Sample records for industrial technologies program

  1. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  2. Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

  3. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30T23:59:59.000Z

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  4. Office of Industrial Technologies: Summary of program results

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

  5. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    Assistant Vice President, Corporate & Foundation Relations Inside this issue... Greetings to Industry. The founding members are American Axle and Manufacturing, Eaton Corpora- tion and John Deere. This applied

  6. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  7. Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01T23:59:59.000Z

    This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

  8. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  9. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable of Energy Efficiency and Renewable Energy invests in a diverse portfolio of energy technologies. For more

  10. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  11. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy of Energy Efficiency and Renewable Energy invests in a diverse portfolio of energy technologies. For moreBringing you a prosperous future where energy is clean, abundant, reliable and affordable

  12. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect (OSTI)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  13. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    None

    2000-12-01T23:59:59.000Z

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  14. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-05-20T23:59:59.000Z

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

  15. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2010-05-15T23:59:59.000Z

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

  16. Opportunities for industry participation in DOE`s environmental management technology development program

    SciTech Connect (OSTI)

    Bedick, R.C. [USDOE Morgantown Energy Technology Center, WV (United States); Walker, J.S. [USDOE Assistant Secretary for Environmental Management, Washington, DC (United States). Office of Science and Technology

    1996-09-01T23:59:59.000Z

    METC has managed about 85 research, development, and demonstration projects on behalf of DOE-EM`s Office of Science and Technology that include those in each of the four major environmental remediation and waste management problem areas: subsurface contaminants (radionuclides, heavy metals, dense nonaqueous phase liquids); decontamination and decommissioning of facilities; high-level waste tank remediation; and mixed waste characterization/treament/disposal. All projects within the Industry Programs are phased or have optional tasks at specific go/no-go decision points, allowing DOE to make investment decisions at various points in the technology development cycle to ensure that we are meeting the technology development goals and the needs of the customer or end-user. This decision making process is formalized in a Technology Investment Decision Model. A brief summary is given of R&D requirements (technology needs) in each of the above-mentioned 4 problem areas.

  17. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01T23:59:59.000Z

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  18. Effective Transfer of Industrial Energy Conservation Technologies

    E-Print Network [OSTI]

    Clement, M.; Vallario, R. W.

    1983-01-01T23:59:59.000Z

    , and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing...

  19. Furnace Pressure Controllers; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #6 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof6 * September 2005 Industrial

  20. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition. Industrial Technologies Program (ITP) (Book)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling andProgram Improving

  1. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07T23:59:59.000Z

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  2. U.S. Department of Energy's Industrial Technologies Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01T23:59:59.000Z

    .357 0.266 32.4 Advanced Aerodynamic Technologies for Improving Fuel Economy in Ground Vehicles 0.093 0.052 0.001 0.000 0.054 0.014 2....02 Advanced Reciprocating Engine Systems (ARES) - - - - - - - Aerogel-Based Insulation for Industrial Steam Distribution Systems 0...

  3. The Industrial Electrification Program

    E-Print Network [OSTI]

    Harry, I. L.

    1982-01-01T23:59:59.000Z

    EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

  4. INDUSTRIAL ENGINEERING GRADUATE PROGRAMS

    E-Print Network [OSTI]

    Gelfond, Michael

    : Occupational biomechanics, work physiology, industrial ergonomics, environmental hygiene, cognitive engineeringINDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor

  5. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  6. Energy Programs of the Texas Industrial Commission 

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01T23:59:59.000Z

    workshops and seminars; an annual Industrial Energy Technology Conference; the coordination of a university program for the training of industrial energy auditors; and organizational assistance in the establishment of regional energy conservation groups...

  7. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect (OSTI)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01T23:59:59.000Z

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  8. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy...

  9. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  10. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01T23:59:59.000Z

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  11. Ontario's Industrial Energy Services Program

    E-Print Network [OSTI]

    Ploeger, L. K.

    .8%! ! ! ! OTHER 8.4%! l4.9%! l4.0%! ! ! ! TOTAL 100.0%! 100.0%! 100.0%! ! PROGRAM STRATEGY Ontario's Industrial Energy Services Program was designed to: lead industrial energy consumers to the realization that increased energy efficiency generates... ONTARIO'S INDUSTRIAL ENERGY SERVICES PROGRAM LINDA K. PLOEGER, GENERAL MANAGER, INDUSTRY PROGRAMS ONTARIO MINISTRY OF ENERGY TORONTO, ONTARIO, ABSTRACT The Ontario Ministry of Energy began offering its new Industrial Energy Services Program...

  12. U.S. Department of Energy's Industrial Technology Program and Its Impacts

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    Vehicles 0.000 0.000 0.001 0.000 0.039 0.010 1.46 Aerogel-Based Insulation for Industrial Steam Distribution Systems 0.01 0...

  13. U.S. Department of Energy's Industrial Technology Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2009-01-01T23:59:59.000Z

    Vehicles 0.000 0.000 0.001 0.000 0.039 0.010 1.46 Aerogel-Based Insulation for Industrial Steam Distribution Systems 0.01 0...

  14. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect (OSTI)

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01T23:59:59.000Z

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  15. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  16. SPIDERS Joint Capability Technology Demonstration Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPIDERS Joint Capability Technology Demonstration Industry Day Presentations SPIDERS Joint Capability Technology Demonstration Industry Day Presentations Presentations from the...

  17. U.S. Department of Energy's Industrial Technologies Program and Its Impacts

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01T23:59:59.000Z

    - - - - - - - Shorter Spherodizing Annealing Time for Tube/Pipe Manufacturing 0.138 0.008 - 0.000 - 0.016 2.19 Vanadium Carbide Coating Process 0....02 Advanced Reciprocating Engine Systems (ARES) - - - - - - - Aerogel-Based Insulation for Industrial Steam Distribution Systems 0...

  18. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  19. Training For Industry Program (TIP) (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Oklahoma Department of Career and Technology Education runs the Training For Industry Program (TIP) is a no-cost/low-cost way for new or growing companies that create jobs to get a skilled,...

  20. Evaluation of TVA`s model site and individual technology pollution prevention demonstration programs and their impact on the agrichemical industry

    SciTech Connect (OSTI)

    Simpson, G.S.

    1995-06-01T23:59:59.000Z

    The high volume of fertilizer and pesticides funneled through a relatively small number of distribution outlets has made these agribusiness sites potential sources of surface/groundwater contamination in watersheds surrounding the agrichemical facilities. The agrichemical industry came under increased pressures in the mid-1980s to implement environmentally sound management practices and to install containment structures around fertilizer and chemical storage/handling areas to prevent future contamination of existing sites or the movement of contaminants offsite. TVA`s long and successful history of technology transfer to the retail fertilizer industry, as well as the technical expertise of the Agency`s staff, made TVA ideally suited to handle the new environmental challenge. It was during this time period that TVA`s Model Site Demonstration Program (MSD) and Individual Technology Demonstration Program (ITD) were conceived. Since inception, the pollution prevention program and the technologies advanced by it have made a very positive impact on the US agrichemical industry, as well as on other TVA programs. This paper is an attempt to document these impacts, with primary focus being placed on the program`s impact on the agribusiness dealer who implements the pollution prevention technologies/practices recommended by TVA.

  1. Analyzing Your Compressed Air System; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #4 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformanceof Energy4 * August 2004 Industrial

  2. Industrial Energy Efficiency: Designing Effective State Programs...

    Energy Savers [EERE]

    Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector Industrial Energy Efficiency: Designing Effective State Programs for the Industrial...

  3. NEW INDUSTRIAL AUTOMATION LABORATORY & COURSES ECET TECHONOLOGY PROGRAM ADVANCEMENT

    E-Print Network [OSTI]

    Allen, Gale

    Paper #16 NEW INDUSTRIAL AUTOMATION LABORATORY & COURSES ECET TECHONOLOGY PROGRAM ADVANCEMENT Gale, Engineering and Technology. A new industrial automation laboratory was recently assembled and seven stations Minnesota state funding, industry contributions, and curriculum planning efforts resulted in a significant

  4. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”Emerging Energy-Efficient Technologies for Industry Ernst

  5. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. “Emerging Energy-Efficient Industrial Technologies,”

  6. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    1998. “Emerging Energy-Saving Technologies and Practices for2000. “Emerging Energy-Efficient Industrial Technologies,”Emerging Energy-Efficient Technologies for Industry Ernst

  7. Technology Innovation Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...

  8. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

  9. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

  10. Joint Capability Technology Demonstration (JCTD) Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Joint Capability Technology Demonstration (JCTD) Industry Day Agenda Agenda outlines the activities of the 2014...

  11. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  12. New Technology Demonstration Program

    E-Print Network [OSTI]

    New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

  13. Characterizing emerging industrial technologies in energy models

    E-Print Network [OSTI]

    Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-01-01T23:59:59.000Z

    Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies,” Lawrenceinformation about energy efficiency technologies, their

  14. The Industries of the Future Program: What's in it for Texas Industries?

    E-Print Network [OSTI]

    Ferland, K. A.

    The purpose of the TEXAS INDUSTRIES OF THE FUTURE program is to facilitate the development, demonstration and adoption of emerging technologies that reduce industrial energy usage, emissions, and associated costs, resulting in improved competitive...

  15. Oklahoma Industrial Energy Management Program 

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01T23:59:59.000Z

    usage continues to rise. With this informa tion, Oklahoma embarked upon a program to help indus try (particularly small to medium sized ones) meet the challenge. Program Objectives The primary objective of the program can be stated simply as: "To... for the country and necessary for her to be competitive in the International marketplace. PROGRAM DESCRIPTION The first step was to develop a symbol that year tenure of the.program. The conferences have concentrated on the industrialized areas of Tulsa...

  16. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager...

  17. Technology Innovation Program 2010ANNUAL REPORT

    E-Print Network [OSTI]

    Technology Innovation Program 2010ANNUAL REPORT 2010ANNUAL REPORT Technology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology

  18. Pollution Prevention Program: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Department of Energy (DOE) has established a national Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program for pollution prevention and waste minimization at its production plants During FY89/90 the Office of Environmental Restoration and Waste Management (EM), through the Office of Technology Development (OTD), established comprehensive, pollution prevention technical support programs to demonstrate new, environmentally-conscious technology for production processes. The RDDT&E program now entails collaborative efforts across DOE. The Pollution Prevention Program is currently supporting three major activities: The DOE/US Air Force Memorandum of Understanding Program is a collaborative effort to utilize the combined resources of DOE and the Department of Defense, eliminate duplication of effort in developing technologies, and to facilitate technology solutions aimed at reducing waste through process modification, material substitution or recycling. The Waste Component Recycle, Treatment and Disposal Integrated Demonstration (WeDID) will develop recycle, treatment, and disposal processes and associated technologies for use in the dismantlement of non-nuclear weapons components, to support US arms treaties and policies. This program will focus on meeting all security and regulatory requirements (with additional benefit to the commercial electronics industry). The Environmentally Conscious Manufacturing Integrated Demonstration (ECMID) will effectively implement ECM technologies that address both the needs of the DOE Complex and US electronics industry, and encourage strong interaction between DOE and US industry. The ECMID will also develop life cycle analysis tools that will aid decisionmakers in selecting the optimum process based on the tradeoffs between cost an environmental impact.

  19. Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor

    E-Print Network [OSTI]

    Gross, T. J.

    The Department of Energy’s Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R...

  20. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...

  1. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10T23:59:59.000Z

    Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

  2. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  3. Building Technologies Program | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

  4. EPRI's Industrial Energy Management Program

    E-Print Network [OSTI]

    Mergens, E.; Niday, L.

    EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... are funded at a level in excess of SlO million annually. By providing technical guidance and sponsoring research and development projects, these Centers and Offices are a key element in EPRI's role of improving the value of electricity to consumers...

  5. Technology Assistance Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

  6. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Estes, C. B.

    1982-01-01T23:59:59.000Z

    In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often...

  7. Advanced Industrial Materials Program. Annual progress report, FY 1993

    SciTech Connect (OSTI)

    Stooksbury, F. [comp.

    1994-06-01T23:59:59.000Z

    Mission of the AIM program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDAs. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  8. Industrial and Organizational Psychology Doctoral Program Handbook

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Industrial and Organizational Psychology Doctoral Program Handbook University of Central Florida chosen the University of Central Florida for your graduate training in Industrial and Organizational

  9. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Magee, Joseph W.

    Technology Innovation Program Advisory Board 2009 Annual Report of the #12;2009 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program February 2010 #12;For Information regarding the Technology

  10. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Technology Innovation Program Advisory Board 2011 Annual Report of the #12;#12;i 2011 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program March 2012 #12;ii For Information regarding the Technology

  11. UW Computer Science & Engineering Industrial Affiliates Program

    E-Print Network [OSTI]

    Anderson, Richard

    UW Computer Science & Engineering Industrial Affiliates Program 2011-12 Contributions for the CSE Industrial Affiliates Program are to be used to further the Computer Science & Engineering program with this completed form to: Kay Beck-Benton Industrial Affiliates Program University of Washington Computer Science

  12. UW Computer Science & Engineering Industry Affiliates Program

    E-Print Network [OSTI]

    Borenstein, Elhanan

    UW Computer Science & Engineering Industry Affiliates Program 2013-14 Contributions for the CSE Industry Affiliates Program are to be used to further the Computer Science & Engineering program-Benton Industrial Affiliates Program University of Washington Computer Science & Engineering Box 352350 Seattle, WA

  13. Industrial Advanced Turbine Systems Program overview

    SciTech Connect (OSTI)

    Esbeck, D.W.

