillations of policies and budgets that it has experienced over that it has experienced over the past five years. Appended are summaries of support activities within each of the individual technology program areas, as well as a complete listing of all project deliverables and due-dates for each submittal under the contract.

Not Available

1991-01-01T23:59:59.000Z

432

International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms  

SciTech Connect

Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

2008-02-02T23:59:59.000Z

433

Materials Development Program: Ceramic Technology Project bibliography, 1984--1992  

DOE Green Energy (OSTI)

The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

Not Available

1994-03-01T23:59:59.000Z

434

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE))

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

435

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

436

Native American Training Program in Petroleum Technology  

SciTech Connect

This report outlines a comprehensive training program for members of Native American tribes whose lands have oil and gas resources. The program has two components: short courses and internships. Programs are proposed for: (1) adult tribes representatives who are responsible for managing tribal mineral holdings, setting policy, or who work in the oil and gas industry; (2) graduate and undergraduate college students who are tribal members and are studying in the appropriate fields; and (3) high school and middle school teachers, science teachers. Materials and program models already have been developed for some components of the projects. The plan is a coordinated, comprehensive effort to use existing resources to accomplish its goals. Partnerships will be established with the tribes, the BIA, tribal organizations, other government agencies, and the private sector to implement the program.

Ho, Winifred M.; Kokesh, Judith H.

1999-04-27T23:59:59.000Z

437

Industrial and Agricultural Production Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial and Agricultural Production Efficiency Program Industrial and Agricultural Production Efficiency Program Industrial and Agricultural Production Efficiency Program < Back Eligibility Agricultural Industrial Savings Category Other Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Manufacturing Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Maximum Rebate Custom capital projects: $0.25/kWh, up to 50% of cost; $2/Therm, up to 50% of project cost Custom operation and maintenance projects: $0.08/kWh or $0.40/Therm, up to 50% of project cost Lighting projects: custom lighting incentives get 35% of project cost; prescriptive incentives also available. Total incentive capped at

438

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program  

DOE Green Energy (OSTI)

The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.

Carl L. Anderson

2006-09-25T23:59:59.000Z

439

Comparison of National Programs for Industrial Energy Efficiency  

Science Conference Proceedings (OSTI)

This report looks at the Better Buildings, Better Plants program from the Department of Energy; E3, an initiative of five U.S. federal agencies; ENERGY STAR for Industry from the Environmental Protection Agency; and Superior Energy Performance, a product of the U.S. Council for Energy-Efficient Manufacturing. (See table on next page for a summary comparison of these programs.) By comparing the goals of several energy-efficiency programs that have been established to support industry, this report hopes to...

2012-04-10T23:59:59.000Z

440

" Generation by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

A49. Total Inputs of Energy for Heat, Power, and Electricity" A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row"

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuels Technologies Program 2005 Merit Review & Peer Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

for industry program participants (engine manufacturers, emission control manufacturers, vehicle manufacturers, etc.) to shape the DOE-sponsored R&D program so that the highest...

442

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

443

Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering Approach to Embedded Software  

E-Print Network (OSTI)

1 Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering (1993) Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements. Signature of Author Dawn R. Paluszny System Design and Management Program Certified by Nancy G. Leveson

de Weck, Olivier L.

444

Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)  

DOE Green Energy (OSTI)

Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

Not Available

2010-12-01T23:59:59.000Z

445

MHD magnet technology development program summary, September 1982  

DOE Green Energy (OSTI)

The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

Not Available

1983-11-01T23:59:59.000Z

446

Building Technologies Office: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Building Technologies Office: Program Plans, Implementation, and Results to someone by E-mail Share Building Technologies Office: Program Plans, Implementation, and Results on Facebook Tweet about Building Technologies Office: Program Plans, Implementation, and Results on Twitter Bookmark Building Technologies Office: Program Plans, Implementation, and Results on Google Bookmark Building Technologies Office: Program Plans, Implementation, and Results on Delicious Rank Building Technologies Office: Program Plans, Implementation, and Results on Digg Find More places to share Building Technologies Office: Program Plans, Implementation, and Results on AddThis.com... Key Activities Plans, Implementation, & Results

447

PNNL Global Energy Technology Strategy Program | Open Energy Information  

Open Energy Info (EERE)

Technology Strategy Program Technology Strategy Program Jump to: navigation, search Logo: Global Energy Technology Strategy Program Name Global Energy Technology Strategy Program Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://www.pnl.gov/gtsp/ References Global Energy Technology Strategy Program [1] "Since its inception in 1998, the Global Energy Technology Strategy Program (GTSP) has been assessing the important roles that technology can play in effectively managing the long-term risks of climate change. This involves an integrated approach to fully exploring all aspects of climate change - including scientific, economic, regulatory, and social impacts - and then aligning new or existing technologies to mitigate negative consequences.[1]

448

Program on Technology Innovation: Unleashing Innovation Workshop  

Science Conference Proceedings (OSTI)

EPRI conducted a 1189-day workshop, Unleashing Innovation, for 15 participants from nine utility organizations in Dallas, Texas, on February 2324, 2006. Participants discussed the various opportunities and challenges associated with managing innovation in the electric utility industry. Innovation was broadly defined as value arising from change and includes changes in technology and to the business model. In the facilitated workshop environment, participants exchanged experiences with various aspects of ...