    1995-12-31T23:59:59.000Z

    DOE`s ATS Program will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in the 3 to 20 MW class. Market studies were conducted for application of ATS to the dispersed/distributed electric power generation market. The technology studies have led to the design of a gas-fired, recuperated, industrial size gas turbine. The Ceramic Stationary Gas Turbine program continues. In the High Performance Steam Systems program, a 100 hour development test to prove the advanced 1500 F, 1500 psig system has been successfully completed. A market transformation will take place: the customer will be offered a choice of energy conversion technologies to meet heat and power generation needs into the next century.

  14. The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

  15. Canada's Voluntary Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Wolf, C. A., Jr.

    1980-01-01T23:59:59.000Z

    Industrial Energy Conservation in Canada is organized and promoted through a voluntary program that is administered by industry. Industry is divided into fifteen sectors, each of which is represented by a Voluntary Task Force. Information exchange...

  16. Energy Programs of the Texas Industrial Commission

    E-Print Network [OSTI]

    Heare, J.; dePlante, L. E.

    1979-01-01T23:59:59.000Z

    The objectives of the Industrial Energy Conservation Program are to assist Texas industry in using energy more efficiently through seminars, workshops, technical information exchange and other supportive programs with the goal of conserving at least...

  17. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  18. Unitil- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Unitil offers three different programs for its commercial, industrial, and institutional customers in New Hampshire: the Small Business Energy Efficiency Services Program, the Large Business...

  19. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    Microturbines: What is a Microturbine? ” OIT’s Industrial1999c. Summary of the Microturbine Technology Summit:s Emerging Companies; Microturbine Firm Hopes IPO Generates

  20. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    J. , Nadel, S. , 2000. “Emerging Energy-Efficient IndustrialThorne, J. , 1998. “Emerging Energy-Saving Technologies andand Policy Implications of Energy and Material Efficiency

  1. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    J. , Nadel, S. , 2000. “Emerging Energy-Efficient IndustrialThorne, J. , 1998. “Emerging Energy-Saving Technologies andand Policy Implications of Energy and Material Efficiency

  2. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Thorne, J. , 1998. “Emerging Energy-Saving Technologies andand Policy Implications of Energy and Material EfficiencyD. Ed. 1999. “Industrial Energy Efficiency Policies:

  3. China's Defense Electronics and Information Technology Industry

    E-Print Network [OSTI]

    RAGLAND, LeighAnn; MCREYNOLDS, Joe; GEARY, Debra

    2013-01-01T23:59:59.000Z

    2013 China’s Defense Electronics and Information Technologythe Chinese defense electronics and information technology (is moving the defense electronics and IT industry toward

  4. Environmental Technology Verification Program

    E-Print Network [OSTI]

    Activities.................4 Table 2.0 Records Management Responsibilities for the MMR CenterEnvironmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS

  5. Precise Technology, Inc.: Molded Plastics Manufacturer's Energy Use Drops 22% as a Result of Industrial Energy Assessment Recommendations

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at Precise Technology, Inc by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

  6. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Technology Innovation Program Advisory Board 2009 Annual Report of the Technology Innovation Program Advisory Board 2010 Annual Report of the #12;2010 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology

  7. Industrial Conservation Technology Energy Savings Monitoring System

    E-Print Network [OSTI]

    Crowell, J. J.; Phipps, H. R., Jr.

    1980-01-01T23:59:59.000Z

    A system is described which monitors actual market penetration and energy savings of Department of Energy sponsored industrial conservation commercial technologies. The procedure to implement a new, technology into the Impact Scoreboard System (ISS...

  8. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  9. Information Technology Tools for Multifamily Building Programs...

    Energy Savers [EERE]

    Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

  10. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSD Workshop Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S....

  11. Determine the Cost of Compressed Air for Your Plant; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #1 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal * August 2004 Industrial

  12. Trim or Replace Impellers on Oversized Pumps: Industrial Technologies Program (ITP) Pumping Systems Tip Sheet #7 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|IndustrialCenterMarch 4; RSVP by Feb. 27SolarDepartmentTribe's7 *

  13. Remove Condensate with Minimal Air Loss; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #13 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4Visitors3 * August 2004 Industrial

  14. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  15. Advanced Industrial Materials (AIM) Program annual progress report, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.

  16. PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program

    E-Print Network [OSTI]

    California at Berkeley, University of

    PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division by the University of California Pavement Research Center. The University of California Pavement Research Center Using innovative research and sound engineering principles to improve pavement structures, materials

  17. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  18. Materials Selection Considerations for Thermal Process Equipment: A BestPractices Process Heating Technical Brief. Industrial Technologies Program (ITP) (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 20122 DOE Technologies Office2 DOEandMaterials

  19. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01T23:59:59.000Z

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  20. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E. (ed.)

    1990-10-01T23:59:59.000Z

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  1. Oxygen-Enriched Combustion; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #3 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49, the Owens3 * September

  2. Industrial Process Heating - Technology Assessment

    Office of Environmental Management (EM)

    opportunities for technology improvements that can benefit from 146 high-performance computing (HPC) approaches. 147 148 In the next section, the technology assessment...

  3. DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

  4. DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)

    Broader source: Energy.gov [DOE]

    This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

  5. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  6. The future steelmaking industry and its technologies

    SciTech Connect (OSTI)

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

    1995-01-01T23:59:59.000Z

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  7. Geothermal energy technology program summary

    SciTech Connect (OSTI)

    Not Available

    1985-05-01T23:59:59.000Z

    The progress to date of the geothermal energy program of the US Department of Energy is briefly summarized, including federal/industry cooperation, program focus, and a budget summary. (ACR)

  8. ARRA Proposed Award: Energy Technology Assistance Program

    E-Print Network [OSTI]

    ARRA Proposed Award: Energy Technology Assistance Program Statewide Program ­ covering Greater. Highlights: Energy Technology Assistance Program (ETAP) is a statewide program that will focus on providing

  9. Clean Coal Technology Demonstration Program: Program update 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  10. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01T23:59:59.000Z

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  11. 2015 Joint Capability Technology Demonstration Industry Day

    Broader source: Energy.gov [DOE]

    The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Phase 3 Industry Day will be on August 27, 2015, from 8 a.m. to noon at the Hawaii Convention Center.

  12. Technology innovation in financial services industry

    E-Print Network [OSTI]

    Roxo da Fonseca, Gustavo J. C. (Gustavo José Costa), 1967-

    2004-01-01T23:59:59.000Z

    Over the last few decades, we have seen an enormous evolution in the financial services industry driven by technology innovations. Indeed, we cannot imagine the current financial system without electronic fund transfers, ...

  13. SPIDERS Joint Capability Technology Demonstration Industry Day

    Broader source: Energy.gov [DOE]

    The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day occurred April 22, 2014, from 8 a.m. to 1:30 p.m. at Fort Carson, Colorado.

  14. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

  15. Oregon Water Quality Permit Program (Stormwater - Industrial...

    Open Energy Info (EERE)

    Oregon Water Quality Permit Program (Stormwater - Industrial Activities) Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Water Quality...

  16. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01T23:59:59.000Z

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  17. Emerging energy-efficient technologies for industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

    2004-01-01T23:59:59.000Z

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

  18. Centers for manufacturing technology: Industrial Advisory Committee Review

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

  19. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies Program research...

  20. Industrial cogeneration optimization program. Final report, September 1979

    SciTech Connect (OSTI)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01T23:59:59.000Z

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  1. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect (OSTI)

    None

    2009-10-01T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  2. Clean coal technology programs: program update 2006

    SciTech Connect (OSTI)

    NONE

    2006-09-15T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  3. The Texas Industrial Energy Conservation Program 

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    cesses listed. Chart1-lndustrial Target Groups SIC CODE INDUSTRY 201 Meat Products 204 Feed and Grain 207 Fats and Oils 26 Paper and Allied Products 28 Chemicals and Allied Products 30 Rubber and Plastics 33 Primary Metals 34 Fabricated Metals... industry seminars. In the preparation of workbooks for industrial processes, a screening of engineering firms was 763 ESL-IE-82-04-139 Proceedings from the Fourth Industrial Energy Technology Conference, Houston, TX, April 4-7, 1982 conducted in order...

  4. Emerging energy-efficient technologies for industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

    2001-03-20T23:59:59.000Z

    For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

  5. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

  6. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Turner, W. C.; Webb, R. E.; Phillips, J. M.; Viljoen, T. A.

    1979-01-01T23:59:59.000Z

    The need for sound energy management is no longer worthy of debate. Action is necessary and much is being done by U.S. industry. Unfortunately, however, the majority of the work is being done by the few large energy intensive industries throughout...

  7. N-K Manufacturing Technologies: Industrial Energy Assessment Yields Savings of More than $27,000 Per Year for Molded Plastics Company

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at N-K Manufacturing Technologies by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

  8. Advanced Mechanical Heat Pump Technologies for Industrial Applications

    E-Print Network [OSTI]

    Mills, J. I.; Chappell, R. N.

    , advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

  9. Industrial Combustion Technology Roadmap. A Technology Roadmap by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    2002-10-01T23:59:59.000Z

    The U.S. combustion industry is among the most productive, efficient, and technologically sophisticated in the world and remains vital to the nation’s economic competitiveness and national security. As the industry looks forward, it confronts tremendous growth opportunities but also significant technical and market challenges. Future industry success will depend on the industry's ability to respond to competitive pressures as well as public expectations for a clean and sustainable industry. Much progress has been made in understanding the fundamental science of combustion; however, much more is needed as regulatory and competitive forces push the industry to develop combustion equipment with better performance, lower environmental impact, and greater flexibility. Immense opportunities exist for companies to develop and apply new technology responding to these needs. Unfortunately, few companies can accept the high technical and financial risk required for the research if the technology is not adopted widely enough to provide a payback on their investment.

  10. ERHAN KUTANOGLU Graduate Program in Operations Research and Industrial Engineering

    E-Print Network [OSTI]

    Kutanoglu, Erhan

    ERHAN KUTANOGLU Graduate Program in Operations Research and Industrial Engineering Department · As a tenured faculty member in the Operations Research and Industrial Engineering Graduate Program, develop School of Engineering Co-Director, Industrial Affiliates Program January 2012 ­ Present Advanced

  11. Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms

    E-Print Network [OSTI]

    Lewis, Joanna; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Policy and Renewable Energy Technology. Proceedings of theDiffusion of Renewable Energy Technologies: Wind Power inFostering a Renewable Energy Technology Industry: An

  12. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2006-03-01T23:59:59.000Z

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  13. Characterizing emerging industrial technologies in energy models

    SciTech Connect (OSTI)

    Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29T23:59:59.000Z

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  14. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

  15. Electric Utility Industrial Conservation Programs

    E-Print Network [OSTI]

    Norland, D. L.

    1983-01-01T23:59:59.000Z

    The Alliance to Save Energy conducted a study, funded by the John A. Hartford Foundation, of industrial and commercial electricity conservation opportunities in the service territory of Arkansas Power and Light Company (AP&L). The study determined...

  16. Industrial Energy Efficiency Programs: Development and Trends

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01T23:59:59.000Z

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs to find and help implement...

  17. NY-Sun Commerical/ Industrial Incentive Program

    Broader source: Energy.gov [DOE]

    New York State Energy Research and Development Authority (NYSERDA) through NY-Sun Commercial/Industrial Incentive Program (PON 3082) provides incentives for installation of non-residential new grid...

  18. Energy Technical Assistance: Industrial Processes Program

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  19. Industrial and Agricultural Production Efficiency Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon offers the Industrial and Agricultural Production Efficiency Program to customers of Portland General Electric, Pacific Power, NW Natural and Cascade Natural Gas. In order to...

  20. Industrial Energy Efficiency Programs: Development and Trends 

    E-Print Network [OSTI]

    Chittum, A.; Kaufman, N.; Elliot, N.

    2010-01-01T23:59:59.000Z

    As more states establish Energy Efficiency Resource Standards (EERS), goals for energy efficiency savings are increasing across the country. Increasingly, states are relying on their industrial energy efficiency programs ...

  1. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  2. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  3. SymposiumandIndustrialAffiliatesProgramLightinAction Industrial Affiliates Program

    E-Print Network [OSTI]

    Van Stryland, Eric

    Session I Abstract: Recently Additive Manufacturing (AM) has been hailed as the "third industrial Platform for precision additive manufacturing largely depends on the speed and accuracy of in-situ optical Dean & Director, CREOL, UCF Symposium: Light in Action Session I. Manufacturing 9:15 Advances

  4. PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program

    E-Print Network [OSTI]

    California at Berkeley, University of

    the road." In recent years, increasing amounts of crumb rubber from recycled tires have been added solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL. 1, NO. 2 § Rubber Roads: Waste Tires Find a Home By Larry Santucci, PE Pavement Specialist

  5. Distributed Energy Resources Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-11-01T23:59:59.000Z

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  6. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  7. President Obama visits Geothermal Technologies Program Partner...

    Energy Savers [EERE]

    President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

  8. Geothermal Technologies Program Annual Peer Review Presentation...

    Energy Savers [EERE]

    Technologies Program Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett 2012 Peer Review presentation...

  9. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  10. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  11. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  12. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-12-01T23:59:59.000Z

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  13. Defense programs industrial partnerships at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

    1996-10-01T23:59:59.000Z

    The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

  14. Oklahoma Industrial Energy Management Program

    E-Print Network [OSTI]

    Estes, C. B.; Turner, W. C.

    1980-01-01T23:59:59.000Z

    fact she~t was i initiated las a ! 5. Recognizes outstanding activities or contributions Consequently, the terms technology, and equipmeqt are One of the problems encountered is that ene~gy management technology is not very mature (in gen~ral). i...~ , being developed includes: i 1. A solar collector connected'to a coffee pot tio produce hot water for instant coffee. 2. A solar photovoltaic converter used to deli~er power to a child's toy. 3. Two power factor experiments designed to shoW what...

  15. Technology and Consumer Products Branch: program plan

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    The primary objective of the Technology and Consumer Products Branch (TCP) is to encourage the development and commercialization of energy-efficient technologies and equipment used in buildings and purchased by consumers. The TCP program conducts technical research, development, and demonstration efforts jointly funded with private industry, educational institutions, utilities, and other Federal and state agencies as appropriate. All contracts, grants, or interagency agreements have the major thrust of developing products and disseminating information that will accelerate commercial availability of energy-efficient, low-cost, reliable technologies, techniques, and products suitable for use by consumers and design professionals in the residential and commercial building sectors. Specifically, the technologies pursued by the branch include heating and cooling systems, consumer appliances, lighting design, and systems. Projects for each of these areas are summarized briefly, and publications resulting from the activities are listed.

  16. DOE Solar Energy Technologies Program 2007 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  17. DOE Solar Energy Technologies Program FY 2006 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2007-07-01T23:59:59.000Z

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  18. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2005-10-01T23:59:59.000Z

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  19. DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research

    SciTech Connect (OSTI)

    Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

    2009-07-31T23:59:59.000Z

    General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

  20. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  1. SPIDERS Joint Capability Technology Demonstration Industry Day Presentations

    Broader source: Energy.gov [DOE]

    Presentations from the SPIDERS Joint Capability Technology Demonstration Industry Day, which occurred on April 22, 2014, at Fort Carson, Colorado.

  2. China's Energy Management System Program for Industry

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  3. China's Energy Management System Program for Industry 

    E-Print Network [OSTI]

    Hedman, B.; Yu, Y.; Friedman, Z.; Taylor, R.

    2014-01-01T23:59:59.000Z

    En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 4 * Includes fuel for electricity generation and T&D losses ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... y En er gy C o n su m p ti o n , Q u ad s Source: DOE EIA International Energy Outlook 2013 Total Non-OECD Total OECD China U.S. India 5 ESL-IE-14-05-24 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May...

  4. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1990-02-01T23:59:59.000Z

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  5. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure.5Hydrogen, Fuel Cells & Infrastructure Technologies Program (EERE) President's Office of Science Berkeley, California #12;President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1

  6. THE DEPARTMENT OF Mechanical & Industrial Engineering's graduate programs ed-

    E-Print Network [OSTI]

    Kusiak, Andrew

    THE DEPARTMENT OF Mechanical & Industrial Engineering's graduate programs ed- ucate students Mechanical and Industrial Engineering faculty members conduct research in affiliation with vari- ous College I N Industrial Engineering Department of Mechanical & Industrial Engineering 3131 Seamans Center

  7. Industrial energy-efficiency-improvement program

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  8. Single-Issue Industrial Revenue Bond Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Missouri Development Finance Board administers a Single-Issue Tax-Exempt Industrial Revenue Bond Program as well as a Taxable Industrial Revenue Bond Program. The Tax-Exempt Program finances (i...

  9. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn

    2008-03-01T23:59:59.000Z

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  10. United States Department of Energy & Industrial Partnership programs: Climate wise and motor challenge

    SciTech Connect (OSTI)

    Scheilhing, P.E.; Bryson, J.E.; Cho, J.Y.

    1997-06-01T23:59:59.000Z

    This paper will provide an overview of the United States Department of Energy`s Office of Industrial Technologies (OIT) and give a detailed description of the Motor Challenge and Climate Wise programs in the Technology Access Division within OIT. Beginning with background information pertaining to trends in U.S. industry, this paper will describe OIT`s overall strategy for promoting energy efficiency, renewable energy, and waste reduction; give a brief summary of the Technology Access deployment programs, and discuss the benefits Climate Wise and Motor Challenge programs are fostering through government/industry partnerships.

  11. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect (OSTI)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01T23:59:59.000Z

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  12. The 1986-93 Clean Coal Technology Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry initiative ever undertaken to develop environmental solutions for the Nation's abundant...

  13. US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing

    E-Print Network [OSTI]

    Lee, Dongwon

    US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing in the automotive industry and academia. Develop relationships between GATE students, faculty, employers

  14. Building technologies program. 1995 annual report

    SciTech Connect (OSTI)

    Selkowitz, S.E.

    1996-05-01T23:59:59.000Z

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  15. Clean coal technology: Export finance programs

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  16. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13T23:59:59.000Z

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  17. TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology

    E-Print Network [OSTI]

    Magee, Joseph W.

    TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology Gaithersburg, MD 20899 ADVANCED TECHNOLOGIES FOR CIVIL INFRASTRUCTURE The Technology Innovation Program (TIP) at the National Institute of Standards and Technology was established to assist U.S. businesses and institutions of higher

  18. Thompson Technology Industries TTI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo Jump to:ThermosolarThompson Technology

  19. NIPSCO Custom Commercial and Industrial Gas and Electric Incentive Program

    Broader source: Energy.gov [DOE]

    NIPSCO’s Commercial and Industrial Custom Electric and Natural Gas Incentive Program offers financial incentives to qualifying large commercial, industrial, non-profit, governmental and...

  20. ConEd (Electric)- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Equipment Rebate and Commercial and Industrial Custom Efficiency Programs offer incentives to directly metered electric customers in good standing who contribute to...

  1. CenterPoint Energy- Commercial and Industrial Standard Offer Program

    Broader source: Energy.gov [DOE]

    CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

  2. Designing Effective State Programs for the Industrial Sector...

    Energy Savers [EERE]

    Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides...

  3. Solar synthesis of advanced materials: A solar industrial program initiative

    SciTech Connect (OSTI)

    Lewandowski, A.

    1992-06-01T23:59:59.000Z

    This is an initiative for accelerating the use of solar energy in the advanced materials manufacturing industry in the United States. The initiative will be based on government-industry collaborations that will develop the technology and help US industry compete in the rapidly expanding global advanced materials marketplace. Breakthroughs in solar technology over the last 5 years have created exceptional new tools for developing advanced materials. Concentrated sunlight from solar furnaces can produce intensities that approach those on the surface of the sun and can generate temperatures well over 2000{degrees}C. Very thin layers of illuminated surfaces can be driven to remarkably high temperatures in a fraction of a second. Concentrated solar energy can be delivered over large areas, allowing for rapid processing and high production rates. By using this technology, researchers are transforming low-cost raw materials into high-performance products. Solar synthesis of advanced materials uses bulk materials and energy more efficiently, lowers processing costs, and reduces the need for strategic materials -- all with a technology that does not harm the environment. The Solar Industrial Program has built a unique, world class solar furnace at NREL to help meet the growing need for applied research in advanced materials. Many new advanced materials processes have been successfully demonstrated in this facility, including the following: Metalorganic deposition, ceramic powders, diamond-like carbon materials, rapid heat treating, and cladding (hard coating).

  4. Advanced Industrial Materials (AIM) program. Compilation of project summaries and significant accomplishments FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven {open_quotes}Vision Industries{close_quotes} that use about 80% of industrial energy and generated about 90% of industrial wastes. These are: (1) Aluminum; (2) Chemical; (3) Forest Products; (4) Glass; (5) Metal Casting; (6) Refineries; and (7) Steel. This report is a compilation of project summaries and significant accomplishments on materials.

  5. Energy Efficient Industrialized Housing Research Program

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  6. Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic Prioritization of Research Needs

    E-Print Network [OSTI]

    Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry: A Systematic and Policy Program #12;- 2 - #12;Carbon Dioxide Capture Technology for the Coal-Powered Electricity Industry must be developed for capturing CO2 from power plants. Current CO2 capture technology is expensive

  7. Solar-Assisted Technology Provides Heat for California Industries

    E-Print Network [OSTI]

    Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

  8. Funding Opportunity: Geothermal Technologies Program Seeks Technologie...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal...

  9. Clean Coal Technology Demonstration Program. Program update 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

  10. The Department of Energy`s Solar Industrial Program: 1994 review

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

  11. A R&D Program for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Hayes, A. J.

    1985-01-01T23:59:59.000Z

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  12. A R&D Program for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Hayes, A. J.

    The overall goal of the DOE Industrial Heat Pump Program is to foster research and development which will allow more efficient and economical recovery of waste energy in industry. Specifically, the program includes the identification of appropriate...

  13. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This report contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Subject areas covered are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  14. Entergy New Orleans- Small Commercial and Industrial Solutions Program

    Broader source: Energy.gov [DOE]

    The Commercial and Industrial Solutions Program is an energy efficiency program designed to help business customers understand and make energy efficiency improvements in eligible facilities. The...

  15. Geothermal Technologies Program Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP) |PrincipalEnergy

  16. High-lift chemical heat pump technologies for industrial processes

    SciTech Connect (OSTI)

    Olszewski, M.; Zaltash, A.

    1995-03-01T23:59:59.000Z

    Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

  17. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  18. Technology Innovation Program Guidelines and Documentation

    E-Print Network [OSTI]

    Magee, Joseph W.

    #12;Technology Innovation Program Guidelines and Documentation Requirements for Research Involving ............................................................................ 5 F. Required Documentation.............................................................................. 16 D. Required Documentation

  19. Possible Savings Achievable by Recipients of Training and Software Provided by the U.S Department of Energy’s Industrial Technologies Program

    E-Print Network [OSTI]

    Schweitzer, M.; Martin, M. A.; Schmoyer, R. L.

    2008-01-01T23:59:59.000Z

    efficiency of their operations. Among other things, Save Energy Now conducts training sessions on a variety of energy systems that are important to industry (i.e., compressed air, steam, process heat, pumps, motors, and fans) and distributes software tools...

  20. S C I E N C E Industrial Internship Program

    E-Print Network [OSTI]

    Machel, Hans

    S C I E N C E Faculty of Industrial Internship Program An Introduction for Students and Employers in the Industrial Internship program (IIP) to get a feel for life in industry. My previous experience was academia, Syncrude Research Department, Edmonton, AB #12;Prospective Students What is the Industrial Internship

  1. Entergy Arkansas- Commercial and Industrial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Entergy Arkansas has several programs to help commercial and industrial customers increase the energy efficiency of eligible facilities.

  2. Advanced Industrial Materials (AIM) Program Compilation of Project Summaries and Significant Accomplishments FY 1999

    SciTech Connect (OSTI)

    Angelini, P

    2000-08-08T23:59:59.000Z

    For the past 10 years the Advanced Industrial Materials (AIM) has supported development of new and improved materials to enable U.S. industry to improve energy efficiency, increase productivity, and reduce waste. It has been a National Laboratory based program, with work currently under way at Oak Ridge National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories, in collaboration with industrial and university partners. With the advent of the Industries of the Future (IOF) strategy within the Office of Industrial Technologies (OIT) and the scheduled completion of the Continuous Fiber Ceramic Composites (CFCC) Program in FY 2002, an integrated materials program is being developed in OIT. So this represents the last summary of AIM research and development. The new program, Industrial Materials for the Future (IMF), will be competitive in operation, with solicitations for proposals for development of materials in accordance with the IOF Technology Roadmaps, followed by merit review and funding of the best proposals. Industry will take the lead in ''industry-specific'' research and development, in cooperation with National Laboratories, as needed. National Laboratories and universities will take the lead in maintaining a base technology program, for the purpose of maintaining a continuing flow of new materials technologies. The AIM and CFCC Programs will be replaced by the IMF program over a three year period, so that in FY 2004, all research and development will be in response to industry solicitations and Laboratory/university calls. The Program Manager believes that AIM has been an extremely successful program, thanks to the Laboratory investigators and their partners. For 10 years, the program has increased industrial participation from very little to nearly 100 percent. The CFCC Program, similarly, has been successful in advancing the knowledge of processing and property development in these materials, though much still can be done in advancing their uses in industry. It is hoped that the Industrial Materials for the Future Program will be equally successful, not only in solving industry's short-term, immediate needs, but also in maintaining a materials technology base that will lead to longer-range materials and processing developments. The projects summarized here will be carried to successful conclusions over the next 3 years and the current Laboratories in AIM and CFCC will be joined by other Laboratories, universities, and new industrial partners. The Program Manager expresses his profound appreciation for the very fine work done for OIT during the last 10 years.

  3. Superconducting technology program Sandia 1996 annual report

    SciTech Connect (OSTI)

    Roth, E.P.