2006-06-26T23:59:59.000Z

449

Federal Energy Management Program: Technology Deployment List  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment List Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List features information about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. Common considerations and barriers are also outlined.

450

Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies  

DOE Green Energy (OSTI)

The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

Not Available

1992-05-01T23:59:59.000Z

451

Information Technology Standards Choices and Industry Structure Outcomes: The Case of the U.S. Home Mortgage Industry  

Science Conference Proceedings (OSTI)

Vertical IS standards prescribe data structures and definitions, document formats, and business processes for particular industries, in contrast to generic information technology (IT) standards, which concern IT characteristics applicable to many industries. ... Keywords: Adoption, Effects Of Standards, Implementation, Industry Structure, Industry-Level Effects, Is Standards, It Choices, Vertical Standards

Rolf T. Wigand; Charles W. Steinfield

2005-11-01T23:59:59.000Z

452

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

453

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

St. Louis, Missouri. Energy Technology Support Unit (ETSU),de Beer, 1997. "Energy Efficient Technologies in Industry -and MAIN, 1993. Energy Technology in the Cement Industrial

Sathaye, J.

2011-01-01T23:59:59.000Z

454

Industrial energy conservation technology: proceedings of the 1984 conference and exhibition. Volume II  

Science Conference Proceedings (OSTI)

The Sixth Industrial Energy Conservation Technology Conference and Exhibition was held at the Shamrock Hilton Hotel, Houston, Texas, April 15-18, 1984. This was a project of the Texas State Energy Conservation Program sponsored by the Texas Economic Development Commission and the Public Utility Commission of Texas. Sixty-seven papers from Volume 2 of the proceedings have been entered individually into EDB and ERA. (LTN)

Williams, M.A. (ed.)

1984-01-01T23:59:59.000Z

455

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

456

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

457

U.S. Industrial Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

第二届中美能效论坛 第二届中美能效论坛 2011年5月6日 邝杰明 美国能源部 能源效率与可再生能源办公室 美国工业能效项目 第二届中美能效论坛 5月5-6日,2011|劳伦斯伯克利国家实验室,伯克利市,加州 2 | Industrial Energy Efficiency eere.energy.gov 5月5-6日,2011|劳伦斯伯克利国家实验室,伯克利市,加州 全球能源挑战 能源效率和可再生能源提供了 解决全球能源挑战的解决方案。 能源安全 环境保护 经济发展 清洁能源 解决方案 首要的挑战包括: * 碳减排 * 清洁能源技术的市场销售 * 研究和开发的需求

458

JGI - Emerging Technologies Opportunity Program (ETOP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Opportunity: DOE JGI Emerging Technologies Opportunity Program Funding Opportunity: DOE JGI Emerging Technologies Opportunity Program (ETOP) Overview | Eligible Applicants | Anticipated Funding | Applications and Submission Information : Pre-proposals, ETOP Full Application, Proposal Review Overview The DOE JGI is a genome science user facility focused on providing scientists access to state-of-the-art large-scale genomic technologies to address important energy and environmental problems. A core philosophy of the DOE JGI is that our suite of technical and analytical capabilities needs to evolve continuously in order to maximally enable our users' science. This occurs by building new scientific capabilities at the DOE JGI itself, and by enlisting partners to develop and provide specialized and critical capabilities that complement the activities in its Walnut Creek

459

Science for Energy Technology: Strengthening the Link Between Basic Research and Industry  

SciTech Connect

The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology.

2010-04-01T23:59:59.000Z

460

Advanced Lighting Technology Program for Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E's Innovative Federal Collaboration E's Innovative Federal Collaboration Advanced Lighting Technology Program for Federal Buildings Federal Utility Partnership Working Group November 1, 2006 "A 3 MW Success Story: Delivering on the Promise" Today's Presentation * Setting the Scene - U.S & Global Perspective * Program Overview: - Advanced Lighting Technology Program for Federal Buildings * Benefits - Energy and environmental * Conclusion: - The Lamborghini Analogy Setting the Scene U.S. Policy: The National Direction "The answer to high energy prices is the kind of comprehensive approach embraced by the President-that includes...increasing our reliance on energy efficiency and conservation. "Let me be clear: Encouraging greater energy efficiency is part and parcel of changing the way we power our homes and