    1997-02-01T23:59:59.000Z

    Sandia`s Superconductivity Technology Program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) Process development and characterization of thallium-based high-temperature superconducting closed system wire and tape, (2) Investigation of the synthesis and processing of thallium-based thick films using two-zone processing, and (3) Cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY96 in each of these areas.

  4. Joint Capability Technology Demonstration (JCTD) Industry Day Agenda

    Broader source: Energy.gov [DOE]

    Agenda outlines the activities of the 2014 Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capability Technology Demonstration (JCTD) Industry Day in Fort Carson, Colorado.

  5. Technology and Organizational Factors in the Notebook Industry Supply Chain

    E-Print Network [OSTI]

    Foster, William; Cheng, Zhang; Dedrick, Jason; Kraemer, Kenneth L

    2006-01-01T23:59:59.000Z

    Technical and Organizational Solutions to Supply Chain18 III. Organizational Factors and the Notebook Industry4: Technology and Organizational Factors in the Notebook

  6. Roadmap: Systems/Industrial Engineering Technology Associate of Applied Science

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Systems/Industrial Engineering Technology ­ Associate of Applied Science [RE Kent Core Summary below Semester Four: [17 Credit Hours] MERT 22009 Robotics and Flexible Automation 3

  7. Sandia National Laboratories: New Energy and Indus-trial Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy and Indus-trial Technology Development Organization Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014,...

  8. The Department of Energy's Solar Industrial Program: New ideas for American industry

    SciTech Connect (OSTI)

    Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

    1991-07-01T23:59:59.000Z

    As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

  9. Graduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME) department at WSU

    E-Print Network [OSTI]

    ; occupational safety and other industrial hygiene issues; and ergonomics and human factors issues in aviationGraduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME programs in industrial engineering (MSIE and PhDIE, respectively). The department also offers four graduate

  10. A comparison of Mexico's Border Industry Program with the Border Industry Program of South Africa and its Bantu homelands 

    E-Print Network [OSTI]

    Notzon, Brian Anthony

    1973-01-01T23:59:59.000Z

    A COMPARISON OF MEXICO'S BORDER INDUSTRY PROGRAM WITH THE BORDER INDUSTRY PROGRAM OF SOUTH AFRICA AND ITS BANTU HOMELANDS A Thesis by BRIAN ANTHONY NOTZON Submitted to the Graduate College of Texas ASM University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1973 Ma)or Sub)ect: Economics A COMPARISON OP MEXICO'S BORDER INDUSTRY PROGRAM WITH THE BORDER INDUSTRY PROGRAM OF SOUTH AFRICA AND ITS BANTU HOMELANDS A Thesis by BRIAN ANTHONY NOTZON Approved...

  11. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    Inc. (Alum-1) [ETSU] Energy Technology Support Unit. 1994.In Encyclopedia of Energy Technology and the Environment.Environmental Energy Technologies Division. (Paper-1) (

  12. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  13. Clean Coal Technology Demonstration Program: Program Update 2001

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2002-07-30T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  14. Clean Coal Technology Demonstration Program: Program Update 1998

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    1999-03-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  15. Clean Coal Technology Demonstration Program: Program Update 1999

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2000-04-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  16. Clean Coal Technology Demonstration Program: Program Update 2000

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2001-04-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  17. SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28

    E-Print Network [OSTI]

    Magee, Joseph W.

    SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n) is repealed. (b) ESTABLISHMENT OF TECHNOLOGY INNOVATION PROGRAM.-- The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq

  18. Heat Pipe Technology for Energy Conservation in the Process Industry

    E-Print Network [OSTI]

    Price, B. L. Jr.

    HEAT PIPE TECHNOLOGY FOR ENERGY CONSERVATION IN THE PROCESS INDUSTRY Berwin L. Price. Jr. Q-dot Corporation Garland. Texas ABSTRACT Many applications for heat pipe technology have emerged in the relatively short time this technology has been... and utility industries. The heat pipe offers a unique. efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our...

  19. A framework for evaluation of technology transfer programs. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The objective of this volume is to describe a framework with which DOE can develop a program specific methodology to evaluate it`s technology transfer efforts. This approach could also be applied to an integrated private sector technology transfer organization. Several benefits will be realized from the application of this work. While the immediate effect will be to assist program managers in evaluating and improving program performance, the ultimate benefits will accrue to the producing industry, the states, and the nation in the form of sustained or increased domestic oil production. This benefit depends also, of course, on the effectiveness of the technology being transferred. The managers of the Technology Transfer program, and the larger federal oil and gas R&D programs, will be provided with a means to design and assess the effectiveness of program efforts as they are developed, tested and performed. The framework allows deficiencies in critical aspects of the program to be quickly identified, allowing for timely corrections and improvements. The actual process of developing the evaluation also gives the staff of the Oil R&D Program or Technology Transfer subprogram the opportunity to become oriented to the overall program goals. The structure and focus imposed by the evaluation paradigm will guide program staff in selecting activities which are consistent with achieving the goals of the overall R&D program.

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year...

  1. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview Fuel CellFueleere.energy.gov

  2. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview Fuel CellFueleere.energy.gov

  3. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview Fuel

  4. Technology Innovation Program Transforming America's Future Through Innovation

    E-Print Network [OSTI]

    Technology Innovation Program Transforming America's Future Through Innovation 2009ANNUAL REPORT and Technology Dr. Patrick D. Gallagher, Director Technology Innovation Program Dr. Lorel Wisniewski, Acting Director National Institute of Standards and Technology Technology Innovation Program 100 Bureau Drive

  5. Geothermal Drilling and Completion Technology Development Program Annual Progress Report

    SciTech Connect (OSTI)

    Varnado, S. G.

    1981-03-01T23:59:59.000Z

    The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

  6. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

  7. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel

    E-Print Network [OSTI]

    of refueling today's gasoline vehicles. Using currently available high-pressure tank storage technology that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen

  8. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  9. Goodyear Tire Plant Gains Traction on Energy Savings After Completing Save Energy Now Assessment; Industrial Technologies Program (ITP) Save Energy Now Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo for theEnergy Now Assessment

  10. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality, Save Energy Now (SEN), Industrial Technologies Program (ITP), Utility Case Study (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreachDepartment ofProgram49, the Owens Corning Santa

  11. Electric Utility Industrial DSM and M&V Program 

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  12. Electric Utility Industrial DSM and M&V Program

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  13. Transmission and distribution technologies: Program overview, FY 1993--FY 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Electricity is the lifeblood of our Nation`s economy and a critical contributor to our standard of living. For decades, increases in the gross domestic product (GDP) have been accompanied by increases in electricity use. This overview provides the reader with an introduction to the US Department of Energy`s (DOE`s) T&D Technologies Program. It shows how the program is meeting the challenges being imposed on the T&D infrastructure by the changing electric power industry and how the Nation will benefit from its efforts. The overview describes the program`s ongoing projects and discusses the new projects being initiated in fiscal year (FY) 1995.

  14. 1 Industrial Electron Accelerators type ILU for Industrial Technologies

    E-Print Network [OSTI]

    equipment - in not protected premises. The dimensions of main units of the various ILU machines are shown the beam extraction device, air pipes of ventillation system and technological equipment are placed

  15. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    for U.S. Department of Energy’s Office of IndustrialLaboratory. Burlington, MA: Office of Energy Efficiencyand Renewable Energy. (Food-4) (Motorsys-8) (Overview)

  16. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    foundries spend a higher proportion of their funds available for capital improvements on pollution control equipment. The industry as a whole, however, invests significantly in...

  17. Developments to Supplant CAMAC with Industry Standard Technology at NSTX

    SciTech Connect (OSTI)

    Sichta, P.; Dong, J.; Marsala, R.; Oliaro, G.; Wertenbaker, J.

    2003-07-31T23:59:59.000Z

    NSTX, like other research programs, is facing an inevitable crisis due to end-of-life issues for its 20-year-old CAMAC instrumentation. In many cases replacement components are not available, effectively rendering a CAMAC module unusable after a failure. The proliferation of high-performance, reliable, low-cost commodity computing hardware and software based on industry standard technology can provide the basis for a new generation of instrumentation. At NSTX, there have been several advances towards developing a PCI-based model for data acquisition and control systems. New hardware developments include a High Performance Signal Conditioning board and an FPGA-based Multifunction Timing System. Extensible software interfaces have been developed to integrate these boards into the NSTX computing environment. This paper will illustrate these developments and how they could be used to benefit collaborative fusion research.

  18. DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...

    Energy Savers [EERE]

    Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the...

  19. Extractive Industries and Sustainable Development EXECUTIVE TRAINING PROGRAM

    E-Print Network [OSTI]

    Industries and Sustainable Development EXECUTIVE TRAINING PROGRAM Vale Columbia Center UNIVERSITY Center on Globalization and Sustainable Development EARTH INSTITUTE | COLUMBIA UNIVERSITY #12; Extractive Industries and Sustainable Development Executive Training

  20. Using federal technology policy to strength the US microelectronics industry

    SciTech Connect (OSTI)

    Gover, J.E.; Gwyn, C.W.

    1994-07-01T23:59:59.000Z

    A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

  1. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  2. Emerging Energy-Efficient Technologies for Industry 

    E-Print Network [OSTI]

    Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

    2001-01-01T23:59:59.000Z

    , and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies....

  3. Advanced Industrial Materials (AIM) Program: Compilation of project summaries and significant accomplishments, FY 1997

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The mission of the Advanced Industrial Materials (AIM) Program is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. A fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrates on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are the aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support. Assessments of materials needs and opportunities in the process industries are an on-going effort within the program. These assessments are being used for program planning and priority setting, followed by support of work to satisfy those needs. All the industries have identified materials as critical, particularly for high-temperature strength, corrosion resistance, and wear resistance. Also important from the energy efficiency viewpoint are membranes, catalytic membranes, and reactors for separations, both for processing and waste reduction. AIM focuses, therefore, on high-temperature materials, corrosion resistant materials, wear resistant materials, strong polymers, coatings, and membrane materials for industrial applications.

  4. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan...

  5. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research,...

  6. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  7. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  8. Lincoln Electric System (Commercial and Industrial)- 2015 Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  9. Anaheim Public Utilities- Commercial & Industrial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, and institutional customers the New Construction Incentives Program to offset construction and installation costs of energy efficient...

  10. Duke Energy- Small Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  11. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  12. PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers rebates for lighting, heat pumps, refrigeration...

  13. Lincoln Electric System (Commercial and Industrial)- Sustainable Energy Program

    Broader source: Energy.gov [DOE]

    Lincoln Electric System (LES) offers a variety of energy efficiency incentives for commercial and industrial customers through the Sustainable Energy Program (SEP). Some incentives are provided on...

  14. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric's Custom Energy Grant Program is offered for any commercial or industrial customer that installs qualifying energy-efficient products which exceed conventional models and result in...

  15. Building Technologies Program - 1995 Annual Report

    E-Print Network [OSTI]

    Selkowitz, S.E.

    2010-01-01T23:59:59.000Z

    Design Tool for Small Commercial Buildings A DOE-funded industry/laboratory collaboration between the Passive Solardesign guidance for the optimal utiliza- tion of passive solar technologies in small commercial buildings.

  16. Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce

    E-Print Network [OSTI]

    Trombley, D.; Elliott, R. N.; Chittum, A.

    Expanding the Industrial Assessment Center Program: Building an Industrial Efficiency Workforce Daniel Trombley Engineering Associate R. Neal Elliott, Ph.D., P.E. Associate Director of Research American Council for an Energy-Efficient... of access to technical information and trained workforce. One of the most successful programs for achieving energy efficiency savings in the manufacturing sector is the US Department of Energy (DOE)'s Industrial Assessment Center (IAC) program...

  17. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect (OSTI)

    Gwyn, Mike

    2009-03-31T23:59:59.000Z

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

  18. Emerging Opportunities in Industrial Electrification Technologies 

    E-Print Network [OSTI]

    Schmidt, P. S.

    1989-01-01T23:59:59.000Z

    in the manufacturing sector. Nearly half of manufacturing energy use was in the process industries, which include chemicals, petroleum products, pulp and paper, foods, textiles, and tobacco. Metals production, primarily aluminum and steel, accounted for about 21... %, and metals fabrication, including transportation, machinery, instrumentation and electronics, and other metal products, about 19%. The balance of about 14% was used in other non-metals industries, such as stone, clay, and glass, rubber and plastics...

  19. 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program

    E-Print Network [OSTI]

    , and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies

  20. Con Edison Commercial and Industrial Energy Efficiency Program

    E-Print Network [OSTI]

    Pospisil, D.

    2011-01-01T23:59:59.000Z

    1 Con Edison Commercial and Industrial Energy Efficiency Program Discussion Overview ? Benefits, Eligibility & Team Members ? Program Components ? Project Incentives & Energy Studies ? Additional Program Attributes, Tools & Resources... and Sub-metering ? PlaNYC - Green House Gas Emissions 4 5 Customer Eligibility ? Con Edison directly metered Commercial or Industrial customer in an existing building who pays the applicable gas or electric System Benefits Charge The Program Team...

  1. Innovative Technology Development Program. Final summary report

    SciTech Connect (OSTI)

    Beller, J.

    1995-08-01T23:59:59.000Z

    Through the Office of Technology Development (OTD), the U.S. Department of Energy (DOE) has initiated a national applied research, development, demonstration, testing, and evaluation program, whose goal has been to resolve the major technical issues and rapidly advance technologies for environmental restoration and waste management. The Innovative Technology Development (ITD) Program was established as a part of the DOE, Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program. The plan is part of the DOE`s program to restore sites impacted by weapons production and to upgrade future waste management operations. On July 10, 1990, DOE issued a Program Research and Development Announcement (PRDA) through the Idaho Operations Office to solicit private sector help in developing innovative technologies to support DOE`s clean-up goals. This report presents summaries of each of the seven projects, which developed and tested the technologies proposed by the seven private contractors selected through the PRDA process.

  2. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary Report, December 2006

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 2009 |Technology

  3. Environmental technologies program, Fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

  4. Overview of the Duke University Bass Connections Program in Industrial Energy Efficiency

    E-Print Network [OSTI]

    Boyd, G.

    2014-01-01T23:59:59.000Z

    -05-03 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Project Titles ? “Managing Carbon with Renewable Energy and Efficiency in Nissan North American Assembly Plant” • Robinson Ford, Justin Ong, Jake Reeder...Overview of the Duke University Bass Connections Program in Industrial Energy Efficiency Gale Boyd, Duke University Presented to the IETC May 21st, 2014 New Orleans, LA ESL-IE-14-05-03 Proceedings of the Thrity-Sixth Industrial Energy Technology...

  5. Geothermal: Sponsored by OSTI -- Industrial Sector Technology...

    Office of Scientific and Technical Information (OSTI)

    in the United States, 1974-2000. Volume 1. Primary model documentation. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  6. Science and technology for industrial ecology

    SciTech Connect (OSTI)

    Gilmartin, T.J.; Allenby, B.R.

    1996-07-10T23:59:59.000Z

    This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

  7. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  8. Analysis of curricular units of a graduate industrial hygiene program

    E-Print Network [OSTI]

    Collier, Stephen Ward

    1983-01-01T23:59:59.000Z

    ANALYSIS OF CURRICULAR UNITS OF A GRADUATE INDUSTRIAL HYGIENE PROGRAM A Thesis by STEPHEN WARD COLLIER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER. OF SCIENCE... May 1983 Major Subject: Industrial Hygiene ANALYSIS OF CURRICULAR UNITS OF A GRADUATE INDUSTRIAL HYGIENE PROGRAM A Thesis by STEPHEN WARD COLLIER Approved as to style and content by: J. Vernon (Chairman of Committee) C. L. Gilmore (member...

  9. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  10. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001Energy EfficiencyFossil Energyof EnergyDepartment

  11. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of Energy LWR Nuclear Fuel2(Formerly

  12. The Industry Coupled Case Study Program final report

    SciTech Connect (OSTI)

    Stringfellow, J. [ed.

    1982-10-01T23:59:59.000Z

    The Industry Coupled Case Study Program was conceived as a short-term cooperative program between the Federal government and private industry. Federal funds were committed to stimulate geothermal exploration and development between 1977 and 1979, although some work under the program continues into 1982. Federal funding has been phased out and the remaining information developed during the program is being disseminated and reported. This report presents an overview of the program and documents the technical results and open-file data base resulting from the program.

  13. Western Partnership for Environmental Technology Education Faculty Internship Program

    SciTech Connect (OSTI)

    Zehnder, N. [Sandia National Labs., Livermore, CA (United States)

    1994-12-31T23:59:59.000Z

    As an important element within Western Partnership for Environmental Technology Education (PETE), summer internship opportunities are made available to environmental technology instructors, primarily at the community-college level, at participating federal laboratories, test facilities, state regulatory agencies and in private industry. The Program is intended to provide instructors with the opportunity to gain practical experience and understanding within the broad area of environmental technology to enhance the development and presentation of environmental technology curricula. Internship content is intended to be flexible to provide experiences which will relate to and meet the specific needs of the intern and his/her college. The Faulty Internship Program provides business and government with the opportunity to strengthen the educational process and to expand potential candidate pools for employment.

  14. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  15. Industrial Distributed Energy: Combined Heat & Power

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  16. Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries 

    E-Print Network [OSTI]

    Alston, T. G.; Humphrey, J. L.

    1981-01-01T23:59:59.000Z

    Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone...

  17. Peoples Gas- Commercial & Industrial Prescriptive Rebate Program

    Broader source: Energy.gov [DOE]

    The Chicagoland Natural Gas Savings Program is funded by customers of Peoples Gas, through a line item on the bill called the Enhanced Efficiency Program. The Program is guided by Peoples Gas, the...

  18. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  19. Industrial Technology Research Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7Open Energy Information IndonesiaIndurIndustrial

  20. Industries & Technologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014Information Resources » Industries

  1. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. (Oregon Univ., Eugene, OR (USA). Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. (Florida Solar Energy Center, Cape Canaveral, FL (USA))

    1989-01-01T23:59:59.000Z

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  2. Program Name: Energy Smart Industrial (ESI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote industrial facilities with limited staff resources. Energy Efficiency-Demand Response (EE-DR) Demonstration Demonstration project to investigate the effects and...

  3. Kenergy- Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  4. Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

  5. assessment technology program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Advanced Technology Program Information Infrastructure for Healthcare Focused 137 Technology assessment of renewable energy sustainability in South Africa. Open Access...

  6. DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...

    Energy Savers [EERE]

    Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview2.pdf...

  7. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Presented at the DOE-DOD...

  8. Emerging Technologies Program Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Building Technologies Office's Emerging Technologies Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs....

  9. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

    Energy Savers [EERE]

    DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

  11. accelerator technology program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suzuki, Masatsugu 2 ACCELERATED LAW PROGRAM Stevens Institute of Technology offers a Engineering Websites Summary: ACCELERATED LAW PROGRAM Stevens Institute of Technology...

  12. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  19. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    Fusion Nuclear Science and Technology Program - Status and plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research...

  20. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Environmental Management (EM)

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  1. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  2. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research,...

  4. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  5. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated...

  6. DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweigh...

    Broader source: Energy.gov (indexed) [DOE]

    6.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  8. DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms...

    Energy Savers [EERE]

    Acronyms DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview11.pdf More...

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...

    Broader source: Energy.gov (indexed) [DOE]

    7.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - PI...

    Energy Savers [EERE]

    PI and Project Cross Reference DOE Vehicle Technologies Program 2009 Merit Review Report - PI and Project Cross Reference Merit review of DOE Vehicle Technologies Program research...

  11. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and System Level...

  12. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    in the Office of Fuel Cell Technologies, SCS participates in the DOE's Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review (AMR) where all of...

  13. The Texas Industrial Energy Conservation Program

    E-Print Network [OSTI]

    Waldrop, T.

    1982-01-01T23:59:59.000Z

    Industry is Texas' largest consumer of energy (46+% of total). With foresight of the escalating cost of energy, it was apparent these additional costs to industry would have two adverse effects. First, the cost of their product to the consumer would...

  14. Industries of the Future: Creating a Sustainable Technology Edge

    E-Print Network [OSTI]

    Glatt, S. L.

    to the national laboratories Disseminates resuns Industry Leads the process Prioritizes technology needs Develops a technology strategy Commits resources Directs R&D through partnerships Uses results 58 ESL-IE-00-04-10 Proceedings from the Twenty... single pomt of contacl ? Begin saving money right now with the latest energy effiCient technologies Accessing National Laboratory Technology Resou~rc:;;:e_s ...... -..I Lc~arncd from our cuStomers rhal we nee" to get the -;Word,ollt ahollt the...

  15. Industrial Solar Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWPIndiantown, Florida: EnergyStudyInducedTechnology Corp

  16. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  17. FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and

    E-Print Network [OSTI]

    . Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

  18. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  19. A Low Cost Energy Management Program at Engelhard Industries Division

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  20. The Drafting Technology Program offers a certificate or associate of applied science in drafting technology. The certificate program

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    DRAFTING TECHNOLOGY The Drafting Technology Program offers a certificate or associate of applied science in drafting technology. The certificate program offers a choice of six areas of emphasis: architectural drafting; civil drafting; information technology; mechanical and electrical drafting; process

  1. Impact of Control System Technologies on Industrial Energy Savings

    E-Print Network [OSTI]

    Parikh, P.; Pasmussen, B. P.

    2014-01-01T23:59:59.000Z

    to 2010 Image: U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS) ESL-IE-14-05-40 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 INDUSTRIAL ENERGY... CONSUMPTION However, there’s still a need to look for newer energy saving ideas Image: U.S. Energy Information Administration's (EIA) http://www.eia.gov/forecasts/ieo/industrial.cfm Fresher energy saving ideas can be realized by focusing on the Control...

  2. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  3. Information Technology Standards Program management plan

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This document presents a logical and realistic plan to implement the Information Technology (IT) Standards Program throughout the Department of Energy (DOE). It was developed by DOE Chief Information Officer (CIO) staff, with participation from many other individuals throughout the DOE complex. The DOE IT Standards Program coordinates IT standards activities Department-wide, including implementation of standards to support the DOE Information Architecture. The Program is voluntary, participatory, and consensus-based. The intent is to enable accomplishment of the DOE mission, and the Program is applicable to all DOE elements, both Federal and contractor. The purpose of this document is to describe the key elements of the DOE IT Standards Program.

  4. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Richard Tuthill

    2002-07-18T23:59:59.000Z

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

  5. Large Industrial Renewable Energy Purchase Program (New Brunswick)

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2012 the Large Industrial Renewable Energy Purchase Program allows NB Power to purchase renewable energy generated by its largest customers at a rate of $95/MWh. This...

  6. Delmarva Power- Commercial and Industrial Energy Savings Program

    Broader source: Energy.gov [DOE]

    The Delmarva Power Commercial and Industrial (C&I) Energy Savings Program is designed to promote and encourage the incorporation of energy efficient equipment, products, and services into non-...

  7. Urban and Industrial Sites Reinvestment Tax Credit Program (Connecticut)

    Broader source: Energy.gov [DOE]

    The Urban and Industrial Sites Reinvestment Tax Credit Program provides up to $100 million in tax credits over a ten-year period to support projects that create jobs and capital investment in under...

  8. Using DOE Industrial Energy Audit Data for Utility Program Design

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    . Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

  9. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02T23:59:59.000Z

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  10. Providing Utilities with Tools for Industrial Marketing Programs

    E-Print Network [OSTI]

    Cahill, L. E.

    PROVIDING UTILITIES WITH TOOLS FOR INDUSTRIAL MARKETING PROGRAMS Laura E. Cahi 11 Center "for Metals Fabrication Columbus, Ohio Marketing electrotechnologies to industrial customers can be a complex task unless the right tools are available... to marketing representa tives. The Center for Metals Fabrication is using several tools to tailor marketing programs for 18 electric utilities. CMF provides: o A hotline that customer and utility representatives can use to get advice on implenenting...

  11. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The AOG programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the installation of energy efficie...

  12. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    . This effort has developed into a new initiative, a Systems Approach to Integrated Sustainability of Aviation the competitiveness and innovation of small and medium sized businesses in the U.S. manufacturing supply chain. Purdue in engines and aircraft and pro- vides data related to fuel-sustainability and emissions goals

  13. Office of Industry Research and Technology Programs Greetings to Industry

    E-Print Network [OSTI]

    Ginzel, Matthew

    previously dominated by inorganic materials (e.g., field-effect transistors (FETs), light- emitting diodes

  14. PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant

    E-Print Network [OSTI]

    PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant Program PON-13-503 http ............................................................................................................................5 PIER NATURAL GAS RESEARCH PROGRAM

  15. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  16. Technology Entrepreneurship Program Real-world practice with real-world technologies

    E-Print Network [OSTI]

    Technology Entrepreneurship Program Real-world practice with real-world technologies What it's all about Pacific Northwest National Laboratory's (PNNL) Technology Entrepreneurship Program (TEP) provides university students with access to PNNL-developed available technologies. Laboratory staff work

  17. Commercial and Industrial Solar Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission initiated a new solar rebate program for non-residential applicants in November 2010. Funded by alternative compliance payments under the state's...

  18. The Impact of Information Technology in Nigeria's Banking Industry

    E-Print Network [OSTI]

    Oluwatolani, Oluwagbemi; Philip, Achimugu

    2011-01-01T23:59:59.000Z

    Today, information technology (IT) has become a key element in economic development and a backbone of knowledge-based economies in terms of operations, quality delivery of services and productivity of services. Therefore, taking advantage of information technologies (IT) is an increasing challenge for developing countries. There is now growing evidence that Knowledge-driven innovation is a decisive factor in the competitiveness of nations, industries, organizations and firms. Organizations like the banking sector have benefited substantially from e-banking, which is one among the IT applications for strengthening the competitiveness. This paper presents the current trend in the application of IT in the banking industries in Nigeria and gives an insight into how quality banking has been enhanced via IT. The paper further reveals that the deployment of IT facilities in the Nigerian Banking industry has brought about fundamental changes in the content and quality of banking business in the country. This analysis...

  19. Special Issues for Program Design and Evaluation for Industrial Energy Programs

    E-Print Network [OSTI]

    Megdal, L.

    2007-01-01T23:59:59.000Z

    Designing energy efficiency programs that include serving industrial customers, and evaluating them, carries with it a set of challenges. A summary view from prior efficiency program evaluations will be presented that examines these challenges, how...