Note: This page contains sample records for the topic "industrial technologies program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Technology Validation Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Technology Validation sub-program demonstrates, tests, and validates hydrogen and fuel cell technologies and uses the results to provide feedback to the Program's research and development (R&D) activities. This year, the sub-program concluded the National Fuel Cell Electric Vehicle Learning Demonstration, the principal emphasis of the sub-program over the past decade, which encompassed the co- development and integration of hydrogen infrastructure with hydrogen fuel cell-powered vehicles, allowing industry to assess progress toward technology readiness. In addition, the Technology Validation sub-program completed a project on combined hydrogen, heat, and power (tri-generation or CHHP). Continuing efforts

462

Industrial Energy: Counseling the Marriage Between Energy Users and Efficiency Programs  

E-Print Network (OSTI)

Industrial energy users and the efficiency programs that serve them enjoy a long and storied partnership. Each partner operates with the best of intentions, but with agendas that are not always reconcilable. At best, this yields a marriage that is not as fruitful as it can be. At worst, it creates alienation and wastes the value that this union has the potential to generate. Most marriages need periodic renewal, as the partners pause to take stock of their past progress and their future vision. The marriage of industrial facilities and energy programs are no different. If industrial energy efficiency is to reach its full potential, programs must evolve beyond a courtship based on the low hanging fruit of easy, low-cost improvements. What began as an effort to reduce utility bills can become a strategic partnership for boosting industry competitiveness and economic growth. This approach necessarily involves capital investment choices. Aside from the usual technical analyses, industry managers and program administrators will need to effectively navigate the procedures and politics of corporate investment. This suggests an evolution in energy program communications and conduct. This report compares the business as usual marriage between industry and energy efficiency programs. Drawing from a survey of stakeholders, we extrapolate lessons-learned and offer a vision for sustaining that marriage in the future. (Note: please read the footnote below to become familiar with the acronyms used in this report.) What are the opportunities and rewards? Equally important, how can the partners work together more productively? What does this vision imply for future program design and conduct? This report, submitted for the 2013 Industrial Energy Technology Conference, will offer suggestions. A companion social media platform will invite readers to react with comments that will refine our basic vision. It is our intention to have this document evolve into a public discussion-one that we hope lasts far beyond the close of the conference.

Russell, C.

2013-01-01T23:59:59.000Z

463

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

464

NETL: Clean Coal Technology Demonstration Program (CCTDP) - Round 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Industrial Applications Cement Kiln Flue Gas Recovery Scrubber - Project Brief [PDF-247KB] Passamaquoddy Technology Limited Partnership, Thomaston, ME Program Publications Final Reports Passamaquoddy Technology Recovery Scrubber(tm) Final Report, Volume 1 [PDF-5.4MB] (Feb 1994) Final Report, Volume 2 and Appendices A - M [PDF-10.4MB] (Feb 1994) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports Cement Kiln Flue Gas Recovery Scrubber Project: A DOE Assessment [PDF-246KB] (Nov 2001) Cement Kiln Flue Gas Recovery Scrubber, Project Performance Summary [PDF-2MB] (June 1999) Design Reports Passamaquoddy Technology Recovery Scrubber(tm) Public Design Report (Oct 1993) [PDF-2.7MB) Interim Reports Interim Technical Report [PDF-973KB] (Mar 1992)

465

Annual highlights of the energy technology programs  

SciTech Connect

The Energy Storage and Conversion Division reports summary activities in the following: electrolysis-based hydrogen energy storage systems; an electrochemically regenerative hydrogen--halogen energy storage system; fuel cells (materials and electrolysis); high temperature water electrolysis; hydrogen energy storage systems for automobile propulsion; program planning for research related to energy conservation; New York Energy Office oil retrofit pilot program; burner-boiler/furnace testing; and proposed programs. The Engineering Division reports on solar-assisted heat pump systems; solar cooling subsystems and systems; solar demonstration project in Northeast U.S.; hardware simulators for tests of solar cooling/heating systems; fossil-energy programs; catalytic process for conversion of synthesis gas to methanol; coal-fired heater; coal/oil mixture combustion; rotating fluidized bed containing limestone for removal of sulfur from hot gases; improved oil and gas burners; residue and waste fuels; and proposed programs. The Conservation Program Management Group reports on conservation program management; space conditioning, diagnostics, and controls technology for conservation in buildings; and energy conservation in residential buildings. Funding for 1978 and 1979 for each program is indicated. (MCW)

1978-12-01T23:59:59.000Z

466

Building Energy Codes ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

ENFORCEMENT TOOLKIT ENFORCEMENT TOOLKIT BUILDING TECHNOLOGIES PROGRAM Building Energy Codes ACE LEARNING SERIES i Building Energy Codes ENFORCEMENT TOOLKIT Prepared by: Building Energy Codes Program The U.S. Department of Energy's Building Energy Codes Program is an information resource on energy codes and standards for buildings. They work with other government agencies, state and local jurisdictions, organizations that develop model codes and standards, and building industry to promote codes that will provide for energy and environmental benefits and help foster adoption of, compliance with, and enforcement of those codes. September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-SA-90467 LEARNING SERIES OVERVIEW Building Energy Codes ACE