  20. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

  1. (Technical and engineering support for the Office of Industrial Programs)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    As of April 19, 1991, technical, operational and analytic support and assistance to the offices and divisions of the Office of Renewable Energy, under contract DE-AC01-86CE30844 was completed. The overall work effort, initiated February 20, 1986, was characterized by timely, comprehensive, high quality, professional responsiveness to a broad range of renewable energy program operational support requirements. These are no instances of failure to respond, nor unacceptable response, during the five-year period. The technology program areas covered are Solar Buildings Technology, Wind Energy Technology, Photovoltaic Energy Technology, Geothermal Energy Technology, Biofuels and Municipal Waste Technology, Solar Thermal Technology, Hydropower Energy Technology, Ocean Energy Technology, and Electric Energy Systems and Energy Storage. The analytical and managerial support provided to the office and staff of the Deputy Assistant Secretary for Renewable Energy enabled a comprehensive evaluation of program and policy alternatives, and the selection and execution of appropriate courses of action from amongst those alternatives. Largely through these means the Office has been able to maintain continuity and a meaningful program thrust through the vacillations of policies and budgets that it has experienced over that it has experienced over the past five years. Appended are summaries of support activities within each of the individual technology program areas, as well as a complete listing of all project deliverables and due-dates for each submittal under the contract.

  2. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    SciTech Connect (OSTI)

    Christina B. Behr-Andres

    2001-10-01T23:59:59.000Z

    The objective of the Environmental Technologies Acceptance (ETA) Program at the Energy & Environmental Research Center (EERC) is to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As a result of contract changes approved by National Energy Technology Laboratory (NETL) representatives to incorporate activities previously conducted under another NETL agreement, there are now an additional task and an expansion of activities within the stated scope of work of the ETA program. As shown in Table 1, this cooperative agreement, funded by NETL (No. DE-FC26-00NT40840), consists of four tasks: Technology Selection, Technology Development, Technology Verification, and System Engineering. As currently conceived, ETA will address the needs of as many technologies as appropriate under its current 3-year term. There are currently four technical subtasks: Long-Term Stewardship Initiative at the Mound Plant Site; Photocatalysis of Mercury-Contaminated Water; Subcritical Water Treatment of PCB and Metal-Contaminated Paint Waste; and Vegetative Covers for Low-Level Waste Repositories. This report covers activities during the second six months of the three-year ETA program.

  3. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  4. MHD magnet technology development program summary, September 1982

    SciTech Connect (OSTI)

    Not Available

    1983-11-01T23:59:59.000Z

    The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

  5. Native American Training Program in Petroleum Technology

    SciTech Connect (OSTI)

    Ho, Winifred M.; Kokesh, Judith H.

    1999-04-27T23:59:59.000Z

    This report outlines a comprehensive training program for members of Native American tribes whose lands have oil and gas resources. The program has two components: short courses and internships. Programs are proposed for: (1) adult tribes representatives who are responsible for managing tribal mineral holdings, setting policy, or who work in the oil and gas industry; (2) graduate and undergraduate college students who are tribal members and are studying in the appropriate fields; and (3) high school and middle school teachers, science teachers. Materials and program models already have been developed for some components of the projects. The plan is a coordinated, comprehensive effort to use existing resources to accomplish its goals. Partnerships will be established with the tribes, the BIA, tribal organizations, other government agencies, and the private sector to implement the program.

  6. White Papers Submitted to the Technology Innovation Program

    E-Print Network [OSTI]

    Magee, Joseph W.

    White Papers Submitted to the Technology Innovation Program The Technology Innovation Program (TIP) at the National Institute of Standards and Technology was established laboratories and nonprofit research institutions, to support, promote, and accelerate innovation in the U

  7. Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations Hiring Students in Technical & Biosystems Engineering, Industrial Technology, and Packaging

    E-Print Network [OSTI]

    Faurecia FCA Packaging Fischer Controls Fusion PKG Gavilon, LLC General Motors George W. Auch Geotex,000 57,000 12 Engineer, General 56,513 33,000 80,000 34 Equipment Test Technician 46,000 32,000 60,000 510 Technical & Biosystems Engineering, Industrial Technology, and Packaging Services Organizations

  8. Evaluating Industrial Conservation Programs: An Interdisciplinary Approach

    E-Print Network [OSTI]

    Einhorn, M. A.

    Proponents have touted utility conservation programs in homes, businesses, and factories as powerful strategies for conserving our nation’s energy resources and reducing our long-term dependence on foreign oil. When installed in a factory...

  9. Dereck, Shockley, Xcel Energy's Commercial - Industrial Programs

    Broader source: Energy.gov (indexed) [DOE]

    green-pricing program in USA No.5 in solar capacity uOne of largest photovoltaic systems and growing - 8.2 megawatts uSolar*Rewards - 7,146 solar systems,...

  10. Industrial Revenue Bond Program (District of Columbia)

    Broader source: Energy.gov [DOE]

    The District provides below market bond financing to lower the costs of borrowing for qualified capital construction and renovation projects. The program is available to non-profits, institutions,...

  11. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP)...

  12. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in theState andPrograms

  13. Technology Assistance Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153Assistance Program SHARE

  14. Immobilization needs and technology programs

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.; Armantrout, G.

    1995-12-11T23:59:59.000Z

    In the aftermath of the Cold War, the US and Russia agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, DOE has undertaken a multifaceted study to select options for storage and disposition of plutonium in keeping with US policy that plutonium must be subjected to the highest standards of safety, security, and accountability. One alternative being considered is immobilization. To arrive at a suitable immobilization form, we first reviewed published information on high-level waste immobilization technologies and identified 72 possible plutonium immobilization forms to be prescreened. Surviving forms were further screened using multi-attribute utility analysis to determine the most promising technology families. Promising immobilization families were further evaluated to identify chemical, engineering, environmental, safety, and health problems that remain to be solved prior to making technical decisions as to the viability of using the form for long- term disposition of plutonium. From this evaluation, a detailed research and development plan has been developed to provide answers to these remaining questions.

  15. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    None

    2010-04-01T23:59:59.000Z

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology. Working together, in

  16. Technology Venturing and Innovation Management The MSc programme Industrial Engineering and Management (IEM) has four

    E-Print Network [OSTI]

    Twente, Universiteit

    Technology Venturing and Innovation Management The MSc programme Industrial Engineering. One of the topics that IEM students can focus on is Technology Venturing en Innovation Management & Organization of Technology Innovation (191810840), or b) Organisation, Technology & Innovation (201000088) n

  17. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect (OSTI)

    TREMEL, CHARLES L

    2007-06-28T23:59:59.000Z

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  18. FUEL CELL TECHNOLOGIES PROGRAM Small Business

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Proton Energy Systems Proton Energy Systems is a suc- cessful small business specializing in clean production that can be coupled with HOGEN RE® hydrogen generators are wind, solar, hydro, and wave power. Proton

  19. FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage

    E-Print Network [OSTI]

    to the rate of refueling today's gasoline vehicles. Using currently available high-pressure tank storage that can achieve similar performance, at a similar cost, as gasoline fuel storage systems. Compressed gasFUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost

  20. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect (OSTI)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  1. Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

  2. Diverse Applications of Pinch Technology Within the Process Industries

    E-Print Network [OSTI]

    Spriggs, H. D.; Ashton, G.

    the use of pinch technology in a wider range of industries including food, pulp and paper, cement brewing and dairy product processes. These processes have featured; batch and continuous operations; solids, liquids and gas processing; use... retrofit design procedures, evaluation of capital-energy trade-offs, appropriate integration of cogeneration schemes and design methods for improving flexibility. Published results of early applications in ICI (1) and later in Union Carbide (2) were...

  3. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01T23:59:59.000Z

    ECBCS)* Clean Coal Sciences* Climate Technology Initiative (Clean Coal Centre* Industrial Energy-Related Technologies

  4. Information Technology Systems for Fusion Industry and ITER Project

    SciTech Connect (OSTI)

    Putvinskaya, N.; Bulasheva, N.; Cole, G.; Dillon, T.; Frieman, E.; Sabado, M.; Schissel, D. (and others)

    2005-04-15T23:59:59.000Z

    The industrial developments in the fusion industry will have to overcome numerous technical challenges and will have a strong need for modern information technology (IT) systems.The fusion industry has manifested itself with an unprecedented international collaboration, the International Thermonuclear Experimental Reactor (ITER). Data accumulated in ITER will be the major output of the project and will create the knowledge base for a future fusion power plant. A modern and effective information infrastructure will be critical to the success of the ITER project.To accumulate and maintain the knowledge base at all stages of the project, we propose to build an integrated information system for ITER: ITER Information Plant (IIP). IIP will minimize lost experiment time and accelerate the understanding, interpretation, and planning of fusion experiments. IIP will allow to reap maximum benefits from the project's scientific and technological achievements, make the ITER results accessible to hundreds of researchers worldwide. This will facilitate collaboration, dramatically increasing the pace of scientific and technological discovery and the rate at which practical use is made of these discoveries.As the first of its kind, the ITER Information Plant could be used in the future as a prototype IT system for national and international fusion projects, in which multicountry collaboration, distributed work sites and operations are catalysts for success.

  5. Technology Adoption and Commercialization Program (New Brunswick, Canada)

    Broader source: Energy.gov [DOE]

    The Technology Adoption and Commercialization Program (TAC) is intended to encourage the adoption of improved technologies and processes by offsetting some of the direct costs associated with...

  6. NSC Technologies Joins DOE Mentor-Protégé Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSC Technologies Joins DOE Mentor-Protg Program With Jefferson Lab NEWPORT NEWS, Va., Dec. 14, 2010 - NSC Technologies, Inc., a Virginia-based professional staffing business,...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    5.pdf More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE...

  8. NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Fisher, Frank

    NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY NANOTECHNOLOGY and Engineering Drexel University Nanofiber technology is a branch of nanotechnology that concerns the processing

  9. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  10. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  11. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Energy Savers [EERE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057koeberlein2013...

  12. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Energy Savers [EERE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057koeberlein2012...

  13. Fuel Cell Technologies Program FY 2013 Budget Request Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program FY 2013 Budget Request Rollout to Stakeholders Fuel Cell Technologies Program FY 2013 Budget Request Rollout to Stakeholders Presentation by Sunita Satyapal at the FY 2013...

  14. Evolution of Ion Implantation Technology and its Contribution to Semiconductor Industry

    SciTech Connect (OSTI)

    Tsukamoto, Katsuhiro [Mitsubishi Electric Corporation (Japan); Kuroi, Takashi; Kawasaki, Yoji [Renesas Electronics Corporation (Japan)

    2011-01-07T23:59:59.000Z

    Industrial aspects of the evolution of ion implantation technology will be reviewed, and their impact on the semiconductor industry will be discussed. The main topics will be the technology's application to the most advanced, ultra scaled CMOS, and to power devices, as well as productivity improvements in implantation technology. Technological insights into future developments in ion-related technologies for emerging industries will also be presented.

  15. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    none,

    2002-11-30T23:59:59.000Z

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  16. IMPACTS: Industrial Technologies Program, Summary of Program Results for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND DTechnologiesFinding U.CY2009 | Department of

  17. MIT and Automotive Industries MIT Industry Brief

    E-Print Network [OSTI]

    Ceder, Gerbrand

    MIT and Automotive Industries MIT Industry Brief MIT's Industrial Liaison Program (ILP) can bring@ilp.mit.edu, or visit http://ilp-www.mit.edu. MIT and Automotive Industries The Massachusetts Institute of Technology (MIT) is a leading center of research and education on topics important to the automotive industry

  18. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

  19. ENVIRONMENTAL CHEMISTRY AND TECHNOLOGY PROGRAM University of Wisconsin-Madison

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    ­ Material damage · Ecosystem Impacts ­ Nutrients ­ Toxics · Climate Change #12;ENVIRONMENTAL CHEMISTRYENVIRONMENTAL CHEMISTRY AND TECHNOLOGY PROGRAM University of Wisconsin-Madison Optimizing University of Wisconsin-Madison #12;ENVIRONMENTAL CHEMISTRY AND TECHNOLOGY PROGRAM University of Wisconsin

  20. Geothermal Technologies Program Overview Presentation at Stanford

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan:

  1. Geothermal Technologies Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan:Energy

  2. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  3. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01T23:59:59.000Z

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  4. Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

  5. 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight...

    Energy Savers [EERE]

    Lightweight Materials 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight Materials Lightweight materials research and development merit review results...

  6. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

  7. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  8. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

  9. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Broader source: Energy.gov (indexed) [DOE]

    On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

  10. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01T23:59:59.000Z

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  11. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14T23:59:59.000Z

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  12. Meeting State Carbon Emission Requirements through Industrial Energy Efficiency: The Southern California Gas Company’s Industrial End User Program

    Broader source: Energy.gov [DOE]

    This case study describes the Southern California Gas Company’s Industrial End User program, which helps large industrial customers increase energy efficiency and reduce energy use and greenhouse gas emissions.

  13. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

    1997-04-01T23:59:59.000Z

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  14. Superconducting technology program: Sandia 1995 annual report

    SciTech Connect (OSTI)

    Roth, E.P. [Sandia National Labs., Albuquerque, NM (United States). Superconductivity Materials and Technology Dept.

    1996-03-01T23:59:59.000Z

    Sandia`s STP program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) process development and characterization of thallium-based high-temperature superconducting closed system wire and tape; (2) investigation of the synthesis and processing of thallium-based thick films using two-zone processing; and (3) cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY95 in each of these areas.

  15. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  16. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01T23:59:59.000Z

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  17. Program of Study_________________________ Michigan Technological University Graduate School

    E-Print Network [OSTI]

    Program of Study_________________________ Michigan Technological University Graduate School Letter, to the Graduate School, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931. Name. ____________________________________ Applicant's signature Date The undersigned, if admitted to graduate study at Michigan Technological

  18. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect (OSTI)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-11-01T23:59:59.000Z

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  19. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies ProgramOutfittedof Energydetails toReduce

  20. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  1. Rocky Flats Compliance Program; Technology summary

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

  2. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    SciTech Connect (OSTI)

    Hawsey, R.A. [comp.

    1994-04-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  3. Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration

    SciTech Connect (OSTI)

    Block, David L.; Sleiti, Ahmad

    2011-09-19T23:59:59.000Z

    The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has also established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.

  4. Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers

    E-Print Network [OSTI]

    Sermakekian, E.

    2011-01-01T23:59:59.000Z

    1 Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency... Fund (CEEF) was created in 1998 by CT State Legislature ? Energy efficiency is a valuable resource for Connecticut, it: ? Reduces air pollutants and greenhouse gases ? Creates monetary savings for customers ? Reduces need for more energy...

  5. A Generalized Method for Estimation of Industrial Energy Savings from Capital and Behavioral Programs 

    E-Print Network [OSTI]

    Luneski, R. D.

    2011-01-01T23:59:59.000Z

    In 2005, NEEA engaged the food processing industry in the Northwest with a behavior based program called Continuous Energy Improvement (CEI). Industrial energy efficiency programs have historically been limited to large ...

  6. Fuel Cell Technologies Program: Delivery Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overview FuelStorage, and Distribution

  7. Otter Tail Power Company- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Rebate Program offers rebates to qualifying commercial, industrial, and agricultural customers for the installation of high-efficiency equipment upgrades. See the program...

  8. Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan:EnergyWELCOME

  9. Industrial cogeneration optimization program. Volume II. Appendix A. Conceptual designs and preliminary equipment specifications. Appendix B. Characterization of cogeneration systems (near-term technology). Appendix C. Optimized cogeneration systems

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This appendix to a report which evaluates the technical, economic, and institutional aspects of industrial cogeneration for conserving energy in the food, chemical, textile, paper, and petroleum industries contains data, descriptions, and diagrams on conceptual designs and preliminary equipment specifications for cogeneration facilities; characterization of cogeneration systems in terms of fuel utilization, performance, air pollution control, thermal energy storage systems, and capital equipment costs; and optimized cogeneration systems for specific industrial plants. (LCL)

  10. The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor ABSTRACT Application of smart materials technology in nuclear industry offer new opportunities safety of nuclear facilities could benefit from the use of smart materials technologies in both

  11. Technology Assistance Program Growing technology-based business with free service

    E-Print Network [OSTI]

    Technology Assistance Program Growing technology-based business with free service Economic Development Is your small, technology-based business faced with a specific challenge, but lacking scientist or engineer help your company? If the answer is yes, the Technology Assistance Program (TAP

  12. The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries

    E-Print Network [OSTI]

    Fuchs, Erica R. H. (Erica Renee H.), 1977-

    2006-01-01T23:59:59.000Z

    This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

  13. Defying value-shift : how incumbents regain values in the industry with new technologies

    E-Print Network [OSTI]

    Kuramoto, Yukari

    2010-01-01T23:59:59.000Z

    Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

  14. 21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL

    E-Print Network [OSTI]

    Richerson, Peter J.

    21-389 Technology and Environmental Deterioration in Pre-Industrial Societies Chapter 21. TECHNOLOGY AND ENVIRONMENTAL DETERIORATION IN PRE-INDUSTRIAL SOCIETIES One assumption made by most... [is to over exploit and damage their environment as the "Tragedy of the Commons." The situation he had in mind

  15. Southern California Clean Energy Technology Acceleration Program Educational Webinars

    E-Print Network [OSTI]

    Talley, Lynne D.

    Southern California Clean Energy Technology Acceleration Program Educational Webinars OUR FIRST WEBINAR IS IN ONE WEEK! As a part of the Technology Acceleration Program, applicants will be provided the commercialization of their technologies. These workshops will be presented as Webinars that will, at initial

  16. ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997

    SciTech Connect (OSTI)

    Koncinski, W.S.; O`Hara, L.M. [eds.; Hawsey, R.A.; Murphy, A.W. [comps.

    1998-03-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  17. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    SciTech Connect (OSTI)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  18. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    SciTech Connect (OSTI)

    Hawsey, R.A.

    2000-06-13T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  19. Curricular emphasis in Industrial Distribution programs and programs of similar theme

    E-Print Network [OSTI]

    Miller, John Edward

    2004-09-30T23:59:59.000Z

    of those programs are in colleges of Business and Technology, and are generally marketed as supporting general or governmental business, with no reference in catalogs, and departmental literature or Internet websites as supporting fields directly...

  20. Clean Coal Technology Programs: Completed Projects (Volume 2)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01T23:59:59.000Z

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  1. Superconducting Technology Program: Sandia 1993 annual report

    SciTech Connect (OSTI)

    Roth, E.P. [Sandia National Labs., Albuquerque, NM (United States). Superconductivity Materials and Optical Properties Dept.

    1994-05-01T23:59:59.000Z

    Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

  2. Superconducting Technology Program Sandia 1994 Annual Report

    SciTech Connect (OSTI)

    Roth, E.P.

    1995-10-01T23:59:59.000Z

    Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) Process research on the material synthesis of high-temperature superconductors, (2) Investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films, (3) Process development and characterization of high-temperature superconducting wire and tape, and (4) Cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY94 in each of these four areas. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

  3. Building China's Information Technology Industry: Tariff Policy and China's Accession to the WTO

    E-Print Network [OSTI]

    Borrus, Michael; Cohen, Stephen

    1997-01-01T23:59:59.000Z

    Technology Industry: Tariff Policy and China's Accession toand thereby eliminate China's tariffs on semiconductors,make further substantial tariff reductions. A major issue

  4. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  5. Technology Innovation Program The Technology Innovation Program (TIP) was established at the National Institute of Standards and

    E-Print Network [OSTI]

    Magee, Joseph W.

    Technology Innovation Program The Technology Innovation Program (TIP) was established at the National Institute of Standards and Technology (NIST), U.S. Department of Commerce, by the 2007 America, promote, and accelerate innovation in the United States through high-risk, high-reward research in areas

  6. South Korean technology policies for the industrial competitiveness between Japan and China

    E-Print Network [OSTI]

    Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

    2006-01-01T23:59:59.000Z

    (cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

  7. A study of building technology in the Natal building industry, South Africa

    E-Print Network [OSTI]

    Pather, Rubintheran

    1989-01-01T23:59:59.000Z

    opportunity for technological improvement, (2) identify reasons for the slow technological progress in the building industry, and (3) establish directions for continuing this research focus. Descriptive statistics were used to report the findings of the study...

  8. Considering the customer : determinants and impact of using technology on industry evolution

    E-Print Network [OSTI]

    Kahl, Steven J. (Steven John)

    2007-01-01T23:59:59.000Z

    This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

  9. Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

  10. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    SciTech Connect (OSTI)

    Brown, G.Z.

    1990-01-01T23:59:59.000Z

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  11. SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

  12. WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program

    E-Print Network [OSTI]

    Virginia Tech

    WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program Fidelity Investments innovation, and effective deployment of leading-edge technologies. Our entry-level technology training, Quality Assurance, Mainframe Development and Technology Infrastructure and Engineering (TIE). Upon

  13. DOE Vehicle Technologies Program 2009 Merit Review Report

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

  14. Energy Conservation Aspect of Energy Systems Technology Education Program

    E-Print Network [OSTI]

    McBride, R. B.

    1982-01-01T23:59:59.000Z

    The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel...

  15. 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...

    Energy Savers [EERE]

    Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010amr02.pdf More Documents...

  16. Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...

    Energy Savers [EERE]

    0 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Presentation by Richard Farmer at...

  17. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  18. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishmen...

    Office of Environmental Management (EM)

    Program (VTP) vtpgoals-strategies-accomp.pdf More Documents & Publications Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Materials Technologies:...

  19. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

  20. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  1. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Presented at the...

  2. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Energy Savers [EERE]

    Project Review Presentation given by Detroit Diesel Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

  5. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  6. Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...

    Broader source: Energy.gov (indexed) [DOE]

    Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Presentation by Richard...

  7. ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS

    E-Print Network [OSTI]

    Lozano-Nieto, Albert

    1 ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS Instructor: Albert LozanoF) - Value of capacitors: -Printed on body of capacitor (physically large capacitors) -Code (useless) -If

  8. ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ELECTRICAL SYSTEMS

    E-Print Network [OSTI]

    Lozano-Nieto, Albert

    ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ­ ELECTRICAL SYSTEMS LABORATORY EXPERIENCES will become familiar with solar cells as photovoltaic energy converters. Secondly, students will practice

  9. State Demand-Side Management Programs Funds are Exploding! How Industries Can Best Use These Programs to Maximize Their Benefits

    E-Print Network [OSTI]

    Nicol, J.

    2008-01-01T23:59:59.000Z

    Find out from an Industrial Program Manager that runs a successful state DSM/Energy Efficiency program for the industrial sector how to best find, use and benefit from these types of programs. The amount of money that states are investing in DSM...

  10. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect (OSTI)

    NONE

    2000-09-01T23:59:59.000Z

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

  11. Innovative breakthrough in `cancer seeing' technology wins coveted industry accolade Institution of Engineering and Technology names 2014 Innovation Award winners

    E-Print Network [OSTI]

    Wagner, Stephan

    Innovative breakthrough in `cancer seeing' technology wins coveted industry accolade Institution of Engineering and Technology names 2014 Innovation Award winners Thursday 20 November ­ An innovation in cancer an Institution of Engineering and Technology (IET) Award. A consortium of hospital and academia have won

  12. U.S. Department of Energy (DOE) Industrial Programs and Their Impacts

    E-Print Network [OSTI]

    Weakley, S. A.; Roop, J. M.

    2005-01-01T23:59:59.000Z

    .062 - 0.003 - 0.093 12.6 Aluminum Scrap Sorting 0.361 0.270 0.002 0.001 0.078 0.058 7.09 Detection and Removal of Molten Salts from Molten Aluminum Alloys - - - - - - - High-Capacity Melt Furnace 0.000 0.000 - 0.000 - 0.000 0.000 Oxygen-Enhanced Combustion... evaluation, including assessing past programs and the benefits that have accrued from investments. Through emphasis on technologies and practices, the ITP uses its IOF process to increase the efficiency of industrial energy use, both now...

  13. PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II

    E-Print Network [OSTI]

    Case, C.W.

    2012-01-01T23:59:59.000Z

    Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartIX DOE Appropriate Energy Technology Pilot Program - Part I;

  14. Cyber Security Testing and Training Programs for Industrial Control Systems

    SciTech Connect (OSTI)

    Daniel Noyes

    2012-03-01T23:59:59.000Z

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  15. Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 19631997

    E-Print Network [OSTI]

    Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State, industry level, technological leadership, spatial econometrics JEL codes: C21, I23, O33, R12 Copyright 2007 spatial econometric techniques, and focus on capturing the geographical dimension of growth

  16. Plowshare Program - American Atomic Bomb Tests For Industrial Applications

    SciTech Connect (OSTI)

    None

    2012-04-22T23:59:59.000Z

    The United States Atomic Energy Commission (AEC) established the Plowshare Program as a research and development activity to explore the technical and economic feasibility of using nuclear explosives for industrial applications. The reasoning was that the relatively inexpensive energy available from nuclear explosions could prove useful for a wide variety of peaceful purposes. The Plowshare Program began in 1958 and continued through 1975. Between December 1961 and May 1973, the United States conducted 27 Plowshare nuclear explosive tests comprising 35 individual detonations. Conceptually, industrial applications resulting from the use of nuclear explosives could be divided into two broad categories: 1) large-scale excavation and quarrying, where the energy from the explosion was used to break up and/or move rock; and 2) underground engineering, where the energy released from deeply buried nuclear explosives increased the permeability and porosity of the rock by massive breaking and fracturing. Possible excavation applications included: canals, harbors, highway and railroad cuts through mountains, open pit mining, construction of dams, and other quarry and construction-related projects. Underground nuclear explosion applications included: stimulation of natural gas production, preparation of leachable ore bodies for in situ leaching, creation of underground zones of fractured oil shale for in situ retorting, and formation of underground natural gas and petroleum storage reservoirs.

  17. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998

    SciTech Connect (OSTI)

    Hawsey, R.A.; Murphy, A.W.

    1999-04-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  18. Entry, Exit, and the Endogenous Market Structure in Technologically Turbulent Industries

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Entry, Exit, and the Endogenous Market Structure in Technologically Turbulent Industries Myong correlation between entry and exit across industries, indicating that industries differ substantially in their degree of firm turnover. I propose a computational model of dynamic oligopoly with entry and exit

  19. In Proceedings of SPIE AeroSense 2001. Robotic Technologies for Outdoor Industrial Vehicles

    E-Print Network [OSTI]

    Stentz, Tony

    for the automation of mobile equipment used in outdoor industrial applications are immense. Mobile machines are used. Unfortunately, the automation of outdoor machines for industrial purposes is very difficult and poses greatIn Proceedings of SPIE AeroSense 2001. Robotic Technologies for Outdoor Industrial Vehicles Anthony

  20. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    E-Print Network [OSTI]

    Boyer, Edmond

    How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader for it to have value. But what about Big Data generated by the Petroleum Industry and particularly its upstream; Analytics; Upstream Petroleum Industry; Knowledge Management; KM; Business Intelligence; BI; Innovation

  1. How to use Big Data technologies to optimize operations in Upstream Petroleum Industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How to use Big Data technologies to optimize operations in Upstream Petroleum Industry Abdelkader generated by the Petroleum Industry and particularly its upstream segment? Upstream is no stranger to Big the desired outcomes? Keywords Big Data; Analytics; Upstream Petroleum Industry; Knowledge Management; KM

  2. Telematics industry dynamics and strategies for converging technologies

    E-Print Network [OSTI]

    Luis, Rodrigo, 1973-

    2004-01-01T23:59:59.000Z

    The Telematics Industry faces tremendous challenges for growth. Regardless of the efforts and investment from vehicle manufacturers and suppliers, telematics has not been that profitable industry that many analyst forecasted ...

  3. Industrial Revolutions: a graduate seminar Seminar in History of Technology

    E-Print Network [OSTI]

    Janssen, Michel

    recent industrialization in central Europe, Asia, and Latin America, also begun to reassess the concept of industrial revolution itself. This reassessment includes renewed attention to the scientific and technical

  4. ITP Mining: Mining Industry Roadmap for Crosscutting Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Roadmap for Crosscutting Technologies 5 Exhibit 2-1. Barriers to Improved Exploration and Resource Characterization 1 Lack of non-invasive technologies to quantify metalmineral...

  5. access technology industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Computer Technologies and Information Sciences Websites Summary: , Knoxville TN 37996 USA Abstract. This paper describes two projects underway to provide users...

  6. ISTUM PC: industrial sector technology use model for the IBM-PC

    SciTech Connect (OSTI)

    Roop, J.M.; Kaplan, D.T.

    1984-09-01T23:59:59.000Z

    A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model (ISTUM-PC) runs on an IBM Personal Computer. The reorganization required for the model to run on a PC has additional advantages: the modular programs are somewhat easier to understand and the data base is more accessible and easier to use. A simple description of the logic of the model is given in this report. To generate the necessary funds for completion of the model, a multiclient project is proposed. This project will extend the industry coverage to all the industrial sectors, including the construction of process flow models for chemicals and petroleum refining. The project will also calibrate this model to historical data and construct a base case and alternative scenarios. The model will be delivered to clients and training provided. 2 references, 4 figures, 3 tables.

  7. Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis

    SciTech Connect (OSTI)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01T23:59:59.000Z

    NREL conducted an annual program risk analysis on behalf of the U.S. Department of Energy Geothermal Technologies Program (GTP). NREL implemented a probabilistic risk analysis of GTP-sponsored research, development, and demonstration (RD&D) work, primarily for enhanced geothermal systems (EGS). The analysis examined estimates of improvement potential derived from program RD&D work for two types of technology performance metric (TPM): EGS-enabling technologies potential and EGS cost improvement potential. Four risk teams (exploration, wells/pumps/tools, reservoir engineering, and power conversion) comprised of industry experts, DOE laboratory researchers, academic researchers, and laboratory subcontractors estimated the RD&D impacts and TPM-improvement probability distributions. The assessment employed a risk analysis spreadsheet add-in that uses Monte Carlo simulation to drive the Geothermal Electric Technology Evaluation Model (GETEM). The GETEM-based risk analysis used baseline data from the experts' discussion of multiple reports and data sources. Risk results are expressed in terms of each metric's units and/or the program's top-level metric: levelized costs of electricity (LCOE). Results--both qualitative comments and quantitative improvement potential--are thorough and cohesive in three of the four expert groups. This conference paper summarizes the industry's current thinking on various metrics and potential for research improvement in geothermal technologies.

  8. Software Tools and Training Program: For the Efficient Design and Operation of Industrial Processes

    E-Print Network [OSTI]

    Soucy, E.

    2014-01-01T23:59:59.000Z

    -Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 3 Three Scientific Laboratories Across Canada ? Oil sands & heavy oil Devon ? Buildings & communities ? Industrial processes ? Clean electricity ? Bioenergy ? Renewables..., 2014 ESL-IE-14-05-28 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 2 CanmetENERGY ? The largest energy science and technology organization in Canada working on clean energy research...

  9. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  10. Industrial Energy: Counseling the Marriage Between Energy Users and Efficiency Programs

    E-Print Network [OSTI]

    Russell, C.

    2013-01-01T23:59:59.000Z

    to reduce utility bills can become a strategic partnership for boosting industry competitiveness and economic growth. This approach necessarily involves capital investment choices. Aside from the usual technical analyses, industry managers and program...

  11. Biomass as Feedstock for a Bioenergy and Bioproducts Industry...

    Energy Savers [EERE]

    Industry Biomass Program Peer Review Sustainability Platform Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting...

  12. Demand Response Enabling Technologies and Approaches for Industrial Facilities

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01T23:59:59.000Z

    There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however...

  13. .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft® .NET technologies DePaul University's .NET Developer Program is designed to provide programmers with an intensive and comprehensive introduction to all essential aspects of the technologies, techniques and principles of Microsoft .NET

  14. Argonne Electrochemical Technology Program Sulfur removal from reformate

    E-Print Network [OSTI]

    Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

  15. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  16. Cost and Performance Report Accelerated Site Technology Deployment Program

    SciTech Connect (OSTI)

    P. S. Morris

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Environmental Restoration Division (ERD) Industrial Sites Project Deactivation and Decommissioning (D and D) source group has limited budget and is constantly searching for new technologies to reduce programmatic costs. Partnering with the DOE Office of Science and Technology Deactivation and Decommissioning Focus Area (DDFA) reduces NNSA/NV programmatic risk and encourages accelerated deployment of potentially beneficial technologies to the Nevada Test Site (NTS).

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Broader source: Energy.gov (indexed) [DOE]

    next step is to show that it can work as designed within complete systems (i.e., fuel cell vehicles and hydrogen refueling infrastructure). Technology validation confirms that...

  18. Lewis County PUD- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.lcpud.org/index.html Lewis County PUD] offers rebates for commercial and industrial lighting, as well as industrial process upgrades, on a case-by-case basis. Eligible industrial...

  19. Fuel Cell Technologies Office Record 14010 ? Industry Deployed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

  20. Wireless Technology in Industrial Networks Andreas Willig, Member, IEEE, Kirsten Matheus, Member, IEEE, Adam Wolisz, Senior

    E-Print Network [OSTI]

    Wichmann, Felix

    of existing wireless technologies for this specific field of applications, and iii) the creation of hybrid1 Wireless Technology in Industrial Networks Andreas Willig, Member, IEEE, Kirsten Matheus, Member), pp. 1130-1151 Abstract With the success of wireless technologies in consumer electronics, standard

  1. Philadelphia Gas Works- Commercial and Industrial Equipment Rebate Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Philadelphia Gas Works' (PGW) Commercial and Industrial Equipment rebates are available to all PGW commercial and industrial customers installing high efficiency boilers or eligible commercial food...

  2. Otter Tail Power Company- Commercial and Industrial Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Otter Tail Power Company Grants for Conservation Program allows its commercial and industrial customers to submit energy-saving proposals and receive grants for their custom efficiency projects....

  3. Barron Electric Cooperative- Commercial, Industrial, and Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Barron Electric Cooperative (BEC) offers the Customized Energy Incentive Program for their commercial, industrial, and agricultural members to save energy by replacing old equipment with more...

  4. Moorhead Public Service Utility- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.mpsutility.com Moorhead Public Service Utility] offers the Bright Energy Solutions Programs for commercial and industrial customers that purchase and install qualifying energy-efficient...

  5. Coldwater Board of Public Utilities- Commercial and Industrial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    The Coldwater Board of Public Utility, in conjunction with American Municipal Power's "Efficiency Smart" program, offers a wide range of incentives that encourage commercial and industrial to...

  6. Spivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002.

    E-Print Network [OSTI]

    ) at the National Institute of Standards and Technology (NIST) is a cost-sharing program designed to partnerSpivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002. Advanced Technology Program

  7. CLOUD COMPUTING TECHNOLOGIES PROGRAM An eleven-week in-depth program in the principles, methods, and technologies of Cloud Computing

    E-Print Network [OSTI]

    Schaefer, Marcus

    CLOUD COMPUTING TECHNOLOGIES PROGRAM An eleven-week in-depth program in the principles, methods, and technologies of Cloud Computing DePaul University's Cloud Computing Technologies Program provides a broad understanding of the different leading Cloud Computing technologies. The program is designed to quickly educate

  8. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01T23:59:59.000Z

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  9. Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE)

    Broader source: Energy.gov [DOE]

    Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

  10. Within-Industry Technological Specialization, Collective Action, and Trade Policy 

    E-Print Network [OSTI]

    Urbanski, Piotr

    2015-01-21T23:59:59.000Z

    The development of newer and better technologies has reshaped economic markets and will continue to do so in the future. New technologies are widely recognized as a driving force behind economic and political integration. ...

  11. Heat Pipe Technology for Energy Conservation in the Process Industry 

    E-Print Network [OSTI]

    Price, B. L. Jr.

    1985-01-01T23:59:59.000Z

    Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems...

  12. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    E-Print Network [OSTI]

    Sathaye, J.

    2011-01-01T23:59:59.000Z

    Technology Support Unit (ETSU), 1988. “High Level Control ofCircle Industries and SIRA (ETSU, 1988). The LINKman system

  13. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption. Industrial Technologies Program (ITP) Chemicals BestPractices Plant-Wide Assessment Case Study (Brochure).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretaryVideos Solid-State Lighting Videos On this Technologies

  14. Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998

    SciTech Connect (OSTI)

    Kinoshita, K. (editor)

    1999-06-01T23:59:59.000Z

    The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

  15. HTGR generic technology program. Semiannual report ending March 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants.

  16. RIKEN Program for Drug Discovery and Medical Technology PlatformsRIKEN Program for Drug Discovery and Medical Technology Platforms Toshio Goto Program Director (D.Agr.)

    E-Print Network [OSTI]

    Fukai, Tomoki

    RIKEN Program for Drug Discovery and Medical Technology PlatformsRIKEN Program for Drug Discovery-2007, Associate Senior VP, Drug Discovery Research, Astellas. 2007-2009, Adviser, PGXIS. 2009-2010, Special Adviser, RIKEN, and 2010-present, Director, RIKEN Program for Drug Discovery and Medical Technology

  17. Building Technologies Program - 1995 Annual Report

    E-Print Network [OSTI]

    Selkowitz, S.E.

    2010-01-01T23:59:59.000Z

    Integrated Design," Pro- ceedings of 15th Passive Solardesign guidance for the optimal utiliza- tion of passive solarDesign Tool for Small Commercial Buildings A DOE-funded industry/laboratory collaboration between the Passive Solar

  18. Cooperative Efforts to Introduce New Environmental Control Technologies to Industry- A Case Study for Brayton Cycle Heat Pump Technology

    E-Print Network [OSTI]

    Enneking, J. C.

    COOPERATIVE EFFORTS TO INTRODUCE NEW ENVIRONMENTAL CONTROL TECHNOLOGIES TO INDUSTRY - A CASE STUDY FOR BRAYTON CYCLE HEAT PUMP TECHNOLOGY JOSEPH C. ENNEKING Vice President NUCON International, Inc. Columbus, ABSTRACT New environmental... CASE STUDY FOR BRAYTON CYCLE HEAT PUMP TECHNOLOGY JOSEPH C. ENNEKING Vice President NUCON International, Inc. Columbus, Ohio Figure 1 Reverse Brayton Cycle DOE FUNDED PROGRA}1 Solvents Turbine 4 3 Regenerator Solvents 5 2 1 Compressor Work in New...

  19. Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering Approach to Embedded Software

    E-Print Network [OSTI]

    de Weck, Olivier L.

    1 Managing the Proliferation of Digital Technology in the Automotive Industry A Systems Engineering it through to completion. #12;3 Managing the Proliferation of Digital Technology in the Automotive Industry, automotive firms have turned to new technologies to create profit in the industry through performance

  20. First Year Analysis of Industrial Energy Conservation in Texas A&M's Energy Analysis and Diagnostic Center Program

    E-Print Network [OSTI]

    Grubb, M. K.; Heffington, W. M.

    EADC, October, 1986, through September, 1987. During that period, 15 energy audits were performed. The purpose of the EADC is to identify and recommend specific opportunities to conserve energy and, where appropriate, the use of alternate (less...Tenth Annual INDUSTRIAL ENERGY TECHNOLOGY CONFERENCE September 13-15, 1988 Adam's Mark Hotel Houston, Texas W.D.Turner Conference Director Technical Program Director Susan K. Gibson Proceedings Editor TEES Information Services Graphics & Layout